
https://helda.helsinki.fi

OmniShare : Encrypted Cloud Storage for the Multi-Device Era

Paverd, Andrew

2018

Paverd , A , Tamrakar , S , Hoang Long Nguyen , Pendyala , P K , Thien Duc Nguyen ,

Stobert , E , Grondahl , T , Asokan , N & Sadeghi , A-R 2018 , ' OmniShare : Encrypted

Cloud Storage for the Multi-Device Era ' , IEEE Internet Computing , vol. 22 , no. 4 , pp.

27-36 . https://doi.org/10.1109/MIC.2018.043051462

http://hdl.handle.net/10138/327063

https://doi.org/10.1109/MIC.2018.043051462

submittedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

1

OmniShare: Securely Accessing Encrypted Cloud
Storage from Multiple Authorized Devices

Andrew Paverd∗, Sandeep Tamrakar∗, Hoang Long Nguyen†, Praveen Kumar Pendyala‡, Thien Duc Nguyen‡,
Elizabeth Stobert§, Tommi Gröndahl∗, N. Asokan∗, and Ahmad-Reza Sadeghi‡

∗Aalto University, andrew.paverd@ieee.org, {sandeep.tamrakar, tommi.grondahl}@aalto.fi, asokan@acm.org
†LORIA, Université de Lorraine/INRIA/CNRS, hoang-long.nguyen@loria.fr
‡Technische Universität Darmstadt, {praveen.pendyala, ducthien.nguyen,

ahmad.sadeghi}@trust.tu-darmstadt.de
§ETH Zürich, estobert@inf.ethz.ch

Abstract—Cloud storage services like Dropbox and Google
Drive are widely used by individuals and businesses. Two attrac-
tive features of these services are 1) the automatic synchronization
of files between multiple client devices and 2) the possibility to
share files with other users. However, privacy of cloud data is a
growing concern for both individuals and businesses. Encrypting
data on the client-side before uploading it is an effective privacy
safeguard, but it requires all client devices to have the decryption
key. Current solutions derive these keys solely from user-chosen
passwords, which have low entropy and are easily guessed.

We present OmniShare, the first scheme to allow client-side
encryption with high-entropy keys whilst providing an intuitive
key distribution mechanism to enable access from multiple
client devices. Instead of passwords, we use low bandwidth uni-
directional out-of-band (OOB) channels, such as QR codes, to
authenticate new devices. To complement these OOB channels,
the cloud storage itself is used as a communication channel
between devices in our protocols. We rely on a directory-based
key hierarchy with individual file keys to limit the consequences
of key compromise and allow efficient sharing of files without
requiring re-encryption. OmniShare is open source software
and currently available for Android and Windows with other
platforms in development. We describe the design and imple-
mentation of OmniShare, and explain how we evaluated its
security using formal methods, its performance via real-world
benchmarks, and its usability through a cognitive walkthrough.

I. INTRODUCTION

Cloud storage services, such as Dropbox and Google Drive,
are increasingly being used by individuals and businesses.
The results of the 2014 European Survey on ICT usage in
households and by individuals show that one in every five
people used cloud storage services in 2014 [1]. The two
foremost reasons for using cloud services, as given by current
users, were:

• The possibility to use files from several devices or loca-
tions (cited by 59% of users)

• The ability to easily share files with other users (cited by
59% of users)

However, concerns about data privacy are limiting the uptake
of cloud storage services. Of the respondents who had used the
internet and were aware of cloud services but did not use them,
security or privacy concerns were given as the main reason
for not using these services (cited by 44% of respondents in

this category) [1]. Although all major cloud storage providers
use secure communication channels and routinely encrypt
data before storing it, the original data is still available to
the service providers themselves. Anyone with access to the
service provider’s infrastructure, legitimately or otherwise, can
read and modify this data, often without detection [2]. For
individuals, this could lead to loss of privacy and identity theft,
whilst for businesses, this could have legal consequences.

Encrypting data on the client-side before uploading it to
the cloud is an effective way to mitigate this risk. However,
to retain the first main benefit cited above, this data must be
accessible from all the user’s devices. For example, assume
Alice encrypts a file on her PC and uploads it to Dropbox.
If she wants to access this file from her smartphone, Alice’s
smartphone must have (or be able to obtain) the relevant
decryption key. Naturally, these keys cannot be managed by
the cloud service provider, thus resulting in a key distribution
problem. Current encrypted storage services, such as Spi-
derOak [3] and Tresorit [4], address this problem by deriving
keys from the user’s password using a deterministic password-
based key derivation function (PBKDF). Alice’s smartphone
can derive the relevant keys from her password. However,
it is well-known that human-chosen passwords usually have
very low entropy and are easily guessed. Through analysis
of a 70 million password corpus, Bonneau estimated that
human-chosen passwords provide only about 20 bits of se-
curity against an optimal offline dictionary attack [5]. This is
significantly less security than the cryptographic keys used in
any modern encryption system. An adversary who can obtain
Alice’s encrypted files, including the cloud storage provider
itself, is theoretically capable of performing this type of attack.
The analysis also showed that, even for more security-sensitive
tasks, users do not choose significantly stronger passwords [5].
To avoid deriving keys from passwords, services such as
Viivo [6], BoxCryptor [7], and Sookasa [8] use additional
servers to manage and distribute keys, but this adds cost and
introduces new vulnerabilities.

We present OmniShare, the first scheme to allow client-side
encryption with high-entropy keys whilst providing an intuitive
key distribution mechanism to enable access from multiple
client devices. Instead of deriving keys from potentially weak
passwords, OmniShare encrypts files using high-entropy keys

ar
X

iv
:1

51
1.

02
11

9v
3

 [
cs

.C
R

]
 2

9
D

ec
 2

01
6

2

that are generated on the client devices (possibly within on-
board secure hardware). To enable access to these encrypted
files from multiple authorized devices, the user can create an
OmniShare domain to represent a group of devices. All devices
in the user’s domain have access to the relevant encryption and
decryption keys. Instead of using additional trusted servers
to distribute keys, OmniShare uses a novel combination of
an out-of-band (OOB) channel and the cloud storage service
itself to distribute these keys. To simplify this process for
the user, OmniShare automatically selects a suitable OOB
channel between the new device and a previously authorized
device based on their hardware capabilities. Although OOB
key distribution is not in itself a new idea (e.g. [9]), to the
best of our knowledge this approach has not yet been applied
to the challenge of secure yet usable cloud storage. This is
not a straight-forward application of OOB key distribution.
For example, compared to generic OOB key distribution, this
scenario gives rise to certain new requirements, such as the
need to distribute many keys (e.g. one per file) and the need
to share keys between multiple devices belonging to the same
user. Furthermore, it also provides certain unique capabilities,
such as the ability for devices to use the cloud storage service
itself as a communication channel - a feature utilized in
OmniShare. Therefore, the main contribution of our work is
the application and evaluation of OOB key distribution to the
specific use case of encrypted cloud storage.

We have analysed the security of OmniShare’s protocols
using formal methods (Section V-B). OmniShare also allows
users to share encrypted files with other users. By using a
directory-based key hierarchy and encrypting each file with
a unique key, OmniShare can perform this sharing without
requiring re-encryption of files. We evaluated the performance
of our implementation through real-world benchmarks (Sec-
tion V-C). Usability is a primary consideration and thus the
design of OmniShare minimizes the amount of user interaction
required during the authorization protocols and provides a
consistent user experience across platforms and authorization
mechanisms. We evaluated the usability of OmniShare by
means of a cognitive walkthrough (Section V-D). The aim
of this evaluation was not to compare OmniShare to other
(less secure) systems, but rather to identify any obstacles that
could inhibit a new user from learning to use this system. As
a generic means of securely yet intuitively defining domains
of devices, OmniShare can also be used for authentication
and access control in other applications beyond secure cloud
storage e.g., encrypted messaging services. OmniShare is open
source software available under the Apache 2.0 license. It is
currently available for Windows and Android with an iOS
version in progress1.

II. REQUIREMENTS

We first define our adversary model and use it to identify
the relevant security, functional and usability requirements.
Adversary Model

We assume that the adversary can access, add and modify
files in the user’s cloud storage (i.e. the cloud storage provider

1https://ssg.aalto.fi/projects/omnishare/

itself may be the adversary). We do not attempt to protect
against denial of service, e.g. deleting files in cloud storage.
We assume that the adversary may collude with other users,
including those with whom the primary user chooses to share
files. However, the adversary cannot observe or interfere with
the local interactions between the devices and users, which is
a reasonable assumption given the network-oriented nature of
the adversary.
Functional Requirements
F1. All the user’s authorized devices (i.e. devices in the

user’s OmniShare domain) must be able to access the
user’s encrypted files and directories.

F2. Once a device has been added to an OmniShare domain,
it must be able to access the encrypted files without
requiring any further interaction with other devices.

F3. Users must be able to selectively share of individual files
with other users.

F4. OmniShare should not be limited to a specific cloud
storage provider.

Security Requirements
S1. Files must be encrypted using high-entropy keys gen-

erated on client devices before being uploaded to the
cloud.

S2. The decryption keys must only be accessible to devices
within the OmniShare domain.

Usability Requirements
U1. User actions during device authorization should be

minimal, intuitive, and consistent across platforms and
mechanisms.

III. ARCHITECTURE

OmniShare is designed as an application that runs on client
devices. Users link their cloud storage to the application when
it first runs on a new device. Each device is assumed to
have a device keypair and a device-specific authentication
key, both of which could be protected by on-board secure
hardware. When a user initializes an OmniShare domain, the
application adds the initial device as the first authorized device.
Creating a domain involves creating an OmniShare directory,
a domain descriptor file in this directory, and a root key for
the domain. All files managed by OmniShare are stored under
the OmniShare directory so that the user can also store non-
encrypted files on the same cloud storage outside this directory.
The domain descriptor file records the following metadata for
each authorized device:

• device name and unique identifier
• available hardware capabilities
• the device’s public key
• the domain root key (encrypted with the device public

key) and the associated message authentication code
(MAC) calculated using the authentication key.

The hardware capabilities are a list of the available peripherals
that can be used for user input/output such as the device’s
camera (input), display (output), Near Field Communication
(NFC) (input/output), and keyboard (input). The domain de-
scriptor file is not security sensitive and may be accessed/-
modified by the adversary.

https://ssg.aalto.fi/projects/omnishare/

3

OmniShare	

Domain	 	
descriptor	

d1	

Encrypted	 Kd1	

Encrypted	 Kd2	 	

Encrypted	 f	

Encrypted	 Kf	

Encrypted	 f	 	
+	 	

Encrypted	 Kf	

RK	
PKA	

f	

Kd1	

Kd2	

Kf	

Device	 A	

d2	

Fig. 1. Example of a key hierarchy in OmniShare

A. File Encryption and Key Hierarchy

When a file is first created, OmniShare generates a new file
key to encrypt the file. Encrypting each file separately allows
OmniShare to selectively share individual files with other users
(Requirement F3). OmniShare also establishes and maintains
a key hierarchy with levels corresponding to the subdirectories
of the OmniShare directory. Keys at each level are encrypted
by the key of the level above, or by the root key for top level
directories. OmniShare encrypts the root key separately with
the public key of each authorized device using a lock-box data
structure [10] (Requirement S2).

Figure 1 gives an example of an OmniShare key hierarchy.
The domain’s root key (RK) is encrypted using the public key
of device A (PKA) and stored in the domain descriptor file.
RK is used to encrypt the directory key Kd1, corresponding
to directory d1. This encryption also includes the path of d1
relative to the OmniShare root directory. Kd1 is in turn used to
encrypt directory key Kd2, since d2 is a subdirectory of d1.
Kd2 encrypts file key Kf , which encrypts file f. The encryption
of Kf also includes a hash of the encrypted file to protect
its integrity. This encrypted Kf is stored together with the
encrypted file in directory d2 whereas Kd1 and Kd2 are stored
as separate encrypted files in their corresponding directories.
When an encrypted file is downloaded by an authorized device,
OmniShare decrypts the relevant file key and uses it to decrypt
the file on the user’s device.

B. Device Authorization

OmniShare uses the same cloud storage service to store both
the data and the key hierarchy, thus eliminating the need for
additional servers. Therefore, adding a new device to a domain
involves granting this device access to the root key so that it
can access all other keys without requiring further interaction
(Requirement F2).

As shown in Figure 2, this device authorization process
uses a combination of an out-of-band (OOB) communication
channel and communication via the cloud storage itself. To
exchange messages via the cloud storage channel, devices

c

Authorized	 Device	 B	

Device	 Capabili5es	 Device	 Capabili5es	

Out-‐of-‐Band	 (OOB)	 channel	 based	 on	
matching	 device	 capabili5es	

QR	 code	 /	 Passcode	

Cloud	 Storage	

Encrypted	 File	

Encrypted	 RK	

Key	 distribu5on	 	
via	 	

Cloud	 Storage	 RK	

OmniShare	 domain	

Shared	 Secret	

New	 Device	 A	

Shared	 Secret	
RK	

Fig. 2. Overview of device authorization in OmniShare

upload their messages as files with specific names that are
recognized as messages by other devices.

When a new device (A) requests to join a domain, Om-
niShare allows the user to select a suitable authorizing device
(B) from within the domain to complete this action. In a
naive approach, device B could simply encrypt the root key
with device A’s public key. However, this would not provide
any guarantee that the correct device has received the root
key (the adversary could have replaced the public key with
his own) or that the correct root key has been received
(the adversary could have injected his own root key). To
mitigate against these attacks, OmniShare also uses a low-
bandwidth uni-directional OOB channel to authenticate the
new device (A) to the authorizing device (B). Specifically,
the OOB channel is used to confirm A’s public key and
establish a shared secret between A and B. For a consistent
user experience (Requirement U1), the OOB channel is always
a uni-directional transfer of information from A to B. Although
the OOB channel requires only minimal user interaction, this
is sufficient to bootstrap the security guarantees for the rest
of the system. Based on the hardware capabilities of the
new device and the authorizing device, OmniShare selects
the best type of OOB channel. Since the OOB channels
vary in terms of bandwidth, OmniShare supports two types
of protocols for device authentication: single round-trip and
multiple round-trip protocols, where a round-trip refers to
an exchange of messages between the devices via the cloud
storage communication channel. Whilst all OOB channels
can support the multiple round-trip protocol, certain types of
OOB channels can enable the more efficient single round-trip
protocol, as explained in the following subsections.

C. Single Round-Trip Protocol

As shown in Figure 3, the single round-trip protocol pro-
ceeds as follows:

i) Device A computes a cryptographic hash H of its
public key PKA and a freshly-generated random session

4

(KSAuth + H)

Ultrasonic/QR-code channel

PKA

Verify(PKA , H)

M1 = Enc(PKA , RK)

M2 = HMAC(KSAuth , M1)M1 + M2

Verify (M1, M2, KSAuth)

RK = Dec(SKA , M1)

H = hash(PKA)

KSAuth = rand()

Local Channel

Cloud storage Channel

A (New Device) B (Authorized Device)

Fig. 3. Single round-trip device authorization protocol

authentication key KSAuth and transfers these to device
B via the OOB channel.

ii) A delivers PKA to B via the cloud storage channel.
iii) After verifying PKA, B encrypts the root key RK with

PKA. B also generates a hash-based message authenti-
cation code (HMAC) M2 for the encrypted message M1
using KSAuth as the key.

iv) Upon receiving M1 and M2 via the cloud storage, A
verifies the authenticity of M1 and decrypts RK from
M1.

This protocol can be used over any OOB channel that
provides sufficient bandwidth for device A to deliver H and
KSAuth to device B. We have implemented the following types
of OOB channels.

1) Ultrasonic Communication: If the new device (A) has
a speaker and the authorizing device (B) has a microphone,
the devices can use ultrasonic communication as the OOB
channel (i.e. audio frequencies greater than the upper limit
of human hearing). The hash and the authentication key are
encoded as a high frequency audio signal, which is played by
device A and recorded by device B. Ultrasonic communication
has recently drawn significant interest from both academia and
industry [11]–[15]. It is an ideal OOB channel for OmniShare
because it is range-limited by the physical environment (e.g. by
doors and walls) in the same way as a private conversation. It is
also widely deployable due to the prevalence of microphones
and loudspeakers in consumer devices.

2) QR Code: Similarly, if device A has a screen and device
B has a camera, a QR code can be used as the OOB channel.
The hash and the authentication key are encoded as a two-
dimensional QR code by device A, which the user scans using
device B.

D. Multiple Round-Trip Protocol

In this simple device authorization protocol, users enter a
passcode displayed on the new device (A) into the authorizing
device (B). We use a password-authenticated key agreement
(PAKE) protocol, to generate a strong shared session key
from the shared passcode and use this session key to securely

P (Passcode)

Out of band channel

A (New Device) B (Authorized Device)

M = EncAE(Kses , RK)M

RK = DecAE(Kses , M)

Password-authenticated key
agreement protocol (PAKE)

Kses

P

Kses

P

Fig. 4. Device authorization protocol using passcode

distribute RK via the cloud storage. In our implementation,
we use the secure remote password (SRP) protocol version
6a [16], [17] to derive a strong 128-bit session key from
the 6-digit random passcode. We chose this particular PAKE
variant because it meets all the security requirements and is
not encumbered by patents [16]. As shown in Figure 4, the
overall protocol proceeds as follows:

i) A displays a 6-digit passcode P which the user types
into B via its input keyboard.

ii) Both devices run a PAKE protocol via the cloud storage
and derive a shared session key Kses.

iii) B encrypts RK using an authenticated encryption al-
gorithm EncAE(Kses,RK) with Kses and delivers the
encrypted message M to A via the cloud storage.

iv) A decrypts M using the corresponding decryption algo-
rithm DecAE(Kses,M) with Kses to extract RK .

β,	 s	

A	 (New	 Device)	 B	 (Authorized	 Device)	

M1	

M2	

M3	

α	
a	 ∈R{0,1}n	

α	 =	 ga	
b,	 s	 ∈R{0,1}n	
k	 	 =	 H(N,	 g)	

P	 (Passcode)	
Copy-‐and-‐enter	 channel	 P	 	 	 P	

x	 =	 H(s	 ,	 P)	
v	 =	 	 gx	

β	 =	 kv	 +	 gb	
x	 =	 H(s,	 P)	

u	 =	 H(α,	 β)	
σ	 =	 (αvu)b	

Kses	 =	 H(σ)	

Verify(M1,	 α,	 β,	 Kses)	
M2	 =	 H(α,	 M1,	 Kses)	

Secure	 Remote	 Protocol	 (SRP)	

Local	 Channel	

Cloud	 storage	
	 Channel	

u	 =	 H(α,	 β)	
σ	 =	 (β	 –	 kgx)(a+ux)	

Kses	 =	 H(σ)	
M1	 =	 H(α,	 β,	 Kses)	

Verify(M2,	 α,	 M1,	 Kses)	

RK	 =	 DAE(M3,	 Kses)	
M3	 =	 EAE(RK,	 Kses)	

Fig. 5. Device authorization protocol using passcode

5

The secure remote password (SRP) protocol [17] is used as
the PAKE protocol to derive Kses from P. SRP is a client-
server protocol in which clients first register with the server
and set up their passwords. The server generates random
salts and stores the cryptographic hashes of the clients’ salted
passwords. During authentication, clients provide provide their
identities to the server and request the respective salt values.

Figure 5 outlines the device authorization protocol using
a passcode where A is the SRP client and B is the SRP
server. Both devices use a 6-digit numeric passcode P as the
SRP password. However, we omit the registration phase and
the first SRP message (i.e. sending the client’s identity) since
OmniShare has only one client and server during authorization.
SRP uses a finite field GF (N) for all computations where N
is a large prime and g is a generator in GF (N). Both devices
use same N and g. The protocol is as follows:

i) A generates a random number a, calculates its public
value α = ga and transfers α to B. Meanwhile, B
generates a random number b, a random salt s. Both
calculate the cryptographic hash k = H(N,g).

ii) After receiving α, B calculates x = H(s,P), v = gx

and its public value β = kv + gb. B then transfers β
and s to A.

iii) A calculates the cryptographic hash x = H(s,P). Both
A and B calculate u = H(α, β) and the common value
σ = (β − kgx)(a+ux) = (αvu)b. Both devices then hash
σ to derive a session key Kses. After calculating Kses,
A calculates the session key authentication message
M1 = H(α, β,Kses) and delivers M1 to B.

iv) B verifies M1 using verify(M1, α, β,Kses) and sends
its part of the session key authentication message
M2 = H(α,M1,Kses) to A.

After completing the SRP protocol, B uses the Kses to
securely deliver the RK to A as explained above.

Once authorized, the OmniShare client on A adds A to
the user’s OmniShare domain by performing the following
tasks: (a) encrypting the RK with PKA, (b) calculating the
HMAC of the device metadata and the encrypted RK with the
device-specific authentication key, and (c) adding the HMAC
along with the encrypted RK and the device metadata into the
domain descriptor file.

E. Sharing Files

OmniShare supports sharing selected files with other users.
Since the system is not limited to any particular cloud storage
provider (Requirement F4), we cannot assume that collabora-
tive sharing capabilities (i.e. concurrent editing of the same
file by multiple users) will be available. We therefore provide
a read-only sharing mechanism, which can be used with any
cloud storage provider. By sharing an encrypted file and the
corresponding individual file key, the receiver can read the file
but cannot make modifications without causing the integrity
check (the hash in the encryption of Kf) to fail. File sharing is
efficient in the sense that files do not need to be re-encrypted
in order to be shared securely (since re-encrypting large files
may take a long time). Although the sharing permission is
inherently delegable, this is no different from users passing

on the contents of shared files. The sharing arrangement can
be terminated by re-encrypting the files with new keys. Files
can also be shared with groups of users by distributing the
relevant keys to multiple receivers.

Specifically, file sharing involves three main tasks: Peering,
Sharing and Receiving. There is also an optional task Storing.

1) Peering: When two users want to share files, they first
run a key exchange protocol over an OOB channel, to agree
on a shared peer key. Each peer then establishes a persistent
context for the peering consisting of this shared key, along
with a peer directory and a control file. Each device sends a
public link to its control file to the peer. Each device maintains
a list of added peers and pointers to their control files.

2) Sharing: When the user shares a file with a receiver,
OmniShare first copies the encrypted file(s) to the peer direc-
tory for the receiver and adds a record to the control file in the
peer context containing: (a) the file or directory key encrypted
with the peer key and (b) a public link to the encrypted file
or directory.

3) Receiving: When the receiver scans the control file of a
peer, it can detect all newly shared files from that peer. The
receiver can use the public links to fetch the encrypted files. It
can also fetch the encrypted keys from the peer’s control file.
Using these and the corresponding peer key, the receiver can
recover the files’ contents. On successfully receiving the files,
the receiver adds an acknowledgement entry, i.e. the identities
of the files, in her control file as an acknowledgement to the
sender.

4) Storing: This is an optional task in the sharing process
in which the receiver imports the shared file(s) into her
cloud storage using the key hierarchy of her own OmniShare
domain.

F. Extensions

In addition to the core architecture described above, the fol-
lowing features could naturally be integrated into OmniShare:

Selective synchronization: In certain circumstances, a user
may wish to synchronize only a subset of her files to one
of her devices. The OmniShare key hierarchy is well suited
for this purpose. Due to the symmetry of keys, a new device
can be given a directory key in place of the root key, thus
authorizing access to only a subset of the directory tree.

Directory sharing: The same mechanism used for sharing
files with other users could also be used to share directories,
by replacing the file keys with directory keys.

Server-side computation: It might be argued that client-
side encryption limits the possibility for honest cloud providers
to perform computations on the encrypted files (e.g. search
and analysis). However, new types of encryption schemes,
such as order-preserving encryption (OPE) [18] and fully-
homomorphic encryption (FHE) [19], which allow providers to
perform some types of computations directly on the encrypted
files, could be used in OmniShare.

Delta file encryption: Naively, updating an encrypted file
involves re-encrypting the entire file, which may be expensive
in terms of processing and bandwidth, especially for large files.
Instead, changes could be recorded as separate encrypted delta

6

files, which are also synchronized across client devices. When
decrypting files, client devices also decrypt the associated
delta files and apply the changes locally. Delta file include an
integrity-protected last modified timestamp to prevent rollback
attacks. The cloud provider can also use this mechanism to
enable deduplication of encrypted files by storing a single
copy of similar files and maintaining the differences using
delta files.

IV. IMPLEMENTATION

We have implemented OmniShare on Windows and An-
droid, and support Dropbox as the cloud storage service. How-
ever, support for other platforms and cloud storage providers
can be added without modifications to the architecture (Re-
quirement F4).

On Windows, the implementation uses the .NET framework
(version 3.5) for x86 and x64 architectures. The Android
implementation targets Android 4.1 and higher (API level
16). Both platforms use the Bouncy Castle Crypto APIs [20]
(Bouncy Castle C# v1.7 on Windows and Spongy Castle v1.51
on Android). A port for iOS 7.0 and higher is in progress. We
have implemented OmniShare for Dropbox but the architecture
is not limited to this provider (Requirement F4). Adding
support for other providers is straightforward provided they
offer interfaces for third-party applications.

A. File Encryption and Key Hierarchy

We use the Advanced Encryption Standard in Galois
Counter Mode (AES-GCM) with a 128-bit key to encrypt files
and keys. Since the cloud storage provider may be colluding
with the adversary, this semantically secure encryption is used
to prevent the adversary from learning any information about
the file’s contents.

Encryp'on	 of	
	 “DIRKEY”||Kd||Hash(directory	 path)	

(1+16+20)	 B	

IV	
12	 B	

MAC	
16	 B	

Fig. 6. Format of a .omnishare.envelope file (i.e. an encrypted directory key)

Directory keys are encrypted together with a 1-byte tag
indicating the key type (shown as the constant DIRKEY) and
the hash of their full directory paths in order to mitigate
against key-substitution attacks within the same key hierarchy.
Encrypted directory keys are stored as .omnishare.envelope
files in their corresponding directories. Figure 6 shows the
format of a .omnishare.envelope file where the IV is prepended
to the encryption of the directory key Kd and the MAC is
appended after the encrypted key. Similarly, each encrypted
file key also includes a 1-byte key type tag (e.g. FILEKEY)
and the hash of the encryption of the corresponding file.
Figure 7 shows the format of an encrypted file key where
the IV is prepended to the encryption of the file key Kf and
the MAC is appended to the encryption. The encrypted file
keys are prepended to the encryption of the corresponding files
(although note that this is purely for convenience and does not
provide any security properties given our adversary model).

The encryption of the files also follows a similar format as
the keys with their IVs prepended and MACs appended after
the encryption. However, the encrypted files do not include
the additional information included with the encrypted keys.

Encryp'on	 of	
“FILEKEY”||Kf||Hash(Encrypted	 f)	

(1+16+20)	 B	

IV	
12	 B	

MAC	
16	 B	

Fig. 7. Format of an encrypted file key

B. Device Authorization

Protocol messages are exchanged as files via the cloud stor-
age service itself. Each message file has a Universally Unique
Identifier (UUID) as a filename and contains a JSON object
with the protocol message. When a response is expected, the
UUID filename for the response file is also specified. The
filename of the initial authorization protocol message indicates
the identity of the selected authorizing device, so that only
this device responds. However, this naming convention is
purely for convenience since device authenticity and message
freshness are both established cryptographically during the
protocol.

1) Ultrasonic Communication: When using ultrasonic
OOB channel, we calculate the SHA256 hash of the device
public key and encode this together with a 128 bit random
authentication key as an ultrasonic audio signal. We use a chirp
signal [14], [21] to encode each binary bit as either an up-chirp
(one) or down-chirp (zero). Through experimentation with
different devices, we determined that the optimal frequency
band is from 16.2 kHz to 17.2 kHz, and we achieved a bitrate
of 100 bps. On the receiving side, we decode the received
signal by correlating it with the chirp signatures. We use the
open-source ZXing for Reed-Solomon library [22] to provide
error-correction codes.

2) QR Code: Similarly, when using the QR Code OOB
channel, the SHA256 hash of the device public key and the
128 bit authentication key are encoded as a QR code. We
use the open-source ZXing ("zebra crossing") [23] library for
Android and Windows to generate and decode 300 x 300 pixel
QR codes.

3) Passcode: When using the Passcode OOB channel, we
use the secure remote password (SRP) protocol version 6a [24]
as the PAKE protocol to derive a strong 128-bit session key
from the 6-digit random passcode. We use this session key to
distribute the root key.

C. Sharing Files

The capability to share files with other users is only im-
plemented in the Android version. We use ultrasonic commu-
nication, NFC, or Bluetooth to establish bidirectional com-
munication between a pair of devices. The devices perform an
Elliptic Curve Diffie-Hellman (ECDH) key exchange to derive
a 256-bit AES shared key. The cloud storage provider’s API
(e.g. the Dropbox API) is used to generate public links of the
control files and shared files. The current implementation does

7

not yet support sharing directories or selectively synchronizing
directories, although these features are under development.

V. EVALUATION

We evaluate the security, functionality and usability of Om-
niShare in terms of the requirements defined in Section II and
we benchmark the performance of our Android and Windows
implementations.

A. Architecture Security Evaluation

OmniShare uses standardized cryptographic algorithms and
high entropy keys for all cryptographic operations, thus ful-
filling Requirement S1. Assuming the adversary is unable to
subvert these cryptographic algorithms, he cannot read the
encrypted files or keys in the hierarchy without access to the
root key. Since the root key itself is encrypted with the public
keys of authorized devices, an adversary outside the domain
cannot access this key, thus fulfilling Requirement S2. Fur-
thermore, since OmniShare uses authenticated encryption and
HMACs, any unauthorized modification of files or substitution
of encrypted keys can be detected. At most, the adversary
can learn the filenames and approximate file sizes (the exact
file sizes are masked by the encryption padding). We have
chosen not to encrypt the filenames so that the cloud provider
can offer filename-based search and so that mobile clients
can selectively download and decrypt files in order to reduce
bandwidth and energy consumption.

Our use of a key hierarchy and individual file keys facilitates
efficient sharing and limits the consequences if certain keys are
compromised. When sharing a file (i.e. read-only sharing), the
user reveals only a single file key to the receiver (who may
collude with the adversary). Although this gives the adversary
the ability to read that specific file, the file can only be
modified by the original user since the file’s integrity-check
value is protected by the corresponding directory key. Due to
the key hierarchy, OmniShare does not always need to keep the
root key in memory. For example, when the user is working
in a specific directory, the root key can be only used briefly to
decrypt the corresponding directory key. In general, we assume
that the adversary cannot read the memory of the OmniShare
application on a legitimate user’s device. However, in a real-
world deployment, there may still be attacks through which
an adversary could extract secrets from memory (e.g. a cold
boot attack). Thus removing the root key from memory when
it is not in use is a defence in depth mechanism that reduces
the window of vulnerability during which this high-value key
is in memory.

The consequences of specific key compromises are also
reduced. If a file key is compromised, only a single file is
vulnerable. Similarly, compromise of a directory key only
exposes a single directory. Either of these two types of
compromise only require re-encryption of the affected files.
In the worst case scenario, compromise of the root key would
expose all files. However, since the root key is protected by
the device keypair using asymmetric cryptography, additional
mechanisms can be used to protect the device keypair. For
example, on Android, the device’s private key is protected

by the Android keystore, which is often backed by secure
hardware, making it very difficult for malware to extract this
key. Furthermore, the keystore can require user authentication
before allowing access to this key, thus protecting this key if
the device is stolen.

B. Protocol Security Evaluation

In addition to the architecture itself, we evaluate the se-
curity of our proposed device authorization protocols using
the Scyther protocol analysis tool [25]. Specifically, for both
the single and multiple round-trip protocols, we analyse the
following security properties:

• Once the protocol is complete, the new device and the
authorizing device will both have access to the same root
key (agreement property).

• The adversary cannot learn this root key unless it is
explicitly authorized by the user (secrecy property).

An overview of the Scyther tool is given in Appendix A
and the full formal models of our protocols are presented in
Appendix B and Appendix C. The analyses confirm that these
properties hold for both protocols with respect to an adversary
who has full control over the network and cloud storage but
cannot interfere with the OOB channels. As explained in
Section II, these are realistic assumptions of the adversary’s
capabilities. Finally, the user’s involvement in the OOB chan-
nel, although minimal, is sufficient to authorize the transaction
and bootstrap trust between the two devices. Therefore, both
protocols fulfil Requirement S2. Although the security of the
PAKE protocol that forms the basis of OmniShare’s multiple-
round-trip protocol has also been evaluated using crypto-
graphic proofs, these proofs only deal with the correctness
of the protocol (i.e. an adversary without the password cannot
complete the protocol) and the confidentiality of the password.
However, since these cryptographic proofs consider PAKE
protocol in isolation, they cannot reason about other properties,
such as authentication between communicating entities, that
emerge when the PAKE protocol is used as part of a larger
system. Therefore, in addition to the cryptographic proofs, it
is essential to analyse the PAKE protocol in context, using
symbolic analysis tools, such as Scyther.

C. Performance Evaluation

We used a Microsoft Surface Pro running Windows 10 with
a core i5 1.7 GHZ CPU and a Samsung Galaxy S6 running
Android 5.1 using both a Quad-core 1.5 GHz Cortex-A53 and
a Quad-core 2.1 GHz Cortex-A57 CPU for our measurements.
The values below are the average of 10 execution rounds for
each measurement.

Table I shows execution time for the device authorization
protocols. In the table Windows → Android indicates that
the new device is a Windows PC and the selected autho-
rized device is an Android phone. The measurement includes
message generation and exchange time via cloud storage but
does not include time for user interaction over OOB channels.
As expected, the table confirms that the single round-trip
authorization protocol is at least twice as fast as as the multiple

8

TABLE I
MEASUREMENTS OF DEVICE AUTHORIZATION PROTOCOL EXECUTION

TIME USING DROPBOX

Authorization protocol Average time (seconds)
Single round-trip
Windows → Android 16.31 (± 2.37)
Android → Android 21.66 (± 1.10)
Using SRP
Windows → Android 39.77 (± 4.08)
Android → Windows 36.68 (± 9.21)
Windows → Windows 45.10 (± 5.71)
Android → Android 41.01 (± 3.94)

round-trip protocol. On average it takes 16271 (±19.21) mil-
liseconds to perform one request-response operation between
two devices via the Dropbox Sync API. This time can be
reduced by using the Dropbox Core API but this requires a
custom file synchronization mechanism.

TABLE II
MEASUREMENTS OF CRYPTOGRAPHIC OPERATIONS

Operation Average time (milliseconds)
Windows
2048-bit RSA keygen 93.0 (± 34.5)
RSA encryption (16 bytes RK) <1
RSA decryption (16 bytes RK) 13.0 (± 1.4)
File encryption (1MB) 277.0 (± 19.5)
File decryption (1MB) 265.5 (± 14.3)
Android
2048-bit RSA keygen 395.6 (± 184)
RSA encryption (16 bytes RK) 15.2 (± 3.96)
RSA decryption (16 bytes RK) 31.4 (± 2.79)
File encryption (1MB) 211.6 (± 16.27)
File decryption (1MB) 235.0 (± 4.47)

Table II shows the time required to generate a device RSA
key pair, encrypt/decrypt the 128-bit root key using RSA and
symmetrically encrypt/decrypt a 1 MB file using AES-GCM.
Other operations, such as generating an AES 128-bit key or
encrypting filekey using AES, take less than a millisecond on
both platforms. Although file encryption and decryption are
computationally intensive operations, our benchmarks show
that these can still be achieved in reasonable time for files up
to a few megabytes in size.

D. Usability Evaluation

We conducted a cognitive walkthrough to evaluate the
usability of OmniShare. A cognitive walkthrough is a long-
standing methodology for usability evaluation where system
tasks are inspected in detail, and potential usability problems
are evaluated for every task [26]. They are particularly used
in situations where the interest is in an in-depth examination
of one system, rather than a comparison of multiple systems.
Cognitive walkthrough is one of the most prominent usabil-
ity evaluation methods [27], and has been applied in many
security-related domains [28] [29] [30]. We chose it for its
combination of practical feasibility and attention to detail. The
purpose of the walkthrough is to uncover potential usability

issues a naive first-time user may encounter, by focusing on
learnability considerations and explicitly acknowledging the
acquisition of skills required to use a system. The full details
of this usability evaluation are presented in the accompanying
technical report [] and we summarize our methodology and
salient results in this section.

Security systems have a number of distinct properties that
affect their usability [31]. Unlike traditional user interfaces,
security systems must be designed so that users cannot make
dangerous errors, and must not leak important information to
attackers while still providing sufficient feedback to legitimate
users. In addition to asking the standard cognitive walkthrough
evaluation questions at each step (Will the user know what
to do?, Will the user see how to do it?, and after they have
completed the action, Will the user know that they did the right
thing?), we also paid specific attention to preventing security
errors, and minimizing information leakage.

1) Method: We constructed a scenario of prototypical Om-
niShare use that included four tasks. These were (1) setting
up OmniShare for first time use, (2) uploading a file to
the OmniShare directory, (3) accessing the directory from
another device, and (4) sharing a file with another OmniShare
user. These tasks were chosen to represent the functionality
available in OmniShare, and required distinct actions for com-
pletion. The focus of our evaluation was on learnability and
we made minimal assumptions about users’ prior knowledge.
We assumed basic competence with the devices used in the
walkthrough (a smartphone and a Windows computer), and
we assumed that the user had previous experience with cloud
services, but no technical background.

We chose a pluralistic walkthrough with five evaluators in
order to represent multiple viewpoints in our evaluation. Of the
five participants, two were directly involved in OmniShare’s
design and development, two were independent usability ex-
perts, and the final participant was an outside user with no
relevant background who represented a naive user.

2) Results: The overall result of our cognitive walkthrough
was that the design of OmniShare should not present any major
usability problems for a users with minimal knowledge of file
sharing and little technical background. We concluded that
sharing files in OmniShare should be straightforward for a
novice user; although we noted several places in which the
user interface could clarify instructions, or align better with
operating system standards, we found that a novice user would
be able to easily avoid major errors. As part of our cogni-
tive walkthrough, we also uncovered two conceptual issues
affecting the design of OmniShare. These are fundamental
issues that arise in file sharing systems, and as such, are not
necessarily specific to OmniShare’s architecture (though they
affect it).

Overall, we found that a naive user would likely be able
to complete all tasks in OmniShare. However, we also iden-
tified places in all four tasks where improving language and
feedback would enhance the user experience and minimize
the possibility of errors. We found instances where language
used was either too technical (e.g., “Access rights”), or where
it was ambiguous. We also found problems relating to the
placement and labelling of buttons. For example, in the upload

9

task, the file upload interface gave no buttons allowing the
user to navigate through the file hierarchy. In all tasks, we
found that additional feedback was needed to help the user
understand that the tasks had been successfully completed,
and what they should do next. This particularly affected the
upload and device-pairing tasks.

We found one dangerous error in our cognitive walkthrough.
In the interface, the menu item to disconnect the device from
the OmniShare account was located next to the button to
upload a file. Uploading a file is an action that users will need
frequently, but disconnecting the device permanently deletes
the encryption keys stored on the device and is an irreversible
action. If the disconnected device is the only device associated
with the account, access to the files in the OmniShare folder
will be permanently lost. This error was corrected by removing
the upload file button from that menu and placing it as a stand-
alone button on the main screen.

The final task in the cognitive walkthrough was to share a
file with another OmniShare user for the first time. To do this,
the devices need to be paired and users must meet in person
to pair their devices (after this step, files can be shared at any
time and users do not need to be co-located). Requiring users
to pair in person has security advantages, but disadvantages to
usability. The larger issue that became apparent in this task was
the nature of how files are shared in OmniShare. Rather than
having a file that is accessible by multiple people concurrently
(as in other cloud file-storage systems, such as Dropbox),
sharing in OmniShare is more akin to sending a file to another
user. In this way, the term “share” is used in its active sense.
However, this latter interpretation bears some resemblance to
the meaning of the term “share” in a social media context.
One possible way of addressing this issue might be to use a
different word (e.g. send or transfer) in order to help users
build a better mental model of the underlying process.

The other high level issue uncovered by the evaluation was
that the interface currently gives the user only mimimal infor-
mation about encryption of the files. In particular, the word
“encryption” is never explicitly presented to the user. This
has both positive and negative consequences, as it minimizes
interference and technical jargon, but may also prevent the user
from realizing that the files are protected. Adding a “More
info” link on the main page, leading to a brief description of
the basic functions of OmniShare, might be valuable for this
reason. The addition of a security indicator icon could also
remind the user that their files are safe.

In summary, our cognitive walkthrough evaluation showed
that OmniShare can be easily and safely used by novice users.
We uncovered no fatal usability issues, and were able to fix
the majority of usability issues identified in the cognitive
walkthrough. We also identified two conceptual issues that
affect not only OmniShare, but also the design space of secure
and password-less file sharing systems.

VI. RELATED WORK

Solutions like SpiderOak [3], Wuala [32] (now discontin-
ued), and Tresorit [4] offer secure cloud storage with client-
side file encryption. However they use keys derived from

passwords to encrypt the files. On the other hand, tools like
Viivo [6], BoxCryptor [7], and Sookasa [8] allow encryption
with client-generated keys and allow users to choose their pre-
ferred cloud storage. However, they use an additional server to
manage and distribute the file encryption keys across devices.
In contrast, the security of OmniShare does not depend on any
server.

PanBox [33] is the closest solution comparable to Om-
niShare. In addition to client-side encryption, it uses OOB
channels like Bluetooth and Wi-Fi to distribute keys to client
devices. However, this requires multiple user interactions, as
described in the previous section. PanBox appears to be limited
to German users. In contrast OmniShare delivers minimal,
consistent user interaction and is freely available to anyone.

VII. CONCLUSION

Data privacy has become a major concern with respect to
cloud storage. OmniShare addresses this problem by com-
bining client-side encryption with intuitive key distribution
mechanisms. The use of a key hierarchy and individual file
keys facilitates selective synchronization of directories as
well as sharing of files and directories with other users.
OmniShare is open source software that is currently available
for both Android and Windows, with other platforms under
development. As a generic mechanism to construct authorized
device domains, OmniShare will have other applications be-
yond secure cloud storage. For example, suppose an online
banking application uses trusted hardware on mobile devices
to protect user credentials for online bank access. To allow
the credentials to be used from multiple devices belonging to
the same user, the application could allow the user to define
an authorized domain of devices using OmniShare and protect
the banking credentials using the domain root key. A similar
approach could be used to synchronize encrypted passwords
between the user’s devices when using password managers
such as LastPass. Another promising avenue of future work is
to consider how new technologies, such as fully homomorphic
encryption or deduplication of encrypted data can be integrated
into OmniShare.

ACKNOWLEDGMENTS

This work was partially supported by the Academy of
Finland project "Cloud Security Services (CloSe)" (Grant
Number: 283135) and the Intel Collaborative Research Insti-
tute for Secure Computing (ICRI-SC). OmniShare has also
received development funding as the overall winner of the
Privacy via IT-Security mobile app development competition
at CeBIT 2016. We thank Jan-Erik Ekberg, Brian McGillion,
Jian Liu, and Alexandra Dmitrienko for their feedback on
previous versions of this manuscript.

REFERENCES

[1] Eurostat, “Internet and cloud services - statistics on the use by
individuals,” 2014. [Online]. Available:
http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_
cloud_services_-_statistics_on_the_use_by_individuals

[2] C. Soghoian, “Caught in the cloud: Privacy, encryption, and
government back doors in the web 2.0 era,” J. on Telecomm. & High
Tech. L., vol. 8, p. 359, 2010.

http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_services_-_statistics_on_the_use_by_individuals
http://ec.europa.eu/eurostat/statistics-explained/index.php/Internet_and_cloud_services_-_statistics_on_the_use_by_individuals

10

[3] SpiderOak. [Online]. Available: https://spideroak.com/
[4] Tresorit. [Online]. Available: https://tresorit.com/
[5] J. Bonneau, “The Science of Guessing: Analyzing an Anonymized

Corpus of 70 Million Passwords,” in IEEE Symposium on Security and
Privacy, 2012.

[6] PKWARE, Viivo. [Online]. Available: https://www.viivo.com/
[7] Secomba GmbH, BoxCryptor - Secure your Cloud. [Online].

Available: https://www.boxcryptor.com/en
[8] Sookasa. [Online]. Available: https://www.sookasa.com/
[9] M. Farb, Y.-H. Lin, T. H.-J. Kim, J. McCune, and A. Perrig,

“Safeslinger: Easy-to-use and secure public-key exchange,” in 19th
Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’13, 2013.

[10] M. Kallahalla et al., “Plutus: Scalable secure file sharing on untrusted
storage,” in 2nd USENIX Conference on File and Storage
Technologies, 2003, pp. 29–42.

[11] L. Li, G. Xue, and X. Zhao, “The power of whispering: Near field
assertions via acoustic communications,” in 10th ACM Symposium on
Information, Computer and Communications Security, 2015, pp.
627–632.

[12] B. Zhang et al., “Priwhisper: Enabling keyless secure acoustic
communication for smartphones,” pp. (1):33–45, 2014.

[13] G. E. Santagati and T. Melodia, “U-wear: Software-defined ultrasonic
networking for wearable devices,” in 13th Annual International
Conference on Mobile Systems, Applications, and Services, 2015, pp.
241–256.

[14] H. Lee et al., “Chirp signal-based aerial acoustic communication for
smart devices,” in IEEE Conference on Computer Communications,
INFOCOM, 2015, pp. 2407–2415.

[15] Google, chromecast now pairs with phones using simple ultrasonic
Pulses, last accessed: 2016-04-06. [Online]. Available:
http://gizmodo.com/
chromecast-now-pairs-with-phones-using-simple-ultrasoni-1596874145

[16] “The srp project.” [Online]. Available:
http://srp.stanford.edu/project.html

[17] T. Wu, “SRP-6: Improvements and refinements to the secure remote
password protocol,” Submission to the IEEE P1363 Working Group,
2002.

[18] R. Agrawal et al., “Order preserving encryption for numeric data,” in
ACM SIGMOD international conference on Management of data,
2004, p. 563.

[19] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009. [Online]. Available:
crypto.stanford.edu/craig

[20] Legion of the Bouncy Castle Inc, The Bouncy Castle Crypto APIs.
[Online]. Available: http://www.bouncycastle.org/

[21] C. Cook, “Linear fm signal formats for beacon and communication
systems,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-10, no. 4, pp. 471–478, Jul 1974.

[22] ZXing ("Reed-Solomon"). [Online]. Available:
https://zxing.github.io/zxing/apidocs/com/google/zxing/common/
reedsolomon/package-summary.html

[23] ZXing ("Zebra Crossing"). [Online]. Available:
https://github.com/zxing/zxing

[24] T. Wu, “The SRP Authentication and Key Exchange System,” RFC
2945, September 2000. [Online]. Available:
https://www.ietf.org/rfc/rfc2945.txt

[25] C. J. F. Cremers, “The Scyther Tool: Automatic Verification of
Security Protocols,” in Computer Aided Verification, 2008.

[26] C. Wharton et al., “The Cognitive Walkthrough Method: A
Practitioner’s Guide,” in Usability Inspection Methods, J. Nielsen and
R. L. Mack, Eds. New York, USA: John Wiley & Sons, Inc., 1994,
pp. 105–140.

[27] J. R. C. Nurse, S. Creese, M. Goldsmith, , and K. Lamberts,
“Guidelines for usable cybersecurity: Past and present,” in Proceedings
of the Third International Workshop on Cyberspace Safety and
Security (CSS), 2011, pp. 21–26.

[28] J. Clark, P. van Oorschot, and C. Adams, “Usability of anonymous
web browsing: an examination of tor interfaces and deployability,” in
3rd symposium on Usable privacy and security, 2007, pp. 41–51.

[29] X. Dong, J. A. Clark, and J. Jacob, “Modelling user-phishing
interaction,” in Proceedings of Human System Interactions, Kraków,
Poland, 2008, pp. 41–51.

[30] D. J. Bennett and P. Stephens, “A cognitive walkthrough of autopsy
forensic server,” Information Management & Computer Security,
vol. 17, no. 1, 2009.

[31] A. Whitten and J. Tygar, “Why johnny can’t encrypt: a usability
evaluation of pgp 5.0,” in 8th conference on USENIX Security
Symposium, 1999, pp. 14–42.

[32] LACIE, Wuala. [Online]. Available: https://www.wuala.com/
[33] Sirrix AG security technologies, PanBox Transparente Datei und

Ordner-Verschlüsselung für Cloud und Storage. [Online]. Available:
www.sirrix.de/content/pages/Panbox.htm

[34] C. Cremers and S. Mauw, Operational semantics and verification of
security protocols. Springer Science & Business Media, 2012.

https://spideroak.com/
https://tresorit.com/
https://www.viivo.com/
https://www.boxcryptor.com/en
https://www.sookasa.com/
http://gizmodo.com/chromecast-now-pairs-with-phones-using-simple-ultrasoni-1596874145
http://gizmodo.com/chromecast-now-pairs-with-phones-using-simple-ultrasoni-1596874145
http://srp.stanford.edu/project.html
crypto.stanford.edu/craig
http://www.bouncycastle.org/
https://zxing.github.io/zxing/apidocs/com/google/zxing/common/reedsolomon/package-summary.html
https://zxing.github.io/zxing/apidocs/com/google/zxing/common/reedsolomon/package-summary.html
https://github.com/zxing/zxing
https://www.ietf.org/rfc/rfc2945.txt
https://www.wuala.com/
www.sirrix.de/content/pages/Panbox.htm

11

APPENDIX A
OVERVIEW OF PROTOCOL ANALYSIS USING SCYTHER

Scyther [25] is an automated tool for reasoning about the security properties of message exchange protocols. This section
provides a brief introduction to the tool and its use in the analysis of the security protocols in OmniShare. Further
details about this tool, as well as downloads, source code, and examples, are available from the tool’s project page:
https://www.cs.ox.ac.uk/people/cas.cremers/scyther/

Scyther is a symbolic analysis tool in that it analyses symbolic representations of real protocols. This type of analysis is
well-suited for message exchange protocols since it focuses only on potential vulnerabilities arising from the protocol itself.
In a real deployment, other types of vulnerabilities, such as implementation bugs or vulnerabilities in the underlying platform,
must also be considered, but are arguably orthogonal to vulnerabilities in the protocol. The tool is automated in that it only
requires the user to provide an abstract specification of the protocol and the security properties of interest. Based on this
specification, the tool can determine which of the security properties hold, or provide counter-examples where properties do
not hold.

The following appendices present the specifications for the two main protocols used in OmniShare. These are the complete
specifications, and as such can be directly input to the Scyther tool (version 1.1.3) to reproduce our analysis results.

In Scyther specifications, a protocol consists of two or more roles, each representing a different type of communicating
entity. Multiple instances of each role may participate in any run of the protocol. Each role has a number of local symbolic
variables, which can be either freshly generated for each protocol run (denoted by the fresh keyword) or placeholders for
information that will be received during the protocol (denoted by the var keyword). The exchange of messages between roles
is specified using the send and recv keywords, which have the following syntax:

1 send_ [message_number] ([s e n d e r] , [r e c i p i e n t] , [message (m u l t i p l e comma−s e p a r a t e d symbols)]) ;
2 r e c v _ [message_number] ([s e n d e r] , [r e c i p i e n t] , [message (m u l t i p l e comma−s e p a r a t e d symbols)]) ;

Scyther automatically models a Dolev-Yao style adversary, who has full control of the communication network (i.e. the
adversary can eavesdrop, block, replay, modify, or forge any message). The adversary may also take on one or more roles
in the protocol. The [sender] and [recipient] parameters in the send and receive operations thus only indicate the
intended recipient or the apparent sender, since the adversary has complete control over which messages are received by which
entities.

However, it is assumed that all cryptographic primitives are correctly implemented and cannot be subverted by the adversary.
Scyther can model symmetric and asymmetric cryptographic primitives, and includes a number of built-in keys that are assumed
to have been pre-distributed among the relevant participants, in order to simplify the analysis. Specifically, the keyword k(A,B)
denotes a pre-shared key between roles A and B. In the specifications of the OmniShare protocols, we use this to model the
out of band communication channel, which is assumed to be secure (i.e. confidential, integrity-protected, and authenticated).

After the message exchange has been specified, each role can include a number of claim statements, each of which captures
a particular security property. In the automated analysis, the tool attempts to prove or disprove each property. The full details
of these properties are described in [34], but the following informal examples are given to provide an intuitive understanding
of the OmniShare protocol specifications that follow.

1 / / S e c r e c y : t h e e n t i t y i n r o l e A c l a i m s t h a t symbol KeySAuth i s n o t known by t h e a d v e r s a r y
2 c l a i m _ a 1 (A, S e c r e t , KeySAuth) ;
3
4 / / Non−i n j e c t i v e s y n c h r o n i z a t i o n : t h e e n t i t y i n r o l e A c l a i m s t h a t i f has comple t ed a run o f t h e p r o t o c o l ,
5 / / t h e o t h e r e n t i t i e s wi th whom i t b e l i e v e s i t was communica t ing w i l l a g r e e t h a t t h e y have comple t ed a
6 / / run o f t h e p r o t o c o l w i th t h i s e n t i t y , and a l l e n t i t i e s w i l l a g r e e on t h e d a t a i t e m s t h a t were exchanged .
7 / / Th i s i s used t o model a u t h e n t i c a t i o n .
8 c l a i m _ a 2 (A, Nisynch) ;
9

10 / / R e a c h a b i l i t y : t h e e n t i t y i n r o l e A c l a i m s t h a t t h e r e e x i s t s a t l e a s t one s e q u e n c e o f e v e n t s t h a t w i l l
11 / / a l l o w i t t o r e a c h t h i s c l a i m . Th i s c l a i m e n s u r e s t h a t t h e message exchange p r o t o c o l can be comple t ed .
12 c l a i m _ a 3 (A, Reachab le) ;

In addition to the claim statements, the match statement can be used to check whether a received symbol is equivalent to a
local variable. If the equivalence relationship is not satisfied, the protocol run terminates (which can subsequently be detected
by the Reachable claim statement).

https://www.cs.ox.ac.uk/people/cas.cremers/scyther/

12

APPENDIX B
SCYTHER MODEL OF THE SINGLE ROUND-TRIP PROTOCOL

1 h a s h f u n c t i o n H;
2
3 /∗
4 ∗ S c y t h e r assumes a l l a g e n t s have a c c e s s t o a l l b u i l t−i n p u b l i c keys . However ,
5 ∗ our p r o t o c o l does n o t have a pre−e s t a b l i s h e d P u b l i c key i n f r a s t r u c t u r e (PKI) .
6 ∗ T h e r e f o r e we d e f i n e an a d d i t i o n a l a symmet r i c key p a i r t o model our key
7 ∗ d i s t r i b u t i o n p r o t o c o l .
8 ∗ /
9 c o n s t pk2 : F u n c t i o n ; / / A f u n c t i o n f o r p u b l i c key which i s d i f f e r e n t from t h e d e f a u l t Pk (A)

10 s e c r e t sk 2 : F u n c t i o n ; / / A c o r r e s p o n d i n g s e c r e t key f u n c t i o n
11 i n v e r s e k e y s (pk2 , sk 2) ; / / Mapping of pk2 t o sk 2 a l l o w i n g a v a l u e X e n c r y p t e d wi th pk2
12 / / t o be d e c r y p t e d wi th sk 2
13
14 p r o t o c o l usingQR (A, B)
15 {
16 r o l e A {
17 f r e s h KeySAuth : Nonce ; / / a random s e s s i o n a u t h e n t i c a t i o n key
18 v a r RK: Nonce ; / / The r o o t key
19 v a r MAC: T i c k e t ;
20 f r e s h A1 : Nonce ; / / nonce used t o i n t e r p r e t a symmet r i c key i n S c y t h e r .
21
22 / / Messge s e n t v i a s e c u r e o u t o f band communica t ion c h a n n e l
23 / / (mode l l ed u s i n g b u i l t−i n key s h a r e d between A and B)
24 send_ 0 (A, B , {KeySAuth , H(pk2 (A1)) }k (A, B)) ;
25
26 / / Messages s e n t v i a c l o u d communica t ion c h a n n e l
27 send_ 1 (A, B , pk2 (A1)) ;
28 macro m = {RK} pk (A) ;
29 r e c v _ 2 (B , A, (m, MAC)) ;
30
31 / / v e r i f i c a t i o n o f t h e i n t e g r i t y o f e n c r y p t e d r o o t key
32 match (MAC, H(m, KeySAuth)) ;
33
34 / / Cla ims
35 c l a i m _ a 1 (A, S e c r e t , sk 2 (A1)) ;
36 c l a i m _ a 2 (A, S e c r e t , KeySAuth) ;
37 c l a i m _ a 3 (A, S e c r e t , RK) ;
38 c l a i m _ a 4 (A, Nisynch) ;
39 c l a i m _ a 5 (A, Reachab le) ;
40 }
41
42 r o l e B {
43 v a r hash : T i c k e t ;
44 v a r KeySAuth : Nonce ;
45 f r e s h RK: Nonce ;
46 v a r A1 : Nonce ;
47
48 / / Messge r e c e i v e d v i a s e c u r e o u t o f band communica t ion c h a n n e l
49 / / (mode l l ed u s i n g b u i l t−i n key s h a r e d between A and B)
50 r e c v _ 0 (A, B , {KeySAuth , hash }k (A, B)) ;
51
52 / / Message r e c e i v e d v i a c l o u d communica t ion c h a n n e l
53 r e c v _ 1 (A, B , pk2 (A1)) ;
54 / / OOB message v e r f i c a t i o n
55 match (hash , H(pk2 (A1))) ;
56
57 / / Send ing back t h e e n c r y p t e d r o o t k e y and an HMAC f o r i n t e g r i t y p r o t e c t i o n .
58 macro m = {RK} pk (A) ;
59 send_ 2 (B , A, (m, H(m, KeySAuth))) ;
60
61 / / Cla ims
62 c l a im_b 1 (B , S e c r e t , KeySAuth) ;
63 c l a im_b 2 (B , S e c r e t , RK) ;
64 c l a im_b 3 (B , Nisynch) ;
65 c l a im_b 4 (B , Reachab le) ;
66 }
67 }

13

APPENDIX C
SCYTHER MODEL OF THE MULTIPLE ROUND-TRIP PROTOCOL

1 h a s h f u n c t i o n g1 , g2 , H;
2 f u n c t i o n f , p l u s ;
3
4 /∗
5 ∗ S u p p o r t p r o t o c o l f o r s i m u l a t i n g modular e x p o n e n t i a l e q u i v a l e n t
6 ∗ /
7 p r o t o c o l @ e x p o n e n t i a t i o n (BE , BM1 , AM2)
8 {
9 r o l e BE {

10 / / S i m u l a t i o n o f (g^ a) ^b = (g^b) ^ a
11 v a r a , b : T i c k e t ;
12
13 r e c v _ ! 1 (BE , BE , g2 (g1 (a) , b)) ;
14 send_ ! 2 (BE , BE , g2 (g1 (b) , a)) ;
15 }
16
17 /∗
18 ∗ S u p p o r t p r o t o c o l t o s i m u l a t e e q u a l i t y o f M1 and M1 ’
19 ∗ /
20 r o l e BM1 {
21 v a r a l p h a , b e t a , a , b , x : T i c k e t ;
22 r e c v _ ! 3 (BM1 , BM1 , H(a l p h a , b e t a , H(f (g2 (g1 (b) , a) , g2 (g1 (b) , x))))) ;
23 send_ ! 4 (BM1 , BM1 , H(a l p h a , b e t a , H(f (g2 (g1 (a) , b) , g2 (g1 (x) , b))))) ;
24 }
25
26 /∗
27 ∗ S u p p o r t p r o t o c o l t o s i m u l a t e e q u a l i t y o f M2 and M2 ’
28 ∗ /
29 r o l e AM2 {
30 v a r a l p h a , b e t a , a , b , x , RK: T i c k e t ;
31 macro KeySesA = f (g2 (g1 (b) , a) , g2 (g1 (b) , x)) ;
32 macro KeySesB = f (g2 (g1 (a) , b) , g2 (g1 (x) , b)) ;
33 macro M1A = H(a l p h a , b e t a , H(KeySesA)) ;
34 macro M1B = H(a l p h a , b e t a , H(KeySesB)) ;
35 macro M2A = H(a l p h a , M1A, KeySesA) ;
36 macro M2B = H(a l p h a , M1B , KeySesB) ;
37 r e c v _ ! 5 (AM2 , AM2 , {RK}KeySesB , M2B) ;
38 send_ ! 6 (AM2 , AM2 , {RK}KeySesA , M2A) ;
39 }
40 }
41
42 /∗
43 ∗ A u t h o r i z a t i o n p r o t o c o l u s i n g p a s s c o d e based on SRP
44 ∗ /
45 p r o t o c o l u s i n g P a s s c o d e (A, B)
46 {
47 r o l e A {
48 f r e s h P , a : Nonce ;
49 v a r s , gb , v , RK: T i c k e t ;
50 macro x = H(s , P) ;
51 macro a l p h a = g1 (a) ;
52 macro b e t a = p l u s (gb , v) ;
53 macro KeySes = f (g2 (gb , a) , g2 (gb , x)) ;
54 macro M1 = H(a l p h a , b e t a , H(KeySes)) ;
55 macro M2 = H(a l p h a , M1 , KeySes) ;
56
57 / / Message s e n t v i a t h e s e c u r e o u t o f band communica t ion c h a n n e l
58 / / (mode l l ed by e n c r y p t i n g wi th t h e d e f a u l t s h a r e d key between A and B) .
59 send_ 0 (A, B , {P}k (A, B)) ;
60
61 / / Messages exchanged v i a t h e c l o u d c h a n n e l
62 send_ 1 (A, B , a l p h a) ;
63 r e c v _ 2 (B , A, b e t a , s) ;
64
65 match (v , g1 (x)) ;
66 send_ ! 3 (A, B , M1) ; / / Send ing M1
67 r e c v _ ! 4 (B , A, {RK} KeySes , M2) ; / / R e c e i v i n g M2 , from s u p p o r t p r o t o c o l i n s t e a d o f r o l e B
68
69 c l a i m _ a 1 (A, Reachab le) ;
70 c l a i m _ a 2 (A, S e c r e t , a) ;
71 c l a i m _ a 3 (A, S e c r e t , P) ;
72 c l a i m _ a 4 (A, S e c r e t , KeySes) ;
73 c l a i m _ a 5 (A, S e c r e t , RK) ;

14

74 c l a i m _ a 6 (A, Nisynch) ;
75 }
76
77 r o l e B {
78 f r e s h b , s , RK: Nonce ;
79 v a r a l p h a , s , P ;
80 macro x = H(s , P) ;
81 macro b e t a = p l u s (g1 (b) , g1 (x)) ;
82 macro KeySes = f (g2 (a l p h a , b) , g2 (g1 (x) , b)) ;
83 macro M1 = H(a l p h a , b e t a , H(KeySes)) ;
84 macro M2 = H(a l p h a , M1 , KeySes) ;
85
86 r e c v _ 0 (A, B , {P}k (A, B)) ;
87
88 r e c v _ 1 (A, B , a l p h a) ;
89 send_ 2 (B , A, b e t a , s) ;
90 r e c v _ ! 3 (A, B , M1) ; / / R e c e i v i n g M1 , from t h e s u p p o r t f u n c t i o n i n s t e a d o f r o l e A
91 send_ ! 4 (B , A, {RK} KeySes , M2) ; / / Send ing o u t M2
92
93 c l a im_b 1 (B , Reachab le) ;
94 c l a im_b 2 (B , S e c r e t , b) ;
95 c l a im_b 3 (B , S e c r e t , P) ;
96 c l a im_b 4 (B , S e c r e t , KeySes) ;
97 c l a im_b 5 (B , S e c r e t , RK) ;
98 c l a im_b 6 (B , Nisynch) ;
99 }

100 }

