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Inferring interspecific interactions indirectly from community data is of central inter-
est in community ecology. Data on species communities can be surveyed using differ-
ent methods, each of which may differ in the amount and type of species detected, and 
thus produce varying information on interaction networks. Since fruit bodies reflect 
only a fraction of the wood-inhabiting fungal diversity, there is an ongoing debate in 
fungal ecology on whether fruit body-based surveys are a valid method for studying 
fungal community dynamics compared to surveys based on DNA metabarcoding. In 
this paper, we focus on species-to-species associations and ask whether the associations 
inferred from data collected by fruit-body surveys reflect the ones found from data 
collected by DNA-based surveys. We estimate and compare the association networks 
resulting from different survey methods using a joint species distribution model. We 
recorded both raw and residual associations that respectively do not and do correct for 
the influence of the abiotic predictors when estimating the species-to-species associa-
tions. The analyses of the DNA data yielded a larger number of species-to-species asso-
ciations than the analyses of the fruit body-based data as expected. Yet, we estimated 
unique associations also from the fruit-body data. Our results show that the directions 
of estimated residual associations were consistent between the data types, whereas the 
raw associations were much less consistent, highlighting the need to account for the 
influence of relevant environmental covariates when estimating association networks. 
We conclude that even though DNA-based survey methods are more informative 
about the total number of interacting species, fruit-body surveys are also an adequate 
method for inferring association networks in wood-inhabiting fungi. Since the DNA 
and fruit-body data carry on complementary information on fungal communities, the 
most comprehensive insights are obtained by combining the two survey methods.
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Introduction

Interspecific interactions are often hard to observe directly in 
species-rich communities. Consequently, inferring interspe-
cific interactions indirectly from community data is of central 
interest in community ecology (Kissling et al. 2012, Morales-
Castilla et al. 2015, Dormann et al. 2018) and fundamental 
for predicting community dynamics under the global envi-
ronmental change (Araújo and Luoto 2007, Gilman  et  al. 
2010, Wisz et al. 2013, Urban et al. 2016). However, data on 
species communities can be surveyed using different meth-
ods, each of which may differ in the amount and type of 
species that are detected, and thus produce diverging infor-
mation on interaction networks (Wirta et al. 2014, Zhu et al. 
2019). Data based on direct observations of species are prone 
to introducing false negatives due to imperfect detection 
(Guillera-Arroita 2017), whereas false positives due to spe-
cies misidentifications are typical of data derived from DNA-
based methods (Ficetola et al. 2015). Such observation error 
associated with each type of data is one of the reasons for the 
ongoing debate on which data types are valid for drawing 
ecological inferences (Yoccoz  et  al. 2001, Tyre  et  al. 2003, 
Lahoz-Monfort  et  al. 2014, Guillera-Arroita 2017). Given 
the exponential rise of DNA-based community datasets in 
ecology (Bush et al. 2017), assessing how the survey method 
affects the inferred interaction networks is a premise for 
advancing research on community ecology.

In species-rich communities where observation of biotic 
interactions is challenging, interactions are often estimated 
from snapshot data using network and co-occurrence anal-
yses (Steele  et  al. 2011, Barberán  et  al. 2012, Weiss  et  al. 
2016). Because species can co-occur more than expected by 
random not only due to interactions but also due to shared 
habitat requirements, the development of methods allowing 
to disentangle between the environmentally constrained and 
non-environmentally constrained co-occurrences is gaining 
increasing interest in the ecological literature (Peres-Neto et al. 
2001, Ovaskainen et al. 2010a, 2016, Barberán et al. 2012, 
Legendre and Legendre 2012, Blois et al. 2013, Pollock et al. 
2014, Morueta-Holme  et  al. 2016, Zurell  et  al. 2018). 
Recently developed joint species distribution models with 
latent variable structures enable inferring the residual asso-
ciations (i.e. the co-occurrence patterns remaining after 
accounting for the effects of environmental predictors) from 
datasets consisting of large amounts of species (Warton et al. 
2015, Ovaskainen et al. 2017). Since the residual species-to-
species associations can reflect both biotic interactions and 
shared responses to missing environmental variables, it is 
important to note that they should not be directly interpreted 
as interspecific interactions (Ovaskainen et al. 2010a, 2017, 
Dormann et al. 2018). However, compared to raw associa-
tions, residual association provide a closer approximation of 
species interactions.

Fungal species comprise megadiverse communities 
(Blackwell 2011) in which species interact in a number 
of ways, ranging from strong antagonisms to mutualism 

(Boddy  et  al. 2008). In particular, wood-inhabiting fungal 
communities are highly structured by interspecific interac-
tions. Laboratory experiments have shown that the commu-
nity development of wood-inhabiting fungi is largely affected 
by biotic interactions (Holmer and Stenlid 1997, Heilmann-
Clausen and Boddy 2005, Fukami et al. 2010, Hiscox et al. 
2015a). Likewise, field studies based on snapshot fruit-body 
observations suggest that during the decay process of dead 
wood, the identity of a successor fungal species is affected 
by the identity and abundance of the preceding fungal spe-
cies (Renvall 1995, Pouska et al. 2013, Ottosson et al. 2014, 
Norberg  et  al. 2019). In addition, environmental condi-
tions may influence the outcome of interspecific interactions 
(Hiscox et al. 2016) and conversely, fungal interactions may 
influence ecosystem functions such as wood decomposi-
tion (Boddy 2001, Fukami et al. 2010, Hiscox et al. 2015b, 
Maynard et al. 2018).

To date, most studies exploring wood-inhabiting fungal 
communities have applied fruit-body surveys (Halme et al. 
2012). The method is relatively fast and low-cost, and thus 
enables large scale comparative studies with conspicuous spe-
cies (Halme et al. 2012, Runnel et al. 2015). Nevertheless, 
several fungal groups produce ephemeral fruit bodies during 
limited fruiting seasons, making the number and timing of 
surveys critical for species’ detectability (Halme and Kotiaho 
2012, Abrego et al. 2016, Purhonen et al. 2017). Moreover, 
some wood-inhabiting fungi are microscopic (Lumley et al. 
2000) and some individuals may not produce fruit bodies at 
all (Moore et al. 2008). Therefore, only a fraction of species 
detected by DNA-based metabarcoding methods are detected 
by fruit body-based (Allmér  et  al. 2006, Ovaskainen  et  al. 
2010b, 2013, Kubartová et al. 2012, Ottosson et al. 2015), 
generating the debate on whether fruit body-based surveys 
are a valid method for studying fungal community dynam-
ics compared to DNA-based surveys (Allmér  et  al. 2006, 
Porter et al. 2008, Halme et al. 2012, van der Linde et al. 
2012, Runnel  et  al. 2015, Frøslev  et  al. 2019). Since fruit 
body-based surveys are able to capture only the part of the 
fungal community that is in the reproductive phase, these 
methods are clearly less optimal than DNA-based surveys 
for assessing the fungal diversity in terms of the number of 
species present. While Ovaskainen et al. (2013) showed that 
the ecological signal on the effects of dead wood properties 
on wood-inhabiting fungal communities is highly consistent 
between data based on fruit-body observations and DNA 
metabarcoding, it remains unclear whether the data collected 
by these two survey methods carry the same (or complemen-
tary) information on species-to-species associations for those 
species that can be detected with both methods.

In this paper, our aim is to assess whether the species-to-
species associations inferred from fruit body-based data reflect 
the ones inferred from DNA-based data. We hypothesize that 
DNA-based data allows estimating more associations com-
pared to fruit body-based data, yet those associations detected 
from both data types are consistent. For comparing data col-
lected by these survey methods, we use snapshot fruit-body 



1835

and sequence data published in Ovaskainen et al. (2013) and 
Mäkipää  et  al. (2017). The data consist of 100 Norwegian 
spruce Picea abies logs of similar size that were simultane-
ously sampled by fruit-body and DNA-based surveys, the 
latter based on ITS metabarcoding of wood samples. We esti-
mate and compare the species-to-species associations using 
a joint species distribution model. The model partitions the 
variation in species occurrences and co-occurrences to that 
explained by the abiotic predictors and variation remaining 
after accounting for these abiotic predictors, namely residual 
associations (Ovaskainen et al. 2016, 2017).

Material and methods

Data collection

The data were collected from a protected, natural-like spruce 
dominated forest located in the municipality of Sipoo in 
Helsinki-Uusimaa Region, Finland (Ovaskainen et al. 2013). 
In this site, 100 large-sized logs (DBH 20–43 cm) were ran-
domly selected. The selected logs varied in their decay stage 
(decay classes 1–4; see Hottola and Siitonen (2008) for class 
descriptions, and Supplementary Table 1 in Ovaskainen et al. 
(2013) for a table of decay stages), fall type (uprooted or 
broken) and ground contact but as minimally as possible in  
their size.

In November 2008, saw dust samples were taken from the 
100 spruce logs for subsequent fungal DNA sequencing. Saw 
dust samples were taken separately from the basal and the 
middle part of the log with an electric drill. With strongly 
decayed logs, a sampling cylinder was used. The fruit-body 
surveys were carried out three times during the peak fruiting 
season. In September and November 2008, all logs were sam-
pled twice for fruit bodies of all polypores and certain cortici-
oid and hydnoid basidiomycetes that were easily identified in 
the field. During a third survey in October 2009, all polypo-
roid, corticioid and hydnoid basidiomycetes and some eas-
ily identified ascomycetes were sampled. If the species could 
not be reliably identified in the field, specimen samples were 
taken for later microscopic identification. During the latter 
two surveys, the abundance of species on a log was measured 
as the area covered by fruit bodies (cm2) for all polypores and 
those corticioids and hydnoid species that were successfully 
identified in the field. For more detailed information on the 
sampling scheme, see Ovaskainen et al. (2013).

DNA extraction and sequencing

The protocols for DNA extraction and sequencing are 
described in detail in Ovaskainen  et  al. (2013). Briefly, 
DNA extractions for the 200 saw dust samples (two for each 
log) were done using Power Soil DNA isolation kit (MoBio 
Laboratories, Inc., Carlsbad, CA, USA). Taq polymerase 
enzyme (Thermo Fisher Scientific, Waltham, MA, USA) with 
the primers ITS1 and ITS4 (White et al. 1990) was used to 
amplify the target DNA region. Real-time quantitative PCR 

(qPCR) assays were conducted on the 18S ribosomal RNA 
gene. Samples with a DNA concentration ≥ 0.05 ng μm−1 
were included in the qPCR analyses (163 out of 200 sam-
ples). CGX384 Real-Time PCR detection system was used 
to run the reactions. As a results, around 400 PCR fragments 
were obtained for the primers ITS1 and ITS2 to be used in 
the 454-sequencing.

For 297 samples with a DNA concentration > 1.43 ng 
μm−1, PCR reactions for ITS1 region were done with a primer 
pair ITS1F (Gardes and Bruns 1993) and ITS2 (White et al. 
1990). The primer pair ITS4 and ITS3 (White et al. 1990) 
was used for ITS2 region. For 97 samples with a DNA con-
centration < 1.43 ng μm−1, a shorter form of ITS1F and 
ITS4 primers without the A and tag sequences was used for 
both ITS1 and ITS2 regions. Then, the PCR reactions were 
diluted and amplified again using ITS1F and ITS4 primers 
with tag and A sequences. Finally, sequencing was done using 
a Genome Sequencer FLX. In the case of six samples, no 
PCR fragments could be obtained.

We note that the DNA extraction and sequencing methods 
applied for Ovaskainen et al. (2013) represent the early stages 
of ITS metabarcoding techniques. Therefore, in these data 
the fungal community might be underrepresented, especially 
for those less abundant species requiring a deeper sequenc-
ing depth for being detected. However, Ovaskainen  et  al. 
(2013) showed a good correspondence between fruit-body 
and DNA abundance, suggesting a high signal-to-noise ratio 
in these data despite the limitations.

Molecular species identification

For this paper, we renewed the original molecular species 
identifications done for Ovaskainen  et  al. (2013) using 
PROTAX-fungi (Abarenkov  et  al. 2018). PROTAX-fungi 
is a software performing probabilistic taxonomic placement 
of fungal ITS sequences to known and unknown fungal 
lineages. The tool is based on a taxonomic classification sys-
tem of Index Fungorum + Species Fungorum (Royal Botanic 
Gardens Kew et al. 2019) that covers a total of 131 484 spe-
cies. The reference sequences are obtained from UNITE data-
base (Kõljalg  et  al. 2013). PROTAX-fungi uses a database 
that consists of 420 319 reference sequences out of which 
217 663 are annotated at the species level (Abarenkov et al. 
2018). In our sequence data used for the identifications, sam-
ples for the ITS1 and ITS2 regions and for the basal and the 
middle part of the log were treated separately (ca 400 samples 
altogether, four per log). We included here those taxonomic 
placements that could be assigned to the species level with at 
least 50% probability.

Data preparation

We treated individual logs as sampling units, and thus we 
first pooled the data at the log level. For the data based on 
fruit-body observations, the area covered by fruit bodies of 
each species in the basal and the middle part of the logs were 
summed for each log, and then averaged over the surveys to 
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yield a measure of fruit-body abundance for those species that 
were measured in the field (Ovaskainen et al. 2013). In the 
DNA-based data, we pooled the ITS1 and ITS2 sequences as 
well as the basal and the middle part of the logs by summing 
the species-specific sequence counts for all species detected. 
The sequence counts were used as a proxy of DNA abun-
dance. Thus, the resulting data consisted of occurrence (i.e. 
presence–absence) and abundance (i.e. fruit-body coverage 
and number of sequences mapped to the focal species) of 
each species as fruit bodies and DNA on each log. The species 
nomenclature in fruit body-based data was updated accord-
ing to Index Fungorum (Royal Botanic Gardens Kew et al. 
2019) to match the nomenclature in the DNA-based data. 
Sequencing depth (i.e. the total number of sequences in a 
sample) was used as an estimate for sampling effort in the 
DNA-based data (Tedersoo et al. 2014). 

The original data based on fruit-body observa-
tions is available from Supplementary Table 1 in 
Ovaskainen  et  al. (2013): <https://static-content.
springer.com/esm/art%3A10.1038%2Fismej.2013.61/
MediaObjects/41396_2013_BFismej201361_MOESM21_
ESM.xls>. The raw sequence data (Ovaskainen et al. 2013, 
Mäkipää et al. 2017) is archived in NCBI (National Center 
for Biotechnology Information, Bethesda, MD, USA) 
BioProject ID PRJNA341814.

Statistical methods

Since our aim was to test whether association networks esti-
mated using each data type are consistent with each other, for 
the statistical analyses we selected only those fungal species 
that were detected both in fruit-body and DNA-based data. 
Namely, we did not estimate the associations among those 
species detected by only one of the survey methods, as those 
associations can obviously not be compared between datasets.

To obtain sufficient statistical power, only those species 
that occurred at least on 10 logs in at least one of the datasets 
(based on fruit-body observations or DNA) were included in 
the analyses. Such prevalence threshold was applied because 
if a given species occurs in a very small fraction of the sam-
pling units, there is not sufficient statistical power to reliably 
estimate the species-to-species associations (Ovaskainen and 
Abrego 2020).

We conducted our analyses with the R package Hmsc 
(<www.r-project.org>, Tikhonov et al. 2020) which belongs 
to the class of joint species distribution models (Warton et al. 
2015, Ovaskainen  et  al. 2017). Joint species distribution 
models allow inferring the species-to-species associations 
after controlling for the effects of the variables included in the 
model. The response matrix Y (see Ovaskainen et al. 2017 for 
notation) consisted of the occurrences and log-transformed 
abundances of each species as fruit bodies and DNA on the 
100 sampling units (i.e. logs). Each species was thus included 
in the Y matrix in four columns representing the different 
types of data. We applied a hurdle approach that modelled 
the occurrences (presence–absences) with probit regression 

and log-transformed abundances conditional on presence 
with linear regression. Fruit-body and DNA abundances were 
standardized to zero mean and unit variance and considered 
conditional on presence, i.e. considered as missing data for 
cases in which the species were absent. Decay stage (categori-
cal variable with the four levels), ground contact (present or 
absent), fall type (uprooted or broken) and log-transformed 
sequencing depth were included as the sampling unit level 
explanatory variables in the matrix X. To estimate the species-
to-species association networks, we included community-
level random effects at the scale of sampling unit. The data 
type was included as a categorical variable with four levels 
(fruit-body occurrence, fruit-body abundance, DNA occur-
rence or DNA abundance) in the species trait matrix T. To 
disentangle between the raw species associations (i.e. those 
arising mainly from the shared log characteristics) and the 
residual associations (i.e. the ones remaining after control-
ling for log characteristics), we fitted two model variants. The 
first model variant with raw associations included sequencing 
depth as the only covariate (model 1), and the second one 
with residual associations included sequencing depth, decay 
stage, ground contact and fall type as covariates (model 2).

To sample the posterior distribution, we applied the 
default priors in the R-package Hmsc (Tikhonov  et  al. 
2020) and performed 1 500 000 Markov chain Monte Carlo 
(MCMC) iterations with four chains. The first 500 000 itera-
tions were removed as burn-in and the remaining ones were 
thinned by 1000, resulting in 1000 posterior samples per 
chain, and thus 4000 posterior samples in total. Before fitting 
the final model, we explored the rate of MCMC converge 
by fitting otherwise identical models but with 1500 (burn-in 
500, thin 1), 15 000 iterations (burn-in 5000, thin 10) and 
150 000 iterations (burn-in 50 000, thin 100). We followed 
Tikhonov et  al. (2020) by evaluating MCMC convergence 
by computing the effective sample size and the potential 
scale reduction factor for the model parameters related to 
species-level (β) and community-level (γ) responses to envi-
ronmental covariates, residual variation in species responses 
to environmental covariates (V) and the species association  
matrices (Ω).

We assessed the explanatory power by computing for each 
species and each data type the AUC for the occurrence data 
and R2 for the abundance data. Then, we averaged for each 
data type the AUC values over all species and the R2 values 
over those species for which abundance data was available 
for at least five logs. To examine the relative importance of 
environmental covariates and random effects (i.e. the associa-
tions) for the species communities, we performed variance 
partitioning among the explanatory variables.

To compare the species-to-species association networks 
identified from the fruit-body and DNA-based data, we 
classified the estimated associations as positive, negative or 
neutral, depending whether the posterior probability for 
the association was greater than 0.75, smaller than 0.25 or 
between 0.25 and 0.75, respectively. We note that the neutral 
case includes both those species pairs for which there is no 
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association in reality, as well as those for which there may 
be an association in reality but the data do not have the suf-
ficient statistical power for identifying it. We computed the 
numbers of species pairs for which the fruit-body and DNA-
based data showed consistent results (both positive, both neg-
ative or both neutral), contradictory results (one positive and 
the other one negative), and for which the results were not 
consistent nor contradictory (one positive or negative and the 
other one neutral).

Results

Altogether, 142 species were observed in the fruit body-based 
surveys. The DNA sequencing resulted in a total of 1 349 965 
sequences, out of which 18.5% (249 153) were assigned to a 
species level with at least 50% probability, yielding 413 spe-
cies. Fruit-body and DNA-based data shared 80 species, out 
of which 37 species occurred at least 10 times in either fruit-
body or DNA-based data and were consequently included 
in the HMSC-analyses. Out of these 37 target species, fruit-
body abundance was available for 16 species. On average, 
each log hosted 6.2 target species as fruit bodies (ranging 
from 0 to 15) and 6.7 species as DNA (ranging from 1 to 
15). The mean number of occurrences for the target species 
was 16.7 for fruiting species (ranging from 1 to 73) and 18.2 
for species detected as DNA (ranging from 1 to 61). For a list 
of the 37 species included in the analyses and information on 
their prevalence and abundance, see Supplementary material 
Appendix 1 Table A1.

The MCMC convergence was satisfactory, as the effec-
tive sample sizes were close to the theoretical optimum of 
4000, and the potential scale reduction factors were close 
to the theoretical optimum of one (Supplementary material 
Appendix 1 Fig. A1). Measured by the AUC statistic, the fit-
ted model with residual associations explained on average 
82% (respectively, 84%) of the variation in the occurrence of 
fruiting (respectively, present as DNA) species. Measured by 
R2, the fitted model with residual associations explained on 
average 27% (respectively, 29%) of the variation in species 
abundance (conditional on presence) of fruiting (respectively, 
present as DNA) species. Decay stage was the most important 
abiotic predictor, explaining 47% of the variance (on average 
over all species and data types). Ground contact, fall type and 
sequencing depth explained on average 9, 11 and 12% of 
the variance, respectively. The 22% of the variance belonged 
to the random effects at the log level. As expected, includ-
ing the environmental covariates in the model improved the 
model fit (Supplementary material Appendix 1 Table A2) and 
decreased the proportion of variance explained by the ran-
dom effect (Supplementary material Appendix 1 Table A3).

The total number of detected species-to-species associa-
tions was higher in the DNA than fruit body-based data 
(Fig. 1, 2). However, the directions of estimated species-
to-species associations were generally consistent between 
the data types, especially in the case of residual associations 
(Fig. 1b) that showed no contrary associations. In other 

words, species pairs showing positive (respectively, negative) 
associations in the fruit body-based data showed positive 
(respectively, negative) associations also in the DNA-based 
data (Fig. 1). In the occurrence data, a total of 666 residual 
species-to-species associations were detected. Out of these, 
61.5% were consistent (both positive 11.4%, both negative 
8.1% or both neutral 42.0%) between fruit-body and DNA-
based data (Supplementary material Appendix 1 Table A4). 
No contrary associations were found (i.e. where one data type 
would support a positive association and the other one nega-
tive) (Supplementary material Appendix 1 Table A4). The 
remaining 38.4% represent cases in which the association was 
detected only in one data type (i.e. one data type giving sup-
port for a positive or negative association, and the other one 
for a neutral association) (Supplementary material Appendix 
1 Table A4, Fig. 2). Such unique, positively and negatively 
associated species pairs were detected with both methods 
but the number of such pairs was larger for DNA-based data 
(Fig. 2a–b). Out of all positive and negative residual associa-
tions in the occurrence data, 33.7% were detected by both 
methods (34.9% for raw associations), 18.7% only by fruit-
body surveys (23.1% for raw associations) and 47.6% only by 
molecular surveys (41.9% for raw associations) (Fig. 2a–b). 
Considering the type of detected association, both fruit-body 
and DNA-based data recorded more positive than negative 
associations in the occurrence data (Fig. 1, 2).

Compared to residual associations, raw associations in 
the occurrence data recorded a somewhat lower proportion 
(52.4%) of consistent associations (both positive 17.7%, both 
negative 7.2% or both neutral 27.5%) (Supplementary mate-
rial Appendix 1 Table A4). They showed also some contra-
dictory associations (1.2%), and more associations that were 
not consistent nor contradictory (46.5%) (Supplementary 
material Appendix 1 Table A4). In the case of abundance 
data (conditional on presence), only few associations were 
recorded in general (Fig. 1, 2c–d), making the comparison 
between fruit-body and DNA-based data less informative 
(Supplementary material Appendix 1 Table A4).

Discussion

In this study, we demonstrate that even if data derived from 
fruit body-based surveys are particularly prone to introducing 
false negatives compared to data derived from DNA-based 
surveys, these data types are valid for inferring species-to-
species association networks in wood-inhabiting fungal 
communities. Our results show that the directions of esti-
mated residual species-to-species associations were consistent 
between the data derived from direct fruit-body observations 
and DNA-based surveys. However, there were differences in 
the amount of association links detected by each of the sur-
vey methods, and consistency of the links varied depending 
on whether the associations were estimated from models that 
accounted or did not account for the effects of environmental 
conditions. Below, we will explain each finding in turn.
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Figure 1. The estimated species-to-species associations measured as (a) raw and (b) residual correlations, separately for each data type (spe-
cies occurrences (occur.) and abundances (abun.) in data based on fruit-body observations and DNA metabarcoding). The matrices show 
species pairs with positive (red) and negative (blue) associations with at least 75% posterior probability. The color shade indicates the 
strength of the correlation (the darker the shade, the stronger the correlation). The remaining cases, i.e. neutral associations, are shown in 
white. Each data type contains the same set of 37 species (except for fruit-body abundance data including 16 out of these species) in a cor-
responding order (for species names, see Supplementary material Appendix 1 Table A1). The order is set to highlight positively and nega-
tively associated groups.
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Compared to more classical species surveys, DNA metab-
arcoding methods yield more species-rich community data-
sets and represent more inconspicuous species (Creer  et  al. 
2016). This is also the case for wood-inhabiting fungi 
(Allmér et al. 2006, Kubartová et al. 2012, Ovaskainen et al. 
2013, Ottosson et al. 2015). Supporting these previous find-
ings and our hypotheses, our results showed that the DNA-
based survey detected more species than the survey based 
on fruit-body observations. However, with DNA-based 
methods not only more species are detected per log, but also 
each species is likely to be detected in a larger number of 
logs than with fruit-body surveys, providing stronger sta-
tistical power for inferring species-to-species associations. 

Consequently, we estimated a larger absolute number of 
associations from data based on DNA than from data based 
on fruit-body observations. The result is linked to the obser-
vational error in fruit body-based surveys. Only a fraction of 
the species found as DNA are detected as fruit bodies since 
only the most abundant species as DNA produce fruit bod-
ies and they appear with a time delay from the colonization 
(Allmér et al. 2006, Kubartová et al. 2012, Ovaskainen et al. 
2013, Ottosson et al. 2015). Furthermore, most of the spe-
cies produce ephemeral fruit bodies emerging at different 
times during the fruiting season (Halme and Kotiaho 2012, 
Abrego et al. 2016, Purhonen et al. 2017), fruit bodies of some 
fungal species are too small to be detected with naked eye  

Figure 2. Euler diagrams showing the number of positively (red), negatively (blue) and neutrally (grey) associated species pairs estimated 
from the data based on fruit-body observations (FB) and DNA metabarcoding (DNA) (numbers on the left- and right-hand sides of the 
diagrams, respectively), and the number of species pairs recorded by both survey methods (numbers within the overlapping areas). The first 
and second rows of panels show (a) raw and (b) residual associations in the occurrence data, and the third and fourth rows of panels show 
(c) raw and (d) residual associations in the abundance data. The sizes of the circles correspond to the total number of associations detected 
by each survey method. If a data type detected no associations, this is shown with a cross.
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(Cannon and Sutton 2004, Abrego and Salcedo 2015) 
and some fungal individuals may never produce fruit bod-
ies (Moore  et  al. 2008). Moreover, supporting our results, 
interspecific interactions in fungal communities take place 
mainly at the mycelial stage (Heilmann-Clausen and Boddy 
2005, Fricker et al. 2008, Hiscox et al. 2018), which can be 
surveyed using the DNA-based methods only. Before the 
potential fruiting, species have to occupy space and resources 
within dead wood as mycelium and while doing so, they nec-
essarily interact with other species (Boddy 2000, Boddy and 
Hiscox 2016).

There were also associations that were estimated only 
from the data based on fruit-body observations. Most likely 
these species pairs represent cases in which sequences have 
been misidentified in the DNA-based data. A large body 
of literature has demonstrated that when applying molecu-
lar species identification methods to data originating from 
high-throughput sequencing of environmental samples, spe-
cies can easily be misidentified (Meyer and Paulay 2005, Lou 
and Golding 2012, Ficetola et al. 2015, Lahoz-Monfort et al. 
2016). There are myriad reasons for this, such as sequencing 
errors, mislabeling errors in the reference databases, and the 
fact that some species are simply missing from the reference 
databases (Lou and Golding 2012, Somervuo  et  al. 2017). 
As a consequence, some species that actually occurred in 
sampling units might be missing from the data, while some 
absent species might be falsely recorded to be present. To take 
these issues into account as much as possible, we applied a 
probabilistic taxonomic placement method which accounts 
for these sources of uncertainty while estimating the reli-
ability of taxonomic identifications (Somervuo et  al. 2016, 
Abarenkov et al. 2018). Also, by including sequencing depth 
as a covariate in the models, we accounted for false absences 
due to limited observation effort (Ovaskainen et al. 2017). 
We also note that some species might remain undetected by 
the DNA-based survey also because saw dust samples are lim-
ited in volume (Allmér et al. 2006, Runnel et al. 2015), affect-
ing the number of species detected (Ovaskainen et al. 2010b, 
Kubartová et al. 2012). Furthermore, the data applied in this 
study originates from the early phases of ITS metabarcoding, 
and thus it is not fully state-of-the-art in terms of the DNA-
extraction and sequencing methods. More modern meth-
ods enable, for example, a higher sequencing depth which 
decreases the likelihood for missing species that are pres-
ent in low DNA abundances. However, as here we focused 
only on the dominating part of the species community, we 
expect our results to be robust even if they can be somewhat 
conservative due to the noise generated by relatively modest  
sequencing depth. 

The level of consistency between the species-to-species 
associations inferred from different data types depended on 
how the associations were estimated. By adding the environ-
mental covariates in the model, the proportion of consis-
tent associations increased compared to the model without 
the covariates. This supports the use of residual species-to-
species associations as a hypothesis of species interactions, as 

has been done in previous studies (Ovaskainen et al. 2010b, 
2016, Ottosson et al. 2014, Abrego et al. 2017). The result 
also demonstrates that some species co-occur merely due to 
shared responses to certain abiotic conditions. In specific, the 
production of fungal fruit bodies depends strongly on the 
environmental conditions (Moore et al. 2008). Therefore, it 
is highly relevant to account for the effects of these condi-
tions when inferring species-to-species associations from data 
based on fruit-body observations.

We emphasize that while some of the residual associa-
tions detected in our study might represent biotic interac-
tions, these can only be confirmed through experimental 
tests (Dormann et al. 2018). The detected positive residual 
species-to-species associations might reflect facilitative biotic 
interactions (Tiunov and Scheu 2005, Fukami et al. 2010) 
or parasitism (Niemelä  et  al. 1995), whereas the negative 
associations might reflect competitive interactions among 
wood-inhabiting fungi (Boddy 2000, Heilmann-Clausen 
and Boddy 2005). Species-to-species associations might 
also reflect community succession and priority effects 
(Ottosson  et  al. 2014, Norberg  et  al. 2019). For instance, 
the predecessor species Fomitopsis rosea showed a negative 
association with the successor Phellopilus nigrolimitatus both 
in the fruit-body and DNA occurrence data, indicating that 
the later species replaces the former during species succession 
(Niemelä et al. 1995). Given the high predictive power of our 
model including environmental covariates, it is plausible that 
the detected residual species-to-species associations represent 
interspecific interactions. However, some of the associations 
most likely reflect a shared response to some missing environ-
mental covariate that is relevant for the wood-inhabiting fun-
gal species included in our study. For instance, we included 
decay stage of the logs as a proxy of the physiochemical prop-
erties of the wood. Yet, a direct measurement of physiochemi-
cal properties could have explained the occurrence of some 
species better. We also note that while competition is known 
to be the most common interaction type among wood-inhab-
iting fungi (Boddy 2000), we found more positive than nega-
tive species-to-species associations. This is partially because 
when inferring species-to-species associations using statistical 
methods, more data are needed for inferring negative than 
positive associations (Ovaskainen et  al. 2016). In addition, 
also competing species might co-occur on a sampling unit 
level if they are spatially separated within a log, leading to a 
positive association at the log level (Ovaskainen et al. 2010a, 
Ottosson et al. 2014).

Finally, while a large number of residual species-to-spe-
cies associations were found from occurrence data, only few 
associations were found from the abundance data. Namely, 
the fact that a given species was abundant did not affect the 
abundances of other species. This suggests that wood-inhab-
iting fungal interactions take place when the potentially 
interacting species are present, the interactions not depend-
ing on the abundance of interacting species. On the other 
hand, there might not have been enough statistical power to 
estimate associations from the abundance data as most of the 
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abundance data from fruit-body surveys were missing. Also, 
in the case of sequence data, read counts are affected by a 
range of factors and cannot be directly translated to abun-
dance data (Deagle et al. 2019).

We conclude that even though fruit-body surveys focus 
only on the reproductive part of the wood-inhabiting fungal 
community, data derived from fruit-body and DNA-based 
surveys yield consistent association networks of wood-inhab-
iting fungi. This supports the robustness of our results and 
therefore, both methods should lead to comparable ecologi-
cal inference on the association network structure of wood-
inhabiting fungi. DNA-based surveys were more informative 
on the total number of interacting species but since unique 
interactions were also estimated from the fruit-body data, a 
combination of the methods would be ideal to obtain the 
most comprehensive insight into the network structure of 
wood-inhabiting fungi. Finally, our study demonstrates that 
accounting for the effects of relevant environmental covari-
ates is of particular importance when inferring species-to-
species associations in wood-inhabiting fungal communities.
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