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Online hypothesis testing occurs in many branches of science. Most notably it is of use when

there are too many hypotheses to test with traditional multiple hypothesis testing or when the

hypotheses are created one-by-one. When testing multiple hypotheses one-by-one, the order in

which the hypotheses are tested often has great influence to the power of the procedure.

In this thesis we investigate the applicability of reinforcement learning tools to solve the exploration

– exploitation problem that often arises in online hypothesis testing. We show that a common

reinforcement learning tool, Thompson sampling, can be used to gain a modest amount of power

using a method for online hypothesis testing called alpha-investing. Finally we examine the size of

this effect using both synthetic data and a practical case involving simulated data studying urban

pollution.

We found that, by choosing the order of tested hypothesis with Thompson sampling, the power

of alpha investing is improved. The level of improvement depends on the assumptions that the

experimenter is willing to make and their validity. In a practical situation the presented procedure

rejected up to 6.8 percentage points more hypotheses than testing the hypotheses in a random

order.
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1. Introduction

In abundance of data, a great challenge in data analysis is to separate useful information

out of resource-wasting random patterns. A common method for limiting the number

of false discoveries is to use the help of statistical hypothesis testing when observing a

new pattern.

Statistical hypothesis testing allows us to weed out patterns by accepting only

those hypotheses that are unlikely to have happened within the current model of the

world. When done systematically, the probability of a false discovery can be bounded

by an arbitrary constant. This constant is called the significance of the test.

The guard that hypothesis testing offers us against false discoveries is lost when

multiple hypothesis tested at the same time. Say a single hypothesis has a 0.05 prob-

ability of being a false positive and 20 such test would be independently conducted,

the probability of obtaining a false hypothesis would rise up to 1− (1− 0.05)20 ≈ 0.64.

In such case, one would be more likely to obtain a false positive than not! Therefore

multiple testing procedures are required. These procedures work by testing each of the

individual hypotheses at a lower level of significance in order to still control the total

number of false discoveries with an arbitrary number of hypotheses.

Typically multiple hypothesis procedures are not designed to tackle hypotheses

that come one at the time. For this type of problems we require online hypothesis

testing procedures. A fundamental decision in these types of problems is deciding the

order in which the hypotheses are tested at. The correct order of testing the hypotheses

allows for more efficient use of significance and even more potentially more powerful

tests. In practice this allows for more efficient online hypothesis testing procedures.

1



2 Chapter 1. Introduction

Online hypothesis testing is used extensively in multiple areas of science. Most

notably, it has been proposed in clinical trials when determining early stopping of the

trial for economic and ethical reasons [1]. It has also gained traction in interactive data

exploration, where systems use online hypothesis testing procedures to prevent false

discoveries [2]. Lastly, streams of hypotheses arise in many areas of science such as

genomics and feature selection for high-dimensional models [3] which will benefit from

more efficient online hypotheses testing procedures.

In this thesis we explore how reinforcement learning tools and prior assumptions

on the correlation structures of the hypotheses can be leveraged to create more powerful

online hypothesis testing procedures. We propose the use of Thompson sampling as this

balances the exploration – exploitation tradeoff encountered testing multiple hypothesis

sequentially. We then examine the size of this effect using both synthetic data and a

simulated data obtained from an article studying pollution in different street layouts.

The structure of the thesis is as follows. In Chapter 2, we begin this thesis by

going through related work and finally introducing two common online hypothesis pro-

cedures called alpha spending and alpha investing. In Chapter 3 we delve deeper into

online hypothesis testing and examine its connection with reinforcement learning. We

also discuss the exploration – exploration tradeoff that burdens the online hypothesis

testing when the order of testing can be chosen during the procedure and present the

proposed algorithm to solve this: Thompson sampling. We continue in Chapter 4 by

providing empirical evidence that methods mentioned in Chapter 2 can gain statistical

power by choosing the order of hypothesis using Thompson sampling. This is done

by running three experiments: with synthetic and simulated data. We then examine

further questions brought by the thesis and the experiments in Chapter 5. Finally we

conclude the thesis in Chapter 6.



2. Background

In this chapter we concentrate on defining the key concepts of probability theory,

decision theory and statistical hypothesis testing that are behind online hypothesis

testing. Finally we present two important online hypothesis testing procedures: alpha

spending and alpha investing.

2.1 Probability Theory

The root of statistical decision theory and thus of hypothesis testing lies in proba-

bility theory [4]. Therefore it is worth the time to recap its most integral concepts.

Probability theory itself is a means to model randomness behind real-life events.

In order to treat probability formally we begin by defining the fundamental con-

cept of a probability space. A probability space (Ω,F , P ) is a triplet consisting of a

sample space Ω which refers to all possible outcomes of an experiment, a σ-algebra F

which refers to a family of the sample spaces subsets where probability is defined and

a probability measure P which satisfies the axioms of probability (i.e. P is a measure

such that P (Ω) = 1).

An important concept in probability is the one of a random variable. Given a

probability space, a random variable is simply a function X from the sample space

Ω into another space, often the real number space R. In this thesis, we will only

consider real valued random variables. In practice, they are often used to represent

the observed sample of an experiments [5]. If X is a random variable and A ∈ R, the

measure P (X−1(A)) is called the distribution of X [5].

3



4 Chapter 2. Background

The expectation of a random variable X is the weighted average of the values

taken by that random variable [5]. It is especially useful in summarizing a distribution

into a single number. Formally the expected value of a random variable X is defined

as the Lebesgue integral with respect to the probability measure, i.e.,

E(X) =
∫
R
XdP.

When multiple experiments are conducted, a key concept is independence. We

say that two events A and B are independent when

P (A ∩B) = P (A)P (B).

This assumption is often made to greatly simplify statistical models. In practice this

assumption is almost always wrong, but given that it is often not in the interest to

test hypotheses that are known to be greatly dependent, it can often be approximately

true and thus a justifiable assumption to make.

When multiple random variables are not independent usually information on

one provides information about the rest. Conditional probability is the right tool for

representing this phenomenon. Conditional probability is defined as

P (A | B) = P (A ∩B)
P (B)

where A and B are events. The conditional probability can also be taken with respect

to a random variable where P (A | X) is the conditional probability of an event A given

a random variable X and it is itself a random variable dependent on the events of X.

An easy way of dealing with conditional probabilities and a way of making infer-

ences of unobserved random variables given some observations is obtained through the

Bayes theorem

P (A|B) = P (B|A)P (A)
P (B)

which follows from the definition of conditional probability. One way of thinking of

Bayes theorem is that starting with some prior distribution P (A) which corresponds

to our initial beliefs of the random variable A, we update the distribution based on the
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observed data B. The distribution P (A|B) is called the posterior distribution and it

expresses our beliefs of A after observing the random variable B [6].

2.2 Decision theory

Another key sub field of science concerning hypothesis testing is the one concerning

optimal decision making. We need three elements to define a statistical decision prob-

lem: a parameter space Θ, a decision space D and a real valued loss function L defined

on Θ×D. The parameter space Θ represents all possible states of nature for some pa-

rameter of interest. The decision space D reflects the actions available for the decision

maker. The loss function can be thought of as a penalty that a certain action gives in

a given state of nature. The triplet (Θ, D, L) is called a game [7].

For any real-world problem, decisions are made based on data. We thus allow

for observation of a random variable X whose distribution depends on some state of

nature. A statistical decision problem is defined as a game coupled with an experiment

with a random variable X whose distribution is Pθ where θ is some state of nature [7].

Our goal is, based on that random variable, to make an inference on θ such that the

loss function is minimized.

In order to do this we define a decision rule δ which is a function from the sample

space Ω to the decision space D. In hypothesis testing, where by definition the decision

space is binary i.e. D = {d0, d1} where d0 signifies the acceptance of a hypothesis and

d1 the rejection, a decision rule can be thought of as a subset of the real valued space

S1 ⊂ R, with the understanding that decision d1 is taken if the random variable of

interest X falls in S1 and d0 otherwise [7].

A common loss function is the 1-0 loss. It has the value 1 when a correct rejection

is done and 0 otherwise. This is what will be minimized in statistical hypothesis

testing [4]. The loss function, however, depends heavily on the unknown random

variable X. Therefore we need to define a more general measure of optimality. We do

this by defining the risk R(θ, δ) corresponding to the loss function L as the expected



6 Chapter 2. Background

value over the sample space of L given that θ is the true state of nature. Formally

stated:

R(θ, δ) = Ep(x|θ)(L(θ, δ(X))).

This performance measure no longer depends on the random variable X but only on

the decision rule and the true state of nature.

2.3 Statistical Hypothesis Testing

Statistical hypothesis testing is a form of statistical inference where the truth of a

given hypothesis is evaluated based on some data. In the words of statistical decision

theory it is a statistical decision problem with a binary decision space ("accept" and

"reject") [7]. Statistical hypothesis testing has since its creation gained a foothold as a

fundamental part of modern experimental science. It is widely used in areas of ecology,

economics, biology, and medical sciences to name a few.

More formally in statistical hypothesis testing we want to make an educated

decision of a binary hypothesis concerning a parameter θ ∈ Θ based on a sample X

whose distribution is Pθ. The process begins by partitioning the parameter space into

two exclusive sets Θ0 ∪ Θ1 = Θ. Commonly we refer to the statement H0 : θ ∈ Θ0

as the null hypothesis. The opposing statement H1 : θ ∈ Θ1 is called the alternative

hypothesis. The experimenters’ problem is to choose the correct hypothesis. Often

the null hypothesis is treated very differently from the alternative hypothesis. The

null hypothesis is not proved but accepted without evidence. When enough evidence

is gathered against it, it can be rejected in favor of the alternative hypothesis. This

favoritism of the null hypothesis makes us consider the two kind of errors that can be

made when testing a hypothesis differently. The experimenter can either reject a true

null hypothesis or fail to reject a false null hypothesis. These are called type I and type

II errors, respectively.

As mentioned in Section 2.2, the decision rule can be seen as a subset of the

sample space. Critical region is defined as the subset S1 ⊂ R of real line where the null
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hypothesis is rejected when X ∈ S1, where X is the the random variable of interest.

The complementary region is called the region of acceptance S0 = Sc
1. In order to limit

the type I errors the probability of a null hypothesis being rejected given that it is

true P (X ∈ S1 | θ ∈ Θ0) is bounded from above by some level α. This constant α

is called the significance of the test. The significance is arbitrarily chosen since there

is no hard limit on the tolerated probability of type I errors [4]. In practice it is by

convention often set to 0.05 [8]. In addition to limiting the type I errors we want to

minimize the type II errors, or in other words, to maximize power which is defined as

P (X ∈ S1 | θ ∈ Θ1).

Often instead of working with the sample itself, one calculates a summary of

it that discriminates between the null hypothesis and alternative hypothesis. Such

transformations of the sample space are called test statistics. Otherwise the process is

the same.

In single hypothesis testing, experimenters have moved to giving p-values of a

test instead of simply informing whether it was accepted or rejected [9]. P-values are

defined as the smallest significance at which the null hypothesis would be rejected if

the null hypothesis is true. More formally

p = inf(α : X ∈ Sα)

where Sα is a critical region of significance α. P-values are a measure of how extreme

the experimenter regards this sample to be, if the null hypothesis is true. P-values

not only give us more information of the test but also allow each experimenter to use

their individual significance in rejecting the hypothesis [9]. Note that technically p-

values need not exist for a test but we only focus on situations where they are readily

available.

An important property of p-values is that they are distributed super-uniformly

under the null hypothesis. That is

Pθ(p ≤ u) ≤ u
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for any u ∈ (0, 1) and all θ ∈ Θ0 as long as supθ∈Θ0 Pθ(X ∈ Sα) ≤ α [4]. This property

is assumed for all p-values in this thesis. This means that if a hypothesis is rejected

whenever p ≤ u the maximum probability of a rejection under the null hypothesis is u.

This property is useful to keep in mind as it ensures that if a hypothesis is rejected when

the p-value is smaller than a predefined level α, the probability of a falsely rejecting

the null hypothesis is bounded from above by α.

2.4 Multiple Hypothesis Testing

In multiple hypothesis testing multiple tests are performed simultaneously. The central

problem in multiple hypothesis testing is that using the same significance level for each

hypothesis as in single hypothesis testing will result in more of type I errors than is

acceptable.

Using the notation by Benjamini and Hochberg [10], we have a family of m

hypotheses H = {H1, H2, . . . , Hm} of which m0 are true. These hypotheses are then

tested at individual levels αi. In order to control for the number of false hypotheses,

the level αi at which each hypothesis Hi is tested at is often considerably lower than

the significance allocated for the complete procedure α.

The summary of the testing situation can be seen in Table 2.1. The term R

which stands for rejections is the number of rejected hypotheses total. The terms U,

V, T and S stand for the number of true negative, false positive, false negative, and

true positive decisions. Here R is an observable random variable compared to U, V,

T and S which are unobservable random variables.

Table 2.1: Number of errors committed when testing m null hypotheses taken from [10].

Non-significant Significant Total

True null hypothesis U V m0

Non-true null hypothesis T S m−m0

m−R R m
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As incorrect conclusions might be drawn for every type I error, we wish to min-

imize the term V while simultaneously maximizing the number of rejected false hy-

potheses S. As is with testing single hypothesis, some bound is set for the type I errors

while the number of rejections of false hypothesis is maximized. A common way of

achieving this for multiple hypotheses is to bound the probability of having a single

type I error. This is exactly what the family-wise error rate (FWER) measures [11].

More formally, using the notation of Table 2.1:

FWER = P (V ≥ 1).

Control of FWER is important when a single false rejection leads to wrong con-

clusions [10]. Such is often the case in clinical trials when determining early stopping

of a study. In most cases this is too conservative resulting in little statistical power,

especially when the number of hypotheses is high.

Another common type of error is the false discovery rate (FDR) [10]. FDR is

defined as the expected ratio of false rejections to all rejections that is

FDR = E( V
R ∨ 1).

The maximum is taken in order to deal with cases that have zero rejections. This

measure is more suitable for cases where false rejections do not affect the conclusions

of other hypotheses. Further error rates exist but they have received less attention in

the literature.

Both of these error rates have a myriad of variants that have been invented be-

cause of specific needs or ease of calculation. Most notably k-FWER is a less restrictive

version of FWER that limits the probability of making k type I errors. One notable

variant of FDR is the marginal FDR (mFDR). We use a definition from [5] and define

mFDRη = E(V)
E(R) + η

where η > 0 is some constant typically chosen as η = 1 or η = 1− α [2].

We speak of weak control when this error rate is controlled under the complete

null hypothesis i.e. when all null hypotheses are true. Weak control however in most
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cases is inadequate. Alternatively, strong control of an error rate means that it is

controlled under all combinations of true and false null hypotheses. Note that any

procedure that controls FDR controls FWER weakly [10]. In other words, if all null

hypotheses are false, the probability of a procedure controlling FDR declaring a type

I error is bounded by its significance. Also any procedure that controls mFDR1−α at

level α weakly controls FWER at level α [3].

2.4.1 Bonferroni Procedure

The simplest form of multiple hypothesis correction and one that we are going to

present as an example is the Bonferroni correction. The Bonferroni procedure is not

an example of online hypothesis testing but of batch hypothesis testing which means

that all of the hypotheses are tested simultaneously. It is presented since it is widely

used and it provides good intuition for the following methods. Bonferroni offers strong

control of FWER for a family of m hypotheses at any significance level α. It does

this by testing each hypothesis at with the significance of α
m
. Using the union bound

(also known as first-order Bonferroni Inequality) it is straightforward to prove that this

method controls FWER:

P (V ≥ 1) = P (
m0⋃
i=1

pi ≤
α

m
) ≤

m0∑
i=1

P (pi ≤
α

m
) ≤

m0∑
i=1

α

m
≤ α (2.1)

Although the Bonferroni procedure is simple, more statistical power can be ob-

tained using one of many sequential procedures such as the Holm-Bonferroni method

presented by Holm [12].

Notice that in the proposed proof (Equation 2.1), the hypotheses need not be

tested at the same level of significance. Testing each hypothesis at level αωi when
m∑
i=1

ωi = 1 is called the weighted Bonferroni procedure.
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2.5 Online Hypothesis Testing

Online hypothesis testing as a form of multiple hypothesis testing differs from the

traditional batch testing where the hypotheses are obtained simultaneously by having

the hypotheses received one at the time. After a hypothesis is received it must either

be accepted or rejected immediately before receiving the next hypothesis. The number

of hypotheses can be undetermined before the procedure and may even be infinite.

Another motivation for testing each hypothesis one-by-one is that there is a lot of time

between obtaining the hypotheses or that the testing of the hypotheses has a high cost.

Online methods can be used to solve traditional batch testing problems. With

appropriate prior information on the probability of rejections and carefully designed

testing process this can result in more power than using a traditional batch testing

method such as the Holm-Bonferroni procedure [13]. Most often, however, the number

of conducted tests is not known in advance or the hypotheses are obtained one at the

time and thus the use of online hypothesis testing is required.

We investigate a case when the choice of the next hypothesis itself may be depen-

dent on the current and prior rejections. This is the case in interactive data exploration

since the experimenter chooses the next hypotheses based on what they have learned

from the prior hypotheses. Other real-life use-cases of online hypothesis testing include

in A/B testing conducted by internet companies, early stopping of clinical trials and

quality-preserving databases for multiple researchers to test multiple hypotheses on the

same data [13].

Many online hypothesis procedures exist but we are going to go through the most

important to interactive data exploration where the number of hypotheses typically is

not known in advance.
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2.5.1 Alpha Spending

Alpha Spending can be viewed as the online generalization of the Bonferroni correction

[14]. Although it is equivalent to weighted Bonferroni when the number of hypotheses

is known it is convenient to view this procedure in terms of "spending" the available

significance. Alpha spending begins by choosing an initial amount of alpha wealth

W (0) = α where α is the significance of the procedure. Instead of spending all of the

wealth equally (as in Bonferroni procedure), each individual hypothesis Hi is tested at

a level αi which is chosen before observing the hypothesis such that 0 ≤ αi ≤ W (i−1).

The wealth is correspondingly updated as

W (i) = W (i− 1)− αi.

The term αi corresponds to the amount of wealth used for testing the ith hypothesis

and W (i) corresponds to the amount of wealth left after testing that hypothesis.

As long as the wealth remains non-negative (that is αi ≤ W (i − 1)), FWER is

controlled at level α. The proof as presented in Equation 2.2, resembles much to the

one presented in Equation 2.1.

P (V ≥ 1) = P (
m0⋃
i=1

pi ≤ αi) ≤
m0∑
i=1

P (pi ≤ αi) ≤
m0∑
i=1

αi ≤ W (0) = α (2.2)

The last inequality holds since if the wealth is not allowed to be negative as∑m0
i=1 αi ≤

∑m0
i=1W (i−1)−W (i) ≤ W (0). This means that once the wealth is depleted,

no more hypotheses can be tested.

The choice of significance allocated for each hypothesis is a non-trivial question.

In clinical trials, where alpha spending is often used, an alpha spending function a(t),

where t signifies the fraction of information available, is often chosen prior to the

experiment. This method introduced by DeMets and Lan [1] allocates a significance

of αi = a(ti) − a(ti−1) for each hypothesis. In clinical trials this method is allows the

number of interim analyses and their calendar times to be chosen during the experiment

as opposed to before it [1]. This method controls FWER as long as α(t) is an increasing

Henri Suominen
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function such that a(0) = 0 and a(1) = α. Here the input of the alpha spending function

t represents the fraction of information when a statistical test is conducted [1].

For clinical trials this method allows a great deal of flexibility while still offering

a statistical guarantee against type I errors. Unfortunately, as is with Bonferroni

correction, a drawback of this method is that it often is too conservative resulting in

loss of statistical power [15].

Typically the amount of alpha spent on each hypothesis is chosen in advance

with an alpha spending function. When this is not the case, one must ensure that the

Equation 2.4 holds as is with the procedure presented next.

2.5.2 Alpha Investing

Another method that has been proposed for online hypothesis testing is alpha investing

introduced by Foster and Stine [3]. Alpha investing is inspired by alpha spending but

unlike alpha spending it controls mFDRη instead of FWER. This allows for drastically

more statistical power.

In alpha investing we start with an initial wealth of W (0) = αη. When a hypoth-

esis Hi is tested at level αi the wealth is updated as follows:

W (i) = W (i− 1)− (1−Ri)
αi

1− αi
+Riω

where Ri ∈ {0, 1}, which stands for rejection, is the outcome of the test Hi i.e.

Ri =


1, if pi ≤ αi

0, otherwise

and ω ≤ α is a reward gained for rejecting a hypothesis. This reward is customarily

set as α as this maximizes the power of the procedure. The name investing comes from

the fact that wealth can be gained if a hypothesis is rejected.

The function of the previous rejection

αi = IW (0)({R1, R2, · · · , Ri−1})
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which determines the level of significance αi used for hypothesis Hi is called an alpha

investing rule. The alpha investing rule that was originally presented by Foster and

Stine [3] is as follows:

IW (0)({R1, R2, · · · , Ri−1}) = W (i− 1)
1 + i− k∗

(2.3)

where k∗ is the index of the hypothesis that was last rejected. This rule works

especially well if the false hypotheses arrive in batches.

This procedure controls mFDRη at level α if for all tests Hi,

Pθ(Ri = 1 | Hi−1, Hi−2, · · · , H1) ≤ αi (2.4)

holds for all θ ∈ Θ0. This condition is weaker than independence of the hypotheses

although assuming the independence of the hypotheses is a practical way to satisfy this

condition [3].

Due to controlling different error rates, alpha investing is considerably more pow-

erful than alpha spending, especially when the proportion of false null hypotheses to

true null hypotheses is high. On the other hand the assumption given by Equation 2.4

might be too restricting to be used for all problems and is might lead to more type I

errors.

Alpha investing is a special case of generalized alpha investing (GAI) [15]. Gen-

eralized alpha investing allows for greater freedom for the experimenter in choosing

the amount of reward gained from rejecting a hypothesis. More formally under GAI

the initial wealth is W (0) = αη and after each hypothesis Hi is tested at level αi the

wealth is updated to

W (i) = W (i+ 1)− ϕi +Riψi.

Here ϕi refers to the amount of wealth that is invested each test and ψi is the reward

that is gained on each rejection.

In order to control mFDRη the generalized alpha investing rules

(αi, ϕi, ψi) = IW (0)({R1, R2, · · · , Ri−1})
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must further satisfy the following three inequalities: ψi ≤ ϕi + α, ψi ≤ ϕi

αi
+ α− 1 and

ϕi ≤ W (i− 1) [16].

The GAI procedure can also be used to control FDR at level α(1 + η) when the

p-values are independent [16]. Adjusting the method to control FDR at lower levels is

possible, but this comes with a substantial loss of power.

2.6 Reinforcement Learning

As this thesis explored similarities between online hypothesis testing and reinforcement

learning, a section is dedicated to a brief summary of reinforcement learning. The

connection is further and the exploration – exploitation problem are further examined

in the following chapter.

Reinforcement learning is one important paradigm of machine learning. Its goal

is to learn the mapping from situations to actions that maximizes a reward signal

without a direct input on the optimal action but it must learn the reward maximizing

action by trial-and-error [17]. It simultaneously refers to the computational problem,

solutions to that problem, and the field that studies that problem [17].

Reinforcement learning has taken large inspiration from biological systems [17].

In fact out of all forms of machine learning, reinforcement is the closest to the way

that humans learn [17].

What distinguishes reinforcement learning from the other main paradigms of

machine learning is that in it, an agent learns directly from interacting with an en-

vironment. An agent refers to the decision maker trying to learn the mapping from

situations to actions while interacting with an environment. When interacting with the

environment, the agent gains access to reward signals which guide the agents future

actions. The goal of the agent in reinforcement learning is to maximize the cumulative

reward.

Formally, in addition to the agent and the environment, the main subelements of

a reinforcement problem are a policy, a reward signal, a value function, and, optionally,
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a model of the environment [17]. The policy refers to the way of the agent to act in

a specific situations. It can be thought as a mapping from state to actions. Choosing

the correct policy may depending on the state may allow the agent to obtain a reward

signal.

The reward signal is the value that ought to be maximized. The reward signal

provides a way to inform the agent what should be achieved [17]. For example, the

reward of an agent learning a game (such as chess or go) could be 1 when a game is won

and 0 otherwise (in chess, a reward of 1
2 could be awarded in case of a tie to prevent

the agent from learning to take desperate actions in drawn positions). It is vital to

define the reward to match the underlying goal of the agent.

Value is the future expected reward. The value function indicates the long term

reward while the reward signal is immediately acquired form the environment. The

sole purpose of modeling the value function is to achieve better long term reward [17].

The fourth and optional element of reinforcement learning is model of the en-

vironment. The model the agent allows to make predictions of the reward without

directly interacting with the environment. This is not strictly necessary as the agent

may directly interact with the environment but it may help it to generalize faster.

One defining challenge in reinforcement learning problems is the exploration –

exploitation trade-off [17]. Making use of the most promising policies (exploiting the

current knowledge) may lead to missing even higher reward policies. On the other

hand, using all the available time for exploration leads to the agent to try suboptimal

policies in order to learn more about their true value function in order to find higher

reward policies (exploring). This challenge, although heavily researched for decades, is

not fully solved [17].

Given that this problem has an exploration – exploitation trade-off, it is very

natural to look towards reinforcement learning which is partly characterized by this

problem.

The three elements of reinforcement learning can also be found from online hy-
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pothesis testing. Using the terminology of reinforcement learning, an agent (experi-

menter) must choose a policy (the amount of wealth used to test the next hypothesis)

while receiving a reward signal (1 if the hypothesis is rejected, 0 otherwise) while opti-

mizing the value function which is the expected number of rejections of the procedure.

False rejections need not to be worried about since the using online hypothesis proce-

dures such as alpha investing guarantees that the ratio of false rejections is bounded

by an acceptable level. This means that we can state the online hypothesis problem

as a reinforcement learning problem and use already established methods to solve it.

The fourth element, model of the environment, can optionally be defined in order for

the algorithm to generalize faster.





3. Methods

In this chapter we define our research problem formally as a computational problem.

We investigate the relationship and applicability of reinforcement learning methods

for online hypothesis testing through the exploration – exploitation tradeoff. We then

present different natural correlation structures which (if true) can be harnessed to gain

power in online hypothesis testing. Finally we shortly discuss another significant way

of gaining power in already established online hypothesis testing procedures: choosing

the optimal investing rule.

3.1 Stating The Problem

When it comes to online hypothesis testing there are two ways of improving the power

of an existing procedure. The first is in improving the order of the hypotheses. The

ordering is important as many procedures get more powerful after rejecting hypotheses.

If the hypotheses that are likely to be rejected are tested first, more power will be gained

for later experimenting. Also, many investing rules test earlier hypotheses at a higher

level of significance due to the uncertainty towards the number of hypotheses. The

second one is in finding a more efficient way of distributing the wealth. We focus on

improving the order of the hypotheses based on the information that is acquired during

the hypothesis testing process.

We define the goal explicitly as a computational formal problem as follows:

Problem 1. Given a set of hypotheses H = {H1, H2, . . . } and the corresponding test

statistics T = {T1, T2 · · · }, which order of testing the hypothesis will maximize the

19
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expected power of a given online testing procedure?

Such problems arise often in interactive data exploration when the experimenter

needs to decide the next hypothesis to be tested based on the already tested hypotheses

while still controlling the false discovery rate. Another case when hypotheses are tested

sequentially comes when there is a high cost associated with each test. In this case

the experimenter wishes to obtain a rejection as soon as possible. More use cases are

explored in Chapter 4.

The hypotheses should generally be tested in an descending order based on their

likelihood. In their article, Foster and Stine [3] coin this the "Best-foot-forward pol-

icy". This is mainly because many methods (such as alpha-investing) gain more power

after they reject hypotheses, but also because many investing rules (at least when the

number of hypotheses is unknown) test each hypothesis with a decreasing amount of

significance, resulting in more power given to the early hypotheses. This is done in

order not to deplete of the alpha wealth and to ensure that most of it is used if the

number of hypotheses ends up being small.

3.2 Exploration – Exploitation Trade-off

The optimal order of the hypotheses depends on the information we gain during the

process of hypothesis testing. The information comes through modeling the joint dis-

tribution of the test statistics. This way testing a single hypothesis (and thus observing

its test statistic) allows us to calculate the posterior distribution of the test statistics

using the Bayes rule. Based on this posterior distribution we can then choose the next

hypothesis to test (and thus which test statistic to observe next).

Since testing new hypotheses reveals new information on the rest of the hypothe-

ses there is an exploration – exploitation trade-off inherently built in to the problem. It

would be natural to choose the hypothesis that is most likely to be rejected. However

this may leave some regions of the joint distribution completely unexplored resulting

in a lack of power. A balance must be struck between exploiting the current knowledge
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of the joint distribution of the test statistics and learning more about it.

One tool in reinforcement learning where the same exploration – exploitation

problem is especially visible is in multi-armed bandits. The basic version of a multi-

armed bandit is an algorithm that has K possible actions to choose from (which are

often referred as arms) [18] and T rounds. During each round the algorithm must

choose an arm. From each action it gains a random (but with a fixed distribution)

reward specific to that arm [18]. The name multi-armed bandit is inspired by a scenario

where a gambler must choose from several slot machines that yield different amount of

payoff [18].

Online hypothesis testing bears many similarities to multi-armed bandits when

each hypothesis is seen as an arm. If the hypothesis is rejected a reward is obtained.

The main difference between our problem and the multi-armed bandits is that each

hypothesis (arm) is tested (pulled) only once. Since each arm is only pulled once, some

assumptions must be made on how the information is "leaked" to the other arms. These

correlation structures are discussed in Section 3.4.

Seeing the connection with the multi-armed bandit problem gives us justification

to use already existing algorithms in order to obtain an approximate solution to the

computational problem above.

Many solutions to multi-armed bandits have been proposed. The naive solution is

to sample each arm uniformly (uniform exploration strategy). A slightly more enticing

but still naive solution is to draw the most promising arm with a probability of 1−ε and

choose the arm uniformly with a probability of ε (ε-greedy strategy). These, however,

is not suitable for determining the order of the hypotheses since each arm can only be

sampled once. More refined solutions are Thompson sampling and Upper confidence

bound (UCB) -algorithms. We suggest Thompson sampling as it is easy to adapt for

hypothesis testing in general situations as shown below.
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3.3 Thompson Sampling

Thompson sampling starts by specifying a prior for all arms being the best arm. An

arm is tested with the probability that it is the best arm. When an arm is tested

the posterior probability of each arm being the best arm is computed and the process

repeats until a potential time limit is reached.

As an input it requires the set of all hypotheses of interest H and a prior joint

reward distribution P0. The reward can for example be chosen as the probability of

rejecting a hypothesis or as the absolute value of the test statistic. When using alpha

investing, we have to define the alpha-investing function IW (0) that defines the amount

of significance assigned for each hypotheses. This input is often not for Thompson

sampling necessary when applied to other use-cases than online hypothesis testing.

Thompson Sampling (H, P0, IW (0))

Choose a hypothesis H1 ∈ H uniformly to be tested first.

for each hypothesis Hi, i = 1, 2, · · · do
Test hypothesis Hi at level αi = IW (0)(Ti, · · · , T1).

Update the posterior distribution Pi = Pi−1(· | Hi).

Sample the reward µt from the posterior distribution Pi.

Choose the next hypothesis to correspond to the highest µi.
end

Algorithm 1: The pseudocode for Thompson sampling

The prior distribution and likelihood can be chosen freely but especially fast

algorithms exist for choosing the arm if it follows the the beta-binomial or Gaussian

distribution [18].

Thompson sampling deals with the exploration – exploitation tradeoff by con-

centrating on the more promising hypotheses. It does however have a smaller positive

probability to choose each hypothesis providing a chance for exploring even the more

improbable hypotheses.

Thompson sampling also has theoretical properties that make sure that the result
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is adequate. The important results come from reinforcement learning literature where

it is shown that the procedures regret can be bounded. Regret at time T is defined as

the reward

R(T ) = µ∗ · T −
t=T∑
t=1

µ(at)

where µ(at) is the reward from the action chosen at time t and µ∗ is the expected

reward from the best arm [18]. Regret is linearly dependent on the reward (which in

turn is determined by the loss) meaning that bounding expected regret allows us to

give bounds to expected rewards if the expected reward from the best arm is known.

It can be shown that Thompson sampling with 0-1 rewards and an independent

uniform priors achieves an expected regret

E(R(T )) ≤ O(KT log T )

where K is the number of arms and T is the number of time steps [18]. The same

bound is also achieved with independent Gaussian priors and unit-variance Gaussian

rewards [18]. Unfortunately this bound is not very useful if one views each arm as a

hypothesis, since K would be very large.

3.4 Structure of the Hypotheses

If we want to learn which hypotheses are the most promising, we need to make as-

sumptions on their structure. This is demonstrated with the fact that no learning can

happen when the hypotheses are independent. In this section, we present different

types of assumptions that are useful in real life cases. To be precise, we inspect three

cases: independent hypotheses, the test statistics follow a topic model and the test

statistics are a Gaussian process.

3.4.1 Independent Hypotheses

Although independence is a very strong assumption, it is often made to simplify the

decision process. Unfortunately, in this case, the information of testing other hypothe-
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ses cannot be used to model the future hypotheses. This is exemplified by the following

equation:

P (Tm|T1, · · · , Tm−1) = P (Tm)

which hold for each m.

Thompson sampling would therefore not update the posterior distribution but

only sample the order of hypotheses based on the prior. Since no learning is happening,

using Thompson sampling is not suggested. This demonstrates that some assumptions

on the structure of the hypotheses are indeed necessary in order to learn a more optimal

ordering of the hypotheses during the testing process.

For this reason, in this special case, the importance of the amount alpha wealth

spent for each hypothesis becomes much more important.

3.4.2 Topic model

Another structure of the hypothesis that we are going to inspect is the topic model. It

assumes that the hypotheses come from K independent topics. All the hypotheses are

then conditionally independent given the topic.

This setting mimics the setting of a traditional multi-arm bandit. Each topic

(arm) has a sequence of independent hypotheses with a differing proportion of null hy-

potheses to alternative hypotheses (which results to a differing payoff). The difference

between this structure and traditional multi armed bandit problem is that an arm can

deplete, meaning that all of the hypotheses of a certain topic can run out.

Formally this model can be described followingly:

P (Tm | T1, · · · , Tk) =
∑
i

P (Tm | T1, · · · , Tk, zi)P (zi | T1, · · · , Tk)

=
∑
i

P (Tm | zi)P (zi | T1, · · · , Tk)

∝
∑
i

P (Tm | zi)
k∏
l=1

P (Tl | zi)P (zi) (3.1)

where P (Tm | z) is the distribution of the test statistic given the topic z.
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In practice such structures are often assumed for text analysis where the prob-

ability of each word is dependent on the topic of the text. In physical sciences a

confounding factor such as the season or the time of day (day or night) can cause

observations to follow such pattern.

3.4.3 Gaussian Processes

In nature it is common for all hypotheses to be correlated to each other at various

levels. We model this situation by assuming that the joint distribution of the test

statistics corresponding to the hypotheses is normally distributed with a known mean

and covariance matrix. In other words we use Gaussian processes to model the test

statistics.

This type of correlation structure occurs in nature often due to spatial or temporal

location. For example, Nearby pollution detectors are most likely have similar levels of

pollution while more distant detectors are less correlated. For this reason predictions

by Gaussian processes have been widely used in sciences such as meteorology and

geostatistics where the method is known as kriging [19].

The idea behind Gaussian processes is to define a distribution over functions [19].

This distribution is then conditioned on the training set points [19]. The predictions

can then be sampled from the resulting posterior distribution.

Since usually only a modest number of hypotheses are tested at the time, we

employ a form of kriging which is called simple kriging in geostatistics. This assumes

both the mean and covariance function to be known. Specifically, the covariance matrix

is generated by a covariance function K which specifies the correlation between two

points. The mean is conventionally set to 0 as this has a lesser impact on the resulting

model. Under these assumption, conditioning the distribution on the observed results,

one can obtain the following posterior distribution for the unobserved test statistics:

f ∗ | X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f,

K(X∗, X∗ −K(X∗, X)K(X,X)−1K(X,X∗))), (3.2)
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where f ∗ and f are vectors containing the unknown and known samples respectively,

X∗ and X are their corresponding features, and K is the covariance function [19].

The covariance function quickly presented above is an approach to encode the

assumptions on the correlations of the data points based on some features [19]. Simply

put, it defines the similarity of the data points.

A commonly used covariance function is the squared exponential function. The

squared exponential covariance function is defined followingly:

Kse(r) = exp( r
2

2l2 ),

where l is called the characteristic length-scale and r = |x1−x2| is the distance between

the two data points [19]. The characteristic length-scale corrects for the scale of the

points.

In practice this means that points which are nearby in terms of their covariates

are highly correlated while far-away points have very low correlations. The squared

exponential function is infinitely differentiable resulting in it appearing very smooth

[19]. In theory this level of smoothing is most often unrealistic, but it is nevertheless

very popular [19].

3.5 Optimal Investing Rule

The other consideration that must be made is the amount of wealth that is spent

for each hypothesis. The basic idea is that spending too much significance for each

hypothesis results in the significance depleting before all the hypotheses are tested. On

the other hand, spending too little results in loss of power as the remaining significance

ends up being wasted.

The situation when alpha wealth ends prematurely ending the exploration process

has been referred to as alpha-death [13]. This alpha death can be avoided by employing

thrifty investing rules, meaning rules that never use all of their alpha wealth. This is

recommended if the number of hypotheses is unknown. The problem is not, however,
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completely solved by employing thrifty investing rules as the amount of significance

left may not be able to be enough to reject any of the remaining hypotheses. Although

important, when compared to the ordering of the hypotheses the investing rule is less

important with alpha investing [3].

Multiple different investing rules have been proposed in the literature on top of

the one presented in Equation 2.3. A comparison of multiple different investing rules

can be found by Zhao et al. [2] with some more presented in the original article by

Foster and Stine [3].

The optimality of investing rules naturally depends on the assumptions that the

experimenter is willing to make. For example, the investing rule presented by Foster

and Stine [3] and in 2.3 works best when the hypotheses are clustered. For a general

purpose a simple investing rule is to spend a fixed proportion 1 − β of significance

for each hypothesis while saving a proportion of β of the significance for future tests.

This is known as the β-farsighted rule and it has been found to be the best policy

if the number of hypotheses is unbounded [2]. On top of its good performance it is

easy to implement and, due to its simplicity, to justify. The β-farsighted rule test each

hypothesis at significance level of

W (i− 1)(1− β)
1 +W (i− 1)(1− β) .

The parameter beta controls how long the testing procedure lasts. When there are

expected to be only few hypothesis a large value for beta should be chosen. Conversely

if there are a large number of hypotheses a large value for beta will make sure that

enough wealth is saved for the testing of the later hypothesis
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In this chapter we experiment on how much statistical power can be gained by ex-

ploiting the knowledge of the structure of the data when comparing it to testing the

hypothesis in a random order. Firstly, we demonstrate that this is the case in the

simplest non-trivial case with synthetic data following a mixture model. The more

realistic synthetic data is created to better understand the methods and to find its

power in an ideal situation. Finally the methods are tested in a more practical setting

to investigate their usability in practice.

We begin this chapter by presenting the data. After this we go through each

experimental set-up and their goals. Finally we present and discuss the results of each

experiment separately.

4.1 Materials

Three datasets are explored in this thesis, two synthetic data set created for the purpose

of the experiments and a real-life dataset.

4.1.1 Synthetic Topic Model Data

In order to estimate the effectiveness of incorporating prior structural information in

online hypothesis testing, we begin by creating data matching the topic model. This

situation is created to resemble the multi armed bandit problem and it serves as a proof

of concept. The synthetic model has K different topics. The number of topics K is

varied during the experiment. For each topic, we create n = 100 independent p-values

29
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following a mixed beta binomial distribution

Gz(x) ∼ πzU(0, 1) + (1− πz)F1

where πz refers to the probability of a null hypothesis, U to the uniform distribution

and F1 to the distribution of p-values under the alternative hypothesis. The value of

πz is different under each K topics. To simulate the distribution F1 of p-values when

under the alternative hypothesis, we use a beta distribution. The parameters of the

beta distribution (α = 0.064, β = 1.517) are chosen from a prior study estimating a

empirical distribution of p-values obtained from RNA-sequences [20], a common use-

case for multiple hypothesis testing.

The distribution of p-values used for the experiment can be seen from Figure 4.1.
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Figure 4.1: Raster of mean particles in the data set explored in experiment 3.

4.1.2 Synthetic Simplex Noise Data

A more practical situation in hypothesis testing is that all of the hypotheses have

certain correlations with each other. For this purpose we create a data set inspired by

the following the simulated data set so the ideal setting can be created and explored.

We use simplex noise to represent the ground truth test statistic values. Simplex

noise creates a smooth looking data set where data points have similar values with

nearby points. In order to add a greater element of randomness, some Gaussian noise
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(having the mean of 0 and standard deviation of 1) is added on each data point.

Example of the data can be seen from Figure 4.2. The strength of the simplex noise

(referred as signal strength) is varied through the experiment. The signal strength of

k means that the simplex noise is scaled between 0 and k.

+ ⇒

Figure 4.2: Example of the synthetic data. The simplex noise on the left is added with the Gaussian

noise to create the synthetic data used on the right. Signal strength of 3 was used to create the figure.

Such raster of 500×500 is created and random points are chosen from this raster

uniformly. The Euclidean distance between these random points is used to create a

correlation matrix for Thompson sampling. The number of random points is chosen to

be n = 20. The noisy values of the simplex noise serves as the test statistics. Notice

that given how this data is created the test statistics are correlated with each other

depending on the distance between them.

4.1.3 Simulated Data

For the practical experiment we are going to use data set derived from a simulated

data set computed for the Kurppa’s masters thesis [21]. The original article studies

the effect of different city plans on pollution using a large-eddy simulation. The data

involves four city plans (including the heights of buildings, the surrounding terrain and

information on the tree canopy) for two different wind directions. From this dataset we

choose one layout in which the amount of simulated particles in every 2m× 2m× 1m

block for an area of 770m × 634m × 30m measured every 5s for an duration of an

hour. The first 100s averaged serves as our dataset. For our purposes we only inspect

the ground level (4 meters over the ground) as this was done in the original study.

Figure 4.3 shows a visualization of the used dataset. The data set has large areas with
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0 particles mainly on the top left and bottom right corners of the map. These points

are not investigated since they are not of interest for a researcher. Buildings are also

excluded since none of these points have any particles at the required height level.
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Figure 4.3: Raster of mean particles in the data set explored in experiment 3.

4.2 Experimental set-up

For our first proof-of-concept experiment we use the data generated in subsection 4.1.1.

As we model the p-values themselves instead of the test statistics, we do not specify a

statistical test as it works generally for any test. The hypotheses (to which the p-value

refers) are rejected when the p-value is below the significance that it is tested at.

The order of the tested hypotheses is determined by the Thompson sampling as

described in algorithm 1. The level of significance controlled by alpha investing is set

to α = 0.1. We use β-farsighted strategy where β = 0.9 as this parameter is suggested

to work well by Zhao et al. [2]. This is contrasted with the same hypotheses being

tested in a uniformly random order. The experiment is conducted m = 10000 times

and the power is then averaged in order to get more accurate results.

The effect of having different number of topics is experimented by repeating the
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experiment for each number of topics from K = 1 to K = 100. The class probabilities

of each topic is sampled uniformly between 0 and 1. Averaging over multiple trials

mitigate the randomness that this results in.

To recap, a total of n = 100 hypothesis are tested from K topics with different

probabilities of rejection. Thompson sampling automatically learns a testing strategy

that we hypothesize to be better than testing the same set hypotheses in a random

order which it is contrasted with.

The second experiment is an idealized version of a real-life dataset. Here each

hypothesis is properly treated as an arm in terms for Thompson sampling. The in-

formation of the test statistic then leaks into the other arms trough the updating of

the posterior distribution. Each test statistic (corresponding to the hypotheses) are

assumed to have a fixed correlation structure generated by the squared exponential

kernel introduced in subsection 3.4.3. The characteristic length-scale parameter of the

squared exponential kernel is varied during the experiment.

The null hypothesis is that each test statistic is fully comprised of random Gaus-

sian noise allowing us to calculate the one sided p-values for the online hypothesis

testing procedure using the following equations pi = 1 − φ(Ti) where Ti is the test

statistic and φ is the Gaussian cumulative distribution function. In other words, we

are testing if the data is fully comprised of the random noise and we reject the hy-

potheses if it has values larger than would be expected by the null hypothesis.

As with the first experiment the parameters for alpha investing are fixed at α =

0.1 and β-farsighted strategy is used with β = 0.9. The number of repetitions is again

fixed at m = 10000 in order to get a more accurate result.

Two scenarios are examined with the second data set. First we vary the charac-

teristic length-scale parameter of the correlation function. This is an important hyper-

parameter as it controls the amount that each hypothesis affects the other hypotheses

posterior probabilities. To be precise the values of kernel length varies between 1 and

250 every 25 steps while signal strength is kept at 3. In the second scenario the best
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kernel length is used to examine the effect of different levels of signal strength. In the

second scenario the kernel length is set as 50 since this performed the best in the first

scenario while the signal strength is varied between 1 and 10 every 1 step. Running

the tests with this way allows us to identify the effects of both variables separately.

The third experiment is a practical one. A regression model is trained over the

data set to predict the particle densities. We use a linear regression model trained on

the whole data set. This is done in order to leverage our current level of knowledge. If

the raw values were inspected instead of residuals we would not have a reason to expect

the data to be a Gaussian process with squared exponential kernel since it has different

areas which are known to have different level of pollutants, e.g. The courtyards have on

average less particles than the smaller streets which has less particles than the central

boulevard. The absolute difference between the true value and the prediction serves

as the test statistic. Because of the massive size of the raster, m = 100 points are

chosen randomly to be examined. In practice such situations are common since the

value of particle density is often only available from sensors which are sparsely located.

The ability test each statistic one by one is especially useful in cases where testing a

hypothesis has high costs involved.

The hypothesis is that the residuals of this model follows the standard normal

distribution. This means that the method of obtaining p-values is identical to the

one used in experiment 2. Practically this method allows us to find areas where the

model does not match the assumptions laid down. The standard deviation of this

distribution can be arbitrarily chosen to match the requirements of the model. In our

case the standard deviation is incorrect enough to give a good amount of rejections

with significance of α = 0.1 to compare the two methods. The amount of rejections

strongly depends on the null hypothesis which must be chosen on a case by case basis.
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4.3 Results

Three experiments are run as described in Section 4.2. The main results are visualized

in the following figures.

The results of the first experiment can be seen in Figure 4.4. Increasing the num-

ber of arms creates the power to resemble an inverted U-shape curve. This is due to the

way the data is created. The more topics there are, the "better" the best topic is. This

is because the probability of a hypothesis not following the null distribution is sampled

uniformly. When the number of topics grows too large, Thompson sampling does not

have enough time to explore all its possibilities and therefore it resembles more and

more of random sampling. As expected, random sampling performs approximately uni-

formly. The best performance is obtained when there were 7 different arms. After this

the performance slowly decays. It should be noted that even when the number of arms

equals the number of tested hypotheses, Thompson sampling performs considerably

better than random sampling meaning that it does not get stuck in the exploration

phase even in such an extreme case.
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Figure 4.4: Comparison of the statistical power of alpha investing when the hypotheses are ordered

using Thompson sampling and with random ordering with different number of topics.
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This simple artificial example shows that there exists situations where Thompson

sampling improves online hypothesis testing. In practice this type of situation could

arise from hypotheses belonging in fixed families which have different probabilities of

rejection.

The result of the second experiments first result can be seen in 4.5. Here the char-

acteristic length-scale of the kernel function is varied to see its effect on statistical power

of alpha investing. The characteristic length-scale has a distinct effect on Thompson

sampling’s performance. When the length-scale is too small, meaning that the poste-

rior distribution is not updated enough after testing each new hypothesis, Thompson

sampling performs at the same level as random sampling. When, the length-scale is

increased, the performance of Thompson sampling improves to be much better than the

one of random sampling. When the length-scale grows the performance of Thompson

sampling slowly decreases closer to the performance of random sampling. This is likely

due to the posterior probability of the non-correlated hypothesis are being updated

as well resulting in the real correlations being drowned by the noise. Ordering the

hypotheses randomly results in a approximately uniform power. With the best length

scale, Thompson sampling rejected 1.5 percentage points more of the hypothesis than

random sampling. The improvement gained by Thompson sampling is modest but not

too sensitive to the correct length scale kernel as long as it is in the right scale.

In the second scenario, the signal strength is varied. The results can be seen from

Figure 4.6. Thompson sampling beats random sampling consistently with each signal

strength although, again, the result is very modest. On average Thompson sampling

beats random sampling by 1.2%. The effect is largest with reasonable sized signal

strength and it is less pronounced with both very small and very large signal strengths.

In Figure 4.6 it looks like the effect is largest the larger signal strength. This is due

to there being more rejections overall and thus the difference although relatively small

appears large.

The results of the third experiment resembles the second one but they are more
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Figure 4.5: Comparison of the statistical power of alpha investing with Thompson sampling to

random ordering when the kernel length of the covariance function is varied.

pronounced. Similar to experiment 2, Figure 4.7 shows a clear difference between

the performance of the two methods. The effect is again non-existent with too small

of a characteristic length-scale of the kernel function. When the length-scale of the

kernel is increased to a reasonable length, the results are more pronounced. The same

overlearning phenomena is seen in the simulated data as in experiment 2 when the

length scale is too large, most likely for the same reasons.

The third experiment performed at best 6.8 percentage points better than random

sampling. This was achieved with a characteristic length-scale of the kernel function of

750. This proves that real gain in power can be obtained in practical situations. The

difference between the power gain in experiment 2 and 3 is likely due to the distribution

of the average particle residuals being smoother than in the synthetic data and such the

Gaussian processes are better able to model the joint distribution of the test statistics.
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Figure 4.6: Comparison of the statistical power of alpha investing with Thompson sampling to

random ordering when the signal strength is varied.
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Figure 4.7: Comparison of the statistical power of alpha investing with Thompson sampling to

random ordering with the simulated data when the kernel length is varied.



5. Discussion

In this chapter we discuss topics raised forth by this thesis. We begin by inspecting

the applicability of the methods raised forth in practice which is the main topic of this

chapter. We finalize it by talking of possible avenues for future research.

5.1 Are all of The Assumptions Warranted?

The benefit of the methods presented can only be expected if the assumptions laid down

are valid. Thompson sampling only requires the calculation of the posterior distribution

of the test statistics. The applicability of Thompson sampling therefore depends on

the ability to correctly calculate the posterior distribution of the test statistics.

In the example with simulated data the joint distribution of the test statistics was

assumed to follow a Gaussian distribution. The correlation of the test statistics was

also assumed to be dependent only on the distance between the two test statistics. This

is most likely incorrect since the structures on the geography of the raster causes the

residual points of the regression to have much more complicated correlation structures.

Even if that was not the case, having the correlations being defined by a squared

exponential covariance function is not completely warranted. It is however good to

remember that the point of modeling is not necessarily to be perfectly accurate as long

as it is useful. This setting is naturally a simplification but the fact that Thompson

sampling outperformed random sampling serves as evidence that this assumption is

useful in modeling such a situation.

Applying Thompson sampling to alpha investing presents another set of problems.

39



40 Chapter 5. Discussion

In experiment 1 the reward distribution is non-stationary. This is because the amount

of alpha wealth invested each turn can change depending on the past rejections. In

practice this does not seem to be too important in this case, but it is not advisable to

spend the wealth too quickly as this would result the spent alpha changing too quickly

and the probability of rejection might not be comparable to the one of the last tested

hypothesis. In the later experiments this problem was circumvented by modeling the

test statistics which is stationary instead of the reward distribution.

Another question that using alpha investing is in equation 2.4. In order to guar-

antee that mFDR is controlled at the required level this equation must hold. The

first experiment’s structure is broad enough for this to hold. Alpha investing natu-

rally works even without this assumption but since the statistical guard is lost, some

method of estimating the number of falsely rejected hypotheses would be desirable.

Constructing independent hypotheses would be the natural way make sure that this

constraint is met but that would in turn make any methods of learning the ordering

of the hypotheses impossible. If none of the results above, one can always use another

method of online hypothesis testing such as alpha spending which does not require this

equation to hold.

5.2 Arguments Against P-Values

Although p-values are a fundamental part of modern science they have gained a lot

of criticism during the past decades. The main issue in modern science is the lack of

reproducible results. Ionnidis [22] in fact argues that most published research is false.

This reproducibility crisis stems from the the misuse of p-values.

The issue spurred the American statistician association (ASA) to publish a state-

ment on p-values [8]. They bring forth multiple key issues in usage of p-values. ASA

points that p-values are commonly both misused and misunderstood [8]. P-values are

notoriously hard to interpret. A common misunderstanding is that p-values measure

the probability that a given hypothesis is true [8]. This is hardly surprising as they are
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often used as if that would be the case rejecting a null hypothesis solely based on the

p-value surpassing some arbitrary threshold (often 0.05). They also do not measure

the probability that the data were produced by random chance alone [8]. On top of

that, the interpretation of the rejected null hypothesis is often lacking. A rejected

hypothesis does not give information on the size or importance of an effect. Another

problem in using the p-values as the main tool in research is selective reporting. A

researcher is encouraged to find results that are significant at an arbitrarily level while

not reporting all the other experiments performed behind closed doors. This results in

another multiple hypothesis problem.

Most notably, these arguments have made the Basic and Applied Social Psychol-

ogy -journal to ban publications involving p-values [23]. In the editorial [23], the null

hypothesis significance testing is outright called "invalid".

In light of all this well deserved criticism it should be kept in mind that correctly

used p-values are an invaluable tool that have brought to a modern era of science.

It is hard to imagine the level of reproducibility crisis had no such statistical tool be

used at all. Even in light of the alternatives, the authors of an ASA special issue [24]

mentioned applications in which a "highly automated decision rule is needed and the

costs of erroneous decisions can be carefully weighed when specifying the threshold" to

be an example of a situation where it is warranted to use p-values. Multiple of these

types of applications exists for online hypothesis testing to tackle.

5.3 Comparison of The Error Rates

With all the error rates presented in Section 2.4 and many more existing in the litera-

ture, it is important to examine which situation should each error rate be used.

The control of the FWER is important in cases where a rejection of an individual

null hypothesis results in a false conclusion of a study [10]. This is the case for example

in clinical trials where a single interim rejection may lead into the approval of a drug.

A variant of FWER, k-FWER is likewise natural when k individual rejections beget a
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false conclusion.

Often FWER is however too stringent and a single false rejection is not worth the

loss in power. In most cases FDR is very enticing as it still assures that the rejections

are expected to be true positives to a degree chosen prior to the experiment. Although

formulated slightly differently, mFDR has the same appeal. After the procedure is over

the experimenter can be confident that only a small proportion of the rejections are

false.

In general, FDR and mFDR can be very different as shown by Javanmard and

Montanari in [16] with examples of highly correlated data. On the other hand, for

the most basic textbook example they behave very similarly as argued by Foster and

Stine [3].

Yet another option is not to use any multiple hypothesis correction (i.e. per

comparison error rate). This however is not suggested as it results in many false

positives.

5.4 Future Research

Online multiple hypothesis procedures are and will remain a heavily research area of

science. However the connection to reinforcement learning inspires future directions of

research.

One direction where such learning systems can be applied is in interactive data ex-

ploration systems to suggest the next hypothesis. Estimating the posterior probability

of each hypothesis that could be tested next allows for the experimenter to have more

information and consequently more power when testing hypotheses. This information

can be visualized in tandem with the hypotheses themselves in such systems.

The performance of such human experimenters (given the posterior probability of

the next possible hypotheses) conducting interactive data exploration should perform

close to Thompson sampling presented in chapter 3. This is because humans have been

observed to act similarly to Thompson sampling by intuitively matching probabilities
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when dealing with uncertainty [25].

In this thesis we have only used Thompson sampling. Although it has many

preferable qualities, other methods may situationally outperform Thompson sampling.

A complete breakdown and comparison of different methods would provide insight into

even better ordering of the hypotheses.

Another way of improving power is in choosing better alpha investing strategies.

Taking the same information into account not only in the ordering of the hypotheses

but also by creating an adaptive investing rule should result in better performance.





6. Conclusions

In this thesis we have investigated the applicability of reinforcement learning tools

to solve the exploration – exploitation problem that often arises in online hypothesis

testing. To be precise we used investigated alpha investing as the method of online

hypothesis testing. We used Thompson sampling to improve the order where the

hypotheses are tested during the testing process.

We created two synthetic data sets to explore the applicability of Thompson

sampling when ordering hypotheses. These were compared to a situation where the

same hypotheses are tested in a random order. First under a topic model and the

second one following simplex noise. We show that when the data is divided in distinct

topics with different probability of rejection, Thompson sampling performs a lot better

when compared to random sampling. This is not surprising as Thompson sampling is

often used to solve the similar multi-armed bandit problem. When the data follows

simplex noise (against the assumptions of Thompson sampling), Thompson sampling

still performs better than random ordering of the hypotheses although the gain in

power is modest.

In addition to the synthetic data sets the method was tested with a real life data

set proving that ordering the hypotheses with Thompson sampling performs better

than the random baseline in real life situations.

To complement the experiments, the applicability of Thompson sampling is dis-

cussed when used with online hypothesis testing. Finally some avenues of future re-

search are discussed.
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Appendix A. Tables From the Experiments

The in-depth tables resulting from the experiments conducted in Section 4 are listed

below in the same order as presented in the text:

k Random Sampling Thompson Sampling

1 0.4294 0.4296

2 0.4342 0.5519

3 0.4314 0.5975

4 0.4313 0.6214

5 0.4321 0.6316

6 0.4312 0.6390

7 0.4339 0.6421

8 0.4326 0.6375

9 0.4315 0.6345

10 0.4327 0.6350

11 0.4328 0.6323

12 0.4335 0.6294

13 0.4318 0.6246

14 0.4312 0.6214

15 0.4318 0.6196

16 0.4308 0.6162

17 0.4323 0.6138

18 0.4318 0.6097

19 0.4327 0.6082

20 0.4327 0.6049

21 0.4324 0.6010

22 0.4318 0.5981
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23 0.4315 0.5962

24 0.4323 0.5931

25 0.4320 0.5910

26 0.4335 0.5894

27 0.4329 0.5857

28 0.4314 0.5837

29 0.4325 0.5823

30 0.4312 0.5791

31 0.4309 0.5776

32 0.4333 0.5755

33 0.4324 0.5744

34 0.4324 0.5707

35 0.4329 0.5698

36 0.4319 0.5675

37 0.4318 0.5645

38 0.4319 0.5623

39 0.4304 0.5607

40 0.4334 0.5602

41 0.4316 0.5569

42 0.4315 0.5549

43 0.4323 0.5524

44 0.4327 0.5520

45 0.4318 0.5492

46 0.4333 0.5481

47 0.4322 0.5471

48 0.4319 0.5441

49 0.4329 0.5424
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50 0.4324 0.5419

51 0.4319 0.5395

52 0.4317 0.5387

53 0.4325 0.5374

54 0.4314 0.5340

55 0.4326 0.5337

56 0.4328 0.5319

57 0.4333 0.5302

58 0.4327 0.5292

59 0.4316 0.5278

60 0.4323 0.5265

61 0.4321 0.5260

62 0.4331 0.5238

63 0.4322 0.5229

64 0.4321 0.5218

65 0.4327 0.5205

66 0.4320 0.5192

67 0.4321 0.5175

68 0.4313 0.5176

69 0.4322 0.5154

70 0.4325 0.5156

71 0.4331 0.5143

72 0.4320 0.5142

73 0.4324 0.5118

74 0.4335 0.5107

75 0.4322 0.5100

76 0.4331 0.5105
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77 0.4323 0.5078

78 0.4320 0.5074

79 0.4317 0.5063

80 0.4331 0.5061

81 0.4317 0.5051

82 0.4332 0.5037

83 0.4328 0.5034

84 0.4316 0.5017

85 0.4321 0.5012

86 0.4325 0.5009

87 0.4331 0.5003

88 0.4308 0.4996

89 0.4328 0.4989

90 0.4331 0.4993

91 0.4318 0.4976

92 0.4323 0.4960

93 0.4332 0.4965

94 0.4319 0.4951

95 0.4325 0.4952

96 0.4326 0.4932

97 0.4319 0.4923

98 0.4330 0.4931

99 0.4334 0.4926

100 0.4322 0.4913

Table A.1: Tabulated values of experiment 1.

Characteristic Length-Scale Thompson Sampling Random Sampling
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1 0.3432 0.3430

25 0.3524 0.3406

50 0.3576 0.3425

75 0.3523 0.3402

100 0.3507 0.3392

125 0.3487 0.3398

150 0.3513 0.3416

175 0.3526 0.3433

200 0.3483 0.3374

225 0.3503 0.3405

250 0.3494 0.3414

Table A.2: Tabulated values of experiment 2: section 1

Signal Strength Thompson Sampling Random Sampling

1 0.0237 0.0230

2 0.1248 0.1197

3 0.3576 0.3425

4 0.5603 0.5428

5 0.6803 0.6624

6 0.7523 0.7374

7 0.8020 0.7888

8 0.8369 0.8246

9 0.8586 0.8478

10 0.8775 0.8692

Table A.3: Tabulated values of experiment 2: Scenario 2

Characteristic Length-Scale Thompson Sampling Random Sampling
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1 0.3317 0.3301

250 0.3918 0.3302

500 0.3934 0.3288

750 0.3989 0.3310

1000 0.3910 0.3339

1250 0.3884 0.3354

1500 0.3726 0.3290

1750 0.3694 0.3307

2000 0.3636 0.3320

2250 0.3614 0.3382

2500 0.3556 0.3307

2750 0.3550 0.3297

3000 0.3582 0.3367

3250 0.3516 0.3327

3500 0.3521 0.3337

3750 0.3458 0.3248

4000 0.3575 0.3392

4250 0.3498 0.3332

4500 0.3546 0.3339

4750 0.3525 0.3321

5000 0.3492 0.3317

Table A.4: Tabulated values of experiment 3


	Introduction
	Background
	Probability Theory
	Decision theory
	Statistical Hypothesis Testing
	Multiple Hypothesis Testing
	Bonferroni Procedure

	Online Hypothesis Testing
	Alpha Spending
	Alpha Investing

	Reinforcement Learning

	Methods
	Stating The Problem
	Exploration – Exploitation Trade-off
	Thompson Sampling
	Structure of the Hypotheses
	Independent Hypotheses
	Topic model
	Gaussian Processes

	Optimal Investing Rule

	Experiments
	Materials
	Synthetic Topic Model Data
	Synthetic Simplex Noise Data
	Simulated Data

	Experimental set-up
	Results

	Discussion
	Are all of The Assumptions Warranted?
	Arguments Against P-Values
	Comparison of The Error Rates
	Future Research

	Conclusions
	Bibliography
	Appendix Tables From the Experiments 

