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There is compelling evidence that the elevated
plasma lipoprotein(a) [Lp(a)] levels increase the
risk of atherosclerotic cardiovascular disease
(ASCVD) in the general population. Like low-den-
sity lipoprotein (LDL) particles, Lp(a) particles
contain cholesterol and promote atherosclerosis.
In addition, Lp(a) particles contain strongly proin-
flammatory oxidized phospholipids and a unique
apoprotein, apo(a), which promotes the growth of
an arterial thrombus. At least one in 250 individ-
uals worldwide suffer from the heterozygous form
of familial hypercholesterolemia (HeFH), a condi-
tion in which LDL-cholesterol (LDL-C) is signifi-
cantly elevated since birth. FH-causing mutations

in the LDL receptor gene demonstrate a clear gene-
dosage effect on Lp(a) plasma concentrations and
elevated Lp(a) levels are present in 30-50% of
patients with HeFH. The cumulative burden of
two genetically determined pro-atherogenic
lipoproteins, LDL and Lp(a), is a potent driver of
ASCVD in HeFH patients. Statins are the corner-
stone of treatment of HeFH, but they do not lower
the plasma concentrations of Lp(a). Emerging
therapies effectively lower Lp(a) by as much as
90% using RNA-based approaches that target the
transcriptional product of the LPA gene. We are
now approaching the dawn of an era, in which
permanent and significant lowering of the high
cholesterol burden of HeFH patients can be
achieved. If outcome trials of novel Lp(a)-lowering
therapies prove to be safe and cost-effective, they
will provide additional risk reduction needed to
effectively treat HeFH and potentially lower the
CVD risk in these high-risk patients even more
than currently achieved with LDL-C lowering
alone.
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Introduction

In addition to ‘traditional’ atherosclerotic cardio-
vascular disease (ASCVD) risk factors, lipoprotein
(a) [Lp(a)] has recently attracted much interest
among clinicians focusing on improving the accu-
racy of cardiovascular risk stratification [1, 2].
Compelling evidence from traditional epidemiolog-
ical, genomewide association and Mendelian ran-
domization studies have revealed that elevated
plasma Lp(a) levels increase the risk of acute

myocardial infarction (AMI), ishemic stroke, calcific
aortic valve disease and peripheral arterial disease
in non-FH patients [3–8]. Even if LDL-C is lowered
using currently available lipid-lowering therapies,
a significant residual risk remains for individuals
with elevated Lp(a), and specific therapies for Lp(a)
are needed and likely to be available within next
few years for clinical use [9–14]. It has been
estimated that there are over 1.4 billion people
worldwide with plasma Lp(a) levels over
50 mg dL�1 [15]. Given that approximately one
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out of 250 individuals have HeFH [16], it can be
calculated that there are at least 5 million HeFH
patients worldwide with Lp(a) levels over
50 mg dL�1. The overall prevalence of elevated Lp
(a), defined as >50 mg dL�1 (>125 nmol L�1), is
shown in Fig. 1.

In this review, we first present the genetics of
HeFH, then describe the significance of elevated Lp
(a) in the general population as well as in HeFH and
finally discuss the available and the near-future
treatments for elevated Lp(a) and the need for new
clinical guidelines in HeFH related to Lp(a). This
review will not discuss the homozygous form of FH.

Familial hypercholesterolaemia

Familial hypercholesterolemia (FH) is the second
most common, monogenic cause of inherited heart
disease worldwide behind Lp(a). According to
recent estimates, at least one in 250 individuals
suffer from a life-long two- to-threefold elevation of
serum low-density lipoprotein cholesterol (LDL-C)
due to the heterozygous form of familial hyperc-
holesterolemia (HeFH) [16–21].

Serum LDL-C levels in untreated HeFH children
are typically above 4 mmol L�1 (150 mg dL�1) [17].
In such patients, an increased carotid intima-
media thickness is already detectable in the second

decade of life [22–24]. If untreated, HeFH may lead
to coronary stenoses in males with FH as young as
17 years, and in females as young as 25 years of
age [25]. Such early-onset ASCVD can lead to an
increased incidence of clinical events before middle
age in adult HeFH patients [26]. Up to three
quarters of HeFH patients may accumulate other
CV risk factors, such as smoking and obesity, and
this markedly heightens their risk of ASCVD [27].

HeFH is caused by mutant alleles in the LDLR,
APOB or PCSK9 gene. Each of these genes encodes
a specific protein that is involved in the clearance of
LDL-C from the circulation. Approximately 90% of
all HeFH cases are due to mutations in the LDLR
gene [17]. As of 2016, over 1700 different LDLR
mutations have been reported [28]. Interestingly,
although more than 20 hypercholesterolemia-
causing gain-of-function PCSK9 variants have
been found worldwide, in the United Kingdom,
only one common PCSK9 variant has been reported
and this variant accounts for about 2% of the
genetically identified HeFH patients [29]. Likewise,
one variant of the APOB gene accounts for about
5%–10% of all HeFH cases in the European popu-
lation [29]. Recently, additional APOB mutations
were found to cause HeFH [30]. In populations
lacking a founder effect, a mutation in the LDLR,
APOB or PCSK9 gene can be identified in less than
half of the patients with clinically suspected HeFH
[31]. For example, in the United Kingdom, the
clinically suspected HeFH patients who are muta-
tion-negative for LDLR, APOB or PCSK9 genes,
there is an accumulation of common small-effect
LDL-C-raising alleles, which has been defined as
‘polygenic HeFH’ [32]. The most commonly used
clinical criteria for the diagnosis of HeFH are the
Dutch Lipid Clinic criteria [33] and the UK criteria
[34].

LDL and Lp(a) particles

Low-density lipoproteins particles contain approx-
imately 50% cholesterol mass by weight, with a
lipid core consisting of cholesteryl esters (90%) and
triglycerides (10%), while the surface of an LDL
particle harbours a single copy of the apolipopro-
tein, apoB-100, embedded in a monolayer of
phospholipid and unesterified cholesterol mole-
cules [35]. The apoB-100 protein acts as a ligand
for the LDL receptor and, accordingly, is crucial for
the hepatic clearance of LDL particles [36]. ApoB-
100 also mediates binding of LDL particles to
proteoglycans within the arterial wall and thereby

Fig. 1 Estimated global numbers of elevated Lp(a) at
>50 mg dL�1 (>125 nmol L�1) and CVD risk. It has been
estimated that there are over 1.4 billion people worldwide
with serum Lp(a) levels over 50 mg dL�1 [15]. Given that
about one out of 250 individuals have HeFH [16], then it
can be calculated that there are at least 5 million HeFH
patients worldwide with Lp(a) levels over 50 mg dL�1. The
overall prevalence of elevated Lp(a), defined as
>50 mg dL�1 (>125 nmol L�1).
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leads to their retention and in situ modification,
with ensuing development of atherosclerotic
lesions [37].

Lp(a) particles resemble LDL particles, but cru-
cially differ from those in that they contain one
copy of a unique apoprotein, apoprotein(a) [apo(a)],
which is linked via a disulphide bond to the apoB-
100 moiety of the particle [38]. Apo(a) is a highly
polymorphic glycoprotein synthesized and secreted
almost exclusively by the liver [39]. It is noteworthy
that there is a significant sequence homology
(78%–100%) between apo(a) and the fibrinolytic
pro-enzyme plasminogen [40, 41], in that both apo
(a) and plasminogen contain loop-like structures
called kringles [42, 43]. Interestingly, such kringle-
like structures are also present in prothrombin and
urokinase [44, 45]. However, the kringle types and
copy numbers in apo(a) and in plasminogen are
different. While plasminogen contains five different
kringle structures (KI to KV), the apo(a) has lost KI,
KII and KIII by deletion, harbours a single copy of
KV, and most importantly, due to expansion and
differentiation contains 10 different types of KIV
(KIV1–10), all of which have specific amino kringle
compositions [41]. More precisely, the apo(a) iso-
forms harbour one copy each of KIV1 and KIV3–10,
and from one to over 40 copies of KIV2. Recently, it
was found that high levels of Lp(a) corresponding
low LPA KIV2 number of repeats are associated
with high risk of mortality in the general popula-
tion [46].

The clinically available ‘standard’ LDL-C measure-
ments actually determine the sum of cholesterol
contained in both LDL and Lp(a) particles [47].
Thus, in subjects with very high Lp(a) levels (>1000
mg L�1), the diagnosis of HeFH based solely on an
LDL-C level may lead to a false positive classifica-
tion [48]. For this reason, for example, a compre-
hensive genetic testing is the cornerstone of FH
diagnostics, as it also affords an early and defini-
tive diagnosis of HeFH and is cost-effective [49–51].
It has been also shown that systematic cascade
testing of undiagnosed relatives of individuals with
genetically diagnosed HeFH and elevated Lp(a) is
effective [52, 53].

Elevated Lp(a) and the development of atherosclerotic and
atherothrombotic cardiovascular disease

Understanding the role of Lp(a) in the formation
and progression of atherosclerotic plaques, in
arterial stenosis and in developing occlusions still

poses scientific challenges which would lead to
unambiguous conclusions [54–56]. This is because
the role of Lp(a) as a risk factor is complicated by
the fact that one cannot easily separate atheroscle-
rotic effects from thromboses in the arterial system
and by the fact that both the concentration of
circulating Lp(a) particles and the apo(a) isoform
size have been independently associated with
ASCVD risk, although the majority of data is more
in line of plasma Lp(a) being the key determinant
[2].

The prevalence and risk cut-offs of Lp(a) as a risk
factor for CHD may vary between ethnicities in the
general population [57]. Guan et al. [58] in the
MESA study followed a cohort of 1323 black, 1677
white, 548 Chinese American and 1044 Hispanics
and recorded 235 CHD events in 8.5 years. Based
on the data obtained, the cut-off for Lp(a) was
different for white and Hispanic individuals com-
pared to black individuals. The authors suggested
an Lp(a) >30 mg dL�1 cut-off for blacks and whites,
and an Lp(a) cut-off of >50 mg dL�1 for Hispanics.
In a very recent study, in which Lp(a)-associated
risk of the development of carotid plaques was
analysed, it was found that carotid plaque burden
was greater in whites than in blacks, whereas in
Hispanics, the results were borderline [59]. How-
ever, in other similarly powered studies such as the
Dallas Heart Study and the ARIC study, elevated
Lp(a) was similarly potent as a risk factor. Within
these variabilities, the overall data can be inter-
preted that elevated Lp(a) (>50 mg dL�1 or
>~125 nmol L�1) is similarly a risk factor for CHD
irrespective of racial make-up [60, 61]. However,
within different racial groups, it is more likely to
find more patients with elevated Lp(a) in Blacks,
South Asians, Caucasians, Hispanics and East
Asians, in that order [15].

A significant consequence of the structural simi-
larity between apo(a) and plasminogen, as
described above, is that apo(a) may competitively
inhibit the activation of plasminogen; that is, it
possesses antifibrinolytic activity, which in turn
may explain the potential role of the lipoprotein as
a mediator of increased atherothrombotic risk [62].
Thus, since Lp(a) is both a cholesterol carrier into
the arterial wall and possesses antifibrinolytic
activity, it may constitute a link between
atherosclerosis and atherothrombosis [55]. Fur-
thermore, Lp(a) has been reported to enhance
oxidative stress [63, 64] and is associated with
endothelial dysfunction [65–67]. Impaired
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endothelium-dependent dilation has been shown
to be present in HeFH children as young as 7 years
of age, and this impairment was associated with
the Lp(a) concentration [68]. Finally, the athero-
genicity of Lp(a) lipoprotein can partly mediated by
its content of pro-inflammatory oxidized phospho-
lipids, which appear to be responsible for monocyte
activation, adhesion to endothelial cells and
release of pro-inflammatory cytokines [69]. Fur-
thermore, since Lp(a) is enriched in platelet-acti-
vating factor, the particles can promote platelet
aggregation [70, 71]. In summary, since Lp(a)
particles contain, in addition to the proatherogenic
components of LDL, also apo(a), they are likely
more atherothrombogenic than LDL particles [2,
72].

Analytical issues with measurement of Lp(a)

Lp(a) concentrations are relatively infrequently
measured in routine clinical care [73]. Nonetheless,
the measurement of Lp(a) needs to be well stan-
dardized [74]. Additionally, familial combined
hyperlipidemia (FCHL) and elevated lipoprotein(a)
[Lp(a)] may mimic HeFH [75].

Apo(a) isoform size variations pose significant
issues for the reliable estimation of bona fide Lp
(a) concentrations. In a recent round table meeting,
Dr. Marcovina pointed out that Lp(a) values in
samples with small apo(a) isoforms, smaller than
the isoforms in the calibrator, are underestimated
and the values in samples with isoforms larger
than those in the calibrator are actually

overestimated [76]. Accordingly, Lp(a) mass assays
have limitations because Lp(a) particles are
heterogenous in size. However, the currently avail-
able assays for routine clinical care which are
linked to World Health Organization and Interna-
tional Federation of Clinical Chemistry and Labo-
ratory Medicine standards are able to detect those
individuals having Lp(a) levels over 50 mg dL�1, so
that identifying individuals at highest risk is not a
clinical problem [2]. However, increased accuracy
is required so as not to misclassify individuals with
borderline levels (30–50 mg dL�1 or 75–
125 nmol L�1). Additionally, sample handling and
storage conditions are of utmost important [74]. It
can be concluded that internationally harmonized
guidelines must be put in place to ensure reliability
and high quality in Lp(a) measurement going
forward [15].

Elevated lipoprotein(a) levels in familial hypercholesterolemia

Since all HeFH patients are high-risk patients,
even moderate increases in Lp(a), that is to con-
centrations ranging from 30 to 50 mg dL�1, may
further enhance their ASCVD risk as an indepen-
dent risk factor for ASCVD (Fig. 2) [77]. It has been
also shown that plasma Lp(a) concentration is
elevated in HeFH compared to the general popula-
tion (Table 1). Indeed, it has been recently pointed
out that the risk of ASCVD starts to increase
already at plasma concentrations above 30 mg
dL�1 [78]. In an earlier report by Carmena and
coworkers studied 98 HeFH subjects and 66
healthy first- and second-degree relatives from 30

Fig. 2 Kaplan–Meier curves for
cardiovascular disease-free
survival in patients with HeFH
based on Lp(a) concentrations
and gender. Adopted from [77].
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families with FH caused by the French-Canadian
>10-kb deletion in the LDL receptor gene [79]. The
authors used the threshold value of 20 mg dL�1 for
Lp(a) to separate HeFH patients in the groups with
CHD and without CHD. It was demonstrated that
the prevalence of CHD in HeFH patients with Lp(a)
values ≤20 mg dL�1 was not significantly different
from that in HeFH patients with values above that
level.

Receptors potentially involved in Lp(a) catabolism

It has been shown that HeFH patients with LDL-
receptor null mutations, which lead to complete
absence of LDL receptors, tend to have higher Lp(a)
concentrations compared with HeFH patients with
mutations leading to partially inactive LDL recep-
tors [77]. Moreover, in FH families, the homozygous
FH patients, that is those having two nonfunctional
LDL receptor alleles, the Lp(a) levels were found to
be almost twofold higher than in the FH heterozy-
gotes [80]. Thus, the FH-causing mutations in the
LDL receptor gene demonstrate a clear gene-
dosage effect on Lp(a) plasma concentrations.

Besides the LDL receptors, there are several other
classes of receptors potentially involved in Lp(a)
catabolism (Fig. 3) [81]. Interestingly, of the two
different pharamaceuticals with an ability to
increase hepatic LDL receptor numbers, PCSK9
inhibitors decrease the plasma concentrations of
Lp(a), while statins fail to do so. In fact, a recent,
subject-level meta-analysis of 53256 subjects
showed that statins may increase mean Lp(a) levels
from 8% to 24%. Although statins have been
documented to improve outcomes in most clinical
subsets, the effect of these increases in subjects
with already elevated Lp(a) is not known [82]. The
multiplicity of hepatic catabolic routes for Lp(a)
may help us to understand this apparent paradox.
Moreover, it has been shown that during statin-
induced low LDL levels, Lp(a) internalization

depends on PCSK9 activity [83], a finding which
implies that the LDL receptors are involved in the
catabolism of Lp(a). It is also possible that Lp(a) is a
competitive ligand for the LDL receptor especially
when LDL-C levels are very low, which occurs
during a treatment regimen in which PCSK9

Table 1. Selected studies supporting the observation that serum Lp(a) is elevated in genetically diagnosed HeFH

Lp(a) concentration mg dL�1 in controls/

number of studied individuals

Lp(a) concentration mg dL-1 in HeFH/

number of studied individuals P-value References

21.0 (7–47.2)/1969 23.6 (9.6–59.2)/957 <0.0001 [77]

11.8 (6.5–29.4)/4015 21.9 (10.0–34.2)/198a 2.1 9 10�7 [145]

21.1 (11.7–34.9)/42b 1.1 9 10�3

aLDLR mutation.
bPCSK9 mutation.

Fig. 3 Schematic representation of proposed potential
pathways for receptor mediated lipoprotein(a) catabolism
in the human body. Circulating Lp(a) is derived from
apolipoprotein(a) that is synthesized and secreted by the
liver. The assembly of an Lp(a) particle may occur either
before and after secretion of apolipoprotein(a), that is
within the hepatocytes, at the hepatocyte surface, or in
the circulating blood, respectively. The proposed multiple
receptor-mediated routes of Lp(a) removal from the
circulation are shown. The liver is considered to play
the major role in Lp(a) catabolism, while the kidneys
appear only to contribute to Lp(a) clearance. Peripheral
tissues may also contribute to receptor-mediated removal
of Lp(a) from the circulation, but their contribution to the
regulation of the circulating Lp(a) level appears unlikely
[81, 143].
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inhibitors are given in combination with a statin
[84, 85].

Other issues related Lp(a) and ASCVD risk in HeFH

Another issue to be considered is that the Lp(a)
distribution is highly skewed rightward with a wide
range from 0 to about 300 mg dL�1 [1]. Thus, in
the worst risk scenario, a high-risk HeFH patient
may have an extremely highly elevated CHD risk
due to lifelong elevated level of very high Lp(a).

Among HeFH patients, the time of the onset of
subclinical or clinical CHD varies, and this obser-
vation is only partly explained by variations in the
traditional risk factors [86]. Clearly, for improved
accuracy and a higher precision in risk assessment
of this patient group, other genetic biomarkers for
ASCVD besides LDL-C level are needed. Lp(a) is of
even greater significance among HeFH patients
than in the general population because all HeFH
patients are already high-risk patients due to their
high LDL-C burden. The elevation of Lp(a) in HeFH
creates a unique situation in which two genetically
determined proatherogenic factors, namely Lp(a)
and LDL-C, are exerting a lifelong cardiovascular
risk burden for atherosclerosis [87, 88]. Moreover,
it is of particular importance that significantly
elevated Lp(a) levels are more prevalent among
HeFH patients than in the general population [77].
Thus, as noted above, in a recent very large study,
about one-third of HeFH patients were reported to
have an elevated concentration of Lp(a), defined as
>50 mg dL�1 [89]. Moreover, plasma Lp(a) levels
above 100 mg dL�1 have been found in approxi-
mately 5% of patients with HeFH, while in non-FH
hypercholesterolemic patients, the corresponding
value was about half of it (2.6%) [90].

Elevated Lp(a) levels have been associated with
aortic valve calcification (AVC) in HeFH. In a study
of 129 asymptomatic 40- to 69-year-old HeFH
patients whose plasma Lp(a) was evaluated as a
possible risk factor for coronary artery calcification
(CAC) and aortic valve calcification (AVC), plasma
Lp(a) concentration emerged as an independent
risk indicator for AVC, but not for CAC [91]. The
authors concluded that Lp(a) concentration could
be useful as a risk marker for AVC in HeFH.

In an association study of 191 statin-treated HeFH
patients (50% male; 48 � 15 years) divided into
two groups according to the Lp(a) level being either
below or above 30 mg dL�1, the presence or

absence of carotid plaques and the thickness of
carotid intima-media were determined by ultra-
sonography [92]. Interestingly, in these statin-
treated HeFH patients, the plasma LDL-C level
was 3.23 � 1.02 mmol L�1 and
3.20 � 0.85 mmol L�1 in the low (<30 mg mL�1)
and high (>30 mg mL�1) Lp(a) group, respectively,
but the Lp(a) levels were neither associated with
the presence or absence of carotid plaques, nor did
the levels correlate with carotid intima media
thickness. Therefore, the authors concluded that
adequate statin treatment may delay carotid
atherosclerosis in HeFH, and if it does, then the
effect does not depend on Lp(a) levels. Based on
above findings, we conclude that Lp(a) is a genetic
risk factor for atherosclerotic cardiovascular dis-
ease with particular significance in HeFH, since in
such patients, the combination of two lifelong pro-
atherogenic cardiovascular risk factors, Lp(a) and
LDL-C, is deleterious [93].

Despite the consensus that elevated Lp(a) is a risk
for ASCVD, the recommendations for risk-level cut-
offs vary. The European Atherosclerosis Society
proposes that, for preventative purposes, the Lp(a)
levels should be less than 50 mg dL�1 [1]. The
Canadian Cardiovascular Society, in turn, recom-
mends an appropriate cut-off point of 30 mg dL�1

[94]. Because HeFH patients are already at ele-
vated risk for ASCVD due to their lifelong elevated
plasma LDL-C level, it would be appropriate to
apply the more rigorous Canadian Atherosclerosis
Society recommendation to the HeFH patients.
Thus, more investigations are clearly needed to
establish a valid Lp(a) cut-off level for HeFH
patients, all of whom possess an Lp(a)-specific
increased risk of developing premature ASCVD
[91]. More rigorous cut-off values would reflect
the reasoning in the guidelines recommending
more stringent LDL-cholesterol target levels in
HeFH than in the general population.

Current treatment of LDL-cholesterol in HeFH and its effect on Lp
(a)

Statin treatment and LDL-cholesterol

Because of the premature atherosclerosis in HeFH,
a lifelong statin treatment beginning already in
childhood is the current clinical practice [51, 95].
Indeed, current guidelines recommend that statin
treatment should be started in HeFH children
between 8 and 14 years of age [50, 96–101].
Importantly, statins have been found to be effective
in lowering LDL-C levels in HeFH children, and

FH and Lp(a) – risk and new therapies / A. Vuorio et al.

ª 2019 The Association for the Publication of the Journal of Internal Medicine 7

Journal of Internal Medicine, 2020, 287; 2–18



their safety has been demonstrated in over one
thousand HeFH children participating in placebo-
controlled studies of statin treatment. In such
studies, the difference in the mean relative reduc-
tions of LDL-C levels between statin-treated and
placebo-treated cohorts was 32% at the end of the
follow-up [95]. In HeFH children, the serum LDL-C
target is <3.5 mmol L�1 (135 mg dL�1), when the
children reach adulthood, their statin treatment
needs to be intensified and, whenever necessary, to
be combined with the cholesterol-absorption inhi-
bitor ezetimibe to reach the serum LDL-C target of
<2.5 mmol L�1 (100 mg dL�1) [17].

PCSK9 inhibitor treatment and LDL-cholesterol

For adult patients with HeFH and with known
ASCVD, the serum LDL-C target is <1.4 mmol L�1

(<55 mg dL�1) [17, 102–104]. For adult HeFH
patients with known ASCVD, i.e., at very-high risk,
there is a new treatment option: a statin, with or
without ezetimibe, combined with a PCSK9 inhi-
bitor. The inhibitor, either alone or in combination
with a statin, lowers LDL-C levels approximately by
60% both in non-HeFH and FH patients [105–110].
In fact, the combination of a statin and a PCSK9
inhibitor allows to reach serum LDL-C levels lower
than 1.4 mmol L�1 (55 mg dL�1) even in HeFH
patients. In practice, however, many FH patients
fail to reach such stringent goal, as shown in a
recent study [109], in which the efficacy of the
PSCK9 inhibitor alirocumab in HeFH was studied.
This 24-week-long placebo-controlled study
included 35 controls and 72 HeFH patients, who
were either fulfilling the clinical Simon Broome
Criteria or had been genotyped for HeFH [109], and
who received 150 mg of alirocumab every two
weeks, in addition to a tolerated maximal statin
treatment. In this study, in total, only 41% of the
high-risk and the very-high-risk HeFH patients
reached the less stringent goals defined for such
patients at that time. This trial reveals how chal-
lenging it may be to reach LDL-C goals in HeFH
patients even with the newly available highly
efficient therapies under extremely well-controlled
conditions in a clinical study.

Statin treatment and lipoprotein(a)

A recent review of the mechanisms underlying the
catabolism of Lp(a) [81] concisely addressed the
differences between the catabolic routes of Lp(a)
particles and that those of LDL particles. In contrast
to LDL-lowering therapies, where multiple

approaches targeting one highly specific receptor
have effectively been used to lower LDL, the authors
considered it more likely that for Lp(a), it will be a
matter of multiple therapies targeting multiple
receptors on the surface of liver cells. A large
number of studies provide evidence that these
receptors fall into five main categories, namely
‘classical’ lipoprotein receptors, toll-like receptors,
scavenger receptors, glycoprotein receptors (lec-
tins) and plasminogen receptors (Fig. 3). Unfortu-
nately, statins which have been the cornerstone
medication in HeFH for decades, upregulate the
hepatic LDL-receptors without having an effect on
serum concentration on Lp(a) [111].

One aspect that should be kept in mind is that
statins may increase Lp(a) levels in children with
HeFH. For example, Rodenburg et al showed that
pravastatin increased Lp(a) 21.9% following initia-
tion of statin therapy [112]. Despite these limita-
tions of statins, statins benefit all subgroups of
patients, including those with elevated Lp(a), and
should be used as first line in patients with HeFH.

PCSK9 inhibition and lipoprotein(a)

PCSK9 inhibition on top of high-intensity statin
treatment is suitable for HeFH patients because it
lowers not only the concentration of LDL-C but also
that of Lp(a) [111, 113]. Although PCSK9 inhibition
lowers the concentration of Lp(a) by 15%–30%,
such relative drop is not enough when the baseline
level of Lp(a) is high [114]. Disappointingly, when
evolocumab was studied in a study where all
patients had elevated Lp(a) >50 mg dL�1, only a
14% reduction was noted [115]. In this recent
multicenter randomized placebo-controlled study,
129 hypercholesterolemic patients whose median
baseline levels of Lp(a) and LDL-C were
200 nmol L�1 (80 mg dL�1) and 3.7 mmol L�1,
respectively, were randomized to monthly evolocu-
mab 420 mg or placebo for a duration of 4 months.
Compared with placebo, evolocumab treatment
reduced, on average, the Lp(a) and LDL-C level by
14% and 61%, respectively, but failed to signifi-
cantly reduce arterial wall inflammation. As the
authors speculated, the persistently elevated levels
of Lp(a) may have contributed to the unaltered
arterial wall inflammation. This study brings forth
that even effective LDL-C-lowering pharmacother-
apies specifically enhancing the activity of hepatic
LDL receptors are not sufficient for an effective
lowering of Lp(a) level. Moreover, the lack of asso-
ciation of Lp(a) levels with the activity of any one of
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the receptors proposed to mediate hepatic removal
of Lp(a) [81] supports the notion that Lp(a) clear-
ance is mediated by multiple receptors (Fig. 3). In
such scenario, targeting receptor-mediated
removal of circulating Lp(a) particles for therapy
may indeed require a complex approach. Thus,
rather than concentrating on Lp(a) clearance,
recent efforts have been targeted at reducing the
hepatic production rate of apo(a).

Strategies to lower Lp(a) concentrations

As a rule, plasma Lp(a) levels are not responsive to
dietary changes. Although a significantly increased
Lp(a) requires medical treatment, adherence to
ideal cardiovascular risk behaviours, such as
nonsmoking, maintenance of a desirable body
weight and regular physical activity may reduce
the Lp(a)-associated risk of ASCVD [116].

Currently available drugs

SomedrugscanlowerbothLDL-CandLp(a) (Table2).
This is a significant therapeutic gain as Lp(a) acts
synergisticallywithelevatedLDL-Casariskfactorfor
ASCVD [117]. Of the available drugs, the cholesteryl
ester transferprotein (CETP) inhibitors lowerplasma
Lp(a) concentrations by 20%–40% [118–120]. Addi-
tionally,hormonaltherapy,likethyromimetics,such
as eprotirome, decreases Lp(a) levels by 20%–40%,
and oestrogen lowers Lp(a) by about 24% [111].
Mipomersen, which is used in homozygous FH,
lowers Lp(a) approximately�25% [121].

Lipoprotein apheresis

Lipoproteinapheresis isa therapeuticapproachthat
effectively lowers both serum LDL-C and Lp(a), or
selectively Lp(a) from the plasma. In Germany,
lipoproteinapheresis is indicated for severely hyper-
cholesterolemic patients with controlled LDL-C in
whomprogression of atherosclerosis is documented
and who are at very high risk of cardiovascular

events, and also for patients with plasma Lp(a)
>60 mg dL�1 associated with progressive CHD. The
German Lipoprotein Apheresis Registry was
launched 2011, and data acquired during the time
period 2012–2015 were recently published [122].
Over this period, 68 German apheresis centres
collected data of 1283 patients suffering from pro-
gressive cardiovascular disease and undergoing
lipoprotein apheresis treatment of high LDL-C levels
and/or high Lp(a) levels. A total of 15 167 individual
treatment sessions were investigated, and analysis
of the results revealed an acute median LDL-C
reduction of 69% and a median Lp(a) reduction of
70% among treated patients. It is to be emphasized
that because of rapid production of Lp(a) in the liver,
the levels return to baseline and the time-averaged
reduction between sessions is only ~35% [123].
Patient data were compared regarding the incidence
rate of coronary events 1and2 years before the start
of treatment andduring 1 year on treatment. During
the first year of treatment, a remarkable 97% reduc-
tion of coronary events was found.

In the prospective multicentre Pro(a) Life Study,
170 patients who had Lp(a) hyperlipoproteinemia
and progressive cardiovascular disease despite
maximally tolerated lipid-lowering treatment were
investigated [124]. A subgroup analysis of this
study, stratified by LDL-C concentration, sug-
gested a reduction of coronary events related to
selective Lp(a) apheresis. Additionally, selective Lp
(a) apheresis in patients with plasma Lp(a) levels
over 50 mg dL�1 leads to regression of both carotid
and coronary atherosclerosis against background
statin therapy [124–126]. LDL apheresis also sig-
nificantly lowers plasma oxidized phospholipids,
which may also play a role in its pleiotropic
beneficial effects [127].

RNA-based drugs

Since Lp(a) is synthesized in hepatocytes, liver-
targeted agents that reduce the synthesis of apo(a)

Table 2. Effect of various therapies on serum Lp(a) and LDL-C concentrations

Drug Lp(a) lowering LDL-C lowering References

Niacin �23% �13% [146]

Apheresis �70% acutely, mean �35% Up to 75% [124, 147]

CETP inhibitors �20 to –40% �20 to 40% [120, 148]

PCSK9 inhibitors �15 to –30% �50 to 60% [106, 107, 114, 115, 149]

Apo(a) antisense oligonucleotides �70 to �90% �10 to 20% [128, 131, 133]
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have the most promise in substantially lowering
plasma Lp(a). In fact, this has been achieved by
using antisense oligonucleotides (ASOs) directed to
apo(a) [128–131]. ASOs are single-stranded strings
of modified DNA that are usually 13–20 nucleic
acids long and are designed to be complementary
to a site on the mRNA target, in this case LPA
mRNA [132]. After binding to LPA mRNA to create a
double-stranded molecule, RNAase H1 is recruited
to the complex and cleaves the sense strand,
allowing the antisense molecule to bind another
sense strand and the process is repeated. For this
reason, these molecules have a half-life of 2–
4 weeks, allowing longer dosing intervals.

Using a liver-targeted ASO containing N-acetyl-
galactosamine that is directed to the hepatocyte
asialoglycoprotein receptor, a dose-dependent
mean reduction in Lp(a) was noted at 68%, 80%
and 92% reduction with 10, 20 and 40 mg IONIS-
APO(a)-LRx, respectively, in otherwise healthy sub-
jects with elevated Lp(a) (Fig. 4) [131]. A random-
ized, double-blind, placebo-controlled, dose-
ranging trial that enrolled 286 patients with

established cardiovascular disease and Lp(a)
≥60 mg dL�1 (≥150 nmol L�1) was recently
reported [133]. Mean baseline Lp(a) levels among
the six groups in this study were 234–
280 nmol L�1. AKCEA-APO(a)-LRx (formerly
IONIS-APO(a)-LRx) resulted in dose-dependent
decreases in Lp(a) of 35% at 20 mg/4 weeks, 56%
at 40 mg/4 weeks, 58% at 20 mg/every 2 weeks,
72% at 60 mg/4 weeks and 80% at 20 mg/week,
versus 6% decrease with placebo (P value range:
0.003 to <0.0001 versus placebo). In this study,
approximately one third of the patients were HeFH
patients who were adequately treated with moder-
ate- to high-dose statins (>80%), ezetimibe (~50%)
and PCSK9 inhibitors (~20%). In addition to robust
Lp(a) reduction, additional 16% and 11% reduc-
tions were noted in LDL-C and apoB, respectively,
on top of the baseline LDL-C-lowering therapy.

In addition to the ASOs, other approaches are being
developed for an efficient reduction of plasma Lp(a)
concentration.Onesuchattempt is thegenerationof
small-interfering RNAs (siRNAs) that specifically
block the hepatic synthesis of apo(a) [134].

Fig. 4 Mean percentage change in Lp(a) concentration in the IONIS-APO(a)-LRx trial in the multiple ascending dose phases.
Adopted from [131]. Using a liver-targeted ASO containing N-acetylgalactosamine that is directed to the hepatocyte
asialoglycoprotein receptor, a dose-dependent mean reduction in Lp(a) was noted at 68%, 80% and 92% reduction with 10,
20 and 40 mg IONIS-APO(a)-LRx, respectively, in otherwise healthy subjects with elevated Lp(a).
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Towards new clinical practice guidelines

Currently, the value of mitigating the combined
risk caused by highly elevated serum LDL-C and

elevated Lp(a) in HeFH patients with elevated Lp(a)
is not adequately recognized in clinical practice.
This gap in awareness may soon be filled with the
availability of new RNA-based therapies that selec-
tively inhibit the synthesis and production of Lp(a)
particles.

The potential role of elevated Lp(a) in risk stratifi-
cation has been acknowledged in some guidelines
on the management of HeFH [135–137], but in not
in others [50, 138, 139] (Table 3). Once an efficient
treatment of elevated Lp(a) becomes widely avail-
able, there will be a requirement not only for risk
estimation including the Lp(a)-specific contribu-
tion to total CV risk, but also for guiding the
clinicians to properly monitor the efficacy and
safety of the treatment of elevated Lp(a). The recent
clinical studies in which Lp(a) has been robustly
lowered, that is showing about 70%–90% Lp(a)
lowering [128–131], are a clear testimony of the
need to consider robust, long-term Lp(a) treatment
in HeFH, particularly if the new therapies are
proven to be safe and cost-effective in clinical
outcome trials.

To illustrate the impactful role of Lp(a), we propose
the risk concept of the cumulative LDL-C + Lp(a)-
cholesterol [Lp(a)-C] life years, based on the notion
that Lp(a) is a low-density lipoprotein (LDL)-like
particle consisting of 45% cholesterol [140] (Fig. 5).
In this illustration, the cumulative burden of LDL-
C + Lp(a)-C at the age of 50 yrs in a non-FH
individual and in three non-treated HeFH patients
are shown. Figure 6 is a schematic representation
of cumulative burden of LDL-cholesterol- and Lp

Table 3. Recent existing HeFH guidelines and Lp(a)

Guideline Recommendation References

International FH Foundation Although FH is a life-time coronary risk equivalent, patients should be

assessed for additional major cardiovascular risk factors, including

lipoprotein (a)

[135]

Canadian Cardiovascular

Society

We suggest that conventional risk factors such as age, sex, HDL-C,

hypertension, smoking, lipoprotein(a) and diabetes be ascertained in

patients with FH (weak evidence).

[136]

Hong Kong Expert

Panel Consensus

Other risk factors such as Lp(a) are also important [137]

American Heart Association Not mentioned [138]

Japan Atherosclerosis Society Not mentioned [139]

National Institute of Health

and Care Excellence

Not mentioned [50]

Fig. 5 Cumulative burden of LDL-cholesterol + Lp(a)-cho-
lesterol. To emphasize the significant role of Lp(a), we
propose the risk concept of the cumulative burden of LDL-
C + Lp(a)-cholesterol [Lp(a)-C] life years, based on the
notion that Lp(a) is a low-density lipoprotein (LDL)-like
particle consisting of 45% cholesterol [140]. In this figure,
the burden at the age of 50 years is shown.
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(a)-cholesterol. The cumulative burden of LDL-C +
Lp(a)-C illustrated as a function of age in non-FH
individuals (LDL-C = 2.5 mmol L�1) and in
untreated He-FH patients (LDL-C = 5.0 mmol
L�1). In both groups the effects of three different
Lp(a)-burdens are shown. This illustration shows
the need to also treat Lp(a) independently even if
the LDL-C level is 2.5 mmol L�1. It also illustrates
that effective lowering of LDL-C can compensate for
the currently available only modest lowering of
high Lp(a) levels. However, this approximation only
takes account the cholesterol content of Lp(a), but
not the other pro-atherosclerotic, pro-thrombotic
and pro-inflammatory features of Lp(a).

Additionally, here we present the concept of the
compound LDL-cholesterol and Lp(a)-particle
cholesterol burden to facilitate the incorporation
of Lp(a) as a clinically useful risk assessment tool
(Fig. 7). Using this tool, we demonstrate the
clinical impact of high serum Lp(a) concentration

(100 mg dL�1) compared to currently recom-
mended upper limit for serum Lp(a) concentration
(30 mg dL�1) in untreated HeFH patients. Lp(a)
particle burden is converted to LDL-C burden
based on the fact that reductions in Lp(a) of
approximately 100 mg dL�1 are needed to reduce
the risk of CHD similar to that achieved by
lowering LDL-C level by 1 mmol L�1 [144]. This
cumulative compound LDL-C and equivalent Lp(a)
particle years burden defines the age-dependent
burden of the coronary arterial wall to compound
LDL-C and Lp(a) (years 9 mmol L�1). We have
earlier presented separately LDL-C-years burden
[141] and Lp(a)-years burden [10]. When compar-
ing the threshold burden for CHD [17], it can be
demonstrated that untreated HeFH patients hav-
ing serum Lp(a) concentration of 100 mg dL�1

reach the CHD threshold burden about 4 years
earlier compared to untreated HeFH patients with
serum Lp(a) concentration of 30 mg dL�1.

Fig. 6 Schematic representation of cumulative burden of LDL-cholesterol- and Lp(a)-cholesterol. Cumulative burden of LDL-
C + Lp(a)-C illustrated as a function of age in non-FH individuals (LDL-C = 2.5 mmol L�1) and in untreated HeFH patients
(LDL-C = 5.0 mmol L�1). In both groups the effects of three different Lp(a)-burdens are shown.
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From a clinical perspective, future HeFH guidelines
should define a threshold level for the initiation of
the treatment and also the target level for Lp(a)
concentration. The European Atherosclerosis Soci-
ety suggests that the Lp(a) levels for preventative
purposes are <50 mg dL�1 [103]. The Canadian
Cardiovascular Society recommends a lower cut-off
point of 30 mg dL�1 [94]. Because the adult HeFH
patients are already at elevated risk of CHD due to
their lifelong elevated serum LDL-C level, it would

be appropriate to apply for the Lp(a) level the more
rigorous Canadian Atherosclerosis Society
30 mg dL�1 target level recommendation, which
is reachable with the modern pharmacotherapy of
Lp(a).

Conclusion and future perspectives

The importance of Lp(a) as a causal risk factor for
ASCVD has experienced a renaissance derived

Fig. 7 Schematic representation of compound LDL-cholesterol and Lp(a) particle burden. We generated the concept of the
compound LDL-cholesterol and Lp(a)-particle cholesterol burden to facilitate the incorporation of Lp(a) as a clinically useful
risk assessment tool. Using this tool, we demonstrate the clinical impact of high serum Lp(a) concentration (100 mg dL�1)
compared to currently recommended upper limit for serum Lp(a) concentration (30 mg dL�1) in untreated HeFH patients.
Lp(a) particle burden is converted to LDL-C burden based on the fact that reductions in Lp(a) of approximately 100 mg dL�1

are needed to reduce the risk of CHD similar to that achieved by lowering LDL-C level by 1 mmol L�1 [144]. This cumulative
compound LDL-C and equivalent Lp(a) particle years burden defines the age-dependent burden of the coronary arterial wall
to compound LDL-C and Lp(a) (years 9 mmol L�1). We have earlier presented separately LDL-C-years burden [141] and
Lp(a)-years burden [10]. When comparing the threshold burden for CHD [17], it can be demonstrated that untreated HeFH
patients having serum Lp(a) concentration of 100 mg dL�1 reaches the CHD threshold burden about 4 years earlier
compared to untreated HeFH patients with serum Lp(a) concentration of 30 mg dL�1.
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from new genetic studies and particularly from the
availability of RNA-based therapies that lower the
plasma concentrations of Lp(a) by more than 80%
[15]. Concurrently, there is an intensive develop-
ment of new and effective Lp(a) treatments based
on ASOs and siRNAs. Among the target patient
populations, HeFH patients with a well-grounded
high risk of ASCVD constitute an important sub-
group in whom effective Lp(a)-lowering will offer
possibility to still improve the prognosis of the
disease beyond the current new therapies that can
markedly reduce serum LDL-C concentrations.
There is clearly a demand to update current FH
clinical practice guidelines as soon as clinical trials
prove the safety and cost-effectiveness of Lp(a)
lowering. It is very likely that the benefits of the
novel and efficient Lp(a)-lowering therapies will be
analogous to those of robust LDL-C lowering, for
they are dependent on the impact of the absolute
magnitude of Lp(a) lowering on a lifelong burden
ASCVD related to an elevated Lp(a) level [10, 142].
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