The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: A post-hoc analysis of the TTH48 trial

Kristian Strand Eldar Søreide Hans Kirkegaard Fabio Silvio Taccone Anders Morten Grejs Christophe Henri Valdemar Duez Anni Nørgaard Jeppesen Christian Storm Bodil Steen Rasmussen Timo Laitio Christian Hassager Valdo Toome Johanna Hästbacka Markus B Skrifvars

PII:	S0300-9572(20)30076-9
DOI:	https://doi.org/doi:10.1016/j.resuscitation.2020.01.039
Reference:	RESUS 8416
To appear in:	Resuscitation
Received Date:	6 October 2019
Revised Date:	27 December 2019
Accepted Date:	22 January 2020

Please cite this article as: Strand K, Soreide E, Kirkegaard H, Taccone FS, Grejs AM, Duez CHV, Jeppesen AN, Storm C, Rasmussen BS, Laitio T, Hassager C, Toome V, Hästbacka J, Skrifvars MB, The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: A post-hoc analysis of the TTH48 trial, *Resuscitation* (2020), doi: https://doi.org/10.1016/j.resuscitation.2020.01.039

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

The influence of prolonged temperature management on acute 1

- kidney injury after out-of-hospital cardiac arrest: A post-hoc 2 analysis of the TTH48 trial 3
- 4

Kristian Strand¹, Eldar Søreide^{2,3}, Hans Kirkegaard⁴, Fabio Silvio Taccone⁵, Anders Morten 5

- Grejs⁶, Christophe Henri Valdemar Duez⁴, Anni Nørgaard Jeppesen⁷, Christian Storm⁸, Bodil 6
- Steen Rasmussen⁹, Timo Laitio¹⁰, Christian Hassager¹¹, Valdo Toome¹², Johanna Hästbacka¹³, Markus B Skrifvars¹⁴ 7
- 8
- 9
- 10 ¹Department of Intensive Care, Stavanger University Hospital, Norway
- ²Critical Care and Anaesthesiology Research Group, Stavanger University Hospital. 11
- 12 Stavanger, Norway
- 13 ³Department Clinical Medicine, University of Bergen, Bergen, Norway
- ⁴Research Centre for Emergency Medicine and Emergency Department, Aarhus University 14
- and Aarhus University Hospital, Aarhus, Denmark 15
- ⁵Department. of Intensive Care, Erasme Hospital, Belgium 16
- ⁶Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark 17
- ⁷Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, 18 19 Denmark
- 20 ⁸Department of Internal Medicine, Nephrology and Intensive Care, Charité-University, Berlin, 21 Germany
- 22 ⁹Department of Anaesthesiology and Intensive Care Medicine, Aalborg University Hospital,
- 23 and Clinical Institute, Aalborg University, Aalborg, Denmark
- 24 ¹⁰Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku 25 University Hospital and University of Turku, Finland
- 26 ¹¹Department of Cardiology, Rigshospitalet and Dept of Clinical Medicine, University of
- 27 Copenhagen, Copenhagen, Denmark
- ¹²Department of Intensive Cardiac Care, North Estonia Medical Centre, Tallinn, Estonia 28
- 29 ¹³Department of Anaesthesiology, Intensive Care and Paine Medicine, University of Helsinki 30 and Helsinki University Hospital
- 31 ¹⁴Department of Emergency Care and Services, Helsinki University Hospital, Finland
- 32 33
- 34 Correspondence: kristian.strand@sus.no
- 35 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45 Abstract

46	
47	Background
48	
49	Acute kidney injury (AKI) is common after cardiac arrest and targeted temperature
50	management (TTM). The impact of different lengths of cooling on the development of AKI
51	has not been well studied. In this study of patients included in a randomised controlled trial of
52	TTM at 33°C for 24 versus 48 hours after cardiac arrest (TTH48 trial), we examined the
53	influence of prolonged TTM on AKI and the incidence and factors associated with the
54	development of AKI. We also examined the impact of AKI on survival.
55	
56	Methods
57	
58	This study was a sub-study of the TTH48 trial, which included patients cooled to 33±1°C after
59	out-of-hospital cardiac arrest for 24 versus 48 hours. AKI was classified according to the
60	KDIGO AKI criteria based on serum creatinine and urine output collected until ICU discharge
61	for a maximum of seven days. Survival was followed for up to six months. The association of
62	admission factors on AKI was analysed with multivariate analysis and the association of AKI
63	on mortality was analysed with Cox regression using the time to AKI as a time-dependent
64	covariate.
65	
66	Results
67	
68	Of the 349 patients included in the study, 159 (45.5%) developed AKI. There was no
69	significant difference in the incidence, severity or time to AKI between the 24- and 48-hour
70	groups. Serum creatinine values had significantly different trajectories for the two groups with
71	a sharp rise occurring during rewarming. Age, time to return of spontaneous circulation,
72	serum creatinine at admission and body mass index were independent predictors of AKI.
73	Patients with AKI had a higher mortality than patients without AKI (hospital mortality 36.5%
74	vs 12.5%, p<0.001), but only AKI stages 2 and 3 were independently associated with
75	mortality.
76	
77 78 79	Conclusions

80	We did not find any association between prolonged TTM at 33°C and the risk of AKI during
81	the first seven days in the ICU. AKI is prevalent after cardiac arrest and TTM and occurs in
82	almost half of all ICU admitted patients and more commonly in the elderly, with an increasing
83	BMI and longer arrest duration. AKI after cardiac arrest is an independent predictor of time to
84	death.
85	
86	
87	Keywords
88 80	Cardiac arrest Acute kidney injury Targeted temperature management. Therapeutic
89 90	hypothermia
91	nypotnerinita
92	
93	
94	Trial registration
95	NCT01689077. Registered on www.ClinicalTrials.gov 20 September, 2012 (main trial).
96	
97	
98	
99 100	
100	
102	
103	
104	
105	
100	
108	
109	Background
110	
111	Acute kidney injury (AKI) is a well-known complication in post-cardiac arrest patients [1].
112	Recent studies have found an incidence of AKI of more than 40% when modern staging of
113	AKI was used and targeted temperature management (TTM) implemented as standard post-
114	resuscitation care [1, 2]. The development of renal dysfunction in this setting is most likely
115	due to local and whole body ischemia and reperfusion injury as well as circulatory failure in
116	the post-resuscitation period [3]. This post-cardiac arrest syndrome is characterised by
117	immunological, inflammatory and coagulation disturbances leading to perfusion disturbances
118	and organ dysfunction. Although prognosis after successful resuscitation is mainly linked to
119	the presence of hypoxic-ischemic brain injury, extra-cerebral organ dysfunction in the
120	immediate post-resuscitation period has been shown to have prognostic implications [4].

121 Baseline renal insufficiency and post-resuscitative AKI have both been recognised as 122 independent predictors of mortality and poor neurological outcome. The direct effect of AKI 123 on the central nervous system has not been fully elucidated, but increased inflammation and 124 oxidative stress in the brain have also been shown in experimental models of AKI [5]. 125 Hypothermia preceding ischemia has an established role in organ protection, but the 126 impact of post-cardiac arrest TTM on renal outcomes is less clear. A meta-analysis of 19 trials 127 of TTM after cardiac arrest, brain injury or major cardiac surgery did not show a reduction in 128 AKI when TTM was performed [6]. Even if TTM has the potential for renal protection 129 through mechanisms such as the reduction of metabolic demand, oxidative stress and 130 apoptosis, some potentially disadvantageous effects of TTM are present. A frequent 131 observation is 'cold diuresis', which most likely occurs due to a combination of increased 132 venous return, hormonal changes and tubular dysfunction and may cause hypovolemia if 133 volume replacement is insufficient. 134 The potential modulating effect of various approaches to TTM on renal function has 135 not been well studied. In particular, the impact of the length of cooling on renal function has 136 not been addressed. In this study, we investigated the impact of 24 or 48 hours of TTM on the 137 incidence of AKI in patients suffering from out-of-hospital cardiac arrest (OHCA). 138 Secondarily, we studied factors associated with the development of AKI and the impact of 139 AKI on survival using the KDIGO AKI classification as a time-dependent variable [7]. 140 141 142 143 **Methods** 144 145 Study design 146 147 The study is a preplanned explorative analysis of AKI in patients included in a multinational 148 randomised, controlled trial on the effect of 48 compared to 24 hours of TTM after OHCA of 149 a presumed cardiac origin (TTH48). The details of the TTH48 study including inclusion and 150 exclusion criteria have previously been published elsewhere [8, 9]. In brief, TTM for 24 151 versus 48 hours with a target of 33±1°C was performed from hospital arrival as per local 152 protocol, utilising cold fluids, surface cooling and intravascular cooling devices. 153 Randomisation was performed during the first 24 hours of cooling.

154 The study was approved by the ethics committee in each participating centre or country. The 155 study was conducted according to the requirements of the Declaration of Helsinki; written 156 informed consent was obtained from the next of kin or a legal surrogate before randomisation 157 and from each patient who regained mental capacity, according to local ethical approval. 158 159 Interventions 160 161 Hypothermia at 33±1°C was maintained for either 24 or 48 hours according to randomisation 162 and rewarming performed at a maximum of 0.5° C/h. A urinary catheter with a thermistor 163 measured bladder temperature and provided feedback to the temperature management 164 systems. Sedation was maintained with propofol/midazolam and remifentanil/fentanyl 165 infusions. Shivering was treated with increased sedation or cisatracurium. Noradrenaline was 166 the vasopressor of choice during hypothermia. 167 168 Data 169 170 From February 2013 to June 2016, 355 patients were randomised and included in the trial. 171 Study population characteristics included sex, age, body mass index (BMI) and previous 172 medical history as well as prehospital data followed the Utstein template recommendation. 173 Pre-ICU in-hospital data included data from admission to the emergency department and from 174 cardiac catherisation laboratories. Data on serum creatinine (sCr), serum urea (sUr), urinary 175 output (UO) and the need for renal replacement therapy (RRT) were prospectively collected 176 for seven days or until ICU discharge, depending on which occurred first. Follow-up for 177 survival was a minimum of 180 days. Data were managed using REDCap electronic data 178 capture tools. 179 180 181 AKI classification 182 183 Due to the lack of hourly UO, we used a modified KDIGO AKI classification based on sCr 184 and daily UO averaged over 24 hours[2]. We estimated the baseline sCr using the MDRD

185 equation assuming a glomerular filtration rate (eGFR) of 75 for all patients [10]. The different

- 186 stages of AKI were defined as follows: Stage 1: A 1.5- to 1.9-fold increase in sCr compared to
- 187 the estimated baseline sCr or an absolute increase of more than 26.5 µmol/l within 48 hours.

188 Stage 2: A 2.0- to 2.9-fold increase in sCr compared to the estimated baseline sCr or a UO of

189 less than 0.5 ml/kg/hour for the last 24 hours. Stage 3: A threefold increase in sCr compared

190 to the estimated baseline sCr, an increase in sCr to more than $353.6 \mu mol/l$, a UO of less than

- 191 0.3 ml/kg/hour for the last 24 hours or the initiation of RRT.
- 192
- 193

194 Statistical analysis

195

196 Categorical variables were expressed as counts (percentages) and continuous variables as

197 means ± SD or medians (IQR). Admission factors were compared using Student's t-test, chi-

square test and Fischer exact test as appropriate. Factors with a p-value < 0.1 in the univariate

analysis were included in the multivariate analysis. The difference in the time to AKI between

200 patients in the 24- and 48-hour cooling groups was assessed using the log-rank test. Cox

201 regression analysis was performed to assess independent predictors of the time to AKI.

202 Independent predictors of mortality at six months were performed using Cox regression

analysis with the time to AKI as a time-dependent covariate. The impact of the cooling length

204 on sCr levels was assessed using a mixed linear model. Statistical analysis was performed

with SPSS for Windows v.24.0 (IBM Corp., Armonk, NY) and SAS v. 9.4. (SAS Institute

- 206 Inc., Cary, NC).
- 207

208 Results

209

210 Included patients and the incidence of AKI

211

A total of 355 patients were randomised in the trial. Two patients withdrew consent, one patient was lost to follow-up and one was incorrectly randomised. Of the 351 patients who completed the trial, two were excluded due to chronic dialysis, leaving 349 patients for AKI analysis (Fig. 1); 159 patients (45.5%) were classified as having AKI during their ICU stay (KDIGO AKI 1-3), and 24 patients (6.9%) received RRT. Of the 159 patients who developed AKI, 79 (49.7%) did not have AKI at ICU discharge or day 7 in the ICU.

219 Difference between 48- and 24-hour cooling

- 221 The duration of hypothermia did not affect the incidence or severity of AKI. Seventy-eight
- 222 (44.3%) patients in the 24-hour cooling group developed AKI versus 81 (46.8%) in the 48-
- hour cooling group, (p=0.639). In addition, there was no difference in the time to AKI in
- patients treated with 48 compared to 24 hours of cooling in either univariate (HR 0.97, 95%
- 225 CI 0.71-1.32, p=0.85) or multivariate analysis (HR 1.02 95% CI 0.74-1.41, p=0.89).
- 226
- 227 Among the patients with AKI, there was no significant difference in the severity of AKI (2.0
- vs 2.2, p=0.13) or the time to development of AKI between the two groups. The time to AKI
- was 1.5 (1.3-1.7) days in the 24-hour cooling group and 1.8 (1.5-2.1) days in the 48-hour
- cooling group (p=0.66). The cumulative number of AKI is shown in Fig. 2. The length of
- cooling had a significant impact on the development of sCr values during the observation
- period (p<0.05) (Fig 3). Data on the sCr, sUr, daily UO and fluid balance for the first 72 hours
- of the ICU stay are provided in Supplemental Table 1.
- 234

235 Admission factors for AKI

- 236 There were several differences in patient characteristics, factors at resuscitation and admission
- between the patients that developed AKI compared to those who did not develop AKI.
- 238 Notably, AKI patients were older, had a higher BMI, more commonly had diabetes and had a
- 239 higher sCr level at ICU admission (Table 1). Regarding factors at resuscitation, patients who
- 240 developed AKI had a longer time to return of spontaneous circulation (ROSC) and more
- commonly received both adrenaline and amiodarone (Table 1). In a multivariate analysis of
- risk factors at ICU admission for the development of AKI, we found age, BMI, sCr at ICU
- admission and time to ROSC to be independent predictors of AKI (Table 2).
- 244

245 Association between AKI and outcome

246

Patients who developed AKI had a higher ICU- (25.2% vs 7.9%, p < 0.001), hospital- (36.5% vs 12.5%, p < 0.001) and six-month mortality (45.9% vs 16.8%, p < 0.001), than those who did

249 not develop AKI. Survival curves are provided in Supplemental Figure 1. In a Cox regression

- 250 model including KDIGO AKI as a time-dependent covariate, AKI was a significant predictor
- 251 of mortality. However, patients with KDIGO AKI 1 did not have significantly greater risk
- than patients without kidney injury (Table 3). Other significant predictors of mortality were
- age, time to ROSC and non-shockable rhythm.

254 Patients with AKI also had a longer ICU but not hospital stay compared to patients without 255 AKI. Patients with AKI were also treated longer with mechanical ventilation (Table 4). 256 257 258 259 260 Discussion 261 262 In this study of 349 patients from the TTH-48 randomised controlled trial with data 263 collection of creatinine levels and UO over the first seven days, we found that AKI was 264 common after cardiac arrest and associated with a higher age, a higher BMI and a longer time 265 to ROSC. 266 We did not find a significant effect of the length of cooling after cardiac arrest on AKI 267 evaluated by the KDIGO AKI criteria. The lack of effect is supported by existing evidence 268 from human clinical trials on the effect of hypothermia on kidney function [2], even though 269 the nephroprotective effects of pre-ischemic, locally applied hypothermia are well established 270 [11, 12]. Compared to isolated renal hypothermia, the physiological and biochemical effects 271 of systemic hypothermia on renal function are more complex, and increased systemic 272 vasoconstriction and volume depletion may reduce renal blood flow in a way that offsets the 273 positive effects of hypothermia on metabolic demand and oxygen consumption. Even if there 274 is equipoise on the effects of TTM on renal function after cardiac arrest, there is some 275 evidence that it may be influenced by how TTM is performed. A recent observational trial 276 found that prolonging the rewarming phase from 33 to 36 C to over 600 minutes resulted in 277 less AKI and a lower release of the pro-inflammatory cytokine uIL-18, which is an early 278 biomarker of AKI [13]. We found a significant difference in sCr trajectories for the two 279 groups. After 24 hours of TTM (Day 1), there was sharp increase in sCr in the 24-hour 280 cooling group during the rewarming phase. A similar increase in sCr was observed between 281 days 2 and 3 during the rewarming phase of the 48-hour cooling group, suggesting that the 282 reduced sCr observed during TTM is temporary and is reversed as patients become 283 normothermic. The cause of the reduced sCr frequently observed during TTM is not clear, 284 although a temporary reduction in creatinine production has been proposed [14]. Fluid 285 administration may also dilute sCr, but the sharp increases in sCr during the rewarming phase 286 were found despite daily positive fluid balances in both groups.

287	
288	In our study, 45.5% of the patients developed AKI. Incidences of AKI 1-3 in recent
289	studies of OHCA patients admitted to the ICU ranges from 39 to 53% [1]. Although the
290	KDIGO AKI definitions are now almost universally accepted, there are still variations in how
291	AKI is defined since data on hourly UO are lacking in many studies including ours, leading to
292	a potential underreporting of actual AKI when UO is omitted [15]. In the present study, we
293	modified the UO criteria to be able to include daily UO and thereby increase the sensitivity of
294	our AKI staging. In contrast to several earlier studies, we did not exclude patients who died
295	within the first 48 hours, but in this period only five patients died, of which three developed
296	AKI. RRT was uncommon in our study, as it was only used in 6.9% of the patients. This is
297	low compared to the numbers reported in a 2016 systematic review where RRT utilisation
298	ranged from 18 to 60% in seven studies on general cardiac arrest patients [1]. However, in
299	two recent studies from Nordic countries, where most of the patients in our trial were
300	recruited, the use of RRT was between 6 and 9% [16, 17]. Several factors, such as decisions
301	to withhold RRT due to futility, local treatment preferences and the lack of consensus on RRT
302	initiation criteria, are likely to have an impact on the prevalence of RRT utilisation [18]. It is
303	worth noting that future studies might be influenced by the recent shift in evidence towards a
304	more conservative approach in RRT initiation [19].

305 Studies on risk factors of AKI after cardiac arrest have identified age, rhythm, time to 306 ROSC and higher doses of epinephrine as independent prognostic factors in the development 307 of AKI [1, 20, 21]. In our study, we also found BMI to have significant effect, which is in 308 accordance with several other studies that have identified obesity as an independent factor for 309 AKI in critically ill and post-operative patients [22, 23]. The pathophysiology behind obesity 310 related AKI still being explored. However, as obesity can be regarded as a state of low-grade 311 inflammation, pro-inflammatory cytokines and adipokines as well as endothelial dysfunction 312 may be involved. In addition, the direct physiological effects of overweight may include intra-313 abdominal hypertension and cardiac dysfunction that might alter renal perfusion [24].

As in previous studies, we found AKI to have a negative impact on survival, although this did not reach statistical significance in the group with AKI class 1 in the Cox regression analysis. It is still unclear whether the presence of AKI either has an independent effect on prognosis after cardiac arrest or this is due to unmeasured confounders [25]. Prolonged hypoperfusion and subsequent reperfusion injury does cause organ injury, but even after adjusting for classical markers of peri-arrest hypoperfusion, such as non-shockable rhythm, prolonged resuscitation and lack of bystander CPR, AKI was still a strong predictor of short-

321 and long-term mortality. Post-resuscitation shock has been shown to be a strong predictor of

322 the development of AKI and mortality [21, 26, 27], but the present study does not include data

323 on the hemodynamic stability of the patients during the ICU stay, as we only considered

324 factors present on admission in our analysis.

325

326 Strengths and limitations

327 The multicentre design and data collection of creatinine and UO for up to seven days 328 within the context of a randomised controlled trial is a major strength of our study and 329 increases the validity of our findings. Nonetheless, several limitations are worth mentioning. 330 Since we did not have access to hourly UO data, using the original KDIGO AKI urine output 331 criteria was not possible. It may be that our ability to include UO criteria only in AKI classes 332 2 and 3 may have led to an underestimation of the number of patients in the AKI class 1 333 group, as this group was relatively small compared to another study where hourly urine data 334 were available [17].

335 We did not have preadmission creatinine available and estimated our baseline creatinine using 336 the MDRD equation as proposed by the KDIGO AKI guideline[7]. Since we did not have data 337 on chronic kidney disease (CKD) except chronic dialysis in our study, this may have led to an 338 overestimation of AKI. In a recent study of OHCA patients, 4% of the patients had previously 339 known CKD [17]. The question of whether to use admission creatinine or estimated creatinine 340 as a baseline has not been resolved, and studies have shown that up to 50% are misclassified 341 with both approaches [28]. However, in their study of cardiac arrest patients, Geri et al. 342 performed a sensitivity analysis of admission creatinine versus estimated creatinine and found 343 similar results [20]. In our study, admission creatinine was missing in a large number of 344 patients and in patients who did have an admission creatinine available, we saw a significant 345 increase to the first creatinine available in the ICU, leading us to conclude that the latter was 346 not a reasonable substitute for pre-morbid or admission creatinine. The validity of our 347 findings was strengthened by an analysis of the 144 patients who did have sCr available 348 before ICU admission. In this analysis, provided in Supplemental Table 2, there were only 349 small differences in AKI classifications based on admission sCr compared to the classification 350 based on estimated sCr. The patients cooled for 24 hours had a shorter length of stay than 351 those cooled for 48 hours. Since we did not collect creatinine or urinary data after ICU 352 discharge, it is possible that this could have influenced our results. However, it is likely that 353 only the most stable ICU patients were discharged early from the ICU. 354

355 **Conclusions**

356

357 We did not find any association between prolonged TTM at 33°C and the risk of AKI during

the first seven days in the ICU. AKI is prevalent after cardiac arrest and TTM and occurs in

almost half of all ICU admitted patients and more commonly in the elderly, with an increasing

- 360 BMI and longer arrest duration. AKI after cardiac arrest is an independent predictor of time to
- 361 death.
- 362

363 List of abbreviations

364 AKI: acute kidney injury, BMI: body mass index, CKD: chronic kidney disease, GFR:

365 glomerular filtration ratio, KDIGO: kidney disease improving global outcome, OHCA: out-

- 366 of-hospital cardiac arrest, ROSC: return of spontaneous circulation, RRT: renal replacement
- 367 therapy, sCr: serum creatinine, sUr: serum uread, TTM: targeted temperature management,
- 368 UO: urine output

369

370 Declarations

371

- 372 *Ethics approval and consent to participate:*
- 373 The study was approved by the ethics committee in each participating centre or country. The
- 374 study was conducted according to the requirements of the Declaration of Helsinki; written
- informed consent was obtained from the next of kin or a legal surrogate before randomisation
- and from each patient who regained mental capacity, according to local ethical approval.
- 377

378 Consent for publication

379 Not applicable

380

381 Availability of data and materials

382 The dataset used during the current study is available from the corresponding author upon

- 383 reasonable request.
- 384
- 385 *Competing interests*
- 386 MBS reports having received a research grant from GE Healthcare, travel reimbursements and
- 387 lecture fees from BARD Medical. CS reports having received travel reimbursements and

388	speaker fees from BD BARD and Zoll GmbH, as well as honorarium for consultancy from
389	BD BARD, Benechill and Sedana Medical. AMG and ANJ report having received lecture fees
390	from Novartis. All other authors report that they have no conflicts of interest.
391	
392	Funding
393	The study was funded by independent research grants from The Danish Heart Foundation,
394	The Laerdal Foundation, The Scandinavian Society of Anaesthesiology and Intensive Care
395	Medicine, The Danish Society of Anaesthesiology and Intensive Care Medicine and The
396	Augustinus Foundation and, Finska Lakaresallskapet, Medicinska Understodsforeningen Liv
397	och Halsa and Stiftelsen Dorothea Olivia, Karl Walter och Jarl Walter Perklens minne.
398	
399	Authors' contributions
400	KS, HK and MBS planned the post-hoc study. KS and MBS provided the statistical analysis
401	and interpreted the data of the study. All authors contributed in writing the manuscript. All
402	authors read and approved the final manuscript.
403	
404	Acknowledgements:
405	Not applicable
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	References
418	
419	

 Sandroni, C., et al., Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol, 2016. 82(9): p. 989-99. Rundgren, M., et al., Renal function after out-of-hospital cardiac arrest: the influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care, 2019. 22(1): p. 163. Chua, H.R., N. Glassford, and R. Bellomo, Acute kidney injury after cardiac arrest. Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., The inpact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database. Crit Care, 2016. 20(1): p. 368. Lu, R., et al., Kidney-brain crosstalk in the acute and chronic setting. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., Atsitistical analysis protocol for the time-differentiate target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial. Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm	420		
 meta-analysis of clinical studies. Minerva Anestesiol, 2016. 82(9): p. 989-99. Rundgren, M., et al., <i>Renal function after out-of-hospital cardiac arrest: the influence</i> of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care, 2019. 23(1): p. 163. Chua, H.R., N. Glassford, and R. Bellomo, <i>Acute kidney injury after cardiac arrest.</i> Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients</i> <i>after cardiac arrest: an observational study from the ICON database.</i> Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting.</i> Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney</i> <i>injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TH48) clinical trial.</i> Scand J Truam Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Die ti m Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-67 the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 41: p. 31. Niemman	421	1.	Sandroni, C., et al., Acute kidney injury after cardiac arrest: a systematic review and
 Rundgren, M., et al., Renal function after out-of-hospital cardiac arrest: the influence of temperature management and coronary angiography. a post hos study of the target temperature management trial. Crit Care, 2019. 23(1): p. 163. Chua, H.R., N. Glassford, and R. Bellomo, <i>Acute kidney injury after cardiac arrest.</i> Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database.</i> Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting.</i> Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwagia, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital Cardiac arrest (TH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Dict in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70.</i> Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in bemorrhagic shock is associated with decreased muscle m	422		meta-analysis of clinical studies. Minerva Anestesiol, 2016. 82(9): p. 989-99.
 of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care, 2019. 23(1): p. 163. Chua, H.R., N. Glassford, and R. Bellomo, <i>Acute kidney injury after cardiac arrest.</i> Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database.</i> Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting.</i> Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 ws 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney Graf Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced </i>	423	2.	Rundgren, M., et al., Renal function after out-of-hospital cardiac arrest; the influence
 temperature management trial. Crit Carc, 2019. 23(1): p. 163. Chua, H.R., N. Glassford, and R. Bellomo, Acute kidney injury after cardiac arrest. Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database</i>. Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i>. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitabhong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials</i>. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury</i>. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A argeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A andre acurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal arrit: aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac arrest y aitents.</i> SMCN Pophol. 2017. 18(1): p. 79-84. <	424		of temperature management and coronary angiography, a post hoc study of the target
 Chua, H.R., N. Glassford, and R. Bellomo, Acute kidney injury after cardiac arrest. Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database. Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i>. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susanitiaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney</i> injury: a meta-analysis of randomized controlled trials. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury</i>. Nephron Clin Pract, 2012. 120(4): p. e179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA, 2017. 318(4): p. 341-350.</i> Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70.</i> Waked, K. and M. Schepens, State-of the-arr review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 47 p. 31. Neimann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function</i>. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac arrest patients</i>. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>The offect of whole-body co</i>	425		temperature management trial. Crit Care, 2019. 23(1): p. 163.
 Resuscitation, 2012. 83(6): p. 721-7. Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database</i>. Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i>. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials</i>. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury</i>. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 541-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The offect of whole-body cooling on renal function in post-cardiac arrest with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 706. Luszek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased </i>	426	3.	Chua, H.R., N. Glassford, and R. Bellomo, Acute kidney injury after cardiac arrest.
 Nobile, L., et al., <i>The impact of extracerebral organ failure on outcome of patients</i> <i>after cardiac arrest: an observational study from the ICON database.</i> Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting.</i> Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantiaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney</i> <i>injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4 : p. 31. Niemann, C.U. and D. Malmoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Kozee, J., et al., <i>Indecot of swole-body cooling on renal function in post-card</i>	427		Resuscitation, 2012. 83(6): p. 721-7.
 after cardiac arrest: an observational study from the ICON database. Crit Care, 2016. 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i>. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials</i>. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury</i>. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Grafi Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of JKI in critically ill patients varies with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70.	428	4.	Nobile, L., et al., The impact of extracerebral organ failure on outcome of patients
 20(1): p. 368. Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i>. Nat Rev Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney</i> <i>injury: a meta-analysis of randomized controlled trials</i>. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury</i>. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial</i>. Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the edinition used and the addition of urine output criteria.</i> BMC Nephrol, 20	429		after cardiac arrest: an observational study from the ICON database. Crit Care, 2016.
 Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting.</i> Nat Rev Nephrol. 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. e179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 314-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac arrest patients.</i> BMC Nephrol. 2017. 18(1): p. 376. Luszek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Inig and Outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria.</i> BMC Nephrol,	430		20 (1): p. 368.
 Nephrol, 2015. 11(12): p. 707-19. Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. e179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. De Rosa, S., et al., <i>Prolonged induced hypothermia in Deceased Organ Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, I., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 79-84. Beitland, S., et al., <i>Impact of </i>	431	5.	Lu, R., et al., <i>Kidney-brain crosstalk in the acute and chronic setting</i> . Nat Rev
 Susantitaphong, P., et al., <i>Therapeutic hypothermia and prevention of acute kidney</i> <i>injury: a meta-analysis of randomized controlled trials.</i> Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation. Modification of Diet in Renal Disease</i> <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. <	432		Nephrol, 2015. 11 (12): p. 707-19.
 injury: a meta-analysis of randomized controlled trials. Resuscitation, 2012. 83(2): p. 159-67. Khwaja, A., KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., Targeted Temperature Management for 48 vs 24 Hours and Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial. Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolimics study. Shock, 2014. 41(1): p. 776. Lusczek, E.R., et al., Prolonged induced hypothermia in Memorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolimics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243.<!--</td--><td>433</td><td>6.</td><td>Susantitaphong, P., et al., Therapeutic hypothermia and prevention of acute kidney</td>	433	6.	Susantitaphong, P., et al., Therapeutic hypothermia and prevention of acute kidney
 159-67. Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia.</i> medier is associated with <i>decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AK1 in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Demmark 2005-2013.</i> Scand Cardioxase J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient o</i>	434		<i>iniury: a meta-analysis of randomized controlled trials</i> . Resuscitation, 2012. 83 (2): p.
 Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidney injury.</i> Nephron Clin Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest: (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Grafi Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest: in Denmark 2005-2013.</i> Scand Cardiovase J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injur</i>	435		159-67.
 Pract, 2012. 120(4): p. c179-84. Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation. Modification of Diet in Renal Disease</i> <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p.	436	7.	Khwaja, A., <i>KDIGO clinical practice guidelines for acute kidnev injury</i> . Nephron Clin
 Kirkegaard, H., et al., <i>Targeted Temperature Management for 48 vs 24 Hours and</i> <i>Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical</i> <i>Trial.</i> JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target</i> <i>temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation.</i> Modification of Diet in Renal Disease <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovase J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p.	437		Pract 2012 120 (4): p c179-84
 Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA, 2017. 318(4): p. 341-350. Kirkegaard, H., et al., A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TH48) clinical trial. Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Iensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S., et al., Initiation Strategies for Renal-Replacement therapy in the Intensive 	438	8.	Kirkegaard, H., et al., Targeted Temperature Management for 48 vs 24 Hours and
 Trial. JAMA, 2017. 318(4): p. 341-350. 9. Kirkegaard, H., et al., A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial. Scand J Trauma Resuse Emerg Med, 2016. 24(1): p. 138. 10. Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. 11. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. 12. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. 13. De Rosa, S., et al., The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. 14. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	439		Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical
 9. Kirkegaard, H., et al., <i>A statistical analysis protocol for the time-differentiated target temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.</i> Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. 10. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. 11. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 4; p. 31. 12. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. 13. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. 14. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcom in out-of-hospital cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. el4.	440		<i>Trial</i> JAMA 2017 318 (4): p 341-350
 temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial. Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> arrest patients. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> cardiac arrest: a low conservational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	441	9	Kirkegaard H et al A statistical analysis protocol for the time-differentiated target
 Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138. 10. Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation. Modification of Diet in Renal Disease</i> <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. 11. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. 42. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. 13. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. 14. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	442		temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial
 Levey, A.S., et al., <i>A more accurate method to estimate glomerular filtration rate from</i> <i>serum creatinine: a new prediction equation. Modification of Diet in Renal Disease</i> <i>Study Group.</i> Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, <i>State-of the-art review on the renal and visceral</i> <i>protection during open thoracoabdominal aortic aneurysm repair.</i> J Vis Surg, 2018. P. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function.</i> N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	443		Scand I Trauma Resusc Emerg Med 2016 24(1): p 138
 serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. 11. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 42. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. 13. De Rosa, S., et al., The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. 14. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. 19. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	444	10	Levev A S et al A more accurate method to estimate glomerular filtration rate from
 Study Group. Ann Intern Med, 1999. 130(6): p. 461-70. Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	445	10.	serum creatinine: a new prediction equation Modification of Diet in Renal Disease
 Waked, K. and M. Schepens, State-of the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function</i>. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac arrest patients</i>. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study</i>. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria</i>. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013</i>. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study</i>. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	446		Study Group Ann Intern Med 1999 130 (6): p 461-70
 Hamilton during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018. 4: p. 31. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function</i>. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients</i>. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study</i>. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria</i>. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013</i>. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study</i>. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	447	11	Waked K and M Schepens State-of the-art review on the renal and visceral
 449 4: p. 31. 420 12. Niemann, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> <i>Donors and Kidney-Graft Function</i>. N Engl J Med, 2015. 373(27): p. 2687. 452 13. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> <i>arrest patients</i>. BMC Nephrol, 2017. 18(1): p. 376. 454 14. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study</i>. Shock, 2014. 41(1): p. 79-84. 457 15. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria</i>. BMC Nephrol, 2017. 18(1): p. 70. 460 16. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013</i>. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 462 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study</i>. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	448	11.	protection during open thoracoabdominal agric aneurysm renair I Vis Surg 2018
 12. Nieman, C.U. and D. Malinoski, <i>Therapeutic Hypothermia in Deceased Organ</i> Donors and Kidney-Grafi Function. N Engl J Med, 2015. 373(27): p. 2687. 13. De Rosa, S., et al., <i>The effect of whole-body cooling on renal function in post-cardiac</i> arrest patients. BMC Nephrol, 2017. 18(1): p. 376. 14. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	449		4 n 31
 Donors and Kidney-Graft Function. N Engl J Med, 2015. 373(27): p. 2687. De Rosa, S., et al., The effect of whole-body cooling on renal function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	450	12	Niemann CU and D Malinoski <i>Therapeutic Hypothermia in Deceased Organ</i>
 Bonos and handy a neuron of body cooling on real function in post-cardiac arrest patients. BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	451	12.	Donors and Kidney-Graft Function N Engl I Med 2015 373 (27): p 2687
 <i>arrest patients.</i> BMC Nephrol, 2017. 18(1): p. 376. Lusczek, E.R., et al., <i>Prolonged induced hypothermia in hemorrhagic shock is</i> <i>associated with decreased muscle metabolism: a nuclear magnetic resonance-based</i> <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	452	13	De Rosa S et al The effect of whole-body cooling on renal function in post-cardiac
 14. Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. 15. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. 16. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. 18. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. 19. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	453	15.	arrest nationts BMC Nenhrol 2017 18(1): p 376
 associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	454	14	Lusczek F R et al Prolonged induced hypothermia in hemorrhagic shock is
 <i>metabolomics study.</i> Shock, 2014. 41(1): p. 79-84. Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 18(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovase J, 2018. 52(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	455	1 1.	associated with decreased muscle metabolism: a nuclear magnetic resonance-based
 Koeze, J., et al., <i>Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies</i> <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. <i>18</i>(1): p. 70. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital</i> <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. <i>52</i>(5): p. 238-243. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. <i>60</i>(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. <i>126</i>: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	456		metabolomics study Shock 2014 41 (1): p 79-84
 458 <i>with the definition used and the addition of urine output criteria.</i> BMC Nephrol, 2017. 459 18(1): p. 70. 460 16. Winther-Jensen, M., et al., <i>Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. 462 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 464 60(8): p. 1170-81. 465 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy.</i> 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	457	15	Koeze L et al Incidence timing and outcome of AKL in critically ill natients varies
 18(1): p. 70. 18(1): p. 70. Winther-Jensen, M., et al., Use of renal replacement therapy after out-of-hospital cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. 52(5): p. 238-243. 17. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016. 60(8): p. 1170-81. Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy. Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	458	10.	with the definition used and the addition of urine output criteria BMC Nephrol 2017
 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	459		18(1) n 70
 461 <i>cardiac arrest in Denmark 2005-2013.</i> Scand Cardiovasc J, 2018. 52(5): p. 238-243. 462 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 464 60(8): p. 1170-81. 465 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include management of acute kidney injury and use of renal replacement therapy.</i> 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	460	16	Winther-Jensen M et al Use of renal replacement therapy after out-of-hospital
 461 17. Beitland, S., et al., <i>Impact of acute kidney injury on patient outcome in out-of-hospital</i> 463 <i>cardiac arrest: a prospective observational study</i>. Acta Anaesthesiol Scand, 2016. 464 60(8): p. 1170-81. 465 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> 466 <i>management of acute kidney injury and use of renal replacement therapy</i>. 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	461	10.	cardiac arrest in Denmark 2005-2013 Scand Cardiovasc I 2018 52 (5): p 238-243
 463 <i>cardiac arrest: a prospective observational study.</i> Acta Anaesthesiol Scand, 2016. 464 60(8): p. 1170-81. 465 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> 466 <i>management of acute kidney injury and use of renal replacement therapy.</i> 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	462	17	Beitland S et al Impact of acute kidney injury on patient outcome in out-of-hospital
 60(8): p. 1170-81. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> <i>management of acute kidney injury and use of renal replacement therapy.</i> Resuscitation, 2018. 126: p. e14. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	463	17.	cardiac arrest: a prospective observational study Acta Anaesthesiol Scand 2016
 465 18. Beitland, S. and K. Sunde, <i>Guidelines for post-resuscitation care should include</i> 466 <i>management of acute kidney injury and use of renal replacement therapy.</i> 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	464		60(8): n 1170-81
 466 management of acute kidney injury and use of renal replacement therapy. 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., Initiation Strategies for Renal-Replacement Therapy in the Intensive 	465	18	Beitland S and K Sunde Guidelines for nost-resuscitation care should include
 467 Resuscitation, 2018. 126: p. e14. 468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i> 	466	10.	management of acute kidney injury and use of renal replacement theramy
468 19. Gaudry, S., et al., <i>Initiation Strategies for Renal-Replacement Therapy in the Intensive</i>	467		Resuscitation 2018 126 n e14
100 17. Outary, 0., of an, initiation bit aregies for Kenui-Keptacement Inerapy in the Intensive	468	19	Gaudry S et al Initiation Strategies for Renal-Renlacement Therapy in the Intensive
469 <i>Care Unit</i> , N Engl J Med. 2016. 375 (2): p. 122-33	469	17.	Care Unit. N Engl J Med. 2016. 375 (2): p. 122-33.

470	20.	Geri, G., et al., Acute kidney injury after out-of-hospital cardiac arrest: risk factors
4/1	0.1	and prognosis in a large cohort. Intensive Care Med, 2015. 41(7): p. 12/3-80.
4/2	21.	Tujjar, O., et al., Acute kianey injury after caraiac arrest. Crit Care, 2015. 19: p. 169.
4/3	22.	Danziger, J., et al., Obesity, Acute Kianey Injury, and Mortality in Critical Illness. Crit
4/4	a a	Care Med, 2016. 44(2): p. 328-34.
475	23.	Gameiro, J., et al., Obesity, acute kidney injury and mortality in patients with sepsis: a
476		<i>cohort analysis.</i> Ren Fail, 2018. $40(1)$: p. 120-126.
477	24.	Nie, S., et al., Are There Modifiable Risk Factors to Improve AKI? Biomed Res Int,
478	o -	2017. 201 7: p. 5605634.
479	25.	Storm, C., et al., Impact of acute kidney injury on neurological outcome and long-term
480		survival after cardiac arrest - A 10year observational follow up. J Crit Care, 2018. 47:
481		p. 254-259.
482	26.	Kim, Y.W., et al., Shock duration after resuscitation is associated with occurrence of
483		<i>post-cardiac arrest acute kidney injury</i> . J Korean Med Sci, 2015. 30 (6): p. 802-7.
484	27.	Park, Y.S., et al., <i>Recovery from acute kidney injury as a potent predictor of survival</i>
485		and good neurological outcome at discharge after out-of-hospital cardiac arrest. Crit
486		Care, 2019. 23 (1): p. 256.
487	28.	De Rosa, S., S. Samoni, and C. Ronco, Creatinine-based definitions: from baseline
488		creatinine to serum creatinine adjustment in intensive care. Crit Care, 2016. 20: p. 69.
489		
490		
491		
492		
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		
509		
510		
511		
512		

AKI: AKI according to modified KDIGO criteria.

- 513 514
- 515
- 516

- Table 1 Patient characteristics split into no AKI or AKI.

	No. (%) of Patients		
	No AKI	AKI	
Demographic characteristics			
Age (SD), y	58.0 (12.4)	63.0 (10.5)	< 0.001
Male sex	157 (82.6)	133 (83.6)	0.801
BMI, mean (SD), kg/height ²	26.3 (3.7)	28.3 (5.3)	< 0.001
Medical history			
Diabetes mellitus	23 (12.2)	39 (24.5)	0.003
Previous acute myocardial infarction	27 (14.3)	27 (17.2)	0.457
Chronic heart failure (NYHA class IV)	8 (4.2)	9 (5.7)	0.620
Liver cirrhosis	1 (0.5)	2 (1.3)	0.592
Arrest witnessed			0.894
Bystander	161 (84.7)	137 (86.2)	
Emergency medical services	12 (6.3)	10 (6.3)	
Unwitnessed	17 (8.9)	12 (7.5)	
Resuscitation factors			
Bystander-initiated CPR	162 (85.3)	130 (81.8)	0.378
Shockable rhythm	172 (90.9)	138 (87.1)	0.270
Time to basic life support, median (IQR),	1 (2)	1(1)	0.663
min			
Time to advanced life support, median	8 (6)	8 (6)	0.333
(IQR), min			
Time to return of spontaneous circulation,	19 (10)	22 (15)	< 0.001
median (IQR), min			
Epinephrine	106 (55.8)	112 (70.4)	0.005
Amiodarone	66 (34.7)	77 (48.4)	0.010
Immediate interventional cardiology			
Coronary angiography	160 (84.2)	128 (80.5)	0.364
Percutaneous intervention	81 (42.6)	63 (40.1)	0.637
Clinical status on ICU admission			
Temperature, mean (SD) °C	34.8 (0.9)	34.8 (1.1)	0.416
Lactate, median (IQR), mmol/l	1.7 (1.9)	3.1 (5.4)	0.006
Creatinine, mean (SD), µmol/l	92.0 (23.6)	117.0 (35.6)	0.003
pH, mean (SD)	7.28 (0.1)	7.24 (0.1)	0.025
Mean arterial pressure, mean (SD), mmHg	77.9 (14.5)	75.4 (17.5)	0.739
48-hour cooling	92 (53.2)	81 (45.6)	0.639

553 Table 2 Results of the logistic regression analysis of admission factors predicting the

- development of AKI in post-cardiac arrest patients treated with TTM.
- 555 556

OR (95% CI) p-value 0.008 1.03 (1.01-1.06) Age BMI 1.10 (1.04-1.17) 0.001 **Diabetes mellitus** 0.77 (0.40-1.50) 0.435 Time to ROSC 1.03(1.01-1.06)0.011 Adrenaline given 0.721 1.10 (0.63-1.97) Amiodarone given 1.28 (0.74-2.21) 0.375 Lactate at admission 1.00 (0.91-1.11) 0.958 0.15 (0.06-3.75) 0.250 pH at admission Creatinine at admission 1.02 (1.01-1.03) 0.000 48-hour cooling 1.14 (0.69-1.87) 0.615

557

558

559 560

561

562

563

564

565 566

567

568

569

570 571

572 Table 3 Predictors of mortality including time to development and severity of AKI.

573 Variable

Variable	Univariate HR	p-value	Multivariate HR	p-
	(95% CI)		(95% CI)	value
Age	1.05 (1.03-1.07)	< 0.001	1.04 (1.02-1.07)	< 0.001
Male	1.55 (0.98-2.47)	0.06	1.56 (0.96-2.53)	0.07
Bystander CPR	1.88 (1.21-2.93)	0.01	1.50 (0.92-2.45)	< 0.001
Time to ROSC	1.01 (1.01-1.02)	< 0.001	1.01 (1.00-1.01)	0.02
Shockable rhythm	2.88 (1.81-4.58)	< 0.001	2.52 (1.50-4.23)	< 0.001
KDIGO AKI 1	1.47 (0.75-2.88)	< 0.001	1.33 (0.66-2.66)	0.43
KDIGO AKI 2	3.07 (1.83-5.13)	< 0.001	3.00 (1.73-5.19)	< 0.001
KDIGO AKI 3	4.37 (2.61-7.33)	< 0.001	2.34 (1.27-4.32)	0.01
24-hour cooling	1.52 (0.89-2.58)	0.13	1.09 (0.73-1.62)	0.68

574

575

576

577

Table 4 Outcome and resource use in patients with various degrees of AKI during their ICUstay.

Outcome	No AKI (n=190)	KDIGO 1 (n=36)	KDIGO 2 (n=69)	KDIGO 3 (n=54)	p- value
Resource use					
Time on mechanical	86 (62-130)	75 (60-122)	114 (48-144)	130(80-189)	0.02
ventilation (hours)					
ICU length of stay	119 (78-178)	80 (64-128)	134 (72-229)	188(133-269)	0.013
(hours)					
Hospital length of stay	14 (10-21)	13 (8-21)	16 (8-21)	21(11-31)	0.195
(days)					

590 Suppl. Table 1. Development of markers of renal function during the first 72 hours.

	All patients	24-hour cooling	48-hour cooling	p-value
First available creatinine*	101.8 (32.9)	104.2 (37.1)	99.5 (27.6)	0.193
Est. Baseline creatinine**	92.3 (8.9)	91.0 (9.5)	91.5 (8.3)	0.558
Creatinine				
24-hours	95.9 (54.1)	96.7 (50.6)	95.0 (57.5)	0.78
48-hours	107.4 (70.6)	115.3 (77.8)	100.3 (62.6)	0.059
72-hours	121.6 (87.5)	126.6 (96.1)	117.2 (79.2)	0.367
Urea				
24-hours	7.9 (5.2)	8.0 (4.5)	7.7 (5.9)	0.851
48-hours	7.7 (6.5)	7.8 (5.3)	7.5 (7.6)	0.761
72-hours	8.2 (7.2)	9.2 (8.0)	7.4 (6.4)	0.039
Urine output				
24-hours	2294 (1232)	2368 (1329)	2220 (1123)	0.262
48-hours	2154 (1070)	2182 (1769)	2128 (10699	0.459
72-hours	2554 (1292)	2424 (1248)	2655 (1319)	0.145
Daily fluid balance				
24-hours	2294 (1232)	1585 (2106)	1667 (2033)	0.713
48-hours	1087 (1674)	888 (1769)	1276 (1562)	0.033
72-hours	333 (1768)	307 (1713)	354 (1814)	0.828
4.551	0 1	LI L TOTT I L		

*First available serum creatine from hospital to ICU admission **Estimated baseline creatinine base on the MDRD equation assuming a GFR of 75

672

673

674 Suppl. Table 2. KDIGO AKI classification based on first available serum creatinine before

675 ICU admission or estimated baseline serum creatinine at hospital admission.

676

KDIGI AKI	First sCr No.(%)	Est. sCr* No.(%)
0	78 (54.2)	77 (53.5)
1	15 (10.4)	9 (6.3)
2	19 (13.2)	25 (17.4)
3	32 (22.2)	33 (22.9)
Total	144 (100)	144 (100)

677

*Estimated baseline creatinine based on the MDRD equation assuming an eGFR of 75

680

681

682 **Conflict of interest**

683

684 MBS reports having received a research grant from GE Healthcare, travel reimbursements and

685 lecture fees from BARD Medical. CS reports having received travel reimbursements and

686 speaker fees from BD BARD and Zoll GmbH, as well as honorarium for consultancy from

687 BD BARD, Benechill and Sedana Medical. AMG and ANJ report having received lecture fees

688 from Novartis. All other authors report that they have no conflicts of interest.

689