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Full Charge Capacity and Charging Diagnosis of
Smartphone Batteries

Mohammad A. Hoque, Matti Siekkinen, Jonghoe Koo, and Sasu Tarkoma

Abstract—Full charge capacity (FCC) refers to the amount of
charge a battery can hold. It is the fundamental property of
smartphone batteries that diminishes as the battery ages and is
charged/discharged. We investigate the behavior of smartphone
batteries while charging and demonstrate that battery voltage and
charging rate information can together characterize the FCC of
a battery. We propose a new method for accurately estimating
FCC without exposing low-level system details or introducing new
hardware or system modules. We further propose and implement
a collaborative FCC estimation technique that builds on crowd-
sourced battery data. The method finds the reference voltage
curve and charging rate of a particular smartphone model from
the data and then compares with those of an individual device.
After analyzing a large data set towards a crowd-sourced rate
vs. FCC model, we report that 55% of all devices and at
least one device in 330 out of 357 unique device models lost
some of their FCC. For some old device models, the median
capacity loss exceeded 20%. The models further enable debugging
the performance of smartphone charging. We implement an
algorithm, called BatterySense, which utilizes crowd-sourced rate
to detect abnormal charging performance, estimate FCC of the
device battery, and detect battery changes.

Keywords—Battery, Full Charge Capacity, State of Charge, Fuel
Gauge, Charging rate, Voltage.

I. INTRODUCTION

Smartphone users frequently encounter battery and energy
problems. From the popular Internet blogs [1], [2], [3], we
have identified two issues that are increasingly being reported
by the users; sudden drop in the battery level and disgraceful
shutdown of the device even with high battery levels being
reported to the user (even at 80%) while discharging. These
observations are reported across different smartphone models,
and even for laptops. This disgraceful shutdown may bar
users from their scheduled phone activities and result in
data loss. From a user’s perspective, the remaining battery
life of a smartphone may even converge to the monetary
value [4]. Many smartphone manufacturers have recently intro-
duced battery replacement programs that cover batteries that
have a reduced capacity, typically below 80% [5], [6]. The
current smartphone battery discussion pertains to the following
questions: Why does the battery level fluctuate? Is the battery
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Fig. 1. The comparison of voltage curves and C-rates during the constant
current (CC) phase of charging towards finding the recent FCC of a
smartphone battery.

faulty? Is the problem due to an operating system upgrade or
installing/upgrading an application?.

The answers to the earlier questions are related to the
smartphone full charge capacity (FCC), as we demonstrated
in prior work [7]. FCC is the maximum amount of charge
an empty battery can hold. As the battery of a smartphone
ages, the full charge capacity decreases with the utilization.
FCC is typically modeled as a function of the number of
charging cycles [39] or measured with Coulomb counting
technique [14]. This functionality or measurement capability
resides inside a smart battery. The battery shares this estimate
as percentage with the hosting device, such as smartphone
(see Section II). Therefore, an indication of the capacity loss
along with the battery level would allow more accurate state of
charge (SOC) estimation. For instance, a cheaper and simple
voltage-based fuel gauge can estimate FCC while charging
and apply it for estimating SOC instead of applying complex
charging cycle-based learning. Similarly a simple Coulomb
counter-based fuel gauge can calibrate FCC even when the
battery is partially charged. The other applications are power
consumption modeling, sophisticated energy-aware scheduling
mechanisms by the system and different applications.

In this article, we examine the performance of smartphone
batteries and present a novel FCC estimation technique that
can infer the FCC and FCC loss. The approach works whether
a smart battery is capable to measure FCC or not, and therefore
enables any device to estimate the FCC of any attached battery.
We discover that the battery voltage curve and battery capacity
relative charging rate, i.e., C-rate, during a distinct phase of
charging can characterize the FCC of a smartphone battery
given the reference curves of the new battery. Based on these
findings, we devise a new FCC estimation method as shown in
Figure 1. Our evaluation suggests that the estimation error is
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limited to 10% of the true value. This is an application-layer
approach and does not involve any new hardware. It brings
new information, such as FCC, to OS designers or users for
resource efficient scheduling. The fuel gauge manufacturers
can design cheaper and reliable fuel gauges without additional
hardware cost and complexity. It is also possible to diagnose
the performance of other energy source, i.e., the charger, of
smartphones.

For facilitating large-scale battery health analytics, we also
present a crowd-sourced approach that works with battery
voltage and charging rate information solely obtained from
a crowd-sourced data set. We derive a reference voltage curve
and a C-rate from the data set for each model using a statistical
approach and then we apply the FCC estimation method that
compares the charging rate of a device with the model-specific
reference rate towards finding the capacity loss of the devices
that contribute to such a data set. We demonstrate that this
method works relatively well for most models found in the
Carat data set [8]. Furthermore, we discovered that 40% of all
the 9560 devices had some capacity loss, and that within 357
unique models at least one device in 333 models suffered from
capacity loss. We summarize our contributions as follows.

• We investigate the behavior of battery voltage and charg-
ing rate while charging as the FCC of a smartphone
battery decreases. Consequently, we propose a new bat-
tery capacity estimation model. The model is validated
with AC and USB2.0 constant current chargers and the
model yields estimates with an accuracy of 90% or
more according to our evaluation. We further evaluated
the performance of the model with partial charging,
ambient temperature while charging, and different SOC
estimation techniques.

• We introduce a crowd-sourced FCC estimation technique
and demonstrate how such a method can be validated.
Although the accuracy of the approach depends on the
diversity of the community, a study with the large scale
Carat data set shows that our collaborative technique
estimates the reference rates of popular smartphone
models within a 10% error margin. We also examine
the presence of devices with reduced FCC in the Carat
data set.

• Finally, in order to realize the practical impact of the
FCC estimation models, we propose and implement
an algorithm for Android devices. The performance
of smartphone batteries also depends on the charging
performance of the device and user behavior in charging.
Since C-rate is the ratio of the charging current and
FCC, it is possible to characterize the charger is being
used for charging. Finally, along with reporting FCC
to the user, we combine the above two approaches as
an algorithm for Android devices, called BatterySense.
BatterySense finds the FCC loss, and charging issues,
such as abnormal fast and slow charging.

The paper is organized as follows: Section II presents a
smartphone power management primer. In Section III, we
investigate battery voltage and charging current behavior while
charging smartphones. Section IV presents the model and
it is validated in Section V. In Section VI, we present the

crowd-sourced battery analytic data set and the FCC estimation
technique. The functionality of BatterySense is discussed in
Section VII. Section VIII presents the related work. The
future research directions are outlined in Section IX before
concluding the paper.

II. BACKGROUND

A battery, a fuel gauge chip, and a charging controller
are the fundamental components of a smartphone’s power
management system. In this section, we first describe how
these components function and then highlight the scope of
this article.

Charging Controller: The charging controller is responsible
for charging the battery. Among various techniques [25],
Constant Current-Constant Voltage (CC-CV) charging is the
widely utilized approach. During CC period, the charging
current remains constant until the battery voltage reaches a
specified maximum (4.2/4.35V). Over the CV period, the
charging current is trickled until the battery is fully charged.
The charging terminates when the charging rate reduces to
0.07C or to a lower cut-off charging current specified by the
manufacturer [10]. In this case, C is the rate that is relative
to the battery capacity as follows: If the capacity of a battery
is 2600 mAh and it takes one hour to fully charge/discharge
a battery, it means that 2600 mA rate is equivalent to 1 C
for that battery. Similarly, 0.5 C-rate is equivalent to 1300
mA for that battery. C-rate is the widely accepted metric to
represent the charging/discharging rate and extensively utilized
in determining battery properties, such as SOC and FCC
modeling.

Battery Pack: Smartphones are powered with single cell
battery packs. Along with the cell, a battery pack may also
host SOC/FCC measurement functionalities and such batteries
are called smart batteries. The battery pack may also include
a protection mechanism to guard against higher voltage and
current from the device. The FCC of a battery decreases as it
ages and through progressive chemical reactions. Graphite is
the common material used as anode in Lithium-Ion batteries
and there are multiple anode-cathode pairs in a battery. As
the battery is being charged, the oxidization of the graphite
constructs a layer, called passive surface layer [11]. If the outer
shell leaks, then the oxidization happens faster due to moisture
and the capacity loss accelerates.

Fuel Gauge: The chip with SOC estimation functionality is
often called fuel/gas gauge, which may be distributed between
the battery pack and the host system, i.e., smartphone [9].
The smartphone only queries the battery for the supported
information, such as SOC and battery voltage. The SOC is
the runtime estimate of the battery charge. A SOC value of 0
and 100 imply an empty and fully charged battery, respectively.
The most common approach to estimate SOC is to use open
circuit voltage (OCV) with a number of look-up tables. A
voltage-based fuel gauge may also combine both OCV and
load voltage to estimate SOC or energy drain [12], [13].
The second approach is Coulomb counting, which introduces
a sense resistor on the charge and discharge path. Finally,
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(a) Discharge Current and FCC Measurement (b) Charging Current Measurement (c) System Load Current Measurement

Fig. 2. Smartphone battery discharging current and FCC measurements, charging current, and system load current measurements with Yoshoo power
monitor. Yoshoo is a simple USB3.0 pass-through power measurement tool. In the first setting, Yoshoo is connected with the charger and measures the charing
current. In the second and third settings, the Yoshoo is connected with a USB3.0 male and female terminal. The female terminal is attached with the battery and the
male terminal is attached with the device pins. Only, the +/- terminals of the battery are insulated from the corresponding device pins. The remaining terminals are
in contact with the device pins so that the device can sense the presence of the battery.

modern fuel gauges may also combine voltage measurements
with Coulomb-counter [29].

A fuel gauge chip may be able to measure or estimate the
FCC along with SOC. However, voltage-based fuel gauges
cannot estimate or measure the FCC. Therefore, a such fuel
gauge chip may use the number of charging cycles that the
battery has gone through to estimate the FCC. On the other
hand, Coulomb counter-based fuel gauges use sense resistors
to measure FCC. However, the measurements can be used
internally by the fuel gauge to recalibrate the SOC and may
not be shared with the smartphone.

This article proposes and validates a new software-based
FCC estimation technique. Unlike the above approaches, our
approach neither requires complex learning nor additional
hardware. The method equally performs in devices with both
voltage and Coulomb counting-based fuel gauges. In addition,
we apply the same method to detect the performance of the
connected chargers.

III. SMARTPHONE BATTERY CAPACITY & CHARGING
BEHAVIOR

In this section, we measure the FCC and investigate the
performance of smartphone batteries while charging. We used
Samsung Galaxy S4 (GT-I9505) and S3 (GT-I9300) devices
with twelve batteries, as their batteries are replaceable. The
FCC of a new Galaxy S4 and S3 batteries are 2600 and 2100
mAh, respectively. Both devices are shipped with fuel gauges
that can estimate SOC either with voltage-based method that
uses both OCV and load voltage or a approach combined with
Coulomb-counter. However, we verified that both devices use
the former approach1. The aim of the experiments is to realize

1These devices are equipped with MAX17047/17050 fuel gauge chip that
implements load voltage and OCV-based SOC estimation technique, called
ModelGauge, and also has a coulomb counter. The fuel gauge can be
configured during the kernel compile time to use either ModelGauge or a
combined method with the coulomb counter. The mobile system exposes the
measured current value from the fuel gauge through the system file called
current now. For our target devices we found that this file contains garbage
values. Nexus 6 is also equipped with the same fuel gauge and provides correct
current readings. This hints that the corresponding systems of Galaxy S3 and
S4 were configured to use only ModelGauge.

battery capacity as they age and to understand how the voltage
behavior changes while charging as the capacity of a battery
decreases. We use the lessons learned to derive a method to
estimate FCC of a smartphone battery in the next section.

A. Experiment Setup

The measurements are divided in three sets. In the first set,
we measured the full charge capacity of Galaxy S3 and S4
batteries. In the second set, we used AC wall and USB2.0
chargers, and kept the smartphones idle in airplane mode in
order to maintain a constant current supply to the battery pack.
In the second set, we experimented with various system load
such as keeping display ON with constant brightness while the
devices were in airplane mode. Before charging the batteries,
we discharged them by keeping the display ON with a fixed
brightness level and then relaxed batteries for five hours. This
low rate discharge ensures an empty battery. The fuel gauge
manufacturers also conduct their experiments in this way [15].
During the measurements, the room temperature was 21-25◦

Celsius and each experiment was repeated five times.
From Android BatteryManager we collect battery voltage

information, whenever there is a change in the battery level
and the timestamp.

B. Battery Full Charge Capacity Measurement

We measured the FCC by discharging a fully charged
battery. We discharged the batteries of Galaxy S4 and S3
by keeping the devices on in airplane mode at their max-
imum brightness. While discharging, Yoshoo measures the
discharging current and FCC in mAh according to the setup
presented in Figure 2(a). The batteries were discharged at
0.272, and 0.256A respectively. The distribution of five FCC
measurements for Galaxy S4 and S3 batteries are illustrated in
Figure 3. These measured FCCs reveal that the batteries had 3-
48% less capacity than their labeled values. Another interesting
observation is that the new batteries of Galaxy S3 and S4, B1,
have less capacity than the label indicates. There can be two
reasons for this; either a battery may actually come with less
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capacity, or the battery does not allow itself to be discharged
completely and therefore there is always some small amount
of charge remain in the battery.
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Fig. 3. Measured FCC of the Galaxy S4 and S3 batteries over five runs.

C. Charging Without System Load
In this case, the smartphones were charged with their

standard AC chargers and cables. Figure 4 illustrates the rela-
tionship between battery voltage and the SOC while charging
new battery, B1, on Galaxy S3. The voltage increases sharply
within battery level five and then increases gradually over the
remaining CC phase. This is because of feeding a constant
current to the battery pack during the CC period. After that
the voltage remains almost constant during the CV phase as the
current is trickled. The SOC level that terminates the CC phase
varies with the device model and the corresponding SOC levels
are 85 and 76 for Galaxy S3 and S4 respectively. We did not
observe any events of SOC fluctuation, i.e. SOC correction,
during these charging experiments that were observed while
discharging in [7].

Figure 4 further compares the voltage curves of old and new
batteries. We see that battery voltage per SOC of the older
batteries is higher than that of the new battery. In addition,
the voltage of old batteries reach the maximum voltage at
lower SOCs compared to the new battery. For example, while
charging B6 the CC phase terminates when the SOC reaches
68% compared to that of B1. In other words, the older batteries
have differing magnitudes less capacity, and the behavior in
terms of battery voltage is consistent with the decrease in FCC.

During these charging measurements, we also instrumented
the smartphones with Yoshoo as shown in Figure 2(b). Since
Yoshoo does not have the functionality to export the mea-
surements, we recorded charging current, Ichg , manually after
every 60s and later associated with the SOC update times. Fig-
ure 4 shows the measurement results for Galaxy S3 batteries.
Note that in some cases the charging current increases from
an initial 800 mA to a stable 925 mA at the beginning of
the CC phase. Galaxy S4 draws 1560 mA current and exhibits
similar charging pattern. Although, the charging current begins
to decrease when the voltage reaches its maximum value, the
only exception is B3 for which the current begins to decrease
at SOC 73% but the voltage reaches its maximum value when
SOC is 80%. This behavior is visible in Figure 4 and persisted
across all the measurements with B3. In the case of other
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Fig. 4. Battery voltage and charging current vs SOC while charging
Galaxy S3 via AC. Voltage curve of a lower FCC battery deviates from the
curve of a new battery. The charging current plots (orange color) follow the
legend of the corresponding voltage curves.
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Fig. 5. Battery Voltage behavior of Galaxy S3 while charging via AC
and USB2.0.

Galaxy devices, the voltage behavior was in accordance with
the charging current. Therefore, the behavior of B3 is battery
specific.

In the case of USB charging, we only experimented with
Galaxy S3 and connected the device to a laptop. The device
draws 425 mA current from the USB port at 5.00 V. Figure
5 highlights similar voltage behavior as the FCC decreases.
However, the battery voltage per SOC is much lower compared
with AC charging, as the charging current is lower than the
AC charger.

D. Charging with System Load

Along with the Ichg , we also measured Ibat by placing the
Yoshoo power monitor between a device and the battery as
shown in Figure 2(c). We measured Ibat while the device was
(1) switched off, (2) idle in airplane mode, and (3) actively
used.

The measurement results suggest that for the first case,
Ibat ≈ Ichg . For the latter cases, Ibat = (Ichg − Isys). Isys
depends on the power consumption characteristics of different
hardware components being used. If the system is in airplane
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mode, then Isys varies within 10 mA, which is the standby
current consumption of the device in airplane mode. If the
device is actively used, then Ibat decreases as the power
drawn by different subcomponents, such as display, of the
system increases. Consequently, the battery is charged slowly.
Since the battery cannot be charged and discharged at the
same time, such a design allows keeping the device on while
charging. However, charging a device with constant system
load, such as keeping the display on with fixed brightness,
results similar battery voltage behavior to low current USB2.0
charging scenarios shown in Figure 5.

E. Summary
The presented voltage curves are of single charging sessions

for a battery. The measurement results presented in this section
lead us to the following conclusions.

First, The voltage for a particular SOC of an used battery
is higher than that of a new battery until the CC phase ends,
and the larger the capacity loss, the smaller the SOC level
at which the CC phase terminates and the voltage reaches
its maximum value. The reason behind such voltage behavior
of aged batteries attributes to their internal resistance, which
increases as the battery ages [12].

Second, The charging controller or the charging mechanism
does not control the CC-phase charging current as the FCC
of a battery decreases.

Third, The charging controller and the system load dictate the
maximum charging current received by the battery. Therefore,
charging a device with a charger of higher output current does
not enable fast charging unless both the charging controller
and the charger support quick or fast charging.

Fourth, Mobile devices provide more reliable SOC estimates
while charging compared to the discharging scenarios pre-
sented in [7]. The reason for such better performance is that
there is always some incoming charge from the charger.

IV. FULL CHARGE CAPACITY MODELING

The state-of-art approach used by modern smartphones to
estimate FCC is the number of charging cycles [17]. Modern
fuel gauges use Coulomb counter to measure the FCC of a
battery. In this section, we propose a new FCC estimation
technique based on the charging current and voltage behavior
while charging.

A. Full Charge Capacity Modeling
As C-rate is the ratio of charging current and FCC, it is

possible to compute the present FCC of a battery from the C-
rate. The equation to compute C-rate from the battery initial
capacity and charging current is the following.

Cnew =
Ibat

FCCnew
(1)

In Figure 4, we have shown that the length of CC phase
reduces as the capacity of the battery reduces. However, the

charging current (mA) drawn from the charger during the CC
phase does not change as the FCC of the battery decreases.
Therefore, the FCCnow can be defined as

Cnow =
Ibat

FCCnow
(2)

Therefore, (1) and (2) together can be expressed as

FCCnow × Cnow = FCCnew × Cnew (3)

FCCnow

FCCnew
=

Cnew

Cnow
(4)

And consequently, the present capacity of the battery can be
computed with eq. (3). This reveals that the present capacity
of a battery is the ratio of the charging C-rates with present
unknown capacity and the new battery. This is shown in
equation eq. (4). In the above equations, the C-rate of a new
battery, Cnew, can be derived from the battery capacity and
charging current information. The batteries usually come with
labeled capacity values. The charging C-rates of Galaxy S3
and S4 are 0.44 (925/2100) and 0.6 (1560/2600) C respectively
while charging new batteries via their AC chargers.

B. Extending Model with C-rate from SOC Updates

Given the initial battery capacity and the charging current,
FCCnow and Cnow are two unknown variables, which depend
on each other. Therefore, we need to find the Cnow in order
to compute the FCCnow. In this section, we devise a method
to estimate Cnow.

The definition of CC-CV charging algorithm states that the
charging current remains constant during CC period and CV
phase begins when the battery voltage reaches its predefined
maximum value. Therefore, we can estimate the rates from
the time stamp of the same SOC updates for the charging
measurements presented in Section III. The equation is the
following,

CSOCi→n =
36 × (SOCi+n − SOCi)

tSOCi+n
− tSOCi

(5)

where 36 is the time in seconds to charge one percent at 1
C-rate.

Using eq. (5), we can estimate the cumulative charging rate
over the CC period of charging. Consequently, eq. (5) can be
expressed as the following.

CSOCCC
=

36 × ∆SOCCC

∆tCC
, (6)

where ∆SOCCC is the length of CC phase and ∆t is the
time to charge the battery till CC phase. Finally, eq. (4) can
be further expressed which is equivalent to the ratio of average
one percent charging times.

FCCnow

FCCnew
=

∆SOCcc−new

∆tcc−new
× ∆tcc−now

∆SOCcc−now
(7)
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TABLE I. AVERAGE FCC MEASURES FROM FIVE ROUNDS OF
MEASUREMENTS AND COMPARISON WITH FCC ESTIMATES FROM AC AND

USB2.0 CHARGING C-RATES.

Smartphone
Model

FCCnow

(loss %)
Cnew, Cnow

(AC)
Cnew, Cnow

(USB2.0)
FCCnow

(AC, USB2.0)
Model

GS4 (B1) 2522 (3%) 0.60, 0.62 0.164, 0.168 2516, 2538
GS4 (B2) 2046(21%) 0.60, 0.76 0.164, 0.207 2052, 2059
GS4 (B3) 1562(40%) 0.60, 1.0 0.164, 0.272 1560, 1568
GS4 (B4) 2050(21%) 0.60, 0.76 0.164, 0.207 2052, 2090
GS4 (B5) 1748(33%) 0.60, 0.89 0.164, 0.243 1753, 1755
GS4 (B6) 1754(32%) 0.60, 0.89 0.164, 0.242 1753, 1762
GS3 (B1) 2028 (3%) 0.44, 0.46 0.202, 0.209 2008, 2030
GS3 (B2) 1811(14%) 0.44, 0.51 0.202, 0.234 1812, 1813
GS3 (B3) 1710(19%) 0.44, 0.54 0.202, 0.248 1711, 1710
GS3 (B4) 1738(17%) 0.44, 0.53 0.202, 0.244 1743, 1738
GS3 (B5) 1511(25%) 0.44, 0.61 0.202, 0.281 1515, 1510
GS3 (B6) 1106(48%) 0.44, 0.84 0.202, 0.384 1100, 1104

V. FCC ESTIMATION MODEL VALIDATION

In this section, we validate the model estimates by com-
paring with the measured FCCs of the Galaxy S3 and S4
batteries. First, we validate the FCC estimates, when the C-rate
is derived from the ratio of the charging current and FCC. Next,
we validate the estimates when C-rate is derived from SOC
updates. This section further emphasizes the performance of
the model with a number of practical scenarios, such as charing
with different chargers, partial charging, ambient temperature,
and a device with Coulomb counter-based SOC estimation
technique.

A. FCC estimate from Charging Current C-Rate
The distribution of five FCC measurements for Galaxy S3

and S4 batteries are illustrated in Figure 3 and the averages
are presented in Table I. We next estimate the charging C-
rates during the CC-phase according to eq. (2) for both AC
and USB charging and present in the table. These estimates
highlight that charging C-rate increases as the FCC decreases.
Therefore, the relation can be stated as the following.

Proposition 1: If the charging current is constant, the charg-
ing C-rate increases as the FCC of a battery decreases.

Finally, we estimate capacity using eq. (4) and compare with
the measurement results in the table. The table shows that the
model estimates FCC of the batteries quite reasonably for both
the AC and USB charging.

B. FCC estimate from Charging SOC C-Rate
Although eq. (7) shows that FCCnow can be estimated from

the average charging time per SOC of a new and old battery,
we use cumulative charging C-rates, according to eq. (5),
computed from the SOC updates collected during the charging
measurements presented in Section III-C. The reason is that
C-rate further enables to estimate the charging current and
to detect battery change (see Section VII). Besides, it is the
widely accepted metric in battery capacity and SOC modeling.

We plot the C-rates for every SOC from a single charging
session in Figure 6. According to the figure, as the estimated C-
rates are not constant during the CC phase, it is a challenge to
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Fig. 6. Example C-rate curves of the Galaxy devices with new and long
used batteries for AC charging.
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Fig. 7. FCC estimates of the Galaxy S4 and S3 batteries and the
estimation error while charging via AC.

select the range of SOC values over which the C-rate should be
calculated given the rate curves. For instance, although the CV
phase of Galaxy S3 with battery B2 (Figure 6(b)) starts when
the SOC is 80%, we notice that the battery is charged with
the maximum C-rate till 40% and after that C-rate gradually
decreases. Multiple measurements confirmed that this behavior
is battery specific. Because of this, we explore and validate
two different options; 1) we select the range of SOC values
that cover the whole CC phase or 2) we select the SOC range
that yields the highest C-rate (we call this max C-rate). The
lengths of the CC phase are derived from the voltage curve of
the battery.

If we take the rates at the point where the CC phase ends,
we find that AC charging rates of the new batteries of Galaxy
S3 and S4 are 0.44 and 0.59 C respectively. They are very
close to the measured rates presented in Table I. Figure 6
also highlights that although the charging rate from the wall
charger is almost constant during the CC phase irrespective of
the battery capacity, the C-rates of the older batteries are higher
than the new batteries. Figure 7(a) shows the model estimates
from the C-rates at SOCCC and Figure 7(b) demonstrates that
these estimates are close to the measured values and they suffer
only ±5% error. In Figure 8(a) and 8(b), we further notice
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Fig. 9. FCC estimates of Galaxy S3 batteries while charging via USB2.0.

that both rate selection approaches estimate FCCnow with less
than 10% error. The C-rate at SOCCC yields FCC estimates
that are closer to the measurements more often than the other
approach.

C. FCC estimate from Partial SOC updates

Although the Android BatteryManager broadcasts SOC up-
date events regularly, there may be only few updates available
in practice. The underlying reason can be device-specific
behavior in reporting SOC updates or that the device is in
doze mode and unable to broadcast these events. In addition,
a user may charge the device when the device is off and switch
it on only after the device is charged to a reasonable capacity.
Therefore, our method has to work also when it has only
partial SOC updates available. Figure 8(c) illustrates the FCC
estimates at the boundaries of four different SOC intervals
and compares with the measurement results. We notice that
within 75% SOC boundaries the FCC estimates are close to
the measurement results. Beyond that SOC level, the error

increases significantly due to the trickling charging current
during the CV phase.

D. FCC estimate with Different Chargers
A device can be charged with different chargers connected

via different cables. We further estimate the FCC of Galaxy S3
batteries from the C-rates while charging via USB. Figure 9(a)
demonstrates similar estimates as AC charging and the corre-
sponding estimation error is within ±5% (see Figure 9(b)).

These results from AC and USB charging also highlight that
the ratio of USB and AC rates always provide similar capacity
estimates of a battery. A constant system load, such as keeping
the display ON with a fixed brightness or the system in airplane
mode, while charging ensures constant charging current for
the battery and thus produces similar results. Table I shows
similar estimates for both devices, when C-rate is estimated
from charging current. Therefore, the relation between C-rate
and FCC can be further extended as the following.

Proposition 2: As long as the charging current is constant
at any arbitrary value, the ratio of the corresponding C-rates
of a new and an old battery will always indicate the present
FCC of the old battery.

We later in Section VII discuss further how this relation
can be applied to find the charging current of any unknown
charger.

E. FCC at Low Temperature
We further conducted charging experiments with varying

temperatures. Figure 10(a) demonstrates voltage behavior of
the new Galaxy S3 battery, B1, at different temperatures
while charging. The voltage behaves in a similar fashion to
those of the old batteries. Figure 10(b) shows that the FCC
of B1 and B4 decrease when they are charged at lower
than room temperature. In addition, we investigated whether
the effect of such charging has short or long-term effect on
FCC. We discharged the batteries at room temperature, after
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Fig. 10. The effect of temperature on battery voltage and FCC estimates
while charging via AC.

we had charged them at lower temperature. Afterwards, we
relaxed them for five hours, and then charged again at room
temperature. We found that all the batteries retained their
earlier capacity state. Such results suggest that temporary low
temperature charging has short-term effect on FCC of the
battery.

F. FCC of a Coulomb Counting Device
In the earlier sections, we measured and estimated FCC

for the devices with voltage-based SOC estimation techniques.
We also considered a Coulomb counter-based Nexus 6 device
with labeled FCC of 3220 mAh. Unlike the Galaxy devices,
Nexus 6 has a functional Coulomb counter [16]. In this case,
we modified Carat to retrieve charging current with Android
BATTERY_PROPERTY_CURRENT_NOW API at one second
interval. Similar to the Galaxy devices, the charging current
remains almost constant during the CC phase. The charging
rates of the device with USB2.0, standard 5 V AC, and turbo
9 V AC charging are 0.142(457/3220), 0.43(1391/3220), and
0.74(2380/3220) C respectively.

The CC phases with the corresponding chargers terminate
at 95, 80, and 70 SOCs and the charging SOC rates are
0.146, 0.44, and 0.75 C respectively. These estimated C-
rates are approximately equivalent to the charging current
rates and provide battery capacity 3131, 3146, and 3177
mAh respectively that are very close to the labeled capacity.
At the same time, Carat also measured FCC by reading
BATTERY_PROPERTY_CHARGE_COUNTER when the bat-
tery was full. The average capacity reported was 3157 mAh.
Therefore, the estimation error compared with the Coulomb
counter measures is within ±5%.

G. Discussion
We have demonstrated that the relative charging rate within

the CC phase of a battery increases as the FCC decreases.
Based on this C-rate behavior, we have proposed an FCC
estimation model. The models can be enforced with various
constant current chargers and even with partial charging. The
accuracy of the approach is above 90%.

The approach equally works with C-rates derived from the
charging current and SOC updates. Among the rate selection
methods, described in Section V-B, we select the C-rate at
SOCCC . The method suffers from similar errors with voltage
and Coulomb counter-based devices. We apply the method
with the devices in the crowd-sourced Carat data set and
compare with the C-rate of the new batteries of Galaxy devices.
We have found that 43-50% of the devices of these models
suffered from capacity loss and a significant number of them
lost 25% of the capacity. We describe Carat data set more detail
and the crowd-sourced FCC estimation method in Section VI.

VI. CROWD-SOURCED BATTERY ANALYTICS

Smartphones typically do not report the capacity of a
battery and the charging current. Besides, a user may use a
different charger rather than the stock charger. Therefore, in
this section we devise a statistical method to find the FCCnow

of an unknown device given a large collection of the Android
BatteryManager data of a particular smartphone model. This
also enables online collaborative FCC and charging debugging
of smartphone batteries.

A. Data Set & Pre-processing Charging Samples
The Carat application collects different information from

smartphones as samples whenever there is a change in the
SOC or battery level. Among various information available in a
sample, we only consider the time when the sample was taken,
the SOC, battery voltage, battery health, the type of charger,
and the CPU usage. Hence, the reduced sample looks as S =
(t, (SOC : i%), (voltage : V ), (temp : C) (charger :
ac/usb), (health : good/dead/cold), (cpu : x%)). We next
consider the samples with the charger attribute of “ac” and
health attribute of “good” value. As it is demonstrated earlier
that charging a battery at lower than room temperature can
affect the FCC, we consider only those samples with battery
temperature reporting 21-40◦C, as the capacity variation within
this range is very small. There were about 3 million charging
samples and about 22 K devices of 1200 models had more
than 5 good charging samples. However, the samples did not
have the display status, i.e., ON/OFF, of the devices during
the sample collection.

We next sort the good AC charging samples of a user
according to the time stamp in order to find the charging time
between two consecutive samples. First, we group the samples
that belong to same charging events. Ideally, a charging event
begins when a charger is plugged in and ends when the charger
is unplugged. However, the construction of the events in this
way is difficult from the data set as a user may power on or
off the phone while charging and power on when the battery
is charged to a reasonable capacity. The charging algorithms
terminate charging once the charging rate falls to 0.07 [10].
Therefore a mobile device spends at most 36

0.07 = 514 seconds
to charge one percent. We next add this derived attribute in the
samples and finally we obtain the following kind of samples:
S = (t, (SOC : i%), (voltage : V ), (∆t : S), (cpu : x%)).
All the pre-processing is done using Spark [18] with 7 ma-
chines each having 8 CPU cores and 30GB RAM.
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Fig. 11. Distribution of CPU usages reported in
the simples of some popular smartphone models.
More than 50% of the samples from every model had
100% CPU utilizaiton.
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B. Methodology
Our method relies on a number of steps. First, we find the

model-specific voltage curve, the length of the CC phase and
the charging C-rate of a smartphone model corresponding to
the standard AC charger. We next find the user-specific voltage
and charging rate during the CC phase from the latest samples.
These model- and user-specific charging rates are equivalent
to the Cnew & Cnow, respectively. Finally, we compare these
two rates according to (4) to determine the capacity loss.

Determining model-specific voltage and rate curves from
the crowd-sourced data is not trivial. There are a number of
challenges. If there is system load while charging, battery
voltage will increase slowly and it will take longer to charge.
The data set had more than two-third samples with more
than 75% CPU utilization. The distribution of CPU utilization
of some popular models, presented in Figure 11, indicates
that these devices had significant system load while charging.
Further, it is difficult to identify whether the standard charger
of a device model had been used to charge a device or not. The
consequence of these factors is slower charging and gradual
increase of battery voltage. Carat is an energy debugging
engine, the users can also be biased towards having devices
with the lower FCCs and thus can have faster charging time
and voltage increase.

Earlier, in Section III, we emphasized that battery voltage
can characterize both kinds of biasness. Therefore, we apply
G-test [19] on per battery level or SOC-specific voltage
distribution to determine the skewness (see Alg.1). Left skew
implies biasness towards lower FCC devices. If the distribution
is right skew and symmetric then the distribution is affected
by the samples with device usage or substandard AC charger.
Therefore, if the distribution of voltage for an individual
SOC is left skewed, we consider the median voltage, else we
consider the 75th percentile as stated in Alg.1. Such selection
is based on voltage behavior according to system load, charger
and FCC as presented in Section III, and the distribution of
CPU load present in the dataset.

C. Reference Voltage Curves
The reference voltage curve constructed from the crowd-

sourced data should resemble the curve of a new battery.

Algorithm 1 Reference Voltage Curves and C-rates
1: function MODELCURVES( model )
2: for each soc ∈ SOC do
3: volts=getVoltages(soc)
4: times=getTimes(soc)
5: sk=GTest(0.05,volts)
6: if (skew==right)||(skew==symm) then
7: [index,volt]=sevenfive(volts)
8: else if (skew==left)
9: [index,volt]=median(volts)

10: end if
11: voltage(soc)=volt
12: time(soc)=times(index).time
13: end for
14: [mVCrv,mcc]=estimate(voltage)
15: mVCrv=delOutliers(mVCrv(mVCrv))
16: [mVCrv,mcc]=estimate(mVCrv)
17: mTCrv=delOutliers(mTCurve(1:mcc))
18: mTCrv=estimate(mTCurve(1:mcc))
19: mRate=mRateC(mTCurve(1:mcc)) . C-rate eq. (6).
20: return mRate
21: end function

Therefore, the number of samples per model should be suf-
ficient and it is essential to have as many non-null SOC
elements as possible in the curve. We select the device models,
which had a minimum 250 samples. This gives us a wide
coverage of different models. Among 370 models, we found
that approximately 300 models had more than 90% non-null
SOC entries in their reference curves. The remaining device
models had more than 60% SOC entries per curve.

However, the 250 samples do not guarantee that there will
not be any non-null SOC entry. Figure 12 illustrates that
the charging voltage curves can be split into three linear
segments. The length of first segment is approximately ten
SOCs. The lengths of the second and third segments vary,
which depend on the capacity of the battery. As the FCC
decreases, the length of the second segment decreases and the
third segment increases. The second segment has a positive
slope, whereas the third segment is parallel to X-axis. We use
linear interpolation/extrapolation to estimate the missing values
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Fig. 14. The performance of the crowd-sourced approach. The plots
present the difference of battery voltage per SOC between the crowd-sourced
and the measured curves and the errors compared to the measured FCC new
batteries, B1, of Galaxy S3 and S4.

in the reference voltage curves (line 14, Alg.1).
Neither the 250 samples nor the estimation techniques guar-

antees that the voltage for a particular SOC in the reference
curve is not an outlier. Therefore, we first find the absolute
voltage difference for two consecutive SOCs. This list of
differences is a normal distribution and we next apply iterative
Grubbs test on this distribution to detect the outliers in the
voltage curve using the Matlab function presented in [20]
(line 15, Alg.1). Grubbs test determines whether the tested
value is the highest/lowest and furthest from the sample
mean [21]. We again estimate the outliers.

D. Reference C-rates
Similar to the voltage curves, we also construct model-

specific rate curves. Towards this, we first select the one
percent charging time curve constructed from the reference
voltage curve samples in Section VI-B. Similar the voltage
curve, a charging time curve is required to have charging time
for all the SOCs within the CC phase boundary, which is
equivalent to the first two segments of the voltage curve. As
shown in Figure 13, these curves are almost parallel to X-
axis within the SOC boundary. Naturally, the corresponding
time curve also may contain outliers. The figure shows that
the charging time within the SOC boundary follows normal
distribution and thus we apply the Grubbs test to find the
outliers. Finally, we use linear interpolation/extrapolation to
replace those outliers (line 17, 18, Alg.1).

Once we have the charging time curve of a model, we apply
eq. (6) to obtain the cumulative C-rate at CC phase SOC
boundary. The third column in Table II presents the C-rates
of different smartphone models computed from the data set
according to Alg.1.

E. Crowdsourcing Method Validation
1) Crowd-sourced Voltage Curves: The validation of the

crowd-sourced method for determining the voltage curve de-
pends on the length of the CC-phase and how close the curve
is to that of a new battery.

We find the CC phase length from the reference voltage
curves. It is the SOC value when the voltage reaches the max-
imum 4.2/4.35±0.05V (i.e. mcc in Alg.1). We have identi-
fied SCH-I535, SPH-L710, SGH-I747M, GT-I9300
are Galaxy S3 models. In Table II, we notice that the CC-
phases are spread over 79-83 SOCs that are very close to
the measured value for the new Galaxy S3 battery, B1,
presented in Section III. Similarly, the Galaxy S4 models, such
as SCH-I545, SGH-I9500, SGH-I337, SGH-I337M
and GT-I9505 have CC-phases that are approximately 75
SOCs which is equivalent to the measured CC phase of B1.

Figure 14(a) compares the voltage curves from the mea-
surement and crowd-sourced data of some popular Galaxy
S3 and S4 models. The difference of voltage per SOC is
computed by subtracting the crowd-sourced voltage curve from
the measured curve. It is shown that the distances are very
small and the median distance is close to zero. This implies
that the corwd-sourced voltage curves for our experimental
models are very close to those of new batteries presented in
section III-C.

2) Crowd-sourced C-rates and FCC Estimates: We further
investigate the effectiveness of our crow-sourced rate estima-
tion technique. Among the models presented in Table II, six
models are of Galaxy S3 and five are of Galaxy S4. We
know their FCCnew and charging current. We first estimate
the FCC of the experimental batteries with the crowd C-
rate of the Galaxy S3 and S4 models, and then compare
with the measured FCCs of new batteries, B1, presented in
Figure 3. Each boxplot in Figure 14(b) represents the error
of the estimates compared with the measured FCCs of B1.
We notice that the error is less than 10% for both device
models. The errors for other device models in table II are also
in the same range as the differences in C-rates are within ±
0.05 C. The negative error indicates capacity is over-estimated,
whereas the positive error indicates under-estimation. The table
also highlights that the C-rates for most of the models are lower
than the measured values. This further indicates the influence
of device utilization on C-rate.

From Internet, we have also collected the capacity and the
charging current of other models. We notice that the crowd-
sourced reference rates are within ±0.05 C of their computed
values for these popular models.

F. User Rate Curves and FCC in the Wild
In order to find the reduced FCC of a single user device, we

compare the model-specific reference rate with the rate from a
user-specific charging time curve. As our interest is the latest
battery capacity of a device, we construct one percent charging
time curve from the corresponding voltage curve samples of
the latest month. We select the maximum voltage per SOC,
as it guarantees less device utilization and the recent state of
the battery at the same time. Again, it is important to have
adequate number of samples for a user curve as well. We
consider only those devices, which reported at least 25 samples
within the SOC boundary of the second segment. Similar to
the model reference curves, we also detect outliers and apply
linear interpolation for estimating the missing values in the
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TABLE II. TOP SEVENTEEN DEVICE MODELS AND THEIR BATTERY
PROPERTIES. THE COLUMNS REPRESENT THE CC PHASE LENGTH IN SOC,

REFERENCE C-RATES DERIVED FROM THE CROWD, THE C-RATES
COMPUTED FROM THE RATIO OF CHARGING CURRENT (MA) AND THE

BATTERY CAPACITY (MAH), USERS WITH MORE THAN 25 SAMPLES
WITHIN THE CC-PHASE, AND THE PERCENTAGE OF THE USERS WITH

LOWER FCCS.

Device
Model

CC Crowd
C-rate

C-rate
mA
mAh

Users Poor
FCC

M1–GT-I9100(GS2) 76 0.35 0.39, 645
1650

420 35%

M2–GT-I9300(GS3) 83 0.45 0.44, 925
2100

284 42%

M3–SGH-T999 80 0.43 0.44, 925
2100

284 52%

M4–SGH-I747 80 0.42 0.44, 925
2100

524 56%

M5–SGH-I747M 80 0.40 0.44, 925
2100

232 58%

M6–SPH-L710 79 0.42 0.44, 925
2100

442 60%

M7–SCH-I535 81 0.39 0.44, 925
2100

619 59%

M8–GT-I9505(GS4) 75 0.64 0.60, 1560
2600

317 27%

M9–GT-I9500 75 0.63 0.60, 1560
2600

78 24%

M10–SCH-I545 74 0.57 0.60, 1560
2600

167 36%

M11–SGH-I337 75 0.62 0.60, 1560
2600

135 43%

M12–SGH-I337M 75 0.60 0.60, 1560
2600

34 50%

M13–HTC One 87 0.30 0.33, 750
2300

253 51%

M14-Galaxy Nexus 74 0.59 0.57, 1000
1750

341 23%

M15–Nexus 4 84 0.40 0.44, 925
2100

920 47%

M16–Nexus 5 91 0.55 0.59, 1350
2300

252 20%

M17–Nexus 7 91 0.27 0.27, 1150
4325

532 42%

Algorithm 2 Users’ Battery FCC Loss Detect and Estimate
1: function BATTERYFCCESTIMATE
2: for each model ∈ MODELS do
3: mRate=ModelRateC(model)
4: for each device ∈ modelDEVICES do
5: . uCrv is constructed from the latest one month samples

reporting the maximum voltage reported per SOC.
6: [uVcrv,ucc]=interpolateV(uVCrv)
7: uTCrv=uTimeCurveVoltage(1:ucc)
8: uRate= uRateC(uTCrv(1:ucc)) . eq. (6).
9: ∆r = uRate-mRate

10: if (∆r > 0)&&(ucc > 0)&&(ucc <= mcc) then
11: uCap = mRate/uRate
12: uLoss=(1-uCap)
13: end if
14: end for
15: end for
16: end function

user-specific curves. Once, we have the user C-rate at the CC
phase SOC boundary (line 8, Alg.2), we compute the capacity
loss using the model.

Among 9560 user devices, 3800 devices of 333 models had
reduced battery capacity. The sixth column in Table II shows
that more than 50% of the devices of seven popular models
had reduced battery capacity. The ratio of such users is the
lowest with Galaxy S4 (GT-I9505, GT-I9500), Galaxy Nexus,
and Nexus 5 models. The range of FCC losses for these users
are illustrated as boxplots in Figure 15(a). We can see that most
of the devices of these models had less than 20% capacity loss.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

0

0.2

0.4

0.6

0.8

F
C

C
 L

o
s
s
 (

%
)

(a) FCC loss distribution of the devices.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17

Device Models

40

50

60

70

80

90

C
C

 P
h

a
s
e
 L

e
n

g
th

 (
S

O
C

 %
)

(b) CC-phase lengths of the devices with reduced capacity.

Fig. 15. Battery properties of user devices of the smartphone models
presented in Table II.

We further looked into the length of CC phase of user
devices of these models and present in Figure 15(b). Galaxy S3
devices suffered a median of 20% FCC loss and their median
CC phases 75 SOCs. The Galaxy S4 devices had less 20%
capacity loss and the corresponding median CC phases are
within 65-70 SOCs. Note that the length of CC phases can be
zero and we have found that around 38 devices among all the
devices had CC phase length of zero. In other words, these
devices had significant capacity loss.

G. Summary
The presented method in Section VI-F to estimate FCC

loss of a user device always strives for the maximum battery
voltage per SOC which also guarantees maximum C-rate. The
method assumes that the users charged their devices with the
stock AC charger. Therefore, it undermines the fact that a
user may charge a device with a charger that delivers lower
charging current compared to a standard charger of the device
model. Although the device models presented in Table II do not
support Quick or fast charging, still some older device models
may accept Quick charging and thus higher charging rate. In
these cases, comparing the user C-rate with the model C-rate
would underestimate the FCC loss. Therefore, the amount of
FCC loss of a user presented in Figure 15(a) is either under
or firmly estimated.

VII. BATTERYSENSE

The crowd-sourced approach suffers from two competing
sources of bias that affect the reference voltage and rate curves;
the samples gathered during active usage of the device and
the samples from the lower FCC devices. In addition, it is
impossible to infer the charger configuration of a user device
and the charging C-rate of the user device. Therefore, we
propose an approach, called BatterySense, to be implemented
in Android mobile devices to estimate FCC, validate device
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Algorithm 3 FCC Loss and Abnormal Charging
1: function BATTERYSENSE
2: Iusbat = 425 . USB 2.0 port output current 425mA.
3: Cusbnow = socCrate(usb) . C-rate eq.(5).
4: FCCnow = Iusbat

Cusbnow
. FCC according to (2) in mAh.

5: Ccrowd = crowdCrate(ac) . Carat back-end.
6: . Apply eq. (4).
7: FCCnew = (FCCnow × Cacnow)/Ccrowd

8: . FCC Loss in mAh.
9: FCCloss = (FCCnew − FCCnow)/100

10: if FCCloss < −5% then
11: notify(new/extra, FCCnow)
12: else
13: notify(loss, FCCnow)
14: end if
15: Cacnow = socCrate(ac) . C-rate eq. (6).
16: Iacbat = FCCnow × Cacnow

17: Cacnew = Iacbat/FCCnew

18: if (Ccrowd ≈ Cacnew) then
19: notify(okay) . Stock AC Charger.
20: end if
21: if (Ccrowd >> Cacnew) then
22: notify(slow) . Charger or Cable issue.
23: end if
24: if (Ccrowd << Cacnew) then
25: notify(fast) . Fast Charging.
26: end if

. Updating Carat Back-end.
27: update(devieID,Cacnew,Iacbat)
28: update(deviceID, usbSamples, acSamples)
29: end function

and crowd-sourced model-specific C-rates. The approach can
also detect abnormal charging behavior.

We first demonstrate how to find the present battery capacity
of a device locally and then the AC charger configuration.
Next, we demonstrate how to combine the crowd C-rate and
locally computed C-rate to find the charging efficiency. All
these mechanisms are incorporated in BatterySense.

The steps are presented in Alg.3. Unless a device uses a
Coulomb counter-based SOC estimation approach, it is im-
possible to measure FCC and charging current. Nevertheless,
the charging current from the USB2.0 ports of computer is
approximately 425 mA at 5.0 V. Therefore, BatterySense first
constructs voltage curve and computes C-rate for USB2.0
charging from unbiased samples, i.e., when the device is
completely idle. Then, it estimates FCCnow of the device.
As for example, the USB C-rate for B3 of Galaxy S3 is 0.248
C and thus, FCCnow = Iusbat

Cnow
= 1713 mAh.

BatterySense next requests Cnew or model C-rate to Carat
back-end for AC charger, which is derived according to the
statistical approach described in Section VI. This is used to find
the FCC loss of the battery. However, it is common that users
replace their standard batteries with substandard ones with
higher capacity. In such cases FCC loss will be negative and
therefore, the presence of such batteries also can be detected
with this crowd-sourced C-rate.

BatterySense computes C-rate for AC charging locally.
As the battery is charged immediately, it can be considered

that AC charging C-rate, Cacnow, would also provide similar
FCCnow estimate. From these two variables, BatterySense
finds the AC charging current for the battery Iacbat in mA.
For instance, the Cacnow of B3 is 0.54 C and this provides
the charging current drawn by the device from the charger,
Iacbat = 1713 × 0.54 = 925 mA. This is very close to the
measured AC current drawn by the Galaxy S3 device while
charging via AC.

BatterySense further computes Cacnew and compares with
the crowd C-rate. If the difference between these two is
significant, the device is being charged either abnormally slow
or fast. Consequently, BatterySense notifies user about the
charging quality as well. In addition, BatterySense updates
Carat-backend with the locally computed C-rate, Cacnew, and
charging current of the corresponding charger. This further
enables the back-end to refine the crowd C-rate.

VIII. RELATED WORK

Battery capacity usually is modeled as a function of charging
cycle and temperature [39]. A number of data-driven strategies
exist that predict the capacity as the battery ages and the
number of charging cycle increases. Yin et al. [37] and Liu
et al. [38] applied a few variations of the Gaussian process
regression to predict the capacity as a function of charging
cycle. Guo et al. [40] proposed a time dependent nonlin-
ear least square method to estimate battery capacity while
charging. The coefficients of the model are taken from an
equivalent Thevenin-based battery model, such as the internal
resistance, and therefore these coefficients are different for
different batteries.

Significant amount of research work focused on the energy
consumption measurement and optimization of different appli-
cations and system [22], [23], [24], [26], [28]. A large body
of research investigated the energy consumption of mobile
devices through profiling, modeling, and debugging [29]. The
profiling methods include novel techniques to trace the energy
consumption from code to different hardware components [30],
[31], [26]. Such profilers also depend on the power consump-
tion modeling. PowerBooter [32] relies on SOC updates and
OCV discharge curves to build the regression based power
models. V-edge [33] and BattTracker [12] rely on SOC up-
dates, OCV and the load voltage to model power consumption.
Sesame [30], AppScope [34], and DevScope [35] rely on
SOC updates and current drawn estimates from the Coulomb
counter-based fuel gauges. Our approach also depends on
battery manager updates. We specifically use SOC update
time to find the charging rates and use the battery voltage to
determine the length of the CC phase. However, we estimate
the FCC of the battery. Our approach works irrespective of the
SOC estimation or fuel gauge chip used by the device.

Compared to these related work, we focus on estimating
capacity proactively and identifying charging anomaly. Our
technique does not require any additional hardware or system
modification or battery properties information. Therefore, the
approach can be easily implemented as a part of the mobile
system and can be integrated with different applications or
operating system initiated optimizations.



13

IX. FUTURE RESEARCH

The applications of FCC estimation with SOC updates can
be quite diverse. For example, the SDB proposed by Badam
et al. [17] can include a FCC aware battery scheduling, where
SDB will learn the FCC of an individual battery while charging
and then schedule the batteries accordingly while discharging.
However, our particular research interests are the followings.

1) SOC Estimation Algorithms: The proposed FCC estima-
tion technique works regardless of underlying SOC estimation
technique. Therefore, implementing and evaluating a new SOC
estimation algorithm for cheap and simple fuel gauge chips to
reduce SOC fluctuation is one of our future research problems.
A simple voltage-based fuel gauge can estimate FCC from
the SOC updates while charging and apply it for estimating
SOC instead of charging cycles. Similarly a simple coulomb
counter-based fuel gauge that requires a complete charging or
discharging session for calibrating FCC can instead estimate
the FCC even when the battery is partially charged.

2) Battery Properties Modeling: We have demonstrated that
battery voltage, charging rate, and CC phase vary as the FCC
decreases. However, there are no formal models to express
such relations yet. In addition, previous studies have shown
the relation between FCC, charging current, and charging
cycles. Therefore, our plan is to explore and verify various
relations further with the crowd-sourced data and additional
measurements.

X. CONCLUSIONS

In this article, we have demonstrated that battery voltage
and charging rate together can capture the FCC of Lithium-
Ion batteries. Based on this observation, we proposed and
validated an online mechanism to estimate recent FCC or
FCC loss of a smartphone battery. We also implemented
and validated a crowd-sourced mechanism. We found 20-
60% of devices of popular models having capacity loss in a
large data set of mobile devices. Compared to the traditional
approaches, our approach is device based and can be used to
debug the performance of smartphone batteries. Finally, this
article proposes an algorithm that estimates FCC, charging
performance, and detects battery changes. In addition, this
work enables modeling and implementing FCC-aware energy
optimizations of mobile systems and applications.
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