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Abstract
In cut-to-length logging, the harvester operator adjusts the bucking in accordance with visible defects on processed stems. 
Some of the defects, such as a sweep on the bottom of the stem, decrease the yield and quality of sawn products and are 
difficult for the operator to notice. Detecting the defects with improved sensors would support the operator in his qualitative 
decision-making and increase value recovery of logging. Predicting the maximum bow height of the bottom log in Norway 
spruce (Picea abies (L.) Karst.) with log end face image and stem taper was investigated with two modelling approaches. A 
total of 101 stems were selected from five clear-cut stands in southern Finland. The stems were crosscut and taper measured, 
and the butt ends of the bottom logs were photographed. The stem diameter, out-of-roundness, and pith eccentricity were 
measured from the images while the max. bow height was measured by a 3D log scanner at a sawmill. The bottom logs with 
an eccentric pith had higher max. bow height. In addition, a highly conical bottom part of the stem was more common on 
the bottom logs with a large max. bow height. Applying both log end face image and stem taper measurements gave the best 
model fit and detection accuracy (76%) for bottom logs with a large max. bow height. The results indicate that the log end 
face image and stem taper measurements can be utilised to aid harvester operator in deciding an optimised length for logs 
according to the bow height.

Keywords Norway spruce · Bow height · Sweep · Log end face · Pith eccentricity · Stem taper

Introduction

Bucking of tree stems bounds the forest resources to meet 
the quality criteria of end users. It is performed in cut-to-
length harvesters based on price and demand matrices, 
which define the desired log dimensions and their values, 
while defects are observed by the operator. However, it is 
difficult for the operator to notice defects related to stem 
form, such as sweep. There is a great demand for sensors 
that would measure properties of the processed stems and 
improve operator support in making qualitative assessments 
on the fly. Increased information from the properties of raw 
material could be used to further enhance the whole supply 
chain from forest to the end users.

The sweep (i.e. crookedness) refers to a steady devia-
tion from a straight line along the stem (Richter 2015). A 
basal sweep indicates the vertical position of the maxi-
mum deviation. This deviation is often referred to as “bow 
height” (Pfeifer 1982; Gjerdrum and Warensjö 2001; Rune 
and Warensjö 2002). Basal sweep affects the most valu-
able part of the stem and decreases value recovery through 
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increased bending, twisting, and lowering the yield of sawn 
products. When the max. bow height exceeds the limit set in 
the sawlog grading rules, the value of the stem substantially 
decreases.

There are no general grading rules in Finland that define 
the overall limit for the allowed bow height. However, most 
sawmills follow the rules of Heiskanen and Siimes (1959), 
with some sawmill specific variants. If the harvester operator 
estimates that the bow height exceeds the allowed limit, he 
has two options: to crosscut a pulpwood log with a minimum 
length or remove a section of the stem below the position of 
the max. bow height with a short (0.3–0.5 m) offcut.

Norway spruce (Picea abies (L.) Karst.) is an important 
conifer for the northern European sawmilling industry. For 
example, spruce sawlog was the most significant timber 
assortment to the Finnish forest industry in harvested remov-
als, with 53% of all sawlogs (Natural Resources Institute 
Finland 2019). Furthermore, spruce sawlogs returned the 
highest average stumpage prices to forest owners in 2018.

Measuring the stem form of Norway spruce during buck-
ing with advanced methods such as laser scanning (Liang 
et al. 2014) is difficult because of shadowing long crowns 
and undergrowth (Kankare et  al. 2014). The max. bow 
height on the bottom log should therefore be predicted with 
indirect information attainable at a low cost during bucking.

Besides the curved shape, the leaning of the tree induces 
changes to internal wood structure, e.g. a formation of dense 
reaction wood and asymmetrical growth of annual rings 
(Gardiner et al. 2014), often referred to as an eccentricity 
of the pith (Warensjö 2003). Furthermore, the cross section 
of an asymmetrically grown stem is usually out-of-round or 
oval (Timell 1986).

The stem shape of mature trees is only weakly related to 
internal wood structure, because the shape depends on the 
tree’s ability to recover from leaning. Moreover, young trees, 
which allocate photosynthates to straighten their stem, are 
likely to be suppressed (Ishii et al. 2000). These suppressed 
trees reduce their height growth relatively more than radial 
growth (Greis and Kellomäki 1981), which leads to large 
tapering of the stem. According to Puhe (2003), suppressed 
spruces also have asymmetric crowns and a weakly devel-
oped horizontal root system, for which they compensate with 

a strong buttress root on the side away from the stress of 
asymmetrical canopies. Thus, tapering within the bottom 
part of the stem can be used to estimate the max. bow height 
of the bottom log.

Images taken from the log end faces can be used to meas-
ure information that indicates different defects of the stem. 
According to Warensjö (2003) and Warensjö and Rune 
(2004), pith eccentricity and out-of-roundness are related 
to a large bow height. In addition, the stem tapering can 
provide additional information about the max. bow height 
which used together with the log end face image could sup-
port the operator in bucking of the bottom logs to valid 
lengths according to the estimated bow height.

The aim of the study was to quantify the relationship 
between the max. bow height on the bottom log of Nor-
way spruce and information derived from log end face 
images, and stem taper, and develop models to predict the 
max. bow height. Statistical modelling was divided into a 
descriptive and an applicative part. In the descriptive part, 
the bow height was described with mixed linear models to 
find explanatory variables that provide the best fit with data. 
In the applicative part, the possibilities of detecting bottom 
logs with a max. bow height exceeding the allowed limit of 
31 mm were studied with a logistic regression.

Materials and methods

Tree selection and field measurements

The studied trees were gathered from five mature Nor-
way spruce dominated even-aged stands in the Pirkanmaa 
region in Finland (Fig. 1, Table 1). The topographical 
differences between and within the stands were small 
(Fig. 1). The trees were subjectively selected prior to the 
harvesting to cover the whole range of max. bow height 
distribution in each stand. In the selected trees, the max. 
bow height was located below 1.3 m. The curvatures 
of the stem bottoms were J shaped, but not very sharp. 
Steeply bent or crooked stem bottoms that did not fulfil 
the sawlog grade were not included in the sample. Tree 

Table 1  Total number of sample 
trees per stand, average age of 
trees, diameter at breast height 
(dbh), tree height and crown 
base height (CBH), and average 
stem volume measured by the 
harvester

Crown base height was measured as the distance between the stem bottom and the lowest living branch of 
the tree crown

Stand n Age dbh (cm) Height (m) CBH (m) Stem vol. (m3)

1 22 66 26.07 21.26 9.92 0.63
2 19 86 27.57 22.54 7.22 0.81
3 18 93 29.06 24.76 5.88 0.89
4 20 84 28.25 23.67 8.83 0.81
5 22 86 28.74 22.04 7.25 0.78
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height, stem diameter at breast height, and crown base 
height were measured prior to the harvesting (Table 1).

The sample trees were crosscut, measured, and piled 
by a Komatsu (931x) harvester (Komatsu Ltd., Tokyo, 
Japan). The harvester followed a standard bucking rou-
tine, where the butt end of the first log was crosscut as 
close to the ground as possible and sawlog defects were 
removed from the logs by short-cuts. The bottom logs 
which met the sawlog grade and were not shortened due 
to any defect on the butt end were included to the study. 
Diameters along the commercial stem part were measured 
over the bark with a harvester measurement system (Stan-
ForD 2010). Sawlog lengths were defined using 30-cm 
intervals (3.1 m, 3.4 m, and up to 6.1 m), and upper diam-
eters varied from 16 to 40 cm, depending on log quality 
and length.

Photographing of the log end face

The butt ends of the bottom logs were photographed with 
a digital camera (Nikon D7200, Tokyo, Japan), equipped 
with Sigma 17–50 mm f/2.8 EX DC OS HSM objective. 
The images were taken shortly after felling and buck-
ing without a flash in daylight. Log end faces stained by 
snow, barkdust, or soil were lightly brushed before taking 
the image. A measurement bar with a sticker indicating 
log-id was held in the same plane as the log end face 
when the image was taken. After photographing, the log-
id was painted on the log end face to re-identify the logs 
later at the sawmill.

Measuring max. bow height on the bottom logs

The max. bow height of the bottom logs was measured by 
an industrial LIMAB (Göteborg, Sweden) 3D log scanner 
during the regular log-sorting routine of the local sawmill 
(Kinnaskoski Oy). The log scanner measures the max. 
bow height as the largest deviation of a centroid and a 
straight line between the middle point of the bottom and 
top ends (Fig. 2). The max. bow height was used instead 
of the more conventional steady sweep (mm/m), because 
the bottom logs were cut into varying lengths. Thus, the 
longer logs would have had smaller sweep per metre than 
shorter logs given that the max. bow height appears at the 
butt end of the log.

Since the industrial log scanner does not measure the 
first 30 cm from the butt end of the log, it is not included 
in the bow height measurements. Thus, the max. bow 
heights (Fig. 3) were underestimated on the logs with a 
buttress within 30 cm of the bottom.

Fig. 1  Locations of stands (1–5), the sawmill, and the city of Tam-
pere in Finland (Pirkanmaa). Elevation (a.s.l., m) is stated in paren-
theses

Fig. 2  Max. bow height of a bottom log

Fig. 3  Distribution of max. bow height on the bottom logs
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Analysis of log end face and stem taper

Log end face image analysis

The log end faces without bark were manually segmented 
from the image background with an open-source software 
“GIMP” (https ://www.gimp.org). The locations of the piths 
were then manually identified with an image processing pro-
gram “ImageJ” (Schneider et al. 2012). The measurement 
bar was used to convert pixels into centimetres.

An image analysis was performed with scripts written in 
the Python computing language (Python v. 2.7). The origi-
nal RGB images without a background (Fig. 4a) were first 
converted into binary form. The binary images were used to 
calculate the geometric centre, or centroid, of the log end 
face with the scikit-image library (v. 0.14.1) (van der Walt 
et al. 2014). The centroid represents the average position of 
all pixels included in the log end face.

To calculate the minimum, maximum, and average diam-
eters from the butt end of the log, a polar transformation was 
performed, in which the log end face image was displayed in 
polar coordinates ( �–r). Polar transformation was performed 
according to the position of the centroid in the binary image.

In the polar transformed image (Fig. 4b), the distance 
from the top of the image to the edge between the wood 
and the background is a radius of the butt end of the log. 
Accordingly, the diameter is calculated by adding the two 
opposing radii, as shown in Fig. 4a, b with the dashed lines. 
The lengths of the radii were derived by finding positions on 

the y-axis where the pixel values of each radius became zero, 
i.e. the background (marked with a red line in Fig. 4b, c).

The large end diameters, with the locations of centroid 
and pith, were used to calculate pith eccentricity and out-of-
roundness. Pith eccentricity ( Pe ) was calculated as follows:

where e is the distance between the pith and the centroid and 
Davg is the average large end diameter.

Out-of-roundness (OOR) illustrates a deviation from a 
circle as percentage of the average large end diameter. OOR 
was calculated based on the minimum, maximum, and aver-
age diameters of the log end face:

where Dmax , Dmin , and Davg are the maximum, minimum, and 
average large end diameters, respectively.

Stem taper analysis

Tapering in different sections of the stem was characterised 
by calculating a decrease in the diameters between relative 
heights (10–20%, 20–30%, etc.) of the commercial stem part. 
The relative tapering between relative heights, in addition 
to relative tapering between stem diameter at breast height 
(dbh) and 10% relative height, was calculated by

(1)Pe =

(

e

Davg

)

⋅ 100,

(2)OOR =

(

Dmax − Dmin

Davg

)

⋅ 100,

Fig. 4  Log end face image 
analysis: a irregular log end 
face with the markers indicating 
the pith, the centroid, and radii 
r1 and r2 . b Polar transformed 
log end face image, where the 
dashed lines indicate the radii 
on the log end face. c Greyscale 
values along the blue radius ( r2 ) 
in a, b. The y-axis in c is the 
distance from pith in pixels. The 
length of radius ( r2 ) is indicated 
by the red line in b, c. (Color 
figure online)

https://www.gimp.org
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where Drh1
 and Drh2

 were the diameters at relative heights rh1 
and rh2 , respectively.

The stem dbh was measured by the harvester, because it 
grasps the stem from a height of 1.3 m. The maximum taper-
ing of the stem below this height ( Taperdbh ) was calculated to 
quantify the butt swell as follows

where Dmax was the maximum diameter of the large end.

Predicting the max. bow height on the bottom log

A linear regression to describe the max. bow height

Linear models to predict the max. bow height were built to test 
an in-sample fit with two sets of explanatory variables. The 
final models were selected based on the Akaike information 
criterion and residuals. The sets of variables were assumed 
to be good predictors of response variable, and they were not 
chosen based on their statistical significance. Stand was treated 
as a random variable in the models, and logarithmic transfor-
mations of the explanatory variables, excluding the dbh, were 
applied because of deviations from the normal distribution.

The first model, lm1 (Eq. 5), included the log end face fea-
tures and was defined as

where bhij was the bow height of the bottom log i on stand 
j, Peij , OORij and Davgij

 were pith eccentricity, out-of-round-
ness, and average large end diameter of bottom log. �0 , �1 , 
�2 , �3 were estimated parameters, ln was a natural logarithm, 
uj was a random stand-level variation, and �ij was between-
tree error.

In addition to the log end face features included in lm1 , 
model lm2 also utilised dbh and variables describing stem taper 
(“Stem taper analysis” section). To avoid highly correlated 
taper variables, a set of variables having low mutual correla-
tion was used in model lm2 . The chosen variables describe the 
stem taper from the bottom to middle stem without over-fitting 
the model to the data. lm2 was defined as

(3)Taperrh1−rh2 =

(

1 −
Drh2

Drh1

)

⋅ 100,

(4)Taperdbh =

(

1 −
dbh

Dmax

)

⋅ 100,

(5)
bhij = �0 + �1 ln(Peij) + �2 ln(OORij)

+ �3 ln(Davgij
) + uj + �ij,

where Taperdbhij , Taperdbh−10%ij , Taper20−30%ij , Taper50−60%ij 
were the taper variables of stem i on stand j between the cor-
responding relative heights, stated in subscript. �0 , �1 , �2 , �3 , 
�4 , �5 , �6 , �7 , and �8 are estimated parameters and the other 
variables as described above.

The fit of the linear models was compared with a pseudo-R2 
statistic (Nakagawa and Schielzeth 2013), in which marginal 
R2 included the variance explained by the fixed factors, while 
conditional R2 was concerned with the variance explained by 
both fixed and random factors. The models were fitted with 
lme4 (Bates et al. 2015) in the R software.

Predicting a probability of excessive max. bow height (> 31 
mm)

The occurrence of excessive max. bow height was modelled 
using a logistic regression. The limit for the max. bow height 
was set to 31 mm, based on the sawlog grading rules (Heis-
kanen and Siimes 1959) widely used in the Finnish sawmilling 
industry. The grading rules define 10 mm per metre as the 
upper limit for steady sweep. While 3.1 m is commonly used 
as the minimum length for sawlogs, a max. bow height above 
31 mm indicates that the automatic bucking of a harvester 
should intervene and remove the defect. In our study, the ratio 
between the straight bottom logs with a max. bow height under 
31 mm and bottom logs (referred to as “sweep” ) with a max. 
bow height above 31 mm was 65/36.

Logistic regression models ( lr1 and lr2 ) with two sets of 
explanatory variables were designed similar to the linear mod-
els in “A linear regression to describe the max. bow height” 
section. Unlike in Eqs. 5 and 6, the stand was not applied as 
a random variable in the logistic regression models, because 
it was not statistically significant. Moreover, Taper50−60 was 
excluded from the explanatory variables, because it was 
unknown when the bucking of a stem began. Logistic regres-
sion models were defined as

(6)

bhij = �0 + �1 ln(Peij) + �2 ln(OORij) + �3 ln(Davgij
)

+ �4 ln(Taperdbhij) + �5 ln(Taperdbh−10%ij)

+ �6 ln(Taper20−30%ij) + �7 ln(Taper50−60%ij)

+ �8dbhij + uj + �ij,

(7)
ln

(

pbh

1 − pbh

)

= �0 + �1 ln(Pei) + �2 ln(OORi)

+�3 ln(Davgi
) + �i,
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where pbh was the logarithm of the odds, �0−3 and �0−7 were 
estimated parameters, and the other symbols as defined 
above.

Accuracy assessment of the logistic regression models

The fit of the logistic regression models and their ability to 
detect bottom logs with a high max. bow height were evaluated 
according to accuracy, which was defined as

where TP and TN were true positives and negatives (logs 
correctly classified as sweep and straight), and accordingly, 
FP and FN were false positives and negatives (logs misclas-
sified as sweep and straight).

Due to the imbalanced ratio between the sweep 
( bh > 31 mm ) and straight bottom logs, the Cohen’s kappa 
( � ) coefficient (Cohen 1960) was calculated. Cohen’s kappa 
compares classifications based on the estimated and measured 
values, i.e. it displays how well the model performs against 
chance. A kappa of 0 indicates that the detection of bottom 
logs with an excessive max. bow height happens purely by 
chance. Accordingly, when the kappa value is 1, the model and 
ground-truth classification are in complete agreement. Cohen’s 
kappa was calculated by

where po and pe were the observed and expected levels of 
agreement, and other symbols as defined above.

Logistic regression models’ ability to classify logs into true 
positives and negatives was visually examined using receiver 
operating characteristic (ROC) and precision–recall (PR) 
curves (Fawcett 2006). Areas under the ROC and PR curves 
were also calculated. The statistical measures used in the ROC 
and PR were

(8)

ln

(

pbh

1 − pbh

)

= �0 + �1 ln(Pei) + �2 ln(OORi)

+�3 ln(Davg) + �4 ln(Taperdbhi)

+�5 ln(Taperdbh−10%i)

+�6 ln(Taper20−30%i)

+�7dbhi + �i,

(9)Accuracy =
TP + TN

TP + FP + TN + FN
⋅ 100,

(10)

� =
po − pe

1 − pe
,

po =TP + FP

pe =
((TP + FP) ⋅ (TP + FN)) + ((FN + TN) ⋅ (TN + FP))

TP + FP + TN + FN

(11)Sensitivity =
TP

TP + FN
,

where the symbols were defined as above.

Results

Properties of the sample trees and bottom logs

The max. bow height of the bottom logs varied from 
5.6 to 65.4 mm, with an average of 27.1 mm (Table 2). 
The max. bow height correlated positively with pith 
eccentricity ( r = 0.43, p < 0.05 ) and out-of-roundness 
( r = 0.20, p < 0.05 ). Significant positive correlations were 
also found between max. bow height, large end diameter, 
and dbh (Table 3).

The average pith eccentricity and out-of-roundness were 
7.2% and 17.0% (Table 2), and they positively correlated 
with each other ( r = 0.24, p < 0.05 ). In addition, both 
variables showed significant positive correlation with the 
large end diameter (Table 3). A low correlation was found 
between pith eccentricity and dbh ( r = 0.17, p < 0.1 ), but no 
correlation was found between dbh and out-of-roundness.

(12)Specificity =
TN

TN + FP
,

(13)Precision =
TP

TP + FP
,

Table 2  Mean, standard deviation and range of log properties, log 
end face variables, and stem taper variables

*Taper is the relative decrease in stem diameters between relative 
heights (10–20%, 20–30%, etc.: see Eq. 3)

Min. Mean Max. SD

Log properties
Volume ( m3) 0.1 0.3 0.9 0.1
Length (m) 3.4 4.7 6.1 0.7
Diameter at breast height (cm) 18.3 27.9 48.4 5.8
Sweep (mm/m) 1.1 5.8 14.6 2.7
Max. bow height (mm) 5.6 27.1 65.4 12.5
 Log end face variables
Large end diameter (cm) 20.8 33.1 57.7 7.7
Pith eccentricity (%) 0.3 7.3 17.9 3.8
Out-of-roundness (%) 4.1 17.0 40.5 8.2
 Stem taper variables (%) *
Taperdbh 0.1 21.7 44.0 8.4
Taperdbh−10 0.4 3.6 8.6 2.0
Taper10−20 0.7 4.9 12.2 1.8
Taper20−30 0.4 5.6 11.0 1.7
Taper30−40 2.8 6.2 11.6 1.7
Taper40−50 4.1 8.4 16.1 2.2
Taper50−60 4.5 9.7 17.7 2.5
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Stem taper was analysed with variables that described the 
relative decrease in diameters between the chosen relative 
heights (“Stem taper analysis” section). As expected, taper-
ing of the stem was greatest below the first 1.3 m, because of 
the maximum diameter used in Eq. 4. Diameters decreased 
between max. large end diameter and dbh by 22% on aver-
age. Tapering between dbh and 10% stem height was lower, 
with an average decrease of 3.6%. From there on, stem taper-
ing slowly increased (Table 2) to stem heights of 50% and 
60%, where tapering was an average of 9.7%.

Taperdbh−10 and Taper20−30 positively correlated with 
max. bow height, but the correlation between Taperdbh and 
max. bow height was not statistically significant (Table 3). 
Moreover, the logs classified as sweep had only a slightly 
larger average Taperdbh , Taperdbh−10 , and Taper20−30 than the 
straight logs (Fig. 5).

Predicting the max. bow height with mixed linear 
models

The pith eccentricity ( ln(Pe) ) was statistically significant in 
both models lm1 and lm2 to predict the max. bow height of 
bottom logs (Table 4). When natural logarithm of pith eccen-
tricity increased by a unit, the max. bow height increased by 
7.66 mm and 6.86 mm according to lm1 and lm2 , respectively. 
The out-of-roundness was not a statistically significant pre-
dictor of max. bow height in either model (Table 4). The 
average large end diameter ( ln(Davg) ) was not significantly 
related to max. bow height in lm1.

Increasing tapering of the stem bottom ( Taperdbh , 
Taperdbh−10 , Taper20−30 ), as well as increasing dbh , increased 
the max. bow height estimate for the bottom log (Table 4). 
In contrast, large stem tapering at the mid-stem ( Taper50−60 ) 
indicated smaller max. bow height.

The model fit was compared with marginal (fixed effects) 
and conditional (fixed and random effects) R2 s. The marginal 
and conditional R2 s were 0.24 and 0.25 in lm1 , while adding 
the stem taper variables increased the marginal and condi-
tional R2 of lm2 to 0.40 and 0.42, respectively.

The max. bow height estimates of lm2 were less biased 
than estimates of lm1 , especially when predicting max. bow 
heights of more than 40 mm (Fig. 6). lm1 underestimated 
max. bow heights above 40 mm, and correspondingly over-
estimated max. bow heights below 20 mm (Fig. 6a). In lm2 , 
the differences of the measured and predicted bow heights 
were lower for max. bow heights above 40 mm than those 
in lm1 (Fig. 6b).

Predicting the probability of excessive max. bow 
height of bottom log

Pith eccentricity was the best predictor of the max. bow 
height above the 31 mm limit in logistic regression models 
lr1 and lr2 (Table 5). Pith eccentricity was the only statisti-
cally significant variable in lr1 . Increasing the natural loga-
rithm of pith eccentricity by 1% increased the odds of the 
bottom log having an excessive max. bow height by 3.16 and 
3.00 in lr1 and lr2 . Out-of-roundness was not a statistically 

Table 3  Pearson correlations between explanatory variables and max. bow height

***p val < 0.001 ; **p val < 0.05 , ∗p val < 0.1

[1] Taper is the relative decrease in stem diameters between relative heights (10–20%, 20–30%, etc.: see Eq. 3).
Pe , pith eccentricity; OOR, out-of-roundness; Davg , average large end diameter; Taperdbh = Tapering between dbh and maximum large end diam-
eter; dbh, diameter at breast height; bh, max. bow height

Log end face variables, Taperdbh , and dbh

Pe OOR Davg Taperdbh dbh

OOR 0.24**
Davg 0.21** 0.25**
Taperdbh 0.22** 0.66** 0.45**
dbh 0.17* 0.13 0.93*** 0.13
bh 0.43*** 0.20** 0.27** 0.15 0.28***

Stem taper variables [1]

Taperdbh Taperdbh−10 Taper10−20 Taper20−30 Taper50−60

Taperdbh−10 0.20**
Taper10−20 0.04 0.19*
Taper20−30 − 0.08 0.11 − 0.23**
Taper50−60 0.02 0.28*** 0.13 0.22**
bh 0.15 0.24** 0.12 0.29*** 0.08
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significant predictor of excessive max. bow height in either 
model (Table 5).

The average large end diameter ( Davg ) was statistically 
not significant in lr1 , but it was significant in lr2 . Accord-
ing to lr2 , a 1 cm increase in the natural logarithm of Davg 
decreased the odds by 6.16 ×10−7 . Yet an increase of 1 cm 
in dbh increased the odds by 1.68 in lr2 . The coefficients of 
variables describing the stem taper in lr2 were positive, but 
not statistically significant (Table 5)

The logistic regression model ( lr1 ), without the stem taper 
information and dbh , showed an accuracy of 67% in the 
detection of bottom logs with an excessive max. bow height. 
The kappa value of lr1 was 0.21. Accordingly, lr2 was able to 
detect an excessive max. bow height with 76% accuracy and 
0.44 kappa, which indicates a moderate agreement between 
the predicted and observed classes (Cohen 1960).

The area under the ROC curve of lr1 was 0.69; for lr2 , 
it was 0.76 (Fig. 7a). The shape of the ROC curve in lr2 
was slightly more upward than in lr1 when the probability 
threshold value was low. If a model with a minimal number 
of false positives (i.e. straight logs predicted to have a max. 
bow height above 31 mm) is desired, lr2 with stem taper 
information is more accurate than lr1 . The area under the pre-
cision–recall curve (Fig. 7b) was 0.57 in lr1 and 0.65 in lr2.

Discussion

The possibility of estimating the max. bow height of the 
bottom log of Norway spruce with a log end face image 
and stem taper was studied with two modelling approaches, 
in which the max. bow height was first predicted by fitting 
a linear regression with two sets of explanatory variables. 
The max. bow height model utilising the pith eccentricity, 
out-of-roundness, and large end diameter of the log resulted 
in highly biased max. bow height estimates. When supple-
mented with additional information on stem taper and dbh, 
the model was able to predict the max. bow height with 
higher accuracy. The results show that a larger pith eccen-
tricity on the log end face indicates a higher max. bow height 
of the bottom log. A higher out-of-roundness also indicated 
higher max. bow height, but because of the high correlation 
between out-of-roundness and pith eccentricity, it was not 
significant in the linear models. Moreover, the out-of-round-
ness variable based on the maximum and minimum diameter 
may not fully describe the shape of the log end face. Yet, 
more complex variables, such as isoperimetric ratio, should 
be tested in further studies.

Similar results were found when the detection of bot-
tom logs that did not meet the sawlog quality requirement 
due to an excessive max. bow height was examined with 
logistic regression models. Accuracy, kappa value, and the 
ROC and PR curves revealed that when the log end face 

Fig. 5  Stem taper was characterised by diameters measured from 
the butt end, 1.3 m and relative heights in 10% intervals. Among the 
taper variables, a Taperdbh , b Taperdbh−10 , and c Taper20−30 showed 
the largest difference in tapering between the straight and sweep 
bottom logs. The logs were classified as sweep when the max. bow 
height was more than 31 mm. Dmax and dbh are the large end diam-
eter and diameter at breast height
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features were used alone, an excessive max. bow height 
could not be reliably predicted. The taper information 
from the bottom part of the stem appears to be neces-
sary in detecting an excessive max. bow height. Despite 
the statistical significance of pith eccentricity, it did not 

substantially increase the probability of an excessive max. 
bow height, especially in small diameter logs (Fig. 8).

In our study, the pith locations were manually identi-
fied on the images. However, previous studies have dem-
onstrated that piths can be automatically detected with a 

Table 4  Parameter estimates of 
the fixed effects in mixed linear 
models lm

1
 and lm

2
 (Eqs. 5 and 

6) with p values (Wald) and 
standard errors of the estimates

The variables are explained in Table 3

Predictor lm1 lm2

Est. SE p val. Est. SE p val.

ln(Pe) 7.66 1.69 < 0.01 6.86 1.54 < 0.01
ln(OOR) 2.54 2.41 0.29 2.72 2.37 0.25
ln(Davg) 8.74 5.12 0.09 −  59.40 16.72 < 0.01
ln(Taperdbh) 6.34 1.91 < 0.01
ln(Taperdbh−10) 2.06 1.65 0.21
ln(Taper20−30) 6.90 2.51 0.01
ln(Taper50−60) −  9.05 4.18 0.03
dbh 2.60 0.61 < 0.01
Constant − 24.02 17.00 0.158 128.99 39.75 < 0.01

Fig. 6  Measured and predicted 
max. bow heights in a lm1 
(Eq. 5) and b lm2 (Eq. 6)

Table 5  Parameter estimates 
of logistic regression models 
(Eqs. 7 and 8), predicting the 
probability of a max. bow 
height above 31 mm, with p 
values (Wald) and standard 
errors of the estimates

The variables are explained in Table 3

Predictor lr1 lr2

Est. SE p val. Est. SE p-val.

ln(Pe) 1.15 0.44 0.01 1.10 0.45 0.02
ln(OOR) 0.04 0.50 0.94 − 0.73 0.75 0.33
ln(Davg) 1.13 1.04 0.28 − 14.30 6.85 0.04
ln(Taperdbh) 3.10 1.70 0.07
ln(Taperdbh−10) 0.43 0.39 0.28
ln(Taper10−20) 0.71 0.61 0.25
dbh 0.52 0.24 0.03
Constant − 6.81 3.52 0.053 23.65 13.70 0.08
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reasonable accuracy from RGB images (Saint-Andre and 
Leban 2001; Norell and Borgefors 2008; Österberg 2009; 
Kurdthongmee and Suwannarat 2019). The algorithms 
developed by Schraml and Uhl (2013) detected pith loca-
tions from the images of rough log end face with an aver-
age accuracy of 0.5 cm. However, the images used in the 
study of Schraml and Uhl (2013) were taken from slightly 
dried log ends at the sawmill yard, when annual rings are 
more distinguishable than immediately after the crosscut. 
Moreover, the counting of annual rings from dried log 
ends in sawmill conditions has been demonstrated (e.g. 
Norell 2011), whereas the analysis of fresh log end face 
images has received less attention.

A relationship between pith eccentricity and max. bow 
height has been found in previous studies. In Scots pine 
(Pinus sylvestris L.), Warensjö and Rune (2004) discovered 
in seedlings (6-year) and young trees (22-year) that the pro-
cess whereby the tree corrected leaning by an uneven growth 
of annual rings and reaction wood could take decades, and 
the length of recovery period depended mainly on the size 
of the stem when the tree began to lean.

The positive correlations between pith eccentricity, out-
of-roundness, and max. bow height found in this study 
were similar to the results of Rune and Warensjö (2002) 
and Warensjö and Rune (2004). However, the results of this 
study and those of Rune and Warensjö (2002) and Warensjö 
and Rune (2004) were poorly comparable due to the age 
difference and irregular stem shape of this study’s spruces, 
which was caused by the buttress. Excluding the bottom logs 
with very large buttresses increased the correlation between 
pith eccentricity and max. bow height (results not shown).

Although some inconsistency in the correlations with 
max. bow height and tapering variables was found, the 
stems with large tapering had a larger max. bow height of 
the bottom log. This could, at least partly, be explained by 
canopy competition, in which the leaning young trees are 
likely to settle in dominated crown classes. In the lower 
canopy, Norway spruce adapts to increased shading by 
changing the crown structure, including decreased height 
growth (Greis and Kellomäki 1981). Increasing the initial 
spacing has also increased the max. bow height of the 
bottom logs of Norway spruce (Høibø 1991). However, 
in Johansson’s study (1992), only a marginal relation-
ship between initial spacing and the presence of basal 

Fig. 7  a Receiver operating characteristic (ROC) curves for models 
lr1 and lr2 . The sensitivity (Eq.  11) of the y-axis stands for the true 
positive rate (recall), while 1-specificity (Eq. 12) of the x-axis is the 
false positive rate. b Precision–recall curves of models lr1 and lr2 , 
where precision (Eq.  13) on the y-axis describes models’ ability to 
distinguish true positives from false positives

Fig. 8  Predicted probability of excessive max. bow height according 
to pith eccentricity, large end diameter, and an average out-of-round-
ness (17%)



European Journal of Forest Research 

1 3

sweep was found. Accordingly, Mäkinen (1998) found 
that stand density and thinning had no clear effect on the 
bole eccentricity of Scots pine. Presumably, decreasing 
the proportion of stems in clear-cuts with excessive bow 
height is accomplished mainly by removing them during 
thinnings.

Warensjö and Rune (2004) discovered that increasing 
compression wood content on the log end face of 60-year-
old Norway spruce indicated increasing bow height. How-
ever, only the most pronounced reaction wood can be dis-
tinguished from freshly cut wood (Timell 1986). Thus, the 
detection of reaction wood from a standard RGB image is 
challenging without staining methods, which involve dye-
ing the wood surface with acid or alcohol (Gardiner et al. 
2014). Devices that operate beyond visible wavelengths, 
such as hyperspectral sensors (Hagman 1996) and port-
able spectrometers (Sandak et al. 2020), hold great poten-
tial to decrease the bias of max. bow height predictions 
through the better detection of the reaction wood from the 
fresh log end face.

The image taken from the log end face reveals defects 
that are otherwise difficult for the harvester operator to 
notice based only on external indicators. However, prop-
erties of a single tree could not only be estimated during 
the harvesting but also before it with ALS derived crown 
characteristics (Fischer et al. 2018). Suitability of a log 
for structural timber could be further estimated by meas-
uring the force needed for crosscutting the stem (Sandak 
et al. 2017) which essentially reflects the density of a 
wood. In appearance grading, log end face image could 
be utilised to estimate other sawlog features, such as knot-
tiness (Uusitalo and Isotalo 2005; Mäkinen et al. 2019), 
that have traditionally been predicted based on exter-
nal features, such as dead branch height (Uusitalo and 
Kivinen 1998). Overall, a combination of various sensors 
could provide valuable information throughout the supply 
chain for sawmills, and the plywood or veneer industries.

Due to the limitations and industrial nature of the 3D 
log scanner used in the study, the longitudinal position of 
the max. bow height was not measured. Furthermore, the 
operator followed the regular bucking instructions con-
cerning the defects and only the bottom logs fulfilling the 
sawlog grade were included in the study. The operator fol-
lowed regular bucking instructions and principles dealing 
with the defects and only the bottom logs fulfilling the 
sawlog grade were included to the study. However, large 
bow heights are rather exceptional in Finnish clear-cut 
stands. In addition, the logs were gathered from a small 
geographical area, and it was impossible to evaluate a 
generalisation of the models. The estimates represent the 
model fit to the data and are not applicable as such.

Conclusions

Log end face image features combined with stem taper 
information can be used to detect a large bow height on 
Norway spruce bottom logs. Advanced sensors that measure 
wood and detect failures would guide the harvester operator 
towards more optimised bucking decisions where log length 
is determined according to the estimated amount of bow 
height. Nevertheless, the aim of operator assisting systems is 
to increase the efficiency of the whole supply chain. In Nor-
way spruce, quantifying the butt swell and the stem diameter 
at breast height is highly recommended when estimating the 
max. bow height. Further studies are needed to define the 
most effective bucking principles, based on the bow height 
of the bottom log. Yet more complex and nonlinear methods, 
such as deep learning with log end face images, could pro-
vide more accurate estimates for max. bow height.
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