1	Temporal transcriptome analysis of the white-rot fungus <i>Obba rivulosa</i> shows expression of a
2	constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood
3	
4	Mila Marinović ^a , Maria Victoria Aguilar-Pontes ^{b,c} , Miaomiao Zhou ^{b,c} , Otto Miettinen ^d , Ronald P. de
5	Vries ^{a,b,c} , Miia R. Mäkelä ^a , Kristiina Hildén ^{a#}
6	
7	^a Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences,
8	University of Helsinki, Viikinkaari 9, Helsinki, Finland
9	^b Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
10	^c Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
11	^d Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
12	
13	#Corresponding author: email: kristiina.s.hilden@helsinki.fi

15 Abstract

16 The basidiomycete white-rot fungus *Obba rivulosa*, a close relative of *Gelatoporia* (*Ceriporiopsis*) 17 subvermispora, is an efficient degrader of softwood. The dikaryotic O. rivulosa strain T241i 18 (FBCC949) has been shown to selectively remove lignin from spruce wood prior to depolymerization 19 of plant cell wall polysaccharides, thus possessing potential in biotechnological applications such as 20 pretreatment of wood in pulp and paper industry. In this work, we studied the time-course of the 21 conversion of spruce by the genome-sequenced monokaryotic O. rivulosa strain 3A-2, which is derived 22 from the dikaryon T241i, to get insight into transcriptome level changes during prolonged solid state 23 cultivation. During 8-week cultivation, O. rivulosa expressed a constitutive set of genes encoding 24 putative plant cell wall degrading enzymes. High level of expression of the genes targeted towards all 25 plant cell wall polymers was detected at 2-week time point, after which majority of the genes showed 26 reduced expression. This implicated non-selective degradation of lignin by the O. rivulosa monokaryon 27 and suggests high variation between mono- and dikaryotic strains of the white-rot fungi with respect to 28 their abilities to convert plant cell wall polymers.

29

30 Keywords

31 *Obba rivulosa*; white-rot; lignocellulose; solid state cultivation; transcriptomics

32

33 Abbreviations

AA, auxiliary activity; AAO, aryl alcohol oxidase; AE, acetylesterase; AGL, α-galactosidase; AGU, α-

- 35 glucuronidase; AOX, alcohol oxidase; BGL, β -1,4-glucosidase; CAZy, CAZyme, carbohydrate-active
- 36 enzyme; CBH, cellobiohydrolase; CDH, cellobiose dehydrogenase; CE, carbohydrate esterase; CRO,
- 37 copper radical oxidase; EGL, β -1,4-edoglucanase; ENO, enolase; FBA, fructose-bisphosphate aldolase;
- 38 FET, ferroxidase; FPKM, Fragments Per Kilobase of exon model per Million fragments mapped; GAL,

39	β -1,4-endogalactanase; GE, 4-O-methyl-glucuronyl methylesterase, glucuronoyl esterase; GH,
40	glycoside hydrolase; GLX, glyoxal oxidase; GMC, oxidoreductase glucose-methanol-choline
41	oxidoreductase; GND, 6-phosphogluconate dehydrogenase; GOX, glucose (1-)oxidase; GPD,
42	glyceraldehyde-3-phosphate dehydrogenase; GT, glycosyl transferase; ICL, isocitrate lyase; LAR, L-
43	arabinose reductase; LCC, laccase; LiP, lignin peroxidase; LN-AS, low nitrogen-asparagine-succinate;
44	LPMO, lytic polysaccharide monooxygenase; MAN, β -1,4-endomannanase; MB, mega base pairs;
45	MDH, malate dehydrogenase; MEA, malt extract agar; MND, β -1,4-mannosidase; MnP, manganese
46	peroxidase; OXA, oxaloacetase; PCA, principal component analysis; PCP, pentose catabolic pathway;,
47	PCWDE, plant cell wall degrading enzyme; PFK, fructose-2,6-bisphosphatase; PGA,
48	endopolygalacturonase; PGI, glucose-6-phosphate isomerase; PKI, pyruvate kinase; PL, polysaccharide
49	lyase; PPP, pentose phosphate pathway; qRT-PCR, quantitative real-time PCR; RNA-seq, RNA
50	sequencing; TAL, transaldolase; TCA cycle, tricarboxylic acid cycle; VP, versatile peroxidase; XDH,
51	xylitol dehydrogenase; XG-EG, xyloglucanase, xyloglucan-active endoglucanase; XLN, β -1,4-
52	endoxylanase

54 **1. Introduction**

Plant biomass, as the most abundant renewable carbon source on Earth, is important not only for carbon cycling, but also as a feedstock for biofuels and newly derived value-added products (Isikgor and Becer, 2015). The main polymeric components comprising the plant cell wall, i.e. cellulose, hemicellulose, lignin and pectin, are responsible for its structural complexity. However, recalcitrance of lignocellulose is mostly due to the amorphous aromatic polymer lignin and presents the biggest obstacle in biotechnological exploitation of plant biomass.

62 Although a variety of microorganisms can attack lignocellulose, white-rot basidiomycete fungi are the 63 most effective plant cell wall degrading organisms as they efficiently decompose all lignocellulose 64 components by a variety of extracellular enzymes (Hatakka and Hammel, 2011; Mäkelä et al., 2014). 65 Major cell wall polymers are being degraded by action of extracellular hydrolytic and oxidative enzymes, most of which have been categorized in the database of Carbohydrate-Active EnZymes 66 67 (CAZy, http://www.cazy.org/) (Lombard et al., 2013). The resulting monomeric sugars are taken up by 68 the fungal cells and metabolized as carbon and energy sources through specific pathways (Khosravi et 69 al., 2015).

70

71 Lignin degradation is a prerequisite for gaining access to carbohydrate polymers, which serve as a 72 carbon and energy source for fungi (Rytioja et al., 2014). White-rot fungi produce an array of 73 oxidoreductases from the families of auxiliary activities (AA) that are known to take part in lignin 74 modification and degradation. Of those, the key enzymes are fungal class II peroxidases, i.e. lignin 75 peroxidases (LiPs), manganese peroxidases (MnPs) and versatile peroxidases (VPs) that are present in 76 all efficient lignin degrading white-rot fungi in different numbers. In addition, laccases that are phenol-77 oxidizing multicopper oxidases are suggested to participate in lignin conversion with peroxidases in the 78 presence of the aromatic mediator molecules (Zhao et al., 2016). Moreover, several extracellular H₂O₂-79 generating enzymes are a part of ligninolytic system (Ferreira et al., 2015). These include glucose-80 methanol-choline (GMC) enzymes alcohol oxidases (AOXs), aryl alcohol oxidases, (AAOs) glucose 1-81 oxidases (GOXs), and copper radical oxidases (CROs) such as glyoxal oxidases (GLXs). White-rot 82 fungi are able to completely depolymerize the plant cell wall polysaccharides by secreting various hydrolytic enzymes, including cellulases and hemicellulases, from several glycoside hydrolase (GH) 83 84 families (Rytioja et al., 2014). Besides hydrolytic enzymes, lytic polysaccharide monooxygenases

85	(LPMOs) and cellobiose dehydrogenases (CDHs) facilitate degradation of plant cell wall

86 polysaccharides by oxidative action (Vaaje-Kolstad et al., 2010; Langston et al., 2011).

87

Wood decay patterns differ among white-rot fungi (Cantarel et al., 2008). Most of the studied species,
including the model white-rot fungus *Phanerochaete chrysosporium*, remove cellulose, hemicellulose
and lignin simultaneously (Korripally et al., 2015). On the contrary, the species that degrade lignin
prior to polysaccharides are called selective lignin degraders, and include e.g. *Obba rivulosa* and *Gelatoporia* (*Ceriporiopsis*) *subvermispora* (Akhtar et al., 1997; Gupta et al., 2011; Hakala et al.,
2004). These species are especially interesting in the biotechnological applications aiming to remove
lignin (Hakala et al., 2004; Maijala et al., 2008).

96 O. rivulosa, a member of the Gelatoporia clade, is relatively common in North America (Nakasone, 97 1981), but sparsely distributed in Africa (Hjortstam and Ryvarden, 1996), Asia (Núñez and Ryvarden, 98 2001) and Europe (Ryvarden and Gilbertson, 1994), where it has been mostly isolated from coniferous 99 softwood (Hakala et al., 2004). A dikaryotic O. rivulosa strain T241i (FBCC949) has been shown to 100 degrade spruce softwood selectively (Hakala et al., 2004). Moreover, the O. rivulosa genome encodes a 101 full set of lignocellulose-degrading genes, making it an interesting candidate for plant biomass research 102 (Miettinen et al., 2016). Except for two MnPs and two laccases (Hakala et al., 2005; Hildén et al., 103 2013), no other lignocellulosic enzymes produced by O. rivulosa have been characterized, and 104 therefore its mechanisms for plant cell wall degradation remain largely unknown.

105

Here we report temporal transcriptome analysis of *O. rivulosa* grown on its natural substrate, spruce
wood. We used the genome-sequenced monokaryotic strain 3A-2, derived from the dikaryotic strain
T241i, which has been previously studied in terms of selective lignin degradation. The expression of

109 genes encoding putative plant cell wall degrading CAZymes was studied after 2, 4 and 8 weeks of solid

110 state cultivation in order to follow wood depolymerization in more natural like conditions. In addition,

111 central carbon metabolic enzymes and fungal cell acting CAZymes encoding genes were studied to get

- 112 insights into the nutritional demands during a prolonged cultivation on wood.
- 113

114 **2. Materials and methods**

115 2.1 Fungal strain and culture conditions

116 *O. rivulosa* monokaryon 3A-2 (FBCC1032) derived from the dikaryotic *O. rivulosa* strain T241i

117 (FBCC949) was obtained from the HAMBI Fungal Biotechnology Culture Collection, University of

118 Helsinki, Helsinki, Finland (<u>fbcc@helsinki.fi</u>). The fungus was maintained on 2% malt extract agar

119 plates (MEA) (2% (w/v) malt extract, 2% (w/v) agar agar). For pre-cultures, the fungus was cultivated

120 for 7 days at 28°C in 100 ml liquid low-nitrogen-asparagine-succinate medium (LN-AS), pH 4.5

121 (Hatakka and Uusi-Rauva, 1983), supplemented with 0.05% glycerol, in 250 ml Erlenmeyer flasks,

122 which were inoculated with five mycelium-covered agar plugs (Ø 7 mm) from MEA plates. After the

123 homogenization (Waring Blender, USA), 4 ml of mycelial suspension was used for the inoculation of

124 spruce wood solid cultures, which consisted of 2 g (dry weight) of Norway spruce (*Picea abies*) wood

- 125 sticks (approx. 2 x 0.2 x 0.3 cm in size) on 1% (w/v) water agar (Mäkelä et al., 2002). Cultures were
- 126 incubated stationary at 28°C in the dark for 2, 4, and 8 weeks. Three replicate control cultures
- 127 inoculated with 4 ml of LN-AS supplemented with 0.05% glycerol were incubated similarly. After
- 128 reaching the specific time point, mycelium-colonized wood sticks were flash frozen in liquid nitrogen
- 129 followed by subsequent RNA extraction.
- 130

131 2.2 RNA extraction, cDNA library preparation and RNA sequencing

132	Total RNA was extracted from the spruce cultures by using a CsCl gradient ultracentrifugation as
133	described previously (Patyshakuliyeva et al., 2014). Quality and quantity of RNA were determined by
134	using the RNA6000 Nano Assay (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA,
135	USA). Purification of mRNA, synthesis of cDNA library, and sequencing (RNA-seq) was performed at
136	the BGI Tech Solutions Co. Ltd. (Hong Kong, China) as described in Patyshakuliyeva et al. (2015). On
137	average, 51 bp sequenced reads were constituted, producing approximately 557 MB raw yields for each
138	sample. RNA-seq data was analyzed and statistically treated as described previously (Patyshakuliyeva
139	et al., 2015). Raw reads were produced by base calling from the original image data. After that, data
140	filtering was performed. Adaptor sequences, reads with unknown bases (N) >10% and low quality
141	reads (more than 50% of the bases with quality values<5%) were removed. Clean reads were mapped
142	to the genome sequence of O. rivulosa 3A-2 (v1.0 annotation, http://genome.jgi.doe.gov/Obbri1,
143	(Miettinen et al., 2016)) using BWA/Bowtie (Langmead et al., 2009; Li and Durbin, 2010). On
144	average, 82% total mapped read to the gene was achieved. The expression level was calculated as
145	Fragments Per Kilobase of exon model per Million fragments mapped (FPKM) by using RSEM tool
146	(Li and Dewey, 2011). Genes with FPKM value <20 under all conditions were considered as not
147	expressed and filtered out of the analysis, and genes showing FPKM value ≥ 20 were considered as
148	significantly expressed. Genes with FPKM value from 20 to 100 were considered as lowly, 100 to 300
149	as moderately and over 300 as highly expressed (approximately top 10% of the genes). Differential
150	expression was identified by Student's T-test. A cut-off of fold change of >1.5 and P-value of <0.05
151	were used to identify differentially expressed genes between the time points. Genome-wide principal
152	component analysis (PCA) of the gene expression on duplicate samples of the three time points was
153	generated using FactoMineR package from Rcomander v.2.1-7 program in R statistical language and
154	environment 3.1.2. (Lê et al., 2008). The RNA-seq data have been submitted to Gene Expression
155	Omnibus (GEO) (Edgar et al., 2001) with GEO ID: GSE99871.

157	2.3 Validation of RNA-seq expression patterns by qRT-PCR
158	Smart RACE cDNA Amplification Kit (Clontech) was used for the cDNA synthesis according to the
159	manufacturer's instructions. 1 µg of RNA originating from two replicate cultures of O. rivulosa that
160	were used in RNA-seq was converted to cDNA in 20 μ L reaction with Smart RACE cDNA
161	Amplification Kit (Clontech) and SuperScript III reverse transcriptase (Invitrogen) according to the
162	instructions of the manufacturers.
163	
164	The relative amounts of nine selected gene transcripts were determined by qRT-PCR analysis to
165	validate the RNA-seq expression patterns. Gene-specific primers spanning exon-exon junction
166	(Supplementary Table 1) were designed according to the genome of O. rivulosa 3A-2
167	(http://genome.jgi.doe.gov/Obbri1, Miettinen et al., 2016) with PerlPrimer software (Marshall, 2004).
168	The amplification efficiency (E) of the primers was calculated from the slope of standard curve made
169	with template cDNA serial dilutions using the formula: $E = [10^{(-1/slope)} - 1] \times 100$. The E-values of the
170	primer pairs varied from 94% to 102%, whereas, the R ² values, ranged from 0.993 to 0.999
171	(Supplementary Table 1).
172	
173	Three technical replicate qRT-PCR reactions were conducted for each sample and primer pair using
174	CFX96 Real-Time System C1000 Touch Thermal Cycler (Bio-Rad, USA). The 20 μ L reactions
175	comprised of 30 ng cDNA template, 0,4 μ M forward and reverse primer, 1 X DyNAmo HS SYBR
176	Green qPCR master mix (Thermo Scientific), and H_2O to the final volume of 20 μ L. Cycling protocol
177	was: initial denaturation at 95°C followed by 35 cycles of (1) denaturation at 94°C for 10 s, (2)
178	annealing at 56°C for 20 s, and (3) extension at 72°C for 30 s. Fluorescence data acquisition was done
179	during the extension step. To confirm the specificity of the qRT-PCR primers, melting curve was

180 generated and inspected for the presence of a single peak. Relative expression levels were calculated by 181 $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001) for the *gapdh*-normalized cycle threshold (Ct) values and 182 the results are reported as relative fold changes.

183

184 **3. Results**

185 The monokaryotic O. rivulosa 3A-2 strain grown on solid spruce wood was subjected to the time-scale 186 transcriptomics study to compare the gene expression at different growth stages of the fungus. PCA 187 analysis showed that the duplicate RNA samples used for RNA-seq were highly reproducible 188 (Supplementary Fig. 1). In addition, the expression patterns obtained by RNA-seq analysis 189 corresponded well to the qRT-PCR results of the nine selected putative CAZyme-encoding genes (Fig. 190 1). Similar to other Polyporales species, the genome of *O. rivulosa* contains a full repertoire of putative 191 CAZyme-encoding genes targeted to plant cell wall degradation (Miettinen et al., 2016). In total, 259 192 different putative CAZyme-encoding genes were significantly expressed in O. rivulosa cultures, and of 193 these 110 were predicted to encode plant cell wall degrading enzymes (PCWDEs) (Fig. 2A) from 35 194 different CAZy families (Supplementary Table 2). Transcripts encoding putative GHs were the most 195 abundant ones with 138 detected transcripts (53% of total PCWDE CAZys). The CAZymes-encoding 196 transcripts from AAs, GTs, CEs, and PLs represented 15%, 30%, 7%, and 2.5% of the total PCWDE 197 CAZy transcripts detected, respectively. Of these, 20, 31, and 16 CAZy genes are putatively targeted 198 towards cellulose, hemicellulose and lignin, respectively (Fig. 2A). 16 genes encoding putatively H₂O₂-199 supplying enzymes were detected, while 6 and 5 genes encoding pectin and starch depolymerizing 200 enzymes were expressed, respectively. Diverse activities included 16 CAZy transcripts, which can have 201 activity towards multiple substrates. Highly expressed PCWDE CAZyme encoding transcripts 202 belonged to 20 different CAZy families with varying gene numbers (Fig. 2B). All genes from cellulose

- acting GH6, GH12 and AA8-A3_1, xyloglucan acting GH73 and pectin acting GH53 and GH88
 families showed high expression (Fig. 2B).
- 205

206 As a typical white-rot fungal species, O. rivulosa harbors multiple genes predicted to be involved in 207 lignin degradation in its genome. Of these, two putative MnP (Protein IDs 806545 and 835392) 208 encoding genes were the highest expressed PCWDE CAZy transcripts during the cultivation. 209 Interestingly, they showed unusually high expression levels throughout the cultivation peaking from 20 210 000 to 22 000 FPKM after 4-week cultivation (Table 1). This may suggest an important role for the 211 corresponding enzymes in lignin degradation during the growth of O. rivulosa monokaryon on spruce. 212 Three putative AA1_1 laccases were also detected on spruce, but none of those was highly expressed 213 (Supplementary Table 3A). In addition to the laccases, O. rivulosa multicopper oxidase-encoding 214 transcripts included one AA1 2 ferroxidase (FET), which compared to the laccases was moderately 215 expressed. Production of hydrogen peroxide is essential for the lignin degradation since it is a 216 prerequisite for peroxidase activity. In accordance with that, 10 transcripts predicted to encode family 217 AA3_2 and AA3_3 glucose methanol choline (GMC) oxidoreductases were detected. Although most of 218 the transcripts encoding the putative GMCs showed low expression, interestingly, one of the transcripts 219 encoding an AA3 3 alcohol oxidase (AOX; 790443) was highly expressed in all time points, and was 220 the most abundant transcript among lignin degradation-related transcripts after two AA2 MnPs. These 221 findings confirm the major importance of peroxidases and hydrogen peroxide-producing machinery for 222 the lignocellulose conversion in O. rivulosa.

- 223
- 224 Of the transcripts predicted to encode cellulolytic activities, β -1,4-endoglucanases (EGLs),
- 225 cellobiohydrolases (CBHs), β -1,4-glucosidases (BGLs) and LPMOs were the most abundant ones
- among all the growth stages of *O. rivulosa* on wood (Supplementary Fig. 2, Supplementary Table 3A).

227 In total, 9 transcripts encoding putative EGLs from GH5, 12, 45 and 131 were detected. Six of those 228 were highly expressed after 2 weeks with a 98- to 17- fold downregulation at the later stages 229 (Supplementary Table 3A). The O. rivulosa genome possesses one GH6 cellobiohydrolase II (CBHII) 230 and two GH7 CBHIs, of which the CBHII (Protein ID 476379) as well as one CBHI (Protein ID 231 731121) were highly expressed after 2 weeks. Interestingly, their expression decreased to moderate and 232 low levels after 4 and 8 weeks of cultivation, respectively. A third important hydrolytic cellulose-acting 233 enzymes are encoded by the enzyme families GH1 and GH3. Although seven BGL encoding genes 234 were present in the transcriptome, only one GH3 BGL (Protein ID 14692) was highly expressed after 235 2-week cultivation. Genes encoding seven putative LPMOs oxidatively cleaving plant cell wall 236 polysaccharides were also expressed (Supplementary Table 3A). Of these, six were found to be highly 237 expressed, most of them after 2 weeks of cultivation. Interestingly, one LPMO (Protein ID 794851) 238 encoding gene was highly expressed throughout the cultivation.

239

240 The most abundant transcript predicted to act on hemicellulose was a GH5 mannanase (MAN; Protein 241 ID 641261), which was the third most abundant transcript in general (Table 1). Overall, three 242 transcripts predicted to encode GH5 MANs were detected. Among four detected GH27 a-243 galactosidases (AGLs), only one was highly expressed (Protein ID 849432). Six genes encoding GH10 244 endoxylanases, 4 of which were highly expressed at the early cultivation stage (Protein IDs 838746, 245 851185, 762583 and 799009), were detected in the cultures. In addition, genes encoding one putative α -246 glucuronidase (AGU; Protein ID 726547) and one putative xyloglucanase (XG-EG; Protein ID 808997) 247 showed high expression levels. Interestingly, almost all predicted hemicellulose degrading enzyme 248 encoding genes showed higher abundances in early stages of wood decay with subsequent decrease. 249 Only one GH2 mannosidase (MND; Protein ID 753990) was expressed at a constant, moderate level at

all three time points. High expression was not detected for any of the putative hemicellulases encodinggenes after 4 or 8 weeks of cultivation.

253	In addition to the hemicellulose specific GHs, differential abundances of transcripts predicted to encode
254	one hemicellulose acting glucuronoyl esterase (GE; Protein ID 762191) and three multiple substrates
255	acting acetyl esterases (AE; Protein IDs 749512, 724015 and 816606) from carbohydrate esterase (CE)
256	families 15 and 16, respectively, were detected. Similar to hemicellulose degrading GH families, their
257	expression trend showed the highest transcript abundances in early cultivation stage.
258	
259	Overall, the expression of the PCWDE CAZy genes was highest after 2-week growth of O. rivulosa
260	and reduced markedly over time (Supplementary Table 3A, Supplementary Fig. 2). The only
261	exceptions were MnPs, LCCs, AAOs and a single copy of PGA and GAL. When the sum of the
262	transcript levels per putative CAZy enzyme activity was compared during the cultivation, MnPs were
263	the most highly expressed, followed by LPMOs, XLNs, CBHs and MANs, respectively
264	(Supplementary Fig. 2).
265	
266	Altogether 22% (13 out of 60) of predicted fungal cell wall encoding CAZymes were highly expressed
267	in all three time points (Supplementary Table 3B). These genes showed an interesting trend of either
268	being highly expressed throughout the cultivation or showing high level expression at the early stage
269	with a decreasing trend after 4-week cultivation, followed by an upregulation at the last time point after
270	8 weeks (Supplementary Table 3B). This could suggest possible recycling of fungal cell wall
271	polysaccharides by <i>O. rivulosa</i> , such as α -1,3-, β -1,3- and β -1,6-glucans, which can be hydrolyzed to
272	glucose and reutilized by the fungus. The overall highest transcript abundancy was detected for one
273	gene encoding a putative GH131 β -glucanase (Protein ID 812963), acting on β -(1,3)-/ β -(1,6)- and β -

274 (1,4)-linked glucan substrates, after 2-week cultivation. Other highly expressed genes in the early time 275 point were two GH16 β -1,3(4)-endoglucanases, a GH18 chitinase and GH55 β -1,3-endoglucanase. 276 Constantly highly expressed transcripts included a CE4 chitin deacetylase, a GH16 β -1,3(4)-277 endoglucanase, two β -1,3-endoglucanases from GH16 and GH128, a GH16 licheninase and a GH18 278 chitinase.

279

280 Despite the downregulated expression of the genes encoding CAZymes targeted for carbon acquisition 281 from plant biomass, O. rivulosa showed active mycelial growth throughout the cultivation (Fig. 3). 282 This was also confirmed by the expression of the carbon metabolic genes showing that all central 283 carbon metabolic pathways were active in all studied time points. This suggests that O. rivulosa was 284 not under carbon starvation during the cultivation (Supplementary Table 3C, Supplementary Fig. 3). D-285 glucose, D-mannose and D-xylose are the major monosaccharides originating from spruce wood 286 polysaccharides, while smaller amounts of D-galactose, L-arabinose and L-rhamnose are also present 287 (Rytioja et al., 2017). Hexose monomers can be converted through glycolysis, which is connected to 288 pentose phosphate pathway (PPP). Among the glycolysis genes, *pki1*, encoding pyruvate kinase, 289 catalyzing the last step of the glycolysis, as well as genes encoding glucose-6-phosphate isomerase 290 (*pgi1*), fructose-2,6-bisphosphatase (*pfk2*), fructose-bisphosphate aldolase (*fba1*), glyceraldehyde-3-291 phosphate dehydrogenase (gpd1), and enolase (eno1), showed high expression (Supplementary Fig. 292 3A). While *pgi1*, *pfk2* and *fba1* showed decreasing expression during the cultivation, *gpd1* and *eno1* 293 were upregulated. Isocitrate lyase (*icl1*), malate dehydrogenase (*mdh1*) and related oxaloacetase (*oxa1*) 294 encoding genes involved in the tricarboxylic acid (TCA) cycle were highly expressed (Supplementary 295 Fig. 3A). A gene encoding 6-phosphogluconate dehydrogenase (gnd1) as well as one of the 296 transaldolases encoding genes (tal2) of the PPP showed constant high level expression throughout the 297 cultivation (Supplementary Fig. 3B). Pentoses D-xylose and L-arabinose originating from

298 hemicelluloses and pectin are catabolized through the pentose catabolic pathway (PCP). High level 299 expression was detected for two out of the three PCP genes identified in O. rivulosa, i.e. L-arabinose 300 reductase (*lar1*) and xylitol dehydrogenase (xdh1) (Supplementary Fig. 3B). However, all three PCP 301 genes were downregulated after 2-week growth. It should be noted that we were not able to identify 302 (based on similarity to known ascomycete genes) some of the carbon metabolic genes in O. rivulosa, 303 including half of the genes encoding PCP enzymes (Supplementary Fig. 3). The pathways for 304 catabolism of pectin-derived L-rhamnose and D-galacturonic acid, as well as the Leloir pathway for D-305 galactose present in hemicelluloses and pectin were also active (Supplementary Fig. 3C).

306

307 **4. Discussion**

In this work, we studied the transcriptomic response of the white-rot fungus *O. rivulosa* during a prolonged cultivation period of 8 weeks on solid spruce to evaluate changes in gene expression during the lengthy process of fungal wood colonization. The genome-sequenced monokaryotic *O. rivulosa* strain 3A-2 (Miettinen et al., 2016) was used, and the focus was on the analysis of the genes encoding plant cell wall polymers degrading CAZymes that are responsible for carbon acquisition from plant biomass. Also, carbon metabolic genes and fungal cell wall degrading enzymes were evaluated to get a collective overview of ongoing metabolic processes.

315

316 Our results show that *O. rivulosa* highly expresses the genes encoding a complete repertoire of

317 enzymes for degradation of cellulose, hemicellulose and lignin on spruce, similarly to other white rot

318 species including *Dichomitus squalens* (Rytioja et al., 2017) and *Phlebia radiata* (Kuuskeri et al.,

319 2016). Interestingly, almost all of the detected plant cell wall acting CAZy genes were highly expressed

320 after 2-week growth of O. rivulosa, while most of them were strongly downregulated in the later time

321 points. Generally regarded as key enzymes of white rot fungal ligninolytic system, class II heme

322 peroxidases are abundantly represented in the genome of O. rivulosa, including 11 MnPs, and one LiP 323 from family AA2 (Miettinen et al., 2016). Among nine putative MnP encoding transcripts detected in 324 spruce cultivations, five genes were highly expressed of which two (Protein IDs 806545 and 835392) 325 exhibited unusually high FPKM levels throughout the cultivation and had the highest transcript 326 abundances at 4-week time point. MnPs have often been shown to be constantly produced by white-rot 327 fungi throughout the solid state cultivation on wood (Aguiar et al., 2006; Galliano et al., 1991; Hakala 328 et al., 2005), which is in line with the high expression of the two putative MnP transcripts of O. 329 rivulosa.

330

331 Expression levels of the LiP encoding gene were negligible (FPKM<20) suggesting only minor input in 332 lignin degradation by O. rivulosa. This is in accordance with the results from G. subvermispora, a close 333 relative of O. rivulosa, where a putative LiP was not upregulated in aspen cultures compared to glucose 334 medium (Fernandez-Fueyo et al., 2012). On the contrary, the non-selective white-rot fungi, such as P. 335 chrysosporium (Vanden Wymelenberg et al., 2010), Phanerochaete carnosa (MacDonald et al., 2011) 336 and *P. radiata* (Kuuskeri et al., 2016), have shown significant upregulation of several LiP encoding 337 genes on wood substrates, implying differences in lignin degradation approaches between the white-rot 338 fungal species.

339

Three out of nine putative AA1_1 laccase genes of *O. rivulosa* were expressed on spruce, but none of those was highly expressed. This is in contrast with *G. subvermispora* (Fernandez-Fueyo et al., 2012) and *D. squalens* (Rytioja et al., 2017) laccases, which were significantly upregulated in the agitated liquid cultures supplemented with milled aspen wood and spruce sawdust, respectively. However, our finding was consistent with that from the solid spruce cultures of the white-rot fungus *P. radiata*,

345 showing low expression of laccase-encoding genes after 4-weeks of cultivation (Kuuskeri et al., 2016).

This may indicate that in the shaken liquid cultures, laccases defend the fungal mycelium against oxidative stress (Jaszek et al., 2006; Joo et al., 2008), whereas in the more natural like solid state cultivations, their role in lignin degradation is controversial. Nevertheless, acidic laccase isoforms have been purified from the early phase of the solid spruce chip cultures of *O. rivulosa* despite of the minor laccase activity detected from the cultivations (Hakala et al., 2005). This could indicate that laccases may have a role in initial wood colonization.

352

353 The dikaryotic O. rivulosa strain T241i has been shown to selectively degrade spruce by decomposing 354 lignin prior to cellulose (Hakala et al., 2004). However, the results of our study do not indicate 355 selective lignin degradation by the monokaryotic O. rivulosa 3A-2, as genes encoding enzymes 356 targeted towards all plant biomass polymers were simultaneously highly expressed. A high level of 357 diversity within the white rot fungal species has often been reported. These include discrepancies 358 regarding enzyme production profile and lignin degrading ability between *Pleurotus osteratus* 359 monokaryon and its parental dikaryon. In solid state fermentation, the monokaryon showed higher 360 lignin-modifying enzyme activities, but a lower rate of lignin degradation compared to the dikaryon 361 (Eichlerová et al., 2000). Highly variable lignocellulose acting enzyme profiles have also been detected 362 between the mono- and dikaryotic strains of D. squalens (Casado-López et al., 2017). In addition, 363 higher levels of ligninolytic enzyme activities have been produced by monokaryotic strains of the 364 white-rot fungi Pycnopours cinnabarinus (Herpoël et al., 2000), Pycnoporus sanguineus (Lomascolo et 365 al., 2002), P. ostreatus (Eichlerová et al., 2002) and Trametes hirsuta (Li et al., 2012) compared to the 366 parental dikaryon.

367

Selective lignin degradation seems also to be temporally regulated, as the selectivity is usually limited
to early stages of decay (Adaskaveg et al., 1995; Ferraz et al., 2000). It may be possible that the 2-week

time point was too late to detect the initial lignin degradation selectivity at the transcript level in the *O*. *rivulosa* 3A-2 cultures, although its parental dikaryon T241i has maintained the selectivity during
prolonged cultivation (Hakala et al., 2004). Selectivity of white-rot wood degradation is also dependent
on the physical and chemical parameters, such as temperature, and oxygen and moisture content, in
wood (Adaskaveg et al., 1995; Blanchette, 1995). *O. rivulosa* T241i has been shown to degrade lignin
selectively when grown on spruce wood blocks at 25°C (Hakala et al. 2004), thus differing slightly
from the conditions used in this study for *O. rivulosa* 3A-2.

377

378 In addition to plant polymers degrading enzymes of O. rivulosa assessed in this study, we also 379 evaluated enzymes involved in the major carbon metabolic pathways. Carbon catabolic genes were 380 expressed throughout the 8-week cultivation demonstrating good metabolic activity of the fungus 381 during lengthy wood colonization and conversion in laboratory conditions. Overall, higher expression 382 was detected for genes encoding enzymes involved in glycolysis and PPP than for those involved in 383 PCP. A similar trend has been reported from the compost grown litter decomposing Agaricus bisporus 384 (Patyshakuliyeva et al., 2015), possibly suggesting a preferred use of hexoses over pentoses. Among 385 TCA and glyoxalate cycle related genes, malate dehydrogenase (*mdh1*) and oxaloacetase (*oxa1*) 386 showed the highest transcript levels during growth of O. rivulosa on spruce. Oxalate synthesis has been 387 suggested to be coupled with energy production in brown-rot fungi *Fomitopsis palustris* (Munir et al., 388 2001) and *Postia placenta* (Martinez et al., 2009) by Mdh1, which generates energy by oxidizing 389 malate to oxaloacetate, which is then converted to oxalate by Oxa1. In addition, a number of roles for 390 oxalate with respect to lignocellulose degradation has been proposed, including acidification of fungal 391 extracellular environment to the levels that are usually needed for the activity of lignin acting enzymes 392 (Mäkelä et al., 2010). O. rivulosa has been shown to produce oxalate during growth on spruce wood

chips (Hakala et al., 2005), which is in line with the constant high expression of *oxa1* in *O. rivulosa*observed in our study.

395

396 Fungal cell wall acting enzymes comprising mostly chitinases and various β -glucanases are important 397 for cell wall remodeling during active hyphal growth, as well as aging-related cell wall recycling 398 (Gruber and Seidl-Seiboth, 2012). The most numerous representatives of the genes encoding putative 399 fungal cell wall acting enzymes expressed by O. rivulosa were family GH16 members that are involved 400 in chitin- β -1,3-glucan formation, suggesting a role in the processing of the fungal cell wall 401 polysaccharides (Klis et al., 2007). Two out of 11 putative GH18 chitinases encoding genes of O. 402 rivulosa showed constant high-level expression suggesting continuous recycling of chitin during the 403 cultivation. In ectomycorrhizal fungus Laccaria bicolor GH18 chitinase genes are also found to be 404 upregulated in free-living mycelium implying possible degradation of exogenous fungal cell wall 405 (Veneault-Fourrey et al., 2014).

406

407 Our results suggest that during the growth of *O. rivulosa* monokaryon 3A-2 on its natural substrate, 408 spruce wood, the highest expression of genes involved in plant cell wall degradation occurs at early 409 stages of wood colonization. The simultaneous expression of genes targeted towards all lignocellulosic 410 polymers suggests that *O. rivulosa* 3A-2 does not selectively remove spruce wood lignin. Thus, these 411 results indicate high variation within mono- and dikaryotic strains of white-rot fungal species towards 412 lignocellulose degradation.

413 Acknowledgements

- 414 MM was supported by the Academy of Finland research grant no: 297847 and the European
- 415 Commission, Marie Curie ITN network Subicat FP7 Grant agreement no: 607044, and OM by Marie
- 416 Curie fellowships PIOF-GA-2011-302349. MVA-P was supported by a grant of the Dutch Technology
- 417 Foundation STW, Applied Science division of NWO, and the Technology Program of the Ministry of
- 418 Economic Affairs 016.130.609 to RPdV.
- 419

420 **References**

Adaskaveg, J.E., Gilbertson, R.L., Dunlap, M.R., 1995. Effects of incubation time and temperature on
in vitro selective delignification of silver leaf oak by *Ganoderma colossum*. Appl. Environ. Microbiol.
61, 138-144.

424 Aguiar, A., de Souza-Cruz, P.B., Ferraz, A., 2006. Oxalic acid, Fe³⁺-reduction activity and oxidative

425 enzymes detected in culture extracts recovered from *Pinus taeda* wood chips biotreated by
 426 *Ceriporiopsis subvermispora*. Enzyme Microb. Technol. 38, 873-878.

Akhtar, M., Blanchette, R.A., Kirk, T.K., 1997. Fungal delignification and biomechanical pulping of
wood. In: Eriksson, K.-E.L. (Ed.), Biotechnology in the Pulp and Paper Industry. Springer Berlin

- 429 Heidelberg, Berlin, Heidelberg, pp. 159-195.
- 430 Blanchette, R.A., 1995. Degradation of the lignocellulose complex in wood. Can. J. Bot. 73, 999-1010.
- 431 Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., 2008. The
- 432 Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids
- 433 Res. 37, D233-238.
- Casado-López, S., Theelen, B., Manserra, S., Issak, T.Y., Rytioja, J.T., Mäkelä, M.R., de Vries, R.,
 2017. Functional diversity in *Dichomitus squalens* monokaryons. IMA Fungus 8, 17-25.
- Edgar, R., Domrachev, M., Lash, A.E., 2001. Gene Expression Omnibus: NCBI gene expression and
 hybridization array data repository. Nucleic Acids Res. 30, 207-210.

Eichlerová, I., Homolka, L., Nerud, F., 2002. Decolorization of synthetic dyes by *Pleurotus ostreatus*isolates differing in ligninolytic properties. Folia Microbiol. 47, 691-695.

- 440 Eichlerová, I., Ruel, K., Homolka, L., Joseleau, J.P., Nerud, F., 2000. Ligninolytic characteristics of
- 441 *Pleurotus ostreatus* strain F6 and its monokaryotic protoplast derivative P19. Can. J. Microbiol. 46,
- 442 1153-1158.
- 443 Fernandez-Fueyo, E., Ruiz-Dueñas, F.J., Ferreira, P., Floudas, D., Hibbett, D.S., Canessa, P., Larrondo,
- L.F., James, T.Y., Seelenfreund, D., Lobos, S., Polanco, R., Tello, M., Honda, Y., Watanabe, T.,
- 445 Watanabe, T., Ryu, J.S., Kubicek, C.P., Schmoll, M., Gaskell, J., Hammel, K.E., St. John, F.J., Vanden
- 446 Wymelenberg, A., Sabat, G., Splinter BonDurant, S., Syed, K., Yadav, J.S., Doddapaneni, H.,
- 447 Subramanian, V., Lavín, J.L., Oguiza, J.A., Perez, G., Pisabarro, A.G., Ramirez, L., Santoyo, F.,
- 448 Master, E., Coutinho, P.M., Henrissat, B., Lombard, V., Magnuson, J.K., Kües, U., Hori, C., Igarashi,
- K., Samejima, M., Held, B.W., Barry, K.W., LaButti, K.M., Lapidus, A., Lindquist, E.A., Lucas, S.M.,
- 450 Riley, R., Salamov, A.A., Hoffmeister, D., Schwenk, D., Hadar, Y., Yarden, O., de Vries, R.P.,
- 451 Wiebenga, A., Stenlid, J., Eastwood, D., Grigoriev, I.V., Berka, R.M., Blanchette, R.A., Kersten, P.,
- 452 Martinez, A.T., Vicuna, R., Cullen, D., 2012. Comparative genomics of *Ceriporiopsis subvermispora*
- and *Phanerochaete chrysosporium* provide insight into selective ligninolysis. Proc. Natl. Acad. Sci. U.
 S. A. 109, 5458-5463.
- 455 Ferraz, A., Parra, C., Freer, J., Baeza, J., Rodríguez, J., 2000. Characterization of white zones produced
- 456 on *Pinus radiata* wood chips by *Ganoderma australe* and *Ceriporiopsis subvermispora*. World J.
- 457 Microbiol. Biotechnol. 16, 641-645.
- Ferreira, P., Carro, J., Serrano, A., Martínez, A.T., 2015. A survey of genes encoding H₂O₂-producing
 GMC oxidoreductases in 10 Polyporales genomes. Mycologia 107, 1105-1119.
- Galliano, H., Gas, G., Seris, J.L., Boudet, A.M., 1991. Lignin degradation by *Rigidoporus lignosus*involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb.
 Technol. 13, 478-482.
- Gruber, S., Seidl-Seiboth, V., 2012. Self versus non-self: fungal cell wall degradation in *Trichoderma*.
 Microbiology 158, 26-34.
- Gupta, R., Mehta, G., Khasa, Y.P., Kuhad, R.C., 2011. Fungal delignification of lignocellulosic
 biomass improves the saccharification of cellulosics. Biodegradation 22, 797-804.
- Hakala, T.K., Hildén, K., Maijala, P., Olsson, C., Hatakka, A., 2006. Differential regulation of
 manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot
 fungus *Physisporinus rivulosus*. Appl. Microbiol. Biotechnol. 73, 839-849.
- 470 Hakala, T.K., Lundell, T., Galkin, S., Maijala, P., Kalkkinen, N., Hatakka, A., 2005. Manganese
- 471 peroxidases, laccases and oxalic acid from the selective white-rot fungus *Physisporinus rivulosus* 472 grown on spruce wood chips. Enzyme Microb. Technol. 36, 461-468.
- 473 Hakala, T.K., Maijala, P., Konn, J., Hatakka, A., 2004. Evaluation of novel wood-rotting polypores and
- 475 Hakala, T.K., Maljala, F., Kolin, J., Halakka, A., 2004. Evaluation of novel wood-forming polypoles and
 474 corticioid fungi for the decay and biopulping of Norway spruce (*Picea abies*) wood. Enzyme Microb.
 475 Technol. 34, 255-263.

- Hatakka, A., Hammel, K.E., 2011. Fungal biodegradation of lignocelluloses. In: Hofrichter, M. (Ed.),
 Industrial Applications, The Mycota. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 319-340.
- Hatakka, A.I., Uusi-Rauva, A., 1983. Degradation of ¹⁴C-labelled poplar wood lignin by selected
 white-rot fungi. Eur. J. Appl. Microb. Biotechnol. 17, 235-242.
- Herpoël, I., Moukha, S., Lesage-Meessen, L., Sigoillot, J., Asther, M., 2000. Selection of *Pycnoporus cinnabarinus* strains for laccase production. FEMS Microbiol. Lett. 183, 301-306.
- Hildén, K., Mäkelä M.R., Lundell, T.K., Kuuskeri, J., Chernykh, A., Golovleva. L., Archer, D.B.,
 Hatakka, A., 2007. Heterologous expression and structural characterization of two low pH laccases
 from a biopulping white-rot fungus *Physisporinus rivulosus*. Appl. Microbiol. Biotechnol. 97, 15891599.
- Hjortstam, K., Ryvarden, L., 1996. New and interesting wood-inhabiting fungi (Basidiomycotina –
 Aphyllophorales) from Ethiopia. Mycotaxon (LX) 60, 181-190.
- Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic biomass: a sustainable platform for the production of
 bio-based chemicals and polymers. Polym. Chem. 6, 4497-4559.
- 490 Jaszek, M., Grzywnowicz, K., Malarczyk, E., Leonowicz, A., 2006. Enhanced extracellular laccase
- 491 activity as a part of the response system of white rot fungi: *Trametes versicolor* and *Abortiporus*
- *biennis* to paraquat-caused oxidative stress conditions. Pestic. Biochem. Physiol. 85, 147-154.
- 493 Joo, S.S., Ryu, I.W., Park, J.K., Yoo, Y.M., Lee, D.H., Hwang, K.W., Choi, H.T., Lim, C.J., Lee, D.I.,
- Kim, K., 2008. Molecular cloning and expression of a laccase from *Ganoderma lucidum*, and its
 antioxidative properties. Mol. Cells 25, 112-118.
- Khosravi, C., Benocci, T., Battaglia, E., Benoit, I., de Vries, R.P., 2015. Sugar catabolism in *Aspergillus* and other fungi related to the utilization of plant biomass. Adv. Appl. Microbiol. 90, 1-28.
- 498 Klis, F.M., Ram, A.F.J., De Groot, P. W. J., 2007. A molecular and genomic view of the fungal cell
- 499 wall. In: Howard, R.J., Gow, N.A.R. (Eds.), Biology of the Fungal Cell. Springer Berlin Heidelberg,
- 500 Berlin, Heidelberg, pp. 97-120.
- 501 Korripally, P., Hunt, C.G., Houtman, C.J., Jones, D.C., Kitin, P.J., Cullen, D., Hammel, K.E., 2015.
- Regulation of gene expression during the onset of ligninolytic oxidation by *Phanerochaete chrysosporium* on spruce wood. Appl. Environ. Microbiol. 81, 7802-7812.
- 504 Kuuskeri, J., Häkkinen, M., Laine, P., Smolander, O., Tamene, F., Miettinen, S., Nousiainen, P.,
- 505 Kemell, M., Auvinen, P., Lundell, T., 2016. Time-scale dynamics of proteome and transcriptome of the
- white-rot fungus *Phlebia radiata*: growth on spruce wood and decay effect on lignocellulose.
 Biotechnol. Biofuels 9, 192.
- 507 Diotectilioi. Diotucis 9, 192.
 - Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

- 510 Langston, J.A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., Sweeney, M.D., 2011. Oxidoreductive
- cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61.
 Appl. Environ. Microbiol. 77, 7007-7015.
- Lê, S., Josse, J., Husson, F., 2008. FactoMineR: An R package for multivariate analysis. J. Stat.
 Software 25, 1-18.
- Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
- Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform.
 Bioinformatics 26, 589-595.
- 519 Li, J., Sun, F., Li, X., Yan, Z., Yuan, Y., Liu, X., 2012. Enhanced saccharification of corn straw
- pretreated by alkali combining crude ligninolytic enzymes. J. Chem. Technol. Biotechnol. 87, 1687-1693.
- 522 Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time 523 quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 25, 402-408.
- 524 Lomascolo, A., Cayol, J., Roche, M., Guo, L., Robert, J., Record, E., Lesage-Meessen, L., Ollivier, B.,
- 525 Sigoillot, J., Asther, M., 2002. Molecular clustering of *Pycnoporus* strains from various geographic
- origins and isolation of monokaryotic strains for laccase hyperproduction. Mycol. Res. 106, 1193-1203.
- Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., Henrissat, B., 2013. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490-495.
- 529 MacDonald, J., Doering, M., Canam, T., Gong, Y., Guttman, D.S., Campbell, M.M., Master, E.R.,
- 530 2011. Transcriptomic responses of the softwood-degrading white-rot fungus *Phanerochaete carnosa*
- during growth on coniferous and deciduous wood. Appl. Environ. Microbiol. 77, 3211-3218.
- 532 Maijala, P., Kleen, M., Westin, C., Poppius-Levlin, K., Herranen, K., Lehto, J.H., Reponen, P.,
- 533 Mäentausta, O., Mettälä, A., Hatakka, A., 2008. Biomechanical pulping of softwood with enzymes and 534 white-rot fungus *Physisporinus rivulosus*. Enzyme Microb. Technol. 43, 169-177.
- Mäkelä, M., Galkin, S., Hatakka, A., Lundell, T., 2002. Production of organic acids and oxalate
 decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30, 542-549.
- 537 Mäkelä, M.R., Hildén, K.S., de Vries, R.P., 2014. Degradation and modification of plant biomass by
- fungi. In: Nowrousian, M. (Ed.), Fungal Genomics. The Mycota. Springer Berlin Heidelberg, Berlin,
 Heidelberg, pp. 175-208.
- 540 Mäkelä, M.R., Hildén, K., Lundell, T.K., 2010. Oxalate decarboxylase: biotechnological update and 541 prevalence of the enzyme in filamentous fungi. Appl. Microbiol. Biotechnol. 87, 801-814.

- 542 Marshall, O.J., 2004. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and 543 real-time PCR. Bioinformatics 20, 2471-2472.
- 544 Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C.P., Ferreira, P.,
- 545 Ruiz-Dueñas, F.J., Martinez, A.T., Kersten, P., Hammel, K.E., Vanden Wymelenberg, A., Gaskell, J.,
- 546 Lindquist, E., Sabat, G., Bondurant, S.S., Larrondo, L.F., Canessa, P., Vicuna, R., Yadav, J.,
- 547 Doddapaneni, H., Subramanian, V., Pisabarro, A.G., Lavin, J.L., Oguiza, J.A., Master, E., Henrissat,
- 548 B., Coutinho, P.M., Harris, P., Magnuson, J.K., Baker, S.E., Bruno, K., Kenealy, W., Hoegger, P.J.,
- 549 Kües, U., Ramaiya, P., Lucas, S., Salamov, A., Shapiro, H., Tu, H., Chee, C.L., Misra, M., Xie, G.,
- 550 Teter, S., Yaver, D., James, T., Mokrejs, M., Pospisek, M., Grigoriev, I.V., Brettin, T., Rokhsar, D.,
- Berka, R., Cullen, D., 2009. Genome, transcriptome, and secretome analysis of wood decay fungus
- 552 *Postia placenta* supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. U. S.
- 553 A. 106, 1954-1959.
- 554 Miettinen, O., Riley, R., Barry, K., Cullen, D., de Vries, R., P., Hainaut, M., Hatakka, A., Henrissat, B.,
- 555 Hildén, K., Kuo, R., LaButti, K., Lipzen, A., Mäkelä, M.R., Sandor, L., Spatafora, J.W., Grigoriev,
- 556 I.V., Hibbett, D.S., 2016. Draft genome sequence of the white-rot fungus Obba rivulosa 3A-2. Genome
- 557 Announc. 4, e00976-16.
- 558 Munir, E., Yoon, J.J., Tokimatsu, T., Hattori, T., Shimada, M., 2001. A physiological role for oxalic
- acid biosynthesis in the wood-rotting basidiomycete *Fomitopsis palustris*. Proc. Natl. Acad. Sci. U. S.
 A. 98, 11126-11130.
- Nakasone, K.K., 1981. Cultural studies on *Poria cinerascens*, *P. rivulosa*, and *P. subvermispora*(Aphyllophorales, Basidiomycotina). Mycotaxon (XIII), 105-111.
- 563 Núñez, M., Ryvarden, L., 2001. East Asian polypores. Synopsis Fungorum 14, 170-522.
- 564 Patyshakuliyeva, A., Mäkelä, M.R., Sietiö, O.-M., de Vries, R.P., Hildén, K.S., 2014. An improved and
- 565 reproducible protocol for the extraction of high quality fungal RNA from plant biomass substrates.
- 566 Fungal Genet. Biol. 72, 201-206.
- 567 Patyshakuliyeva, A., Post, H., Zhou, M., Jurak, E., Heck, A.J.R., Hildén, K.S., Kabel, M.A., Mäkelä,
- 568 M.R., Altelaar, M.A.F., de Vries, R.P., 2015. Uncovering the abilities of Agaricus bisporus to degrade
- 569 plant biomass throughout its life cycle. Environ. Microbiol. 17, 3098-3109.
- Rytioja, J., Hildén, K., Yuzon, J., Hatakka, A., de Vries, R.,P., Mäkelä, M.,R., 2014. Plantpolysaccharide-degrading enzymes from basidiomycetes. Microbiol. Mol. Biol. Rev. 78, 614-649.
- 572 Rytioja, J., Hildén, K., Di Falco, M., Zhou, M., Aguilar-Pontes, M.V., Sietiö, O.-M., Tsang, A., de
- 573 Vries, R.P., Mäkelä, M.R., 2017. The molecular response of the white-rot fungus Dichomitus squalens
- 574 to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Environ.
- 575 Microbiol. 19, 1237-1250.
- 576 Ryvarden, L., Gilbertson, R.L., 1994. European polypores. Part 2. Synopsis Fungorum 7, 394-743.

- 577 Vaaje-Kolstad, G., Westereng, B., Horn, S.J., Liu, Z., Zhai, H., Sörlie, M., Eijsink, V.G.H., 2010. An
- 578 oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219-
- 579 222.
- 580 Vanden Wymelenberg, A., Gaskell, J., Mozuch, M., Sabat, G., Ralph, J., Skyba, O., Mansfield, S.D.,
- 581 Blanchette, R.A., Martinez, D., Grigoriev, I., Kersten, P.J., Cullen, D., 2010. Comparative
- transcriptome and secretome analysis of wood decay fungi *Postia placenta* and *Phanerochaete*
- 583 chrysosporium. Appl. Environ. Microbiol. 76, 3599-3610.
- 584 Veneault-Fourrey, C., Commun, C., Kohler, A., Morin, E., Balestrini, R., Plett, J., Danchin, E.,
- 585 Coutinho, P., Wiebenga, A., de Vries, R.P., Henrissat, B., Martin, F., 2014. Genomic and
- transcriptomic analysis of *Laccaria bicolor* CAZome reveals insights into polysaccharides remodelling
- 587 during symbiosis establishment. Fungal Genet. Biol. 72, 168-181.
- 588 Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A.J., Yuan, J.S., 2016. Synergistic
- 589 enzymatic and microbial lignin conversion. Green Chem. 18, 1306-1312.

Figure 1. Validation of RNA-seq analysis by qRT-PCR of nine selected genes involved in plant cell
wall degradation in *O. rivulosa*. Columns represent RNA level (FPKM), lines represent qRT-PCR
values (relative unit). Error bars represent standard deviation of two biological replicates and three
replicate qRT-PCR reactions. Enzyme abbreviations are presented in Supplementary Table 2.

- 601
- Figure 3. *O. rivulosa* monokaryon 3A-2 grown on solid spruce wood sticks for A) 2 weeks, B) 4 weeks
 and C) 8 weeks. D) Non-inoculated control cultivation.
- 604
- 605
- 606 Tables

Table 1. The highest expressed CAZyme encoding genes across 8-week cultivation of *O. rivulosa* on
spruce. Only genes showing FPKM values higher than 1000 at any time point are presented.

RNA level (FPKM)

Protein ID	CAZy family	Functional annotation	2 weeks	4 weeks	8 weeks	
806545	AA2	MnP	11194	21804	3071	
835392	AA2	MnP	9970	19896	2638	
641261	GH5_7	MAN	7664	257	116	
838746	GH10	XLN	6589	176	28	
821398	AA9	LPMO	4789	729	28	
476379	CBM1-GH6	CBHII	4781	165	56	
790443	AA3_3	AOX	4312	1889	551	
731121	GH7-CBM1	CBHI	4121	287	50	
727100	AA2	MnP	2938	803	85	
833133	AA9-CBM1	LPMO	2878	439	70	
788967	CBM1-GH5_5	EGL	2032	188	103	
851185	GH10	XLN	1954	83	5	
726082	GH12	EGL	1585	121	38	
891614	AA2	MnP [*]	1565	174	2	
749512	CE16	AE	1428	145	29	
781628	AA9-CBM1	LPMO	1290	268	102	
789780	CBM1-GH5_5	EGL	1268	152	73	
812963	GH131	EGL	1211	79	24	
719765	GH5_7	MAN	1201	43	29	
724015	CE16	AE	1125	129	35	

^{*} (Hakala et al., 2006))

610	Supplementary files
611	Supplementary Figure 1. Principal component analysis (PCA) for O. rivulosa transcript counts. Two
612	biological replicates used for the RNA-seq from 2-, 4-, and 8-week spruce wood cultivations are
613	shown. O_2 and O_2.1, 2-week samples; O_4 and O_4.1, 4-week samples; O_8 and
614	5 O_8.1, 8-week samples.
615	
616	Supplementary Figure 2. Sum of RNA levels (FPKM) detected in O. rivulosa spruce cultures during
617	8-week cultivation. Enzyme abbreviations are presented in Supplementary Table 2. Note that the y-
618	scales of the graphs are not identical.
619	
620	Supplementary Figure 3. Representation of sugar catabolic pathways, including expression profiles of
621	the genes involved in the pathway. A) Glycolysis, mannose catabolism and TCA cycle. Enzymes in
622	pale gray have no identified genes yet. B) Pentose catabolic- and pentose phosphate pathway. Enzymes
623	in pale gray have no identified genes yet. C) L-rhamnose, D-galacturonic acid and Leloir D-galactose
624	catabolic pathways. Enzymes in gray have no identified genes yet.
625	
626	Supplementary Table 1. qRT-PCR primers used in this work.
627	
628	Supplementary Table 2. Selected O. rivulosa CAZymes their substrates, abbreviations, EC numbers
629	and the copy number of the corresponding genes.
630	
631	Supplementary Table 3. Expressed genes encoding putative plant cell wall degrading CAZy, central
632	carbon metabolism and fungal cell wall acting CAZy enzymes by O. rivulosa grown on solid spruce

- 633 wood during the time course of 8 weeks. A) Plant cell wall degrading CAZyme encoding genes. B)
- 634 Central carbon metabolism encoding genes involved in glycosis, mannose catabolism, TCA cycle, L-
- rhamnose, D-galacturonic, Leloir, pentose catabolic and pentose phosphate pathways. C) Fungal cell
- 636 wall acting CAZyme encoding genes.

637 **Supplementary Table 1.** qRT-PCR primers used in this work.

Primer efficiency

Protein ID	Putative function	Enzyme abbreviation	Primer sequence (5' - 3')	Amplicon size (bp)	E value (%)	R ² value
012204		FOI	F: GCGTATCTGGTGGAGAATGAG	100	00	0.000
813284	β-1,4-Endoglucanase	EGL	R: TGTACGCAGACGTAGTGAGG	- 108	99	0.999
821208	Lytic polysaccharide	LDMO	F: TACCACCCTGGCTACTTCTC	267	07	0.000
821398	monooxygenase	LPMO	R: AGCCAATGTAGAACTGAGCAC	- 267	97	0.998
906545	Manganaga paravidaga	MaD	F: CGGTTACAAATTCACAAGTGTTGG	125	04	0.000
800343	Manganese peroxidase	MIIP	R: AGGTTGTTCACACTGTCGTC	- 123	94	0.999
727100	Manganasa paravidasa	MnD	F: CGGTGAAGATACGCATGAGG	176	102	0.000
/2/100	Manganese peroxidase	e MhP	R: GGAATCAAGTTGTTCACGGAG	- 170	102	0.999
222016	Manganese peroxidase	MnD	F: TTTGACACGACTCCCTTCAC	- 247	101	0.000
323910			R: CTCTGTGCCATGAACTCCTG	- 247	101	0.999
801614	Manganese perovidase	MnP	F: TGAAGATGCACATGAAGCCA	- 172	96	0 008
891014	Manganese peroxidase	WIIII	R: GTATCAGGTTGTTCACACTATCGT	- 172	90	0.998
820050	Endopolygalacturopasa	DCA	F: CCGTATCCAATGTGACCTATTCTG	- 130	08	0.004
820030	Endoporygaracturonase	IUA	R: GAAGTTGATGTCCGAGACCT	150	98	0.994
600070	Pactin methyl asterasa	DME	F: CGTAACCTAGTACAAATCTGGGAC	- 161	104	0.003
000970	I eetin metriyi esterase	TIME	R: GGAATAGTTCGCAGCTAGATTCTC	101	104	0.995
700000	ß 1.4 Endovylanasa	VI N	F: CAGTCATCAATGCCTGTGTC	- 140	05	0 000
/99009	p-1,4-Endoxylanase	ALIV	R: GTTTCCTTACCAAGTTATCGTCC	140)5	0.777
812492	Glyceraldehyde-3-	GAPDH	F: ACCCGTTCATCGACCTTGAG	- 230	00	0 000
012472	phosphate dehydrogense		R: AATGAGCCTCAGCCTTCTCC	230	,,	0.777

638

639

640 Supplementary Table 2. Selected O. rivulosa CAZymes, their substrates, abbreviations, EC numbers

and the copy number of the corresponding genes.

CAZy family	Substrate	Abbreviation	Annotation	EC number	Copy no.
AA1_1	Lignin	LCC	Laccase	1.10.3.2	9
AA1_2	Lignin	FET	Ferroxidase	1.10.3	1
AA2	Lignin	MnP	Manganese peroxidase	1.11.1.13	11
AA2	Lignin	LiP	Lignin peroxidase	1.11.1.14	1
AA3_2	H ₂ O ₂ supply	GOX	Glucose 1-oxidase	1.1.3.4	9

AA3_2	H ₂ O ₂ supply	AAO	Aryl alcohol oxidase	1.1.3.7	6
AA3_3	H ₂ O ₂ supply	AOX	Alcohol oxidase	1.1.3.13	5
AA5_1	H ₂ O ₂ supply	GLX	Glyoxal oxidase	1.2.3.15	4
AA8-AA3_1	Cellulose	CDH	Cellobiose dehydrogenase	1.1.99.18	1
AA9	Cellulose	LPMO	Lytic polysaccharide monooxygenase	na	8
CE1	Hemicellulose (xylan)	AXE	Acetyl xylan esterase	3.1.1.72	2
CE8	Pectin	PME	Pectin methyl esterase 4-O-Methyl-glucuronyl	3.1.1.11	2
CE15	Hemicellulose (xylan)	GE	methylesterase	3.1.1	2
CE16	Hemicellulose (xylan)	AE	Acetylesterase	3.1.1.6	9
GH1	Pectin (rhamnogalacturonan I)	LAC	β-1,4-Galactosidase	3.2.1.23	1
GH1	Cellulose	BGL	β-1,4-Glucosidase	3.2.1.21	2
GH2	Hemicellulose (heteromannan)	MND	β-1,4-Mannosidase	3.2.1.25	3
GH3	Cellulose	BGL	β-1,4-Glucosidase	3.2.1.21	5
GH3	Heteromannan	BXL	β-1,4-Xylosidase	3.2.1.37	1
GH5	Heteromannan	MAN	β-1,4-Endomannanase	3.2.1.78	1
GH5_5	Cellulose	EGL	β-1,4-Endoglucanase	3.2.1.4	2
GH5_7	Hemicellulose (heteromannan)	MAN	β-1,4-Endomannanase	3.2.1.78	2
GH5_22	Hemicellulose (heteromannan)	BXL	β-1,4-Xylosidase	3.2.1.37	2
GH5_31	Hemicellulose (heteromannan)	MAN	β-1,4-Endomannanase	3.2.1.78	1
GH6	Cellulose	CBHII	Cellobiohydrolase (non-reducing end)	3.2.1.91	1
GH7	Cellulose	CBHI	Cellobiohydrolase (reducing end)	3.2.1.176	2
	Hemicellulose (xylan,				
GH10	xyloglucan)	XLN	β-1,4-Endoxylanase	3.2.1.8	6
GH12	Cellulose	EGL	β-1,4-Endoglucanase	3.2.1.4	2
GH13_1	Starch	AMY	α-Amylase	3.2.1.1	2
GH13_5	Starch	AMY	α-Amylase	3.2.1.1	1
GH15	Starch	GLA	Glucoamylase	3.2.1.3	3
GH27	Heteromannan	AGL	α-1,4-Galactosidase	3.2.1.22	4
GH28	Pectin	PGA	Endopolygalacturonase	3.2.1.15	1
GH28	Pectin	PGX	Exopolygalacturonase	3.2.1.67	1
GH28	Pectin	RGX	Exorhamnogalacturonase	3.2.1	2
GH31	Heteromannan	AGD	α-Glucosidase	3.2.1.22	5
GH31	Starch/Xyloglucan	AXL	α-Xylosidase	3.2.1.177	1
GH35	Pectin	LAC	β-1,4-Galactosidase	3.2.1.23	1
GH43	Pectin	ABN	Endoarabinanase	3.2.1.99	2
GH45	Cellulose	EGL	β-1,4-Endoglucanase	3.2.1.4	3
GH51	Pectin	ABF	α-Arabinofuranosidase	3.2.1.55	2
GH53	Pectin	GAL	β-1,4-Endogalactanase	3.2.1.89	1
GH74	Xylan/ Xyloglucan	XG-EG	Xyloglucanase	3.2.1.151	1
GH78	Pectin	RHA	α-Rhamnosidase	3.2.1.40	1
GH88	Pectin	UGH	Unsaturated glucuronyl hydrolase	3.2.1	1
GH95	Xylan/ Xyloglucan	AFC	α-L-Fucosidase	3.2.1.51	1

GH115	Xylan/ Xyloglucan	AGU	α-Glucuronidase	3.2.1.139	2
GH127	Pectin	ABF	α-Arabinofuranosidase	3.2.1.55	1
GH131	Cellulose/ β -1,3/ β -1,6 glucans	EGL	β-1,4-Endoglucanase	3.2.1.4	2

Variables factor map (PCA)

Supplementary Figure 1. Principal component analysis (PCA) for *O. rivulosa* transcript counts. Two biological replicates used for the RNA-seq from 2-, 4-, and 8-week spruce wood cultivations are shown. Principal component 1 (Dim 1) and principle component 2 (Dim 2) explain 93.18% and 2.51% of variance, respectively. O_2 and O_2.1, 2-week samples; O_4 and O_4.1, 4-week samples; O_8 and O_8.1, 8-week samples.

Supplementary Figure 2. Validation of RNA-seq analysis by qRT-PCR of nine selected genes involved in plant cell wall degradation in *O. rivulosa*. Columns represent RNA level (FPKM), lines represent qRT-PCR values (relative unit). Error bars represent standard deviation of two biological replicates and three replicate qRT-PCR reactions. Enzyme abbreviations are presented in Supplementary Table 2.

Supplementary Figure 3. Sum of RNA levels (FPKM) detected in *O. rivulosa* spruce cultures during 8-week cultivation. Enzyme abbreviations are presented in Supplementary Table 2. Note that the y-scales of the graphs are not identical.

Supplementary Figure 4. Representation of sugar catabolic pathways, including expression profiles of the genes involved in the pathways. A) Glycolysis, mannose catabolism and TCA cycle. Enzymes in pale grey have no identified genes yet.

Supplementary Figure 4. B) Pentose catabolic and pentose phosphate pathway. Enzymes in pale grey have no identified genes yet.

Supplementary Figure 4. C) L-rhamnose, D-galacturonic acid and Leloir D-galactose catabolic pathways. Enzymes in pale grey have no identified genes yet.

Supplementary Table 3. Expressed genes encoding putative plant cell wall degrading CAZy, central carbon A) Plant cell wall degrading CAZyme encoding genes.

Enzyme abbreviations: AAO = aryl alcohol oxidase, ABF = α -arabinofuranosidase, ABN = endoarabinanas AXL = α -xylosidase, BGL = β -1,4-glucosidase, BQR = benzoquinone reductase, BXL = β -1,4-xylosidase, GAL = β -1,4-endogalactanase, GE = 4-O-methyl-glucuronyl methylesterase, GLA = glucoamylase, GLX = LCC = laccase, LiP = lignin peroxidase, PGA = endopolygalacturonase, PGX = exopolygalacturonase, PM XLN = β -1,4-endoxylanase

Protein ID	CAZy family	Enzyme abbreviation	Substrate	Functional annotation
596333	AA1	LCC	lignin	Multicopper oxidase
726849	AA1_1	LCC	lignin	Multicopper oxidase
814238	AA1_1	LCC	lignin	Multicopper oxidase
875588	AA1_1	LCC	lignin	Multicopper oxidase
890919	AA1_1	LCC	lignin	Multicopper oxidase
736636	AA1_1	LCC	lignin	Multicopper oxidase
452017	AA1_1	LCC	lignin	Multicopper oxidase
741387	AA1_1	LCC	lignin	Multicopper oxidase
867863	AA1_1	LCC	lignin	Multicopper oxidase
796512	AA1_2	FET	lignin	Multicopper oxidase
806545	AA2_frag	MnP	lignin	Class II peroxidase
835392	AA2_frag	MnP	lignin	Class II peroxidase
727100	AA2	MnP	lignin	Class II peroxidase
891614	AA2	MnP	lignin	Class II peroxidase
438941	AA2	MnP	lignin	Class II peroxidase
729972	AA2	MnP	lignin	Class II peroxidase
60162	AA2	MnP	lignin	Class II peroxidase
323916	AA2	MnP	lignin	Class II peroxidase
511960	AA2	MnP	lignin	Class II peroxidase
412406	AA2	MnP	lignin	Class II peroxidase
825700	AA2	MnP	lignin	Class II peroxidase
803460	AA2	LiP	lignin	Class II peroxidase
835715	AA2_frag		lignin	Class II peroxidase
835716	AA2		lignin	Class II peroxidase
813497	AA2_frag		lignin	Class II peroxidase
770945	AA2_cyt	CPO	lignin	Class II peroxidase
725321	AA3_2	AAO	H_2O_2 -supply	GMC oxidoreductase
773345	AA3_2	AAO	H_2O_2 -supply	GMC oxidoreductase
795098	AA3_2	AAO	H_2O_2 -supply	GMC oxidoreductase
735182	AA3_2	AAO	H_2O_2 -supply	GMC oxidoreductase
837570	AA3_2	AAO	H_2O_2 -supply	GMC oxidoreductase
885712	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
769671	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
789242	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
804770	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
815690	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
829135	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
731504	AA3_2	GOX	H_2O_2 -supply	GMC oxidoreductase
732948	AA3_2	GOX	H ₂ O ₂ -supply	GMC oxidoreductase

830066	AA3_2_frag	GOX	H ₂ O ₂ -supply	GMC oxidoreductase
790443	AA3 3	AOX	H ₂ O ₂ -supply	GMC oxidoreductase
814600	AA3 3	AOX	H_2O_2 -supply	GMC oxidoreductase
564635	AA3 3	AOX	H_2O_2 -supply	GMC oxidoreductase
875460	AA3 3	AOX	H_2O_2 -supply	GMC oxidoreductase
792863	AA3 3	AOX	H_2O_2 -supply	GMC oxidoreductase
35182	AA5_1	GLX	H_2O_2 -supply	Copper radical oxidase
826706	A A 5 1	GLX	H ₂ O ₂ -supply	Copper radical oxidase
750764	A A 5 1	GLX	H_2O_2 -supply	Copper radical oxidase
(61025	AA5_1		H_2O_2 -supply	Copper radical oxidase
705124	AAS_I	ULA	H_2O_2 -supply	Copper radical oxidase
/95134		BQK	lignin	Benzoquinone reductase
664/51	AA8-AA3_1	CDH	cellulose	Iron reductase domain / GMC (
821398	AA9	LPMO	diverse	Lytic polysaccharide monooxy
799019	AA9	LPMO	diverse	Lytic polysaccharide monooxy
/96835	AA9	LPMO	diverse	Lytic polysaccharide monooxy
519691	AA9	LPMO	diverse	Lytic polysaccharide monooxy
794851	AA9	LPMO	diverse	Lytic polysaccharide monooxy
739314	AA9	LPMO	diverse	Lytic polysaccharide monooxy
833133	AA9-CBM1	LPMO	diverse	Lytic polysaccharide monooxy
781628	AA9-CBM1	LPMO	diverse	Lytic polysaccharide monooxy
792896	CBM1-CE1	AXE	xylan	Carbohydrate-Binding Module
260257	CBM1-CE1	AXE	xylan	Carbohydrate-Binding Module
600970	CE8	PME	pectin	Carbohydrate Esterase Family
793338	CE8	PME	pectin	Carbohydrate Esterase Family
762191	CE15	GE	xylan	Carbohydrate Esterase Family
721831	CE15	GE	xylan	Carbohydrate Esterase Family
816606	CE16	AE	diverse	Carbohydrate Esterase Family
724015	CE16	AE	diverse	Carbohydrate Esterase Family
861019	CE16	AE	diverse	Carbohydrate Esterase Family
864632	CE16	AE	diverse	Carbohydrate Esterase Family
815252	CE16	AE	diverse	Carbohydrate Esterase Family
797374	CE16	AE	diverse	Carbohydrate Esterase Family
797388	CE16	AE	diverse	Carbohydrate Esterase Family
890618	CE16	AE	diverse	Carbohydrate Esterase Family
749512	CBM1-CE16	AE	diverse	Carbohydrate-Binding Module
889978	GH1	LAC	diverse	Glycoside Hydrolase Family 1
731281	GH1	BGL	cellulose	Glycoside Hydrolase Family 1
770661	GH1	BGL	cellulose	Glycoside Hydrolase Family 1
813927	GH2	MND	heteromannan	Glycoside Hydrolase Family 2
753990	GH2	MND	heteromannan	Glycoside Hydrolase Family 2
815162	GH2	MND	heteromannan	Glycoside Hydrolase Family 2
14692	GH3	BGL	cellulose	Glycoside Hydrolase Family 3
784936	GH3	BGL	cellulose	Glycoside Hydrolase Family 3
627233	GH3	BGL	cellulose	Glycoside Hydrolase Family 3
627302	GH3	BGL	cellulose	Glycoside Hydrolase Family 3
788396	GH3	BGL	cellulose	Glycoside Hydrolase Family 3
337845	GH3	BXL	vvlan	Glycoside Hydrolase Family 3
273202	GH5	MAN	heteromannan	Glycoside Hydrolase Family 5
780780	CBM1_GH5_5	FGI	cellulose	Carbohydrate_Binding Module
107100		LOL	Centriose	Caroonyarate-Dinaling Module

788967	CBM1-GH5_5	EGL	cellulose	Carbohydrate-Binding Module
641261	CBM1-GH5_7	MAN	heteromannan	Carbohydrate-Binding Module
719765	GH5_7	MAN	heteromannan	Glycoside Hydrolase Family 5
819531	GH5_22	BXL	xylan	Glycoside Hydrolase Family 5
826236	GH5 22	BXL	xylan	Glycoside Hydrolase Family 5
814478	GH5_31	MAN	heteromannan	Glycoside Hydrolase Family 5
476379	CBM1-GH6	CBHII	cellulose	Carbohydrate-Binding Module
731121	GH7-CBM1	CBHI	cellulose	Glycoside Hydrolase Family 7
91658	GH7-CBM1	CBHI	cellulose	Glycoside Hydrolase Family 7
799009	GH10	XLN	xylan	Glycoside Hydrolase Family 1(
782683	GH10	XLN	xylan	Glycoside Hydrolase Family 1(
786094	GH10	XLN	xylan	Glycoside Hydrolase Family 1(
851185	CBM1-GH10	XLN	xylan	Carbohydrate-Binding Module
838746	CBM1-GH10	XLN	xylan	Carbohydrate-Binding Module
762583	CBM1-GH10	XLN	xylan	Carbohydrate-Binding Module
813284	GH12	EGL	cellulose	Glycoside Hydrolase Family 12
726082	GH12	EGL	cellulose	Glycoside Hydrolase Family 12
616587	GH13 1	AMY	starch	Glycoside Hydrolase Family 13
735014	GH13_1	AMY	starch	Glycoside Hydrolase Family 13
789297	GH13_5	AMY	starch	Glycoside Hydrolase Family 13
833127	GH15	GLA	starch	Glycoside Hydrolase Family 15
812469	GH15-CBM20	GLA	starch	Glycoside Hydrolase Family 15
791064	GH15-CBM20	GLA	starch	Glycoside Hydrolase Family 15
849432	GH27	AGL	heteromannan	Glycoside Hydrolase Family 27
810034	GH27	AGL	heteromannan	Glycoside Hydrolase Family 27
13793	GH27	AGL	heteromannan	Glycoside Hydrolase Family 27
849398	GH27 GH27	AGL	heteromannan	Glycoside Hydrolase Family 27
820050	GH28	PGA	nectin	Glycoside Hydrolase Family 28
206352	GH28	PGX	pectin	Glycoside Hydrolase Family 28
875830	GH28	RGX	pectin	Glycoside Hydrolase Family 28
703237	GH28	RGX	pectin	Glycoside Hydrolase Family 26
169586	GH31	AGD	vyloglucan	Glycoside Hydrolase Family 31
891711	GH31	AGD	xyloglucan	Glycoside Hydrolase Family 31
736445	GH31	AGD	xyloglucan	Glycoside Hydrolase Family 31
837500	GH31	AGD	xyloglucan	Glycoside Hydrolase Family 31
702008	CH21	AGD	xyloglucan	Glycoside Hydrolase Family 31
788201	CH21		xyloglucan	Glycoside Hydrolase Family 31
780567	CH25		diverse	Glycoside Hydrolase Family 31
720166	GH33 CH42		alverse	Glycoside Hydrolase Family 32
729100 549101	СП43 СП42		pectin	Glycoside Hydrolase Family 43
348101 924142	GH43 CH45	ABN	pectin	Glycoside Hydrolase Family 43
834143	GH45 CH45	EGL	cellulose	Glycoside Hydrolase Family 42
/53033	GH45 GH45	EGL	cellulose	Glycoside Hydrolase Family 42
//362/	GH45	EGL	cellulose	Glycoside Hydrolase Family 42
/9034/	GH51	ABF	diverse	Glycoside Hydrolase Family 51
760626	GH51	ABF	diverse	Glycoside Hydrolase Family 51
723211	GH53	GAL	pectin	Glycoside Hydrolase Family 53
808997	GH74	XG-EG	xyloglucan	Glycoside Hydrolase Family 74
735541	GH78	RHA	pectin	Glycoside Hydrolase Family 78
815167	GH88	UGH	pectin	Glycoside Hydrolase Family 88
738866	GH95	AFC	xyloglucan	Glycoside Hydrolase Family 95

726547	GH115	AGU	xylan	Glycoside Hydrolase Family 11
742368	GH115	AGU	xylan	Glycoside Hydrolase Family 11
832165	GH127	ABF	diverse	Glycoside Hydrolase Family 12
812963	GH131	EGL	cellulose	Glycoside Hydrolase Family 13
812977	GH131	EGL	cellulose	Glycoside Hydrolase Family 13

n metabolism and fungal cell wall acting CAZy enzymes by O. rivulosa grown on solid spruce wood during

e, AE = acetylesterase, AFC = α -L-fucosidase, AGD = α -glucosidase, AGL = α -1,4-galactosidase, AGU = CBHI = cellobiohydrolase (reducing end), CBHII = cellobiohydrolase (non-reducing end), CPO = chloroper glyoxal oxidase, GOX = glucose oxidase, LAC = β -1,4-galactosidase, LPMO = lytic polysaccharide mono E = pectin methyl esterase, RGX = exorhamnogalacturonase, RHA = α -rhamnosidase, UGH = unsaturated

Tim	e point (FP	KM)			Comparison	
2 weeks	4 weeks	8 weeks	4 weeks_over 2 weeks	p-value	4 weeks_over 8 weeks	p-value
20,6	11,8	15,9	0,6	0,1	0,7	0,2
12,2	2,8	2,8	0,2	0,1	1,0	1,0
1,0	1,9	1,2	1,9	0,2	1,6	0,3
11,8	44,1	13,9	3,8	0,0	3,2	0,0
2,2	1,3	2,7	0,6	0,4	0,5	0,2
12,4	17,3	16,9	1,4	0,0	1,0	0,7
6,1	7,4	10,0	1,2	0,3	0,7	0,1
1,3	1,6	2,6	1,2	0,6	0,6	0,2
9,0	7,4	65,9	0,8	0,3	0,1	0,0
196,5	31,5	82,8	0,2	0,0	0,4	0,0
11193,5	21803,9	3070,7	1,9	0,0	7,1	0,0
9970,3	19896,3	2637,6	2,0	0,0	7,5	0,0
2937,9	802,6	85,2	0,3	0,0	9,4	0,0
1564,9	174,4	1,8	0,1	0,0	98,3	0,0
311,3	321,8	28,0	1,0	0,9	11,5	0,2
139,4	294,4	45,7	2,1	0,0	6,4	0,0
85,7	153,9	25,9	1,8	0,0	5,9	0,0
0,5	9,8	0,5	17,9	0,1	21,0	0,1
21,7	21,1	22,0	1,0	0,8	1,0	0,8
1,4	9,5	2,6	7,0	0,0	3,6	0,0
0,9	4,1	1,3	4,6	0,1	3,1	0,1
3,8	4,0	4,0	1,0	0,9	1,0	1,0
7,2	5,3	7,0	0,7	0,4	0,8	0,1
8,5	12,9	48,6	1,5	0,1	0,3	0,0
3,1	2,2	5,1	0,7	0,4	0,4	0,1
20,0	22,5	106,8	1,1	0,2	0,2	0,0
15,9	10,5	11,7	0,7	0,1	0,9	0,4
22,0	18,6	16,3	0,8	0,0	1,1	0,1
12,3	22,3	15,7	1,8	0,0	1,4	0,1
31,7	32,4	51,4	1,0	0,7	0,6	0,0
24,5	28,7	63,9	1,2	0,1	0,4	0,0
229,3	85,5	68,6	0,4	0,0	1,2	0,4
35.3	40.7	20.1	1.2	0.2	2.0	0.0
71.2	50.3	48.9	0.7	0.2	1.0	0,9
72.6	96 7	69.1	13	0.4	1,0	0.4
15 7	20.9	20.2	1,5	0,4	1,4	0,4
13,7	50,0	0.2	2,0	0,0	1,0	0,9
4,2	0,4	8,2	1,5	0,4	0,8	0,6
1,9	3,3	4,6	1,7	0,2	0,7	0,3
15,2	67,4	51,8	4,4	0,0	1,3	0,2

10,6	9,9	9,6	0,9	0,5	1,0	0,9
4312,1	1888,8	551,3	0,4	0,0	3,4	0,1
168,6	382,7	142,0	2,3	0,4	2,7	0,4
65,4	49,3	36,4	0,8	0,1	1.4	0,0
1.6	2.5	2.7	1.6	0.1	0.9	0.7
19.4	10.8	13.1	0.6	0.0	0.8	0.3
180.5	144.0	136.0	0,8	0,0	11	0,5
100,5	60.0	71.2	0,0	0,0	1,1	0,5
12,2	09,9	/1,2	1,0	0,0	1,0	0,9
1,/	1,1	1,8	0,7	0,3	0,6	0,3
20,3	46,0	118,1	2,3	0,0	0,4	0,0
610,1	828,5	447,7	1,4	0,1	1,9	0,0
816,0	59,9 720.2	25,5	0,1	0,0	2,3	0,0
4/88,/	729,3	28,4	0,2	0,1	25,7	0,0
450,7	60,5 282.2	13,3	0,1	0,0	4,5	0,0
665,I	283,2	146,/	0,4	0,2	1,9	0,1
18,4	20,1	19,4	I,I	0,4	1,0	0,8
8/0,9	864,0	986,4	1,0	0,9	0,9	0,3
3,6	15,7	18,1	4,4	0,1	0,9	0,6
2877,9	439,4	69,6	0,2	0,0	6,3	0,0
1290,2	268,4	102,5	0,2	0,0	2,6	0,0
26,1	4,8	8,8	0,2	0,0	0,5	0,3
17,2	3,2	2,0	0,2	0,1	1,6	0,0
90,9	43,5	13,7	0,5	0,0	3,2	0,0
14,3	2,6	3,5	0,2	0,0	0,7	0,2
408,3	47,3	29,1	0,1	0,0	1,6	0,1
37,7	13,8	15,5	0,4	0,1	0,9	0,6
504,4	4,0	10,0	0,0	0,0	0,4	0,2
1125,4	129,0	35,3	0,1	0,0	3,6	0,0
2,4	1,3	1,4	0,5	0,1	1,0	0,9
132,3	28,4	78,5	0,2	0,0	0,4	0,2
11,5	8,9	9,1	0,8	0,3	1,0	0,9
2,8	3,4	3,5	1,2	0,6	1,0	0,9
20,8	14,8	28,8	0,7	0,1	0,5	0,0
11,8	10,1	16,5	0,9	0,6	0,6	0,1
1428,0	145,3	29,1	0,1	0,0	5,0	0,0
79,5	21,7	21,8	0,3	0,0	1,0	0,9
255,2	105,8	102,0	0,4	0,0	1,0	0,9
124,3	86,7	86,5	0,7	0,1	1,0	1,0
158,7	12,4	30,3	0,1	0,0	0,4	0,1
283,3	112,9	129,8	0,4	0,0	0,9	0,5
0,0	29,1	30,0	0,6	0,1	1,0	0,9
324,7	62,1	15,7	0,2	0,1	3,9	0,0
137,9	26,3	20,7	0,2	0,0	1,3	0,4
165,4	23,2	53,5	0,1	0,0	0,4	0,0
24,7	9,3	18,4	0,4	0,1	0,5	0,0
84,8	74,3	77,1	0,9	0,5	1,0	0,9
175,3	31,9	31,7	0,2	0,0	1,0	1,0
22,8	9,0	7,6	0,4	0,1	1,2	0,6
1268,0	151,7	73,5	0,1	0,0	2,1	0,1

2031,6	187,7	103,4	0,1	0,0	1,8	0,2
7663,8	257,4	115,6	0,0	0,0	2,2	0,1
1201,0	43,3	29,0	0,0	0,0	1,5	0,1
185,6	62,0	53,3	0,3	0,0	1,2	0,6
50,2	19,8	23,9	0,4	0,0	0,8	0,4
7,1	8,2	14,3	1,2	0,4	0,6	0,0
4780,7	165,0	56,0	0,0	0,0	2,9	0,1
4121,5	287,4	50,3	0,1	0,0	5,7	0,0
50,4	19,7	75,4	0,4	0,1	0,3	0,1
376,4	32,8	11,2	0,1	0,0	2,9	0,1
57,0	5,1	5,2	0,1	0,0	1,0	1,0
105,0	17,1	17,4	0,2	0,0	1,0	0,9
1954,5	82,5	4,9	0,0	0,0	17,0	0,0
6588,6	176,3	28,0	0,0	0,0	6,3	0,0
702,0	47,5	56,7	0,1	0,0	0,8	0,8
310,7	14,7	6,1	0,0	0,0	2,4	0,1
1584,7	121,2	37,7	0,1	0,1	3,2	0,1
33,1	50,5	97,8	1,5	0,1	0,5	0,0
65,9	65,2	278,6	1,0	0,9	0,2	0,0
14,3	6,5	18,0	0,5	0,0	0,4	0,0
42,0	24,4	45,1	0,6	0,1	0,5	0,1
186,9	22,6	51,6	0,1	0,0	0,4	0,1
66,0	21,7	162,5	0,3	0,0	0,1	0,1
905.7	52,7	56,0	0,1	0,0	0,9	0,8
149,5	24,1	13,2	0,2	0,0	1,8	0,0
121,3	12,7	29,7	0,1	0,0	0,4	0,2
84,9	109,8	80,8	1,3	0,4	1,4	0,4
0,5	50,9	189,1	93,4	0,0	0,3	0,1
25,9	6,1	8,5	0,2	0,0	0,7	0,0
18,7	10,3	9,7	0,6	0,1	1,1	0,5
9,1	2,7	5195,0	0,3	0,0	0,5	0,2
121,8	6,2	14,4	0,1	0,0	0,4	0,1
59,7	8,1	11,7	0,1	0,0	0,7	0,4
161,6	42,8	71,6	0,3	0,0	0,6	0,2
17,1	31,5	18,8	1,8	0,0	1,7	0,0
59,0	59,9	74,3	1,0	0,3	0,8	0,0
85,7	29,0	41,8	0,3	0,0	0,7	0,3
154,0	30,1	19,2	0,2	0,0	1,6	0,1
375,4	16.7	11.6	0,0	0,0	1,4	0,1
11,1	19.8	11,4	1,8	0,0	1,7	0,1
123,6	11.8	1.0	0,1	0,0	11.8	0,1
846,7	25,3	8,6	0,0	0,0	2,9	0,0
126.1	131.2	106.7	1.0	0.5	1.2	0.1
0.0	14.9	13.7	0.1	0.0	1.1	0.3
85.9	33.4	38.5	0.4	0.0	0.9	0.4
0.0	36.9	27.1	0.0	0.0	1.4	0.1
763.9	99.6	53.2	0.1	0.0	1.9	0.1
14.0	7.7	8.6	0.6	0.0	0.9	0.3
308.6	26.0	36.7	0.1	0.0	0.7	0.1
73,7	22,1	28,0	0.3	0,0	0.8	0,2
/	/)-	/	-) -	

300,3	17,5	15,6	0,1	0,0	1,1	0,5
7,7	3,5	8,7	0,4	0,1	0,4	0,1
14,7	29,2	43,4	2,0	0,2	0,7	0,2
1211,2	78,8	23,8	0,1	0,0	3,3	0,0
144,5	45,2	33,9	0,3	0,0	1,3	0,3

g the time course of 8 weeks.

α-glucuronidase, AMY = α-amylase, AOX = alcohol oxidase, AXE = acetyl xylan esterase, roxidase, CDH = cellobiose dehydrogenase, EGL = β -1,4-edoglucanase, FET = ferroxidase roxygenase, MAN = β -1,4-endomannanase, MND = β -1,4-mannosidase, MnP = manganese peroxidase, glucuronyl hydrolase, XG-EG = xyloglucanase

2 weeks_over 8 weeks p-value

1,3	0,3
4,3	0,1
0,9	0,7
0,8	0,5
0,8	0,5
0,7	0,1
0,6	0,0
0,5	0,2
0,1	0,0
2,4	0,0
3,6	0,0
3,8	0,0
34,5	0,0
881,6	0,0
11,1	0,0
3,0	0,0
3,3	0,0
1,2	0,8
1,0	1,0
0,5	0,0
0,7	0,4
0,9	0,9
1,0	0,9
0,2	0,0
0,0	0,2
0,2	0,0
13	0,1
1,5	0,0
0,8	0,5
0,6	0,0
0,4	0,0
3,3	0,0
1,8	0,0
1,5	0,0
1,1	0,7
0,5	0,0
0,5	0,1
0,4	0,0
0,3	0,0

1,1	0,7
7,8	0,0
1.2	0.5
1.8	0.0
0.6	0.1
1.5	0,1
1,5	0,1
1,3	0,0
1,0	0,8
1,0	1,0
0,2	0,0
1,4	0,1
32,0	0,0
168,4	0,1
33,8	0,0
4,5	0,1
0,9	0,8
0,9	0,1
0,2	0,0
41,3	0,0
12,6	0,0
3,0	0,0
8,6	0,0
6,6	0,0
4,1	0,0
14,0	0,0
2,4	0,1
50,6	0,0
31,8	0,0
1,8	0,2
1,7	0,2
1,3	0,1
0,8	0,6
0,7	0,0
0,7	0,3
49,1	0,0
3,6	0,0
2,5	0,0
1,4	0,0
5,2	0,0
2,2	0,0
1,5	0,0
20,6	0,1
6,7	0,0
3,1	0,0
1,3	0,2
1,1	0,3
5,5	0,0
3,0	0,1
17,3	0,0

19,6	0,0
66,3	0,0
41,4	0,0
3,5	0,0
2,1	0,0
0,5	0,0
85,4	0,0
82,0	0,0
0,7	0,2
33,5	0,0
11,0	0,0
6,0	0,0
402,2	0,0
235,6	0,0
12,4	0,0
50,6	0,0
42,0	0,1
0,3	0,0
0,2	0,0
0.8	0,2
0.9	0,5
3.6	0.0
0,4	0,1
16.2	0,0
11.3	0,0
4,1	0,0
1,1	0,6
0,0	0,0
3,0	0,0
1,9	0,1
1,8	0,2
8,5	0,0
5,1	0,0
2,3	0,0
0,9	0,4
0,8	0,0
2,0	0,0
8,0	0,0
32,4	0,0
1,0	0,9
124,2	0,0
98,2	0,0
1.2	0.0
9.6	0.0
2,2	0.0
30.9	0,0
14.4	0.0
1.6	0.0
8.4	0.0
2.6	0,0

19,3	0,0
0,9	0,0
0,3	0,0
50,8	0,0
4,3	0,0

Supplementary Table 3. Expressed genes encoding putative plant cell wall degradir B) Fungal cell wall acting CAZyme encoding genes.

Protein ID	CAZy family	Enzyme
885015	CE4	Chitin deacetylase
815919	CE4	Chitin deacetylase
740302	CE4	Chitin deacetylase
806629	GH5_9	β-1,3-exoglucanase
797080	GH5 9	β-1,3-exoglucanase
795979	GH5 ⁹	β -1,3-exoglucanase
788264	GH5_9	β -1,3-exoglucanase
729515	GH5_9	β-1,3-exoglucanase
885341	GH5_15	β-1,6-endoglucanase
853185	GH16	β -1,3(4)-endoglucanase
274779	GH16	β -1,3(4)-endoglucanase
815608	GH16	β -1,3(4)-endoglucanase
735636	GH16	β -1,3(4)-endoglucanase
791129	GH16	β -1,3(4)-endoglucanase
750894	GH16	β -1,3(4)-endoglucanase
811929	GH16	β -1,3(4)-endoglucanase
741233	GH16	β -1,3-endoglucanase
787504	GH16	β -1,3(4)-endoglucanase
793317	GH16	β -1,3(4)-endoglucanase
791772	GH16	β -1,3(4)-endoglucanase
737176	GH16	β -1,3(4)-endoglucanase
728467	GH16	β -1,3(4)-endoglucanase
357631	GH16	β -1,3(4)-endoglucanase
738853	GH16	β -1,3-endoglucanase
739086	GH16	β -1,3-endoglucanase
790990	GH16	β -1,3(4)-endoglucanase
383381	GH16	β -1,3-endoglucanase
736403	GH16	β -1,3(4)-endoglucanase
791570	GH16	β -1,3(4)-endoglucanase
886936	GH16	licheninase
719041	GH16	licheninase
845840	CBM18-GH16	β-1,3-endoglucanase
814646	GH17	glucan endo-1,3-β-glucosidase
790629	GH17	glucan endo-1,3- β -glucosidase
794017	GH18	chitinase
833274	GH18	chitinase
121758	GH18	chitinase
736277	GH18	chitinase
788648	GH18	chitinase
512857	GH18	chitinase
837441	GH18	chitinase
810847	GH18	chitinase
725953	GH18	chitinase
838588	GH18	chitinase
832557	GH18	chitinase
840055	GH18-CBM5	chitinase
664377	GH18-CBM5	chitinase

17048	GH18-CBM5-CBM	<i>c</i> hitinase
437619	GH37	α, α -trehalase
790666	GH37	α,α-trehalase
834199	GH55	β-1,3-endoglucanase
737766	GH55	β-1,3-endoglucanase
791824	GH71	α-1,3-endoglucanase
743565	GH72-CBM43	b-1,3-glucanosyltransglycosylase
749870	GH85	endo-β-N-acetylglucosaminidase
813714	GH128	β-1,3-endoglucanase
791322	GH128	β-1,3-endoglucanase
724588	GH128	β-1,3-endoglucanase
812963	GH131	β -1,3/ β -1,6-exoglucanase, β -1,4-endoglucanase
812977	GH131	β -1,3/ β -1,6-exoglucanase, β -1,4-endoglucanase

1g CAZy, central carbon metabolism and fungal cell wall acting CAZy enzymes by O. rivulosa grown on

	Tim	e point (FP	KM)	
Functional annotation	2 weeks	4 weeks	8 weeks	4 weeks_over 2 weeks
Carbohydrate Esterase Family 4 protein	6,1	2,9	5,2	0,5
Carbohydrate Esterase Family 4 protein	443,8	389,0	456,4	0,9
Carbohydrate Esterase Family 4 protein	20,6	24,0	24,7	1,2
Glycoside Hydrolase Family 5 protein	1037,3	40,9	494,8	0,0
Glycoside Hydrolase Family 5 protein	114,5	51,6	68,0	0,5
Glycoside Hydrolase Family 5 protein	214,0	215,7	131,7	1,0
Glycoside Hydrolase Family 5 protein	32,3	41,7	54,5	1,3
Glycoside Hydrolase Family 5 protein	27,4	70,3	143,6	2,6
Glycoside Hydrolase Family 5 protein	98,0	5,3	6,8	0,1
Glycoside Hydrolase Family 16 protein	1035,7	23,0	42,9	0,0
Glycoside Hydrolase Family 16 protein	479,8	20,4	24,1	0,0
Glycoside Hydrolase Family 16 protein	3,6	1,1	1,5	0,3
Glycoside Hydrolase Family 16 protein	124,6	129,4	59,7	1,0
Glycoside Hydrolase Family 16 protein	62,0	86,8	45,0	1,4
Glycoside Hydrolase Family 16 protein	251,4	158,5	194,2	0,6
Glycoside Hydrolase Family 16 protein	3,0	2,7	2,3	0,9
Glycoside Hydrolase Family 16 protein	58.1	59.6	47.6	1.0
Glycoside Hydrolase Family 16 protein	142.2	160.7	133.2	1.1
Glycoside Hydrolase Family 16 protein	517.1	699.5	536.2	1.4
Glycoside Hydrolase Family 16 protein	98.0	187.6	104.0	1.9
Glycoside Hydrolase Family 16 protein	17.1	12.1	19.1	0.7
Glycoside Hydrolase Family 16 protein	12.3	72.5	14.6	5.9
Glycoside Hydrolase Family 16 protein	68.9	119.2	85.1	1.7
Glycoside Hydrolase Family 16 protein	104.0	157.8	137.4	1.5
Glycoside Hydrolase Family 16 protein	602.6	729.5	809.0	1.2
Glycoside Hydrolase Family 16 protein	15.5	27.3	36.0	1,2
Glycoside Hydrolase Family 16 protein	4.0	9.4	10.5	2.3
Glycoside Hydrolase Family 16 protein	1.9	2.6	5.1	1.4
Glycoside Hydrolase Family 16 protein	5.1	13.7	15.8	2.7
Glycoside Hydrolase Family 16 protein	312.4	402.6	338.7	13
Glycoside Hydrolase Family 16 protein	93.9	68.2	68 5	0.7
Carbohydrate-Binding Module Family 18 / G	5 87 3	128.7	127.9	1.5
Glycoside Hydrolase Family 17 protein	161 5	28.4	46.8	0.2
Glycoside Hydrolase Family 17 protein	95.2	182.4	262.7	1.9
Glycoside Hydrolase Family 18 protein	32.9	10.6	5.6	0.3
Glycoside Hydrolase Family 18 protein	104.4	17,1	40.5	0,2
Glycoside Hydrolase Family 18 protein	45.3	16.4	21.2	0,2
Glycoside Hydrolase Family 18 protein	29.6	116.6	17.7	3.9
Glycoside Hydrolase Family 18 protein	29,0 42.8	26.2	39.5	0,6
Glycoside Hydrolase Family 18 protein	275.9	339.5	308.0	1.2
Glycoside Hydrolase Family 18 protein	1 9	2 5	200,0	1,2
Glycoside Hydrolase Family 18 protein	438.2	338.6	524.1	0.8
Glycoside Hydrolase Family 18 protein	1 4	2.0	2.0	1.5
Glycoside Hydrolase Family 18 protein	1,4 18 5	2,0 06 1	2,0 180 6	1,5
Glycoside Hydrolase Family 18 protein	+0,5	20,1 1 2	11 0	2,0
Glycoside Hydrolase Family 18 / Carbabydr	1,3	+,5 110.0	111.0	2,0
Glycoside Hydrolase Family 18 / Carbobydr	1050	547	111,4	0,5
Grycosiuc rryurolase ranning 167 Carbollyura	125,0	54,7	139,3	0,4

Glycoside Hydrolase Family 18 / Carbohydra	143,6	64,8	118,1	0,5
Glycoside Hydrolase Family 37 protein	34,8	7,8	8,8	0,2
Glycoside Hydrolase Family 37 protein	89,8	80,5	112,5	0,9
Glycoside Hydrolase Family 55 protein	1176,6	17,9	37,1	0,0
Glycoside Hydrolase Family 55 protein	167,4	18,9	38,2	0,1
Glycoside Hydrolase Family 71 protein	53,5	58,5	45,2	1,1
Glycoside Hydrolase Family 72 / Carbohydra	184,8	190,7	196,7	1,0
Glycoside Hydrolase Family 85 protein	24,8	18,2	32,0	0,7
Glycoside Hydrolase Family 128 protein	955,2	834,6	616,8	0,9
Glycoside Hydrolase Family 128 protein	191,1	188,8	128,4	1,0
Glycoside Hydrolase Family 128 protein	6,9	12,4	5,0	1,8
Glycoside Hydrolase Family 131 protein	1211,2	78,8	23,8	0,1
Glycoside Hydrolase Family 131 protein	144,5	45,2	33,9	0,3

solid spruce wood during the time course of 8 weeks.

	Comparison			
p-value	4 weeks_over 8 weeks	p-value	2 weeks_over 8 weeks	p-value
0,0	0,6	0,0	1,2	0,3
0,0	0,9	0,0	1,0	0,4
0,5	1,0	0,9	0,8	0,0
0,0	0,1	0,1	2,1	0,1
0,0	0,8	0,2	1,7	0,0
0,9	1,6	0,0	1,6	0,0
0,1	0,8	0,1	0,6	0,1
0,0	0,5	0,0	0,2	0,0
0,0	0,8	0,6	14,5	0,0
0,0	0,5	0,0	24,1	0,0
0,0	0,8	0,7	19,9	0,0
0,2	0,7	0,4	2,5	0,3
0,9	2,2	0,1	2,1	0,0
0,0	1,9	0,0	1,4	0,1
0,0	0,8	0,2	1,3	0,1
0,8	1,2	0,7	1,3	0,5
0,8	1,3	0,2	1,2	0,1
0,1	1,2	0,1	1,1	0,0
0,1	1,3	0,3	1,0	0,9
0,0	1,8	0,0	0,9	0,8
0,1	0,6	0,0	0,9	0,4
0,2	5,0	0,2	0,8	0,6
0,0	1,4	0,2	0,8	0,4
0,0	1,1	0,4	0,8	0,2
0,3	0,9	0,7	0,7	0,3
0,0	0,8	0,1	0,4	0,0
0,0	0,9	0,6	0,4	0,0
0,2	0,5	0,0	0,4	0,0
0,0	0,9	0,5	0,3	0,0
0,1	1,2	0,1	0,9	0,2
0,1	1,0	0,7	1,4	0,1
0,1	1,0	1,0	0,7	0,0
0,0	0,6	0,2	3,4	0,0
0,0	0,7	0,1	0,4	0,0
0,1	1,9	0,3	5,9	0,0
0,0	0,4	0,3	2,6	0,1
0,0	0,8	0,1	2,1	0,0
0,1	6,6	0,1	1,7	0,0
0,0	0,7	0,0	1,1	0,4
0,5	1,1	0,7	0,9	0,5
0,5	1,2	0,7	0,9	0,7
0,1	0,6	0,1	0,8	0,1
0,0	1,0	1,0	0,7	0,0
0,1	0,5	0,0	0,3	0,0
0,5	0,4	0,2	0,1	0,0
0,0	1,0	1,0	3,0	0,0
0,0	0,4	0,0	0,9	0,5

0,0	0,5	0,1	1,2	0,2
0,0	0,9	0,5	3,9	0,0
0,5	0,7	0,2	0,8	0,3
0,0	0,5	0,2	31,7	0,0
0,0	0,5	0,1	4,4	0,0
0,4	1,3	0,2	1,2	0,1
0,8	1,0	0,8	0,9	0,6
0,0	0,6	0,0	0,8	0,0
0,1	1,4	0,0	1,5	0,0
0,8	1,5	0,0	1,5	0,0
0,1	2,5	0,1	1,4	0,2
0,0	3,3	0,0	50,8	0,0
0,0	1,3	0,3	4,3	0,0

Supplementary Table 3. Expressed genes encoding putative plant cell wall degrading CAZy, central carbo C) Central carbon metabolism encoding genes involved in glycosis, mannose catabolism, TCA cycle, L-rha

Protein ID			Tim	e point (FPl
Glycolysis	Gene	Functional annotation	2 weeks	4 weeks
789122	hxk1	Hexokinase	124,7	129,3
883508	glkl	Glucokinase	106,3	57,9
845553	pgil	Glucose-6-phosphate isomerase	405,1	156,5
835136	pgi2	Glucose-6-phosphate isomerase	10,4	16,4
839047	pfk2	Fructose-2,6-bisphosphatase	455,5	384,9
788402	pfk2	β-D-fructose-2,6-bisphosphate 2-phosphohydrolase	39,9	35,5
830941	pfk1	6-Phosphofructokinase 1	40,1	34,2
736978	fbal	Fructose-bisphosphate aldolase	506,1	465,8
778449	tpi l	Triose-phosphate isomerase	144,1	100,0
812492	gpd1	Glyceraldehyde-3-phosphate dehydrogenase	886,4	1085,2
721021	pgkl	Phosphoglycerate kinase	250,9	185,9
777519	pgml	Phosphoglycerate mutase (cofactor-independent)	84,7	106,6
816407	pgm2	Putative phosphoglycerate mutase	38,7	24,7
732084	enol	Phosphopyruvate hydratase (enolase)	389,2	589,6
794937	eno2	Phosphopyruvate hydratase (enolase)	4,7	5,0
884563	pki l	Pyruvate kinase	359,8	231,7
786760	pdc1	Pyruvate decarboxylase	54,4	141,0
885239	pdh1	Pyruvate dehydrogenase complex E1-alpha subunit	176,3	133,0
198505	pdh2	Pyruvate dehydrogenase (lipoamide)	139,5	91,9
793545	acsl	Putative acetyl-CoA synthase	283,6	267,4
Mannose cata	abolism			
732619	pmil	Mannose-6-phosphate isomerase	40,8	29,6
811014	pmm1	Phosphomannomutase	59,7	63,8
TCA cycle				
813610	cit2	ATP: citrate oxaloacetate lyase (mitohodrial) / ATP c	119,6	157,0
788918	citl	Citrate synthase	186,9	208,8
788737	mcs1	2-Methylcitrate synthase	186,9	72,1
797053	acol	Aconitase	248,0	301,9
787125	aco2	Aconitase	21,4	28,6
729286	icd1	Isocitrate dehydrogenase (NADP+)	159,3	75,1
817454	icd2	Putative isocitrate dehydrogenase (NAD+)	48,1	51,1
726466	kgd1	2-oxoglutarate dehydrogenase (a-ketoglutarate dehydr	116,3	107,7
740166	kgd2	2-oxoglutarate dehydrogenase	33,5	20,2
778278	sdh1	Succinate dehydrogenase (ubiquinone)	155,9	131,6
778985	sdh2	Succinate dehydrogenase (ubiquinone)	132,2	126,0
743296	fuh1	Fumarate hydratase (fumarase)	151,1	118,2
776181	mdh1	Malate dehydrogenase	835,0	559,6
760258	mdh2	Mitochondrial malate dehydrogenase	372,6	205,8
812377	pcb1	Pyruvate carboxylase	345,6	355,6
Glyoxylate cy	ycle			
769477	icl1	Isocitrate lyase	123,9	335,2
742275	icl2	Isocitrate lyase	75,0	65,2
818287	mas l	Malate synthase	163,0	246,9
793160	oxal	Oxaloacetase	1332,9	4248,6
810193	odcl	Oxalate decarboxylase	114,7	28,7

720584 odc2	Oxalate decarboxylase	31,9	38,2
740450 odc3	Oxalate decarboxylase	21,8	22,7
823190 odc4	Oxalate decarboxylase	0,7	0,6
Leloir			
784856 gall	Galactokinase	53,3	37,1
822974 gal7	UTP-hexose-1-phosphate uridylyltransferase (UDP ga	28,8	18,8
834953 gal10a	UDP glucose 4-epimerase / UDP-galactose 4-epimera	83,7	85,5
887644 gal10b	UDP glucose 4-epimerase / UDP-galactose 4-epimera	22,5	22,1
742665 ugp1	UTP-glucose-1-phosphate uridylyltransferase (UDP g	129,5	158,4
839559 ugp2	UTP-glucose-1-phosphate uridylyltransferase (UDP g	128,5	326,4
432350 pgm1	Phosphoglucomutase	140,1	95,5
L-rhamnose catabolic path	Iway		
719159 lra1	L-rhamnose 1-dehydrogenase	36,2	6,1
750250 kdal	L-2-keto-3-deoxyrhamnonate aldolase	186,6	92,4
817972 kda2	L-2-keto-3-deoxyrhamnonate aldolase	66,3	43,8
Galacturonic acid cataboli	c pathway		
765275 garl	Putative D-galacturonic acid reductase	170,2	80,1
794503 gad1	L-Galactonate dehydratase	118,0	29,1
807525 kgal	Putative 2-keto-3-deoxy-l-galactonate aldolase	382,4	85,6
Pentose catabolic pathway	(PCP)		
482062 lar1	L-arabinose reductase/Glyceraldehyde reductase	392,2	72,6
811428 xdh1	xylitol dehydrogenase	502,6	249,4
830136 xki1	Xylulose kinase	146,2	89,1
Pentose phosphate pathwa	y (PPP)		
764085 rbt1	Ribulokinase	58,5	41,8
787194 gnd1	6-Phosphogluconate dehydrogenase	644,1	470,2
771916 gnd2	Phosphogluconate dehydrogenase (decarboxylating)	39,7	35,7
765523 pgl1	6-Phosphogluconolactonase	61,5	130,5
791312 rpil	Ribose-5-phosphate isomerase	48,9	46,8
78859 rpel	Ribulose-phosphate 3-epimerase	94,7	50,6
788204 tkt1	Transketolase A/Dihydroxyacetone synthase	149,5	115,1
794540 tall	Transaldolase	662,1	302,3
773377 tal2	Transaldolase	420,1	360,0
787617 tal3	Transaldolase	50,1	48,2
792586 rbkl	Ribokinase	12,4	6,7
Trehalose			
722898 tps1	Trehalose 6-phosphate synthase (Alpha alpha trehalo	36,5	33,8
819781 tpp1	Trehalose phosphatase (Trehalose-6-phosphate phosp	62,7	91,1
437619 tre1	Acid trehalase (Alpha, alpha-trehalase)	34,8	7,8
790666 tre2	Neutral trehalase	89,8	80,5
809904 trp1	Putative trehalose phosphorylase with similarity to $N\varepsilon$	563,3	377,5

n metabolism and fungal cell wall acting CAZy enzymes by O. rivulosa	grown on solid spruce wood during the
mnose, D-galacturonic, Leloir, pentose catabolic and pentose phosphate	pathways.

KM)			Comparison		
8 weeks	4 weeks_over 2 weeks	p-value	4 weeks_over 8 weeks	p-value	2 weeks_over 8 weeks
173,5	1,0	0,0	0,7	0,0	- 0,7
68,8	0,5	0,7	0,8	0,4	1,5
100,7	0,4	0,0	1,6	0,1	4,0
14,0	1,6	0,1	1,2	0,4	0,7
134,0	0,8	0,1	2,9	0,1	3,4
60,1	0,9	0,0	0,6	0,0	0,7
93,6	0,9	0,1	0,4	0,0	0,4
326,9	0,9	0,2	1,4	0,0	1,5
179,5	0,7	0,0	0,6	0,1	0,8
1359,4	1,2	0,2	0,8	0,2	0,7
246,3	0,7	0,0	0,8	0,0	1,0
153,2	1,3	0,1	0,7	0,0	0,6
35,8	0,6	0,0	0,7	0,1	1,1
898,7	1,5	0,1	0,7	0,1	0,4
6,5	1,1	0,8	0,8	0,1	0,7
534,9	0,6	0,0	0,4	0,0	0,7
131,4	2,6	0,0	1,1	0,7	0,4
277,7	0,8	0,0	0,5	0,0	0,6
198,6	0,7	0,0	0,5	0,0	0,7
239,7	0,9	0,8	1,1	0,7	1,2
50,0	0,7	0,0	0,6	0,0	0,8
149,9	1,1	0,6	0,4	0,1	0,4
204,4	1,3	0,4	0,8	0,5	0,6
215,7	1,1	0,1	1,0	0,7	0,9
148,3	0,4	0,0	0,5	0,1	1,3
267,9	1,2	0,2	1,1	0,4	0,9
28,6	1,3	0,1	1,0	1,0	0,7
119,1	0,5	0,0	0,6	0,1	1,3
89,0	1,1	0,5	0,6	0,0	0,5
106,0	0,9	0,5	1,0	0,9	1,1
46,3	0,6	0,1	0,4	0,0	0,7
219,7	0,8	0,3	0,6	0,2	0,7
169,6	1,0	0,6	0,7	0,2	0,8
121,3	0,8	0,1	1,0	0,9	1,2
713,1	0,7	0,1	0,8	0,3	1,2
280,4	0,6	0,0	0,7	0,2	1,3
358,9	1,0	0,7	1,0	0,9	1,0
104,1	2,7	0,0	3,2	0,1	1,2
88,1	0,9	0,1	0,7	0,0	0,9
91,1	1,5	0,2	2,7	0,1	1,8
1222,2	3,2	0,0	3,5	0,0	1,1
7,0	0,3	0,0	4,1	0,0	16,4

40,7	1,2	0,2	0,9	0,7	0,8
36,1	1,0	0,6	0,6	0,0	0,6
1,2	0,9	0,4	0,5	0,1	0,6
34,8	0,7	0,2	1,1	0,8	1,5
23,8	0,7	0,2	0,8	0,4	1,2
64,8	1,0	0,8	1,3	0,2	1,3
37,4	1,0	0,6	0,6	0,1	0,6
180,7	1,2	0,3	0,9	0,4	0,7
173,3	2,5	0,0	1,9	0,1	0,7
103,2	0,7	0,0	0,9	0,5	1,4
9,9	0,2	0,0	0,6	0,3	3,7
58,7	0,5	0,0	1,6	0,2	3,2
64,5	0,7	0,1	0,7	0,2	1,0
157,7	0,5	0,0	0,5	0,0	1,1
61,5	0,2	0,0	0,5	0,0	1,9
109,5	0,2	0,0	0,8	0,4	3,5
83,2	0,2	0,0	0,9	0,7	4,7
287,0	0,5	0,0	0,9	0,4	1,8
90,2	0,6	0,1	1,0	1,0	1,6
53,3	0,7	0,2	0,8	0,3	1,1
548,7	0,7	0,1	0,9	0,4	1,2
41,7	0,9	0,4	0,9	0,2	1,0
106,8	2,1	0,0	1,2	0,3	0,6
61,5	1,0	0,8	0,8	0,2	0,8
59,1	0,5	0,0	0,9	0,5	1,6
142,6	0,8	0,2	0,8	0,2	1,0
267,1	0,5	0,0	1,1	0,3	2,5
579,8	0,9	0,0	0,6	0,3	0,7
56,1	1,0	0,8	0,9	0,3	0,9
7,0	0,5	0,2	1,0	0,8	1,8
18,9	0,9	0,3	1,8	0,0	1,9
48,3	1,5	0,1	1,9	0,1	1,3
8,8	0,2	0,0	0,9	0,5	3,9
112,5	0,9	0,5	0,7	0,2	0,8
578,5	0,7	0,1	0,7	0,1	1,0

time course of 8 weeks.

p-value

~ ~	
0,1	
0,0	
0,1	
0,1	
0,0	
0,0	
0,3	
0,0	
0,5	
0,0	
0,0	
0,3	
0,1	
0,0	
0,0	
0,0	
0,2	
0,0	
0,1	
0.2	
0,2	
0,2 0,2 0,3	
0,2 0,2 0,3 0,1	
0,2 0,2 0,3 0,1 0,1	
0,2 0,2 0,3 0,1 0,1 0,1	
0,2 0,2 0,3 0,1 0,1 0,1 0,0	
0,2 0,2 0,3 0,1 0,1 0,1 0,0 0,4	
0,2 0,2 0,3 0,1 0,1 0,1 0,1 0,0 0,4 0,1	
0,2 0,2 0,3 0,1 0,1 0,0 0,4 0,1 0,2 0,2	
$\begin{array}{c} 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,1\\ 0,1\\ 0,0\\ 0,4\\ 0,1\\ 0,2\\ 0,2\\ 0,2\\ 0,2 \end{array}$	
0,2 0,2 0,3 0,1 0,1 0,1 0,0 0,4 0,1 0,2 0,2 0,2 0,3	
$\begin{array}{c} 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,1\\ 0,1\\ 0,0\\ 0,4\\ 0,1\\ 0,2\\ 0,2\\ 0,2\\ 0,3\\ 0,1\\ \end{array}$	
$\begin{array}{c} 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,1\\ 0,1\\ 0,0\\ 0,4\\ 0,1\\ 0,2\\ 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,6\\ \end{array}$	
0,2 0,2 0,3 0,1 0,1 0,1 0,0 0,4 0,2 0,2 0,2 0,2 0,3 0,1 0,6	
$\begin{array}{c} 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,1\\ 0,1\\ 0,0\\ 0,4\\ 0,1\\ 0,2\\ 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,6\\ 0,6\\ 0,0\\ \end{array}$	
$\begin{array}{c} 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,1\\ 0,1\\ 0,0\\ 0,4\\ 0,1\\ 0,2\\ 0,2\\ 0,2\\ 0,2\\ 0,3\\ 0,1\\ 0,6\\ 0,6\\ 0,0\\ 0.0\\ \end{array}$	

0,0

0,2 0,0 0,1	
0,0 0,0 0,1 0,1 0,2 0,2 0,0	
0,0 0,0 0,9	
$0,6 \\ 0,0 \\ 0,0$	
$0,0 \\ 0,0 \\ 0,0$	
$\begin{array}{c} 0,2\\ 0,2\\ 0,5\\ 0,0\\ 0,2\\ 0,0\\ 0,1\\ 0,0\\ 0,0\\ 0,0\\ 0,2\\ \end{array}$	
0,0 0,1 0,0 0,3 0,8	