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ABSTRACT: The search for a potential nonlinear optical (NLO) material has led to the 

investigation of an organic compound 4-[(E)-2-(2,4,6-Trinitrophenyl)ethylidene]benzonitrile 

(TEB), which has a possibility of enhancing the NLO properties by the charge transfer 

mechanism if metal atoms are adsorbed on it. The experimental characterization of TEB is done 

using Fourier Transform Infrared (FT-IR), FT-Raman, Ultraviolet-visible (UV-Visible), 

Photoluminescence (PL), Thermogravimetric/Differential Thermal Analysis (TG/DTA) and Z-

scan techniques. third order NLO properties evaluated using Z-scan technique proves that the 

material can be used as a good optical limiter. TEB is attached with silver atoms and the 

theoretical studies including geometry optimization, NBO analysis and hyperpolarizability 

calculations are carried out. The TEB molecule with silver atoms adsorbed is found to have 

increased hyperpolarizability values. The charge transfer from the metal atom to the nitrile group 

of the molecule is evident from the Surface Enhanced Raman Scattering (SERS) spectra using 

the silver nanoparticles. 
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INTRODUCTION 

The synthesis of materials having good nonlinear optical (NLO) response attracts greater 

attention due to their potential photonic applications1,2. The third order NLO materials are used 

in diverse fields for optical power limiting, bio-imaging, nanophotonics, ultrafast optical 

switches and other optoelectronic devices, which makes the design and synthesis of such 

materials more important3,4. Organic NLO materials, when compared to inorganic materials, are 

found to have properties such as higher nonlinear optical coefficients, ease of fabrication, high 

laser damage threshold and relatively low cost5. The quantum computational techniques give 

insight into the behaviour of the molecules in terms of the bonds for interaction and can be used 

for designing and developing materials of desired properties with low cost and less effort. These 

methods use theories varying from ab initio to density functional theories (DFT) with different 

basis sets to match with the systems under consideration6-8. The present work is concentrated on 

the characterization of an organic NLO material 4-[(E)-2-(2,4,6-Trinitrophenyl)ethylidene] 

benzonitrile (TEB) which was originally synthesized9 for using it as an organometallic ligand for 

iron-phosphine complexes that can increase the NLO activity. A ligand rich in π electrons can 

extend π-conjugation and increase charge transfer leading to greater values of β 

hyperpolarizability10. The previous studies reveal that the co-ordination through CN functional 

group of nitrile ligand permits π backdonation from metal d orbitals with π* orbitals of CN 

group, leading to an extension of π electron system between the metal and the ligand11–13. These 

facts are being checked in the present study using the theoretical and experimental means. 

Since the synthesis and X-ray diffraction studies of the ligand molecule are reported9, a 

detailed study regarding the third order NLO properties along with the vibrational spectroscopic 

characteristics are carried out in the present study. The effect of adsorption of metal atoms to the 



3 
 

TEB molecule is studied theoretically and also experimentally by adsorbing silver atoms to the 

molecule. 

EXPERIMENTAL/THEORETICAL METHODS 

Synthesis and crystal growth. The compound (TEB) is synthesized as per the details 

given by Borger et. al.9 

FT-IR, FT-Raman, UV-Vis, Photoluminescence, Thermal and Z-scan studies. The 

FT-IR spectrum of TEB was recorded using a Perkin Elmer spectrophotometer with 1 cm−1 

spectral resolution in the wavenumber range from 4000 to 400 cm−1 with samples in the KBr 

technique. The Raman spectrum of the solid compound is recorded using 1064 nm laser between 

4000 and 10 cm−1 with a Bruker RFS 27 spectrometer with 100 mW laser power and a resolution 

of 2 cm−1. The UV-Vis absorption spectrum of the sample is recorded in chloroform solution 

using a JASCO UV-Vis spectrophotometer in the spectral region of 190-1100 nm. Thermo-

gravimetric and differential thermal analyses (TG/DTA) are carried out with the help of the 

Perkin Elmer instrument in nitrogen atmosphere for a 4.5 mg sample and heating in the range of 

50°C to 995°C at 10°C/min is supplied. Photoluminescence studies are carried out at room 

temperature using the Horiba Scientific Inc. spectrophotometer at an excitation wavelength of 

350 nm with Xe lamp as the excitation source. The sample in powder form is mixed in 

chloroform and mounted inside the chamber for the measurements. The open aperture Z-scan 

method is employed using laser wavelength of 532nm, pulse width 5000 ps and an average 

energy of 140 μJ, to study the nonlinear absorption properties of the sample. The sample position 

is changed from the positive to the negative z direction with respect to the focus of the beam, and 

the transmittance value is noted for each position. 
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For SERS spectrum. The colloidal silver nanoparticles are prepared by the Lee-Meisel 

method14, where 18mg of silver nitrate is mixed in 100 ml of distilled water and boiled while 

stirring. To the boiled solution, 2 ml of 1% sodium citrate solution is added dropwise and the 

boiling is continued for one hour. After that, the solution is cooled and used for mixing with TEB 

in dimethyl sulfoxide (DMSO) solution. The TEB solution of 10-5 M and 10-6 M, and the silver 

sol are mixed in two ratios 1:2 and 1:4. They are drop-coated on a glass slide and made to dry for 

the Raman spectral measurement using LabRAM HR (UV) system with 532 nm wavelength in 

the range 4000-250 cm-1. 

The silver nanoparticles are characterized using the Brookhaven Instruments Corp. 

ZetaPALS instrument for the measurement of particle size and zeta potential. Zeiss Ultra 55 

Scanning Electron Microscope (SEM) is used to find the surface morphology of the 

nanoparticles. 

DFT, NCA, NBO. In the present work DFT7 calculations at the B3LYP/cc-pVTZ level 

of theory are done to compute structural parameters and spectral details using the Gaussian’09 

program package15. For the hyperpolarizability calculation, the 6-311++G(d,p) basis set is used 

with the B3LYP exchange correlation functional. The adsorption characteristics of TEB on silver 

atom and cluster are theoretically investigated with the LANL2DZ basis set. 

By the Normal Co-ordinate Analysis (NCA), the percental contributions of internal 

coordinates to the normal coordinates is obtained using a normalized potential energy 

distribution (PED).The MOLVIB program16 is used for the IR and Raman vibrational 

assignments of the molecule. The Natural Bond Orbital (NBO) Analysis is carried out using the 
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NBO 3.1 version17 as implemented in the Gaussian’09 program and the second order 

stabilization energies18 that depict the strength of the interactions are evaluated.  

Quantum Theory of Atoms in Molecules (QTAIM). The principles of quantum 

mechanics can be applied to predict the chemical behavior of the molecules including the 

strength of the hydrogen bonds using Bader’s Theory of Atoms in Molecules19-21. For rank three 

critical points, four signatures are possible and the stable or non-degenerate critical points are 

represented as (3,-3), (3,-1), (3,+1) and (3,+3), depending on the curvature at the point. The 

analyses are done using AIMAll program suite22 which is developed by Todd A. Keith. 

Hirshfeld Surfaces. Hirshfeld surfaces23 are a measure of the space occupied by a 

molecule in a crystal24. It is defined as an isosurface with =0.5. The parameters that we get 

for the Hirshfeld surfaces from the CrystalExplorer 3.125 software are the normalized contact 

distance (dnorm), the shape index(S) and the curvedness(C), which are defined as25,26 

     (6) 

     (7) 

     (8) 

where  is the distance from the surface to the nearest atom interior to the surface,  is the 

distance from the surface to the nearest atom exterior to the surface, is the van der Waals 
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(vdW) radius of the appropriate atom internal to the surface,  is the van der Waals (vdW) 

radius of the appropriate atom external to the surface, &  are the principal curvatures of the 

surfaces. 

RESULTS AND DISCUSSION 

Molecular Structure Analysis 

 

 

 

 

 

 

 

Figure 1. Optimized Molecular Geometry of (a) TEB   (b) Ag-TEB and (c) Ag3-TEB 

The optimized structure of the TEB molecule is shown in Figure 1(a). In Table 1, the 

bond lengths and the bond angles obtained from geometric optimization are compared with the 

experimental data obtained from the previous work9 of the compound and also with the 

theoretical output calculated for Ag- and Ag3-adsorbed molecule. Since the silver atoms are 

attached to the TEB molecule through the CN group, variations are expected to the bond lengths 

and bond angles between the nearest neighbor atoms to the CN group. Due to the interaction 
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between the N10 atom and the silver atoms, C9-N10 bond length is increased, while C3-C9 bond 

length is decreased slightly. Almost equal increase of about 0.020 in bond lengths is observed for 

C2-C3, C3-C4, C5-C6 and C6-C1 bonds in the ring Ph1, while the CH bonds remain almost the 

same. The other double bonds in the molecule also got lengthened, while the single bonds remain 

the same in length. We can see that the silver triangular cluster plane is oriented perpendicular to 

the plane of the ring Ph1.The bond angle of Ag34-N10-C9 to be 176.70 reveals that the Ag34 atom 

is almost in line with the C9-N10 bond in the case of cluster attachment to the molecule. The 

length between the silver atoms in the cluster triangle is 2.74 Å which gives an equilateral 

triangle with bond angles ~600 between them. 

Table 1. Optimized geometric parameters of TEB, Ag-TEB and Ag3-TEB 

Bond lengths (Å) Bond Angles(0) 

Parameter 

Experi

mental 

TEB 

Calculated 

Parameter 

Experi 

mental 

TEB 

Calculated 

TEB 
Ag-

TEB 

Ag3 

TEB 
TEB 

Ag-

TEB 

Ag3 

TEB 

C1-C2 1.370 1.383 1.395 1.394 C3-C4-H11 118.10 119.52 119.62 119.66 

C2-C3 1.388 1.397 1.421 1.422 H11-C4-C5 121.80 120.31 120.21 120.15 

C3-C4 1.381 1.401 1.423 1.425 C13-C15-H16 122.30 120.81 119.71 119.13 

C4-C5 1.371 1.380 1.393 1.391 H16-C15-C17 113.60 115.79 115.22 114.76 

C5-C6 1.389 1.403 1.425 1.428 C5-C6-C13 120.14 123.29 123.38 123.41 

C6-C1 1.395 1.401 1.423 1.426 C1-C6-C13 121.71 118.42 118.54 118.74 

C1-H7 0.950 1.081 1.087 1.087 C6-C13-C15 124.83 126.37 125.45 124.97 

C2-H8 0.910 1.080 1.086 1.086 C15-C17-C18 121.90 123.36 122.91 122.62 

C3-C9 1.437 1.427 1.424 1.421 C15-C17-C22 124.53 122.42 123.37 123.76 

C6-C13 1.464 1.460 1.459 1.455 C17-C18-C19 125.10 123.45 123.26 123.12 

C9-N10 1.139 1.152 1.186 1.182 C17-C18-N23 119.60 121.42 122.40 122.68 

C13-C15 1.312 1.341 1.369 1.373 N23-C18-C19 115.15 115.07 114.31 114.17 

C15-C17 1.472 1.465 1.460 1.454 C18-N23-O24 116.50 118.01 119.29 119.46 

C17-C22 1.401 1.406 1.433 1.438 H26-C19-C20 125.10 120.70 120.52 120.43 

C17-C18 1.397 1.410 1.438 1.444 C21-C22-C17 123.62 124.29 124.55 124.50 

C18-N23 1.472 1.483 1.478 1.474 C17-C22-N31 120.48 120.43 121.19 121.43 

N23-O24 1.217 1.220 1.284 1.287 C22-N31-O32 116.40 117.08 118.44 118.63 

N23-O25 1.206 1.217 1.281 1.285 C22-N31-O33 119.96 116.56 117.18 117.35 

C22-N31 1.484 1.484 1.484 1.481 O24-N23-O25 125.80 125.22 123.02 122.58 

N31-O32 1.211 1.214 1.276 1.278 O32-N31-O33 123.60 126.31 124.32 123.96 

N31-O33 1.200 1.220 1.282 1.284 O28-N27-O29 123.70 125.67 124.28 123.99 
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Ag34-N10   2.302 2.204 Ag34-N10-C9   145.74 176.70 

 

Natural Bond Orbital Analysis. The charge transfer interactions of TEB, Ag-TEB and 

Ag3-TEB by NBO analysis are demonstrated in Table 2. Taking simple TEB separately, it can be 

observed that the charge transfer between the π and π* orbitals of alternate bonds of the phenyl 

ring 1 (Ph1) has the stabilization energy in the range of 80-85 kJ/mol. The transfer of charge 

between C13-C15 and the phenyl rings contributes less energy when compared to the other π(C-C) 

to π*(C-C) transitions inside the rings. A π→π* interaction is observed between the π orbital of 

C3-C4 and the triple bond of the nitrile group C9-N10 with considerable energy in the case of Ag 

attached molecules. Lone pairs of nitrogen and oxygen interact with anti-bonding σ orbitals of 

the CC, CN and NO bonds. The N10 lone pair transfers charge to the adjacent C3-C9 σ* orbital, 

where the CN group is linearly attached to Ph1 of TEB. The oxygen n2 lone pairs of the nitro 

groups transfer charge to σ* CN bonds and also to the respective other NO bonds (σ*) with a 

stabilization energy of 60-70 kJ/mol and 80-82 kJ/mol, respectively. All these interactions are 

observed for Ag attached molecule also, but with less energy contribution. From the table, it is 

clear that the transitions from lone pair (n3) of oxygen atom to π* orbital of the three N-O bonds 

have the greatest energies of all the other transitions, which is much higher (>650 kJ/mol for a 

normal molecule). A weak interaction is observed between the lone pairs of the silver atoms and 

the π* orbital of C9-N10 which can be taken as a confirmation of the charge transfer interaction 

between the metal to the TEB molecule. 

Table 2. NBO Analysis of TEB, Ag-TEB and Ag3-TEB 

Donor NBO 

(i) 

Acceptor NBO 

(j) 

Energy Density, E(2) kJ/mol 

TEB Ag-TEB Ag3-TEB 

π(C1-C2) π*(C3-C4) 83.136 40.668 40.919 

π(C1-C2) π*(C5-C6) 86.148 45.019 43.346 

π(C3-C4) π*(C1-C2) 82.010 41.756 40.584 
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π(C3-C4) π*(C5-C6) 84.182 40.250 40.083 

π(C5-C6) π*(C1-C2) 76.693 36.861 37.321 

π(C5-C6) π*(C3-C4) 97.780 57.781 59.287 

π(C5-C6) π*(C13-C15) 50.835 26.526 26.359 

π(C13-C15) π*(C5-C6) 45.019 29.329 30.919 

π(C3-C4) π*(3)(C9-N10) 72.216 53.848 57.446 

     

n1(N10) σ*(C3-C9) 63.011 23.556 20.208 

n2(O24) σ*(C18-N23) 65.103 19.706 18.577 

n2(O25) σ*(C18-N23) 69.789 23.807 23.263 

n2(O28) σ*(C20-N27) 69.371 22.301 21.506 

n2(O29) σ*(C20-N27) 68.659 21.798 21.004 

n2(O32) σ*(C22-N31) 68.827 23.807 23.263 

n2(O33) σ*(C22-N31) 64.852 21.798 21.422 

     

n2(O24) σ*(N23-O25) 81.253 37.949 37.698 

n2(O25) σ*(N23-O24) 81.002 36.861 36.652 

n2(O28) σ*(N27-O29) 81.379 37.614 37.488 

n2(O29) σ*(N27-O28) 81.086 37.405 37.237 

n2(O32) σ*(N31-O33) 82.676 38.032 37.865 

n2(O33) σ*(N31-O32) 80.207 37.196 36.986 

     

n3(O24) π*(N23-O25) 686.971 309.867 297.733 

n3(O29) π*(N27-O28) 705.171 - - 

n3(O33) π*(N31-O32) 656.721 - - 

     

n4(Ag34) π*(C9-N10) - 2.636 4.184 

n5(Ag34) π*(3)(C9-N10) - 3.431 3.640 

 

Quantum Theory of Atoms in Molecules. This theory is based upon the analysis of the 

electron charge density accumulated between the bonds. The positions of bond critical points 

(BCP) can give information about hydrogen bonding20 and Van der Waals interaction present in 

the molecule. The three types of critical points present in TEB are the nuclear attractor critical 

point (NACP) centered on each nucleus and denoted as (3,-3), the bond critical point (BCP) 

present in between the bonds and denoted as (3,-1) and the ring critical point (RCP) usually 

present in the centre of a ring and denoted as (3,+1). 
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 The ellipticity factor appears only in the case of BCP since the two other types are 

represented by rings or circles. Here we take into consideration the (3,-1) type of critical point 

which is the bond critical point. Table 3 shows a clear-cut evidence for the presence of a weak 

intramolecular hydrogen bond, between O24 and H16 whose value of electron density is 0.0178 

a.u., which indicates hydrogen bonding when ρ~ a.u.27. Also, the value of  is greater 

than zero for O24-H16, which agrees with the theory of AIM for hydrogen bonding. All the other 

values of  are less than zero, which approves the covalent nature of the other bonds in the 

molecule and the values of ρ>0.1 a.u. support the covalent nature of these bonds. The signs of 

the non-zero eigenvalues of the Hessian matrix, represented as λ1, λ2 and λ3 in the table, explains 

how the BCP got its signature. The maximum charge density exists in the NO bonds, which have 

a ρ value of about 0.51 a.u., which is the maximum in the case of TEB. The only triple bond in 

the molecule is present in the nitrile group and it also has a high ρ value of 0.49 a.u. The table 

shows that CN bond has the lowest ρ value and the ellipticity values show that CN is having 

the lowest value if all the CH bonds are excepted. All the C-C bonds are having the electron 

density value of about 0.3 a.u. while the ellipticity values differs for those bonds inside the rings 

and those that are outside the rings. The positions of BCPs and RCPs are depicted in Figure 2(a). 

There are 35 BCPs for TEB, represented in green, while the three RCPs are shown as red balls in 

the centre of the rings. The intramolecular hydrogen bond between O24 and H16 is shown as 

dotted line and such a bond creates an additional ring for TEB which resulted in the third RCP. 
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Figure 2. AIMAll Results  

The atomic basins that represent the region of space belonging to the atom are shown in 

Figure 2(b) for the atoms N10, N23, N27 and N31. The basin paths of the atomic basin are the 

trajectories of the gradient of electron density that originate at the bond critical point. Figure 2(c) 

is the contour representing the Laplacian of the electron density. The interatomic surfaces 

centered on the atoms N10, C13, N23, N31 and H26 are shown in Figure 2(d). The isosurface of the 
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electron density and Laplacian of electron density is shown in Figure 2(e); the outer surface 

corresponds to the isosurface of density while the inner surface represents the Laplacian 

isosurface. The variation in the Laplacian of electron density from the plane of the ring Ph2 is 

shown as a relief map in Figure 2(f) that represents peaks of charge concentration (negative 

Laplacian) and charge depletion (positive Laplacian). 

Table 3. QTAIM Bond Critical Points 

BCP (3,-1) Electron 

Density 

Laplacian of 

electron density 

 

Eigenvalues of Hessian of ρ 

 

Ellipticity 

ρ ρ λ1 λ2 λ3 ε 

C1-C2 0.3280 -1.1035 -0.7405 -0.6181 0.2550 0.1980 

C4-C5 0.3296 -1.1108 -0.7446 -0.6173 0.2511 0.2062 

C5-C6 0.3160 -1.0257 -0.7029 -0.6004 0.2777 0.1707 

C3-C9 0.2909 -0.9277 -0.6121 -0.5727 0.2570 0.0687 

C6-C13 0.2837 -0.8422 -0.6092 -0.5596 0.3266 0.0884 

C13-C15 0.3524 -1.2364 -0.8135 -0.6231 0.2001 0.3055 

C15-C17 0.2776 -0.8066 -0.5832 -0.5409 0.3176 0.0782 

C17-C18 0.3100 -0.9732 -0.6888 -0.5709 0.2865 0.2064 

C18-C19 0.3277 -1.0925 -0.7373 -0.6097 0.2545 0.2092 

C19-C20 0.3304 -1.1180 -0.7475 -0.6229 0.2525 0.2000 

C17-C22 0.3121 -0.9869 -0.6941 -0.5739 0.2812 0.2093 

C9-N10 0.4931 -0.2262 -1.1352 -1.1082 2.0173 0.0243 

N27-C20 0.2643 -0.7152 -0.5764 -0.5044 0.3657 0.1426 

N23-C18 0.2609 -0.7003 -0.5621 -0.5000 0.3618 0.1241 

N31-C22 0.2619 -0.7126 -0.5590 -0.5186 0.3650 0.0779 

N27-O28 0.5143 -1.1802 -1.4321 -1.2866 1.5385 0.1131 

N23-O24 0.5116 -1.1696 -1.4287 -1.2766 1.5357 0.1191 

N31-O32 0.5195 -1.2225 -1.4572 -1.2950 1.5297 0.1252 

C1-H7 0.2950 -1.1827 -0.8325 -0.8220 0.4717 0.0128 

C13-H14 0.2948 -1.1764 -0.8284 -0.8213 0.4734 0.0086 

C15-H16 0.3001 -1.2196 -0.8667 -0.8512 0.4983 0.0181 

C19-H26 0.3009 -1.2472 -0.8899 -0.8835 0.5261 0.0072 

O24-H16 0.0178 0.0747 -0.0189 -0.0146 0.1084 0.2927 

Hirshfeld Surface Analysis. By this analysis, we get a continuous overlapping atomic 

charge distribution, differing from the QTAIM where the density distribution is not continuous. 

Also, the proximity of the neighbouring atoms is considered in this analysis. The charge 
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distribution that we obtain from Hirshfeld analysis is the neutral atomic charges, since the 

promolecule is made up of overlapping ground-state atoms. Figure 3 shows the Hirshfeld 

surfaces obtained from the CrystalExplorer 3.1 software. Figure 3(a) is the  surface formed 

from de and di as per equation (6). 

 

Figure 3: Hirshfeld Surface Analysis 
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The normalized contact distance, , is a measure of the close contacts in the crystal. 

The shorter contacts are displayed in red colour on the  surface while the longer ones are 

blue in colour and the white portion represents the contacts around the Van der Waals separation. 

Interactions with neighboring molecules occur through the short contacts. On analyzing the 

whole 3D dnorm surface of TEB, eight red spots are detected; four spots near the oxygen atoms of 

the nitro groups, three spots near the hydrogen atoms and another one near the nitrogen atom of 

the nitrile group. These spots can be used for determining the strength of the hydrogen bond and 

the proximity of the intermolecular contacts in the crystal. The possibility of the metal atom to 

make contact with the molecule through the nitrile group is evident from this analysis also. The 

shape index gives information regarding the shape of the molecular surface. If two shapes differ 

in shape index value only by a sign, then it represents complementary ‘stamp’ and ‘mould’ pairs. 

The complementary hollows (red) and bumps (blue) in the shape index map indicates the place 

where two molecular Hirshfeld surfaces touch one another23. The red and blue triangular patterns 

on the surface indicates the stacking arrangement of the ring. As seen from the equation (8), the 

curvedness C is a function of the root-mean-square of curvature of the surface and it measures 

the magnitude of surface curvature. Large regions of green in Figure 3(c) separated by dark blue 

edges indicate the relative curvature measure, where the green colour represents r.m.s. curvature 

of unity and the blue colour represents large r.m.s. curvature. Small traits of yellow and red 

indicates unusually flat regions. The map represents areas on the surface that have close contact 

between two molecular Hirshfeld surfaces. The surfaces formed by di and de separately are also 

shown in Figure 3(d) and Figure 3(e), respectively. The finger print plot of the 3D molecular 
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structure is another entity related to the Hirshfeld surface and gives information about the 

contribution of each type of bond to the total molecule. 

Absorption and Emission Properties. UV-Visible Spectroscopy and Frontier Molecular 

Orbital Analysis. The electronic transition of the molecule, generally from the Highest Occupied 

Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO) gives 

information about the absorption properties of the molecule through the ultraviolet-visible (UV-

Vis) spectrum. 

 

 

 

 

 

 

 

 

Figure 4. (a) Experimental UV-Vis Spectrum of TEB (b) HOMO-LUMO Transition 

In the experimental UV-Vis spectrum (Figure 4(a)) with chloroform as the solvent for 

TEB, two peaks are observed, one at 269 nm and the other at 330nm. The peak at 269 nm with 

higher intensity is an allowed π→π* transition while the peak at 330 nm with less intensity is a 

forbidden n→π* transition. The Time Dependent Density Functional Theory (TD-DFT) 

calculations using BHandHLYP functional and the cc-pVTZ basis set result in an absorption 

maximum at 335 nm with an oscillator strength of 0.746. From the HOMO-LUMO analysis, it is 
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found that the Highest Occupied Molecular Orbital (HOMO) is concentrated on the first phenyl 

ring Ph1 and the Lowest Unoccupied Molecular Orbital (LUMO) is centered on the Ph2 ring. 

The HOMO energy of TEB is obtained as -0.30536 a.u. and the LUMO energy as -0.10778 a.u., 

and the energy gap is computed to be 0.198 a.u., i.e., 5.389 eV (1 a.u.= 1 Hartree = 27.2114 eV). 

The lesser value of energy gap makes it easy for the electron to transfer from the occupied 

energy level of Ph1 ring to the unoccupied energy level of Ph2 ring, and results in better NLO 

properties. Similar values of absorption maxima and energy gap are obtained for TD-DFT 

calculations using M062X functional and very close values are resulted from CAM-B3LYP 

calculations.24,25 The HOMO and LUMO energies of Ag-TEB are -0.17581 a.u. and -0.15707 

a.u. respectively and the energy gap is calculated to be 0.510 eV. Similarly, the energy gap for 

Ag3-TEB is 0.360 eV which is the lowest value of all the energy gaps computed here. 

Photoluminescence Studies. The electronic energy band structure of TEB can be explored using 

photoluminescence studies. The luminescence, being an internal property of the molecule, is 

affected by the localized π-electron system of TEB molecule. The sample is dissolved in 

chloroform and the solution is analyzed for photoluminescence studies. When excited with a 

wavelength, λexc, of 350 nm, the photoluminescence spectrum shows an intense green light 

emission at 528 nm as shown in Figure 5(a). The green light emission suggests that the molecule 

can be used for potential applications as OLEDs and fluorescent systems. The colour that is 

obtained from the CIE co-ordinates (0.297,0.487,0.216) of the molecule is shown in the 

chromaticity diagram (Figure 5(b)). 
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Figure 5. (a) Photoluminescence Spectrum of TEB at λexc = 350 nm (b) Chromaticity Diagram    

of TEB 

TG/DTA. The thermal characteristics of the compound, w.r.t. the decomposition of the 

crystal at different temperatures can be studied using the thermo gravimetric (TG) and 

differential thermo gravimetric analysis (DTA). From the TG curve (Figure 6), it can be seen that 

the compound has very good thermal stability up to 252 0C. A sharp decrease in the weight 

(60%) of the molecule starts at a temperature of 252 0C (525 K) and ends at a temperature of 337 

0C (610 K). The sharp endothermic peak of TEB is a melting peak, which is evident from the 

solidified melt after getting cooled. The DTA curve gives the inflection point, the temperature at 

which the greatest weight loss occurs, which for TEB is at 312 0C. 
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Figure 6. TG/DTA curve 

Nonlinear Optical (NLO) Studies. Due to the interaction with the intense laser beam, 

the molecule shows nonlinear response to the applied electric field. The third order response is 

experimentally determined using the open aperture Z-scan technique30, by which the 

transmittance of the molecule with respect to the sample position is measured. For maximum 

beam irradiance, TEB exhibited a linear transmittance (Figure 7) of 59%, which shows that the 

molecule can be used as a good optical limiter. The phenomenon responsible for this nonlinear 

behavior is two photon absorption, which fits well with the experimental data. The two photon 

absorption co-efficient (β) obtained from the experiment can be estimated from the relation1 

     (9) 

where , L being the sample length and , the linear absorption 

coefficient27. The value of β obtained experimentally for TEB is 43×10-12 m/W. 
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Figure 7. Z-scan curve 

Quantum chemical calculations have proven to be a reliable tool for investigating 

nonlinear optical properties theoretically. The dipole moment that normally has a linear 

dependence on the electric field now varies nonlinearly in response to the intense laser beam. 

The Taylor series expansion of the induced dipole moment can be written as: 

  (10) 

where  is the static dipole moment,  is the linear polarizability tensor,  is the first order 

hyperpolarizability tensor and  is the second order hyperpolarizability tensor. The terms 

other than the linear component in equation (10) are the second and third order nonlinear 

components that are responsible for the NLO properties. 

Using the diagonal elements of a second rank 3×3 linear polarizability tensor < >, the 

response parallel to the applied electric field can be found out from the relation: 
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< > = + )      (11) 

The anisotropy of polarizability is computed using the expression: 

 (12) 

The first hyperpolarizability , being a third rank 3×3×3 tensor, can be evaluated using the 

equation: 

        (13) 

where , ,  

Using the permutations of the β components, the values of  {Static first-order 

hyperpolarizability},  {Frequency dependent electro-optic Pockel’s effect} 

and  {Second Harmonic Generation (SHG)} can be computed. Of the 27 

components of the tensor, 17 have been eliminated by the Kleinmann symmetry31 and the 

remaining ten components are obtained from the Gaussian output. The static and field dependent 

second hyperpolarizability values with different frequency conditions give insight into the 

different third order NLO properties. The relations for calculating the second hyperpolarizability 

values from the Gaussian output are32: 
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 =  (  +  +  + 2  + 2  + 2 )  (14) 

          (15) 

           (16) 

where  is static second hyperpolarizability,  represents the optical Kerr 

effect and depicts the DC-electric field induced SHG. 

A comparison of the linear polarizability, first hyperpolarizability and the second 

hyperpolarizability values of the molecules TEB, Ag-TEB and Ag3-TEB with that of urea is 

available in the Table 4. Close examination of the polarizability tensor components in each case 

exposes the fact that the direction in which the dipole moment is having the larger value has an 

influence in all the polarizability directions. The dipole moment value of TEB molecule is 1.412 

Debye, which is contributed mainly by the z component ( =1.347 Debye). Therefore, the z 

components of the polarizability tensors are showing higher values as compared to the other 

components of the tensor; i.e., , and  have the largest values of the corresponding 
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tensor elements. Ag3-TEB is also exhibiting similar characteristic where the dipole moment 

value is 21.228 Debye, that is contributed wholly by the z-component. This value, being much 

higher than that of pure TEB, is reflected in the other polarizability values also. In the case of 

Ag-TEB, x component plays the major role in the dipole moment (10.357 Debye; 10.314 

Debye) and thereby in the polarizability values also. All the values of linear and nonlinear 

polarizabilities for normal TEB are greater when compared with that of urea. Further 

enhancements in the values are obtained when silver atoms are adsorbed, which enables the 

metal atom adsorbed TEB molecule to be used as a good NLO candidate. 

Table 4. Comparison of polarizability values of urea, TEB, Ag-TEB and Ag3-TEB 

Molecules 

Parameters 
TEB Ag-TEB Ag3-TEB Urea 

Static Dipole Polarizability 

< >static(×10-24esu) 
40.75 140.44 219.44 4.90 

Static Dipole Anisotropy 

static (×10-24esu) 
43.91 326.32 526.34 2.03 

Dynamic Dipole Polarizability 

< >dynamic(×10-24esu) 
42.66 10.99 44.74 4.95 

Dynamic Dipole Anisotropy 

dynamic (×10-24esu) 
48.45 58.21 33.67 2.06 

First Hyperpolarizability, β 

(×10-30 esu) 83.63 964.66 222.32 0.79 

(×10-30 esu) 120.62 830.70 1094.11 0.85 

(×10-30 esu) 353.05 1985.67 3036.10 0.94 

Second Hyperpolarizability, γ 

(×10-36esu) 294.74 6344.84 5654.19 4.12 

(×10-36esu) 457.96 5945.86 4042.16 4.51 

(×10-36esu) 1967.10 8746.91 3970.58 5.22 

 

Vibrational Spectral Assignments. Since the molecule consists of 33 atoms, 93 

vibrational modes are possible from which information about the functional groups can be 

obtained. FT-IR and FT-Raman spectra are simultaneously compared with the theoretical 
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spectra, for the assignment of peaks. From the PED data of NCA, the contribution of each mode 

to a particular normal mode is obtained. The region of the spectra above 1500 cm-1 is taken as 

the characteristic region from which the functional groups of the molecule can be confirmed. 

Those peaks below 1500 cm-1, i.e. from the fingerprint region33, are characteristics of the 

molecule as a whole. The figures 8 and 9 show the FT-IR and FT-Raman spectra for TEB and 

the Table S1 (Supplementary Information) gives the assignments. 

 

 

 

 

 

 

 

 

 

Figure 8. (a) Experimental FT-IR Spectrum (b) Theoretical IR Spectrum  
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Figure 9. (a) Experimental FT-Raman Spectrum (b) Theoretical Raman Spectrum 

Region above 3000 cm-1(CH stretching vibrations). Usually this region consists of CH, 

NH and OH stretching vibrations. Since our molecule does not contain NH and OH bonds, the 

peaks in this region can be assigned to CH stretching vibrations that generally occur in the range 

3100-3000 cm-1.  In the experimental IR spectrum, these modes are observed as weak peaks at 

3101, 3075 and 3046 cm-1 and in the Raman spectrum as very weak peaks at 3101, 3075, 3061 

and 3040 cm-1.  

Region between 3000 and 1500 cm-1 (CN, CC, NO stretching). The only peak in the 

region between 3000 and 2000 cm-1 is found theoretically at 2234 cm-1 which is formed due to 

the CN stretching of the nitrile group attached to Ph1. The corresponding peak is observed both 

in experimental IR and Raman spectra as medium bands at 2226 cm-1.  
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In the region between 2000 and 1700 cm-1, the combination tones of the out-of-plane CH 

vibrations, called benzene fingers34, are seen. Very weak peaks that are overtones or combination 

bands of fundamental modes appear in this region. Two such peaks are observed in the 

experimental FT-IR spectrum, one at 1931 cm-1 which can be the overtone of the peak at 967 cm-

1 and the other one at 1853 cm-1 that can be the overtone of the peak at 923 cm-1. 

A very strong peak found at 1630 cm-1 in the Raman spectrum is assigned mainly to CC 

double bond stretching vibration of the link between the two rings. A splitting of the band is 

observed at 1612 and 1599 cm-1 in the IR spectrum, which according to the PED are assigned to 

the contribution by NO and CC stretching of Ph2. NO stretching of NO2 group has a 55% PED 

contribution to the weak Raman peak at 1551 cm-1. The very strong IR peak at 1532 cm-1 has a 

contribution from CC stretching vibration of Ph2. NO stretching also has contributed to this peak 

with a PED of 26%. 

Region between 1300 and 1500 cm-1 (CH bending and NO stretching). The rocking 

vibration of CH bond in the link between the rings is observed theoretically at 1359 cm-1, but 

observed in the experimental Raman spectrum as a medium peak at 1364 cm-1. On comparison 

with the theoretical intensity, the simultaneous occurrence of a peak at 1348 cm-1 in both IR and 

Raman spectra can be attributed to the NO symmetric stretching vibration with a PED 

contribution of 28%. The CH bending mode of Ph1 is observed as a weak peak at 1307 cm-1 in 

the Raman spectrum.  

Region between 1000 and 1300 cm-1 (Ring stretching and bending vibrations). 

Corresponding to the theoretical peak at 1258 cm-1, there is a weak peak at 1265 cm-1 in the 

Raman spectrum which is attributed to the CC stretching vibrations of Ph1 (53% PED) and Ph2 
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(21% PED). Both IR and Raman spectra consist of a peak at 1203 cm-1 which is attributed to the 

combined vibrations of CC stretching in Ph1, trigonal bending of both rings and CC stretching of 

the link between the rings. A strong peak at 1177 cm-1 is observed in the Raman spectrum, with 

contributions from the CC and CN stretching, and CCH bending vibrations of Ph2. The peak at 

1083 cm-1 in both spectra is also the result of in-plane CCH bending and CC stretching vibrations 

of Ph2. 

Region below 1000 cm-1 (Torsional vibrations). Most of the peaks below 1000 cm-1 are 

affected by the torsional and wagging vibrations of the molecule. The torsion of ring Ph2 has 

resulted in the appearance of many of the peaks in this region. The CCCH wag of Ph1 has the 

main contribution (92% PED) to the theoretical peak observed at 1013 cm-1. 

SERS Analysis. The Surface Enhanced Raman Scattering (SERS) technique can be used 

to find out the type of adsorption between the silver metal atoms and the TEB molecule, whereby 

the chance of charge transfer from the metal to the molecular orbital can be analyzed. The Figure 

10 depicts the profile of the spectrum for different ratios (1:2 and 1:4) of the TEB solution (10-5 

M and 10-6 M) and the silver nanoparticles. On the investigation of Figure 11 (the Raman 

spectrum taken for the mixture of TEB solution (10-5 M) and the silver nanocolloidal solution in 

the ratio 1:2) a sharp enhanced peak is observed at 2117 cm-1. Since the normal Raman spectrum 

consists of a peak at 2226 cm-1 which is the only peak in the range 2000-2500 cm-1, the peak at 

2117 cm-1 can be undoubtedly assigned to the redshifted CN stretching frequency (normal range 

2225±15 cm-1)33. The shift in frequency for silver-adsorbed molecule is due to the attachment of 

the silver nanoparticles to the CN group through the charge transfer from the silver metal orbital 

to the π* orbital of the nitrile group35. This extends the CN bond and the force constant decreases 

thereby decreasing the wavenumber to a considerable amount.  This charge transfer between the 
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metal atom and the LUMO of the TEB molecule, termed as chemisorption, is responsible for the 

shift in the frequencies of the molecule36, especially the shift in the stretching frequency of nitrile 

group to more than 100 cm-1. The chemical enhancement mechanism can also be confirmed from 

the shift of the comparatively strong band at 2930 cm-1 from above 3000 cm-1 in the case of 

normal TEB spectrum, assigned to the CH stretching of the rings. The peak at 1677 cm-1 is a blue 

shifted TEB peak assigned to C=C stretching. The nitro group stretching peak is seen as a sharp 

one at 1543 cm-1. The presence of the sharp peak at 1055 cm-1 may be the considered as the peak 

corresponding to 1083 cm-1 in the normal TEB Raman spectrum. The peak at 663 cm-1 can be 

assigned to the torsional ring vibrations corresponding to the theoretical peak at 658 cm-1 for 

TEB molecule. Some peaks, such as 516, 491 and 332 cm-1, which are absent in the normal 

Raman spectrum of TEB, are now present in the SERS spectrum due to the enhancement effect. 

These changes in wavenumbers suggest that the TEB molecule is in tilted position with respect 

to the nanoparticle. The charge transfer property, thus confirmed from the SERS analysis, can be 

taken as a proof for the use of the molecule as an organometallic ligand capable of increasing the 

nonlinear optical property of the compound, by extending the donor-acceptor charge transfer. 
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Figure 10. SERS spectrum of TEB molecule in 10-5 M and 10-6 M, mixed with silver 

nanoparticles in the ratios 1:2 and 1:4. 

 

 

 

 

 

 

 

 

 

Figure 11. SERS spectrum of TEB solution (10-5 M) with silver nanoparticles in the ratio 1:2 

using 532 nm laser wavelength 

A comparison of the unscaled frequencies of pure TEB, Ag-TEB and Ag3-TEB is given 

in the Table S2 along with the Raman spectra (Figure S1) in Supplementary Information. 

The effective diameter of the nanoparticles as obtained from the particle size analyzer is 

47.7 nm with polydispersity of 0.360 and the mean zeta potential from the Phase Analysis Light 

Scattering (PALS) zeta potential analyzer for the colloid solution is -11.38 mV. From the SEM 

analysis the surface morphology of the nanoparticles is obtained, from which the size and shape 

of the nanoparticles are found to be in the range 40-50 nm of diameter and in spherical shape, 

respectively. 
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Figure 12. SEM image of the Ag nanoparticles 

CONCLUSIONS 

An organic compound that can be used for NLO applications is developed and 

characterized using theoretical and experimental vibrational spectroscopic techniques. The linear 

transmittance of less than 60% shown by TEB in the open aperture Z-scan technique can suggest 

it for potential optical limiting application. The green light emission of TEB can be applied in 

light emitting diodes and other photonic applications. Theoretical studies using QTAIM gives 

information mainly about the interatomic properties while the Hirshfeld surfaces provide the 

intermolecular interactions. The Ag and Ag3-attached molecules are also qualitatively analyzed 

and the variations are observed in the optimized geometry, vibrational spectra, NBO analysis and 

NLO properties. The experimental confirmation for the chance of π backdonation from the metal 

atom to the TEB molecule is attained by the SERS mechanism. The theoretical NLO study of the 

silver-attached molecule shows that the hyperpolarizability values are increased further on 

attachment of the metal atom. 
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