1	Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo
2	plantation on the soil nutrient pools, microbial biomass and enzyme activities in a
3	subtropical area
4	Xiaoqing Cai ^{a, b} , Ziwen Lin ^{a, b} , Petri Penttinen ^{a, c} , Yongfu Li ^{a, b, *} , Yongchun Li ^{a, b} , Yu
5	Luo ^d , Tian Yue ^{a, b} , Peikun Jiang ^{a, b} , Weijun Fu ^{a, b}
6	
7	^a State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of
8	Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang A & F
9	University, Lin'an 311300, China
10	^b Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-
11	efficiency Utilization, Zhejiang A & F University, Lin'an 311300, China
12	^c Department of Environmental Sciences, PO Box 65 (Viikinkaari 2a), 00014, University
13	of Helsinki, Finland
14	^d Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment,
15	Zhejiang University, Hangzhou 310058, China
16	* Corresponding author:
17	E-mail: <u>yongfuli@zafu.edu.cn</u> (Y. Li)
18	Tel.: +86-571-611-02592; Fax.: +86-571-637-40889
19	Number of text pages: 35; Number of figures: 7; Number of tables: 1
20	Submitted to: Forest Ecology and Management
21	Type of papers: Original Research Paper (Full Length Article)
22	Date of preparation: February 23, 2018

23 Revised: April 8, 2018

25 Abstract

Converting natural forests to plantations would markedly change soil physiochemical 26 27 and biological properties, as a consequence of changing plant vegetative coverage and management practices. However, the effects of such land-use change on the soil nutrient 28 29 pools and related enzymes activities still remain unclear. The aim of this study was to explore the effects of conversion from natural evergreen broadleaf forests to Moso 30 bamboo plantations on the pool sizes and forms of soil N, P and K, microbial biomass, and 31 nutrient cycling related enzyme activities. Soil samples from four adjacent evergreen 32 broadleaf forest-Moso bamboo plantation pairs were collected from a subtropical region in 33 Zhejiang Province, China. The soil organic C (SOC), total N (TN), total P (TP) and total K 34 (TK) concentrations and stocks and different N, P and K forms were measured, and the 35 36 microbial biomass C (MBC), microbial biomass N (MBN), microbial biomass P (MBP) and four soil enzymes (protease, urease, acid phosphatase and catalase) were determined. 37 The results showed that converting broadleaf forests to Moso bamboo plantations 38 decreased the concentration and stock of SOC but increased those of TK in both soil 39 layers (0-20 and 20-40 cm), and such land-use change increased the concentration and 40 stock of TN and TP only in the 0–20 cm soil layer (P < 0.05). This land-use conversion 41 increased the concentrations of NH₄⁺-N, NO₃⁻-N, resin-P_i, NaHCO₃-P_i, NaOH-P_i, HCl-P_i, 42 available K and slowly available K, but decreased the concentrations of water-soluble 43 organic nitrogen (WSON), NaHCO₃-P_o and NaOH-P_o (P < 0.05). Further, this land-use 44 change decreased the microbial biomass and activities of protease, urease, acid 45 phosphatase and catalase (P < 0.05). In addition, the acid phosphatase activity correlated 46

47	positively with the concentrations of MBP and NaHCO ₃ -P _o , and the activities of urease
48	and protease correlated positively with the concentrations of MBN and WSON ($P < 0.01$).
49	To conclude, converting natural broadleaf forests to Moso bamboo plantations had
50	positive effects on soil inorganic N, P and K pools, and negative effects on soil organic N
51	and P pools, and on N- and P-cycling related enzyme activities. Therefore, management
52	practices that increase organic nutrient pools and microbial activity are needed to be
53	developed to mitigate the depletion of organic nutrient pools after the land-use conversion.
54	

Keywords: Evergreen broadleaf forest; Land-use conversion; Microbial biomass; Moso
bamboo plantation; Soil nutrient form; Soil enzyme.

60	Land-use conversion can significantly affect the soil physicochemical and biological
61	properties (Yang et al., 2004; Don et al., 2011; Moghimian et al., 2017). Over the past few
62	decades, in order to gain higher economic benefits and to supply the growing demands of
63	timber, paper and fuel, among other commodities, the conversion from natural forests to
64	plantations is becoming more frequent (Burton et al., 2007; Li et al., 2014; Hu et al., 2018).
65	To increase the growth of plantations after land-use change, intensive management
66	practices, mainly including fertilization, understory vegetation control, and deep
67	ploughing, have been commonly adopted (Li et al., 2013; Zhang et al., 2015a; Dangal et
68	al., 2017; Zhang et al., 2017a). Various studies have revealed that the intensive
69	management practices applied can significantly change the soil pH, nutrient status, and
70	microbial biomass and community composition (Li et al., 2013; Yuan et al., 2015; Xie et
71	al., 2017), and consequently influence soil fertility and plant growth (Pransiska et al., 2016;
72	Tiecher et al., 2017). Therefore, it is great of significance to investigate the effects of land-
73	use change and subsequent management practices on the pool sizes and forms of soil
74	nutrients and associated enzyme activities.
75	The effects of land-use change from natural forest to plantation on soil nutrient status
76	and associated enzyme activities may include the following: (1) the input of exogenous
77	fertilizer can have a direct effect on the pool sizes and forms of soil nutrients (Chang et al.,
78	2007; Sainju et al., 2012; Yang et al. 2017; Li et al. 2018), and (2) the differences in
79	chemical composition and root exudates of different vegetation types may change the

80	microbial growth environment, which affects microbial biomass and soil enzyme activity
81	(Yang et al., 2010; Li et al., 2011; Wang et al., 2013; Yuan et al., 2015). For example, the
82	input of exogenous organic fertilizer and root exudates can increase the availability of
83	water-soluble nitrogen (N) (Scott and Rothstein, 2011; Sainju et al., 2012; Li et al., 2017a).
84	In addition, an increase in N fertilizer application can reduce soil enzyme activity and
85	microbial biomass (Shen et al., 2010; Zhang et al., 2015b). Previous studies showed that
86	understory vegetation plays important roles in cycling nutrients and decreasing soil
87	erosion (Fukuzawa et al., 2006; Zhang et al., 2010).
88	The classification of soil nutrients can help to determine soil nutrient status (Ross et
89	al., 1999; Yang et al., 2010). Different forms of N, such as NH_4^+ -N, NO_3^- -N and water-
90	soluble organic N (WSON), can jointly indicate the N supply capacity of soils (Schimel
91	and Bennett, 2004; Chen and Xu, 2008; Yan et al., 2008; Wu et al., 2010). The different
92	forms of phosphorus (P) in soils are formed through the combination of P with different
93	mineral components and can significantly affect N- and P-cycling (Yang et al., 2010; Wei
94	et al., 2017). In addition, the soil potassium (K) supply is closely associated with the
95	transformation rate of different forms of K in soils (Darunsontaya et al., 2012). The
96	different forms of nutrients respond differently to land-use change. For example, Ouyang
97	et al. (2013) reported that after conversion from wetland to paddy field, the total K
98	concentration increased but the available K concentration decreased in soils. Yang et al.
99	(2004) reported that converting secondary forests to rubber plantations increased the
100	concentration of inorganic N but decreased the concentration of total N. In addition, Yang
101	et al. (2010) found that converting natural forests to larch plantations increased the

102	concentrations of total P (TP) and inorganic P (IP) but decreased the concentrations of
103	microbial biomass P (MBP) and organic P (OP). Therefore, exploring the responses of
104	different forms of soil nutrients to land-use change will enable us to elucidate the
105	mechanisms associated with the land-use conversion effects on the soil nutrient status.
106	Soil microbes play an important role in the decomposition and mineralization of soil
107	organic matter (Malchair and Carnol, 2009; Guo et al., 2016; Ge et al., 2017; Li et al.,
108	2017b; Luo et al., 2017). Soil enzymes are closely related to the transformation of soil
109	nutrients, and their activities are closely associated with the level of soil organic matter,
110	soil physicochemical properties and soil microbial biomass (Xu et al., 2010; Liu et al.,
111	2015; Chavarría et al., 2016; Ma et al., 2016). For example, Bhattacharyya et al. (2005)
112	found that there was a pronounced linear correlation between soil urease and microbial
113	biomass. Additionally, Yang et al. (2010) found that acid phosphatase activity was
114	positively correlated with the concentrations of NaHCO ₃ -P _i , NaHCO ₃ -P _o , and MBP in a
115	subtropical forest soil. Land-use change can markedly affect the soil enzyme activity as
116	well as the soil microbial biomass and nutrient forms (Dawoe et al., 2014; Guo et al.,
117	2016). However, it remains unclear whether the changes in soil enzyme activity caused by
118	land-use change are closely linked with the changes in soil microbial biomass or nutrient
119	forms.
120	Natural evergreen broadleaf forests contribute to maintain biodiversity; these forests
121	are considered to be an important vegetation type in the subtropical regions of China
122	(Wang et al., 2007). However, large areas of natural forests have been transformed into
123	plantations over the past two decades (Yan et al., 2015; Chen et al., 2017), most

124	commonly into bamboo plantations (Guan et al., 2015). The area of Moso bamboo
125	(Phyllostachys edulis) plantations has increased to 4.2 million ha due to their substantial
126	economic benefit (Yuen et al., 2017). At present, most of the Moso bamboo plantations
127	are intensively managed, with the application of fertilizers, the removal of understory
128	vegetation, and tillage (Li et al., 2013; Yang et al., 2017). It is expected that conversion
129	from natural evergreen broadleaf forests to Moso bamboo plantations, in combination with
130	subsequent management practices, will markedly change the soil physical, chemical and
131	biological characteristics. However, the effects of the aforementioned land-use change on
132	soil nutrient pools and enzyme activities remain unclear. Therefore, the purposes of the
133	present study were (1) to analyze the effects of conversion from evergreen broadleaf
134	forests to Moso bamboo plantations on the pool sizes and different forms of soil nutrients,
135	(2) to investigate the aforementioned land-use conversion effects on the soil microbial
136	biomass and activity of soil enzymes regarding nutrient cycling, and (3) to reveal the
137	relationship between soil enzyme activity and the different forms of soil nutrients or soil
138	microbial biomass.
139	
140	2. Materials and methods
141	
142	2.1. Experimental site
143	
144	The study was carried out in Congkeng (30°14'N, 119°42'E), Hangzhou, Zhejiang,
145	China. The study area belongs to a subtropical monsoon climate zone with four distinct
146	seasons, with an average annual temperature of 15.8 °C and average annual precipitation

147 of 1420 mm. The annual sunshine duration and frost-free period of this site are 1946 hours and 239 days, respectively. The elevation of the study area is approximately 150 m. The 148 149 soils at this experimental site are classified as Ferralsols (World Reference Base for Soil Resources (WRB) 2006). 150 We chose two different land-use types, i.e., natural evergreen broadleaf forests and 151 152 Moso bamboo plantations, to investigate the differences in soil properties. The main tree species in the natural evergreen broadleaf forests were Cyclobalanopsis glauca, 153 Castanopsis eyrie, and Castanopsis sclerophylla, which accounted for approximately 70% 154 of the canopy cover. The understory vegetation in this natural forest was mainly Litsea 155 cubeba, Lindera glauca, and Camellia cuspidata, of which the surface cover was 156 approximately 85%. Part of the natural evergreen broadleaf forests had been transformed 157 158 into Moso bamboo plantations. The Moso bamboo plantation in the present study was established in 2004. The bamboo plantation had been managed intensively for 11 years 159 after the land-use conversion. The stocking density in the bamboo plantation was 3,000 160 stems ha⁻¹, with 10.1 cm mean diameter at breast height. Every year from late June to 161 early July the bamboo plantation was fertilized with urea (200 kg N ha⁻¹), superphosphate 162 (60 kg P ha⁻¹), and potassium chloride (70 kg K ha⁻¹). The fertilizer was usually applied 163 on the soil surface, followed by plowing to a depth of 30–35 cm. The understory 164 vegetation in the bamboo plantation was manually removed each year. 165 166

167 2.2. Experimental design and soil sampling

169	A paired-plot approach was adopted to investigate the effects of land-use conversion
170	on soil properties. One paired-plot included two adjacent plots, i.e., one in the natural
171	evergreen broadleaf forest and the other in the Moso bamboo plantation. Each paired plot
172	had the same geographic and environmental factors, including soil type, slope (15–20°)
173	and aspect (south). We selected four different locations within $\sim 3 \text{ km}^2$ in the area
174	described above to establish four different paired plots in April 2015; the plot size was 20
175	$m \times 20 m$ (400 m ²). Within one paired-plot, the distance between the two plots (one in the
176	natural evergreen broadleaf forest and the other in the Moso bamboo plantation) was less
177	than 100 m, and there were 4 replications for each land-use type.
178	In each plot, we collected soil samples from five randomly selected points at the 0–20
179	and 20-40 cm soil layers. For each soil layer, the five samples were thoroughly mixed to
180	form a composite sample. The soil samples were kept on ice before further processing. A
181	2-mm sieve was used to homogenize the samples, and visible roots were removed.
182	Samples were divided into two portions: one portion was stored at 4 °C for further
183	analyses, and the other portion was air-dried. We used a bulk density corer with a 200-cm ³
184	volume to collect samples from the two soil layers to determine the bulk density. The
185	average values for the selective physicochemical properties (see methods described below)
186	in the 0–20 cm soil layer for the aforementioned two forest types were listed below: (1)
187	natural evergreen broadleaf forest: pH of 5.67, bulk density of 0.96 g cm ⁻³ , sand of 301 g
188	kg ⁻¹ , silt of 413 g kg ⁻¹ , and clay of 286 g kg ⁻¹ ; (2) Moso bamboo plantation: pH of 5.16,
189	bulk density of 1.06 g cm ⁻³ , sand of 324 g kg ⁻¹ , silt of 401 g kg ⁻¹ , and clay of 275 g kg ⁻¹ .
190	

193	The soil pH was measured at a soil-to-water ratio of 1:2.5 (w:v) using a pH meter.
194	The soil moisture content was measured by calculating the mass loss after oven drying at
195	105 °C for more than 12 hours. The soil bulk density was determined by collecting a fresh
196	20-g soil subsample from a metal density corer with known volume and oven drying the
197	sample for more than 24 hours at a temperature of 105 °C. The concentrations of soil
198	organic carbon (SOC) and total N (TN) were determined using an elemental analyzer
199	(model CHN-O-RAPID, Heraeus, Germany). The total P (TP) concentration was
200	determined by digesting soil samples with a mixture of concentrated H ₂ SO ₄ and HClO ₄ ,
201	and the molybdate-blue colorimetry method (Murphy and Riley 1962) was used to
202	measure the P concentration in the digest. The soil total K (TK) concentration was
203	determined using the NaOH melting method according to Hanway and Heidel (1952). Soil
204	texture was determined using the pipette method after pre-treating the soil samples with
205	solutions of H_2O_2 and $Na_4P_2O_7$ (Gee and Bauder 1986). The stocks of SOC, TN, TP and
206	TK were calculated using the following formula:

208	$Y_{\text{stock}} (\text{Mg ha}^{-1}) = X \times BD \times th \times 0.1$	(1)
-----	---	-----

Where *X* is the concentration $(g kg^{-1})$ of SOC, TN, TP or TK, *BD* is the bulk density of the soil layer (Mg m⁻³), and *th* is the thickness of the soil layer (cm).

215	The concentrations of NO ₃ ⁻ -N and NH ₄ ⁺ -N in each soil sample were determined
216	according to the method of Li et al. (2014). Briefly, a soil sample was extracted with KCl
217	solution (2 mol L^{-1}), and the concentrations of NO ₃ ⁻ -N and NH ₄ ⁺ -N in the extract were
218	determined using a Dionex ICS 1500 ion chromatograph (Dionex Corp., Atlanta, USA).
219	The WSON concentration was determined according to Jones and Willett et al. (2006). In
220	short, a fresh subsample equivalent to 20 g of oven-dried soil was suspended in 40 mL of
221	distilled water, shaken for 0.5 hours at 150 rpm at 25 °C and then centrifuged for 20
222	minutes at 8,000 \times g. The supernatant was passed through a 0.45-µm membrane filter
223	(Millipore Corp, USA). The concentration of water-soluble N (WSN) in the filtrate was
224	measured using an automated TOC-TN analyzer (TOC-Vcph, Shimadzu, Kyoto, Japan).
225	The concentrations of $NH_3^{-}-N$ and $NH_4^{+}-N$ in the filtrate were determined using an ion
226	chromatograph, and the WSON concentration was calculated using the following formula:
227	
228	WSON=WSN - $(NO_3^{-}N) - (NH_4^{+}N)$ (2)
229	
230	2.5. Determination of P forms

231

The concentrations of different forms of P were determined by adopting the Hedley procedure (Hedley et al., 1982; Eriksson et al., 2015). (1) Resin-P_i: a fresh soil sample equivalent to 0.5 g of oven-dried soil was suspended in 30 mL of distilled water. Together

235	with a strip of NaHCO ₃ -form anion exchange resin membrane (BDH No. 55164)
236	pretreated by the method of Schoenau and Huang (1991), the suspension was shaken for
237	16 hours at 150 rpm at 25 °C, and the P absorbed into the resin membrane (resin-P _i) was
238	recovered by shaking the resin membrane in 50 mL of 0.5 mol L^{-1} HCl for 1 h. (2)
239	NaHCO ₃ -P _i and NaHCO ₃ -P _o : two drops of toluene were added to minimize organic P
240	decomposition to the residue from (1) before shaking in 30 mL of 0.5 mol L^{-1} NaHCO ₃
241	(pH = 8.5) for 16 hours. (3) NaOH-P _i and NaOH-P _o : 30 mL of 0.1 mol L ⁻¹ NaOH was
242	added to the residue from (2) and then shaken for 16 hours. (4) $HCl-P_i$: the residue from (3)
243	was shaken in 30 mL of 1.0 mol L^{-1} HCl for 16 hours. (5) Residual-P: the residue from (4)
244	was digested in concentrated H_2SO_4 and H_2O_2 , followed by shaking for 16 hours. After
245	steps (1) to (5), the suspension was centrifuged at $12,000 \times g$ for 10 minutes. The
246	supernatants were passed through a 0.45- μ m membrane filter (Millipore Corp., USA), and
247	the inorganic P concentration in the filtrates were measured using the molybdate-blue
248	method (Murphy and Riley, 1962). In (2) and (3), the TP concentration in the extracts was
249	measured by digesting the extracts in concentrated H_2SO_4 and H_2O_2 , and the organic P
250	concentration in the extracts was calculated as the difference between the TP
251	concentration and the inorganic P concentration.
252	
253	2.6. Analysis of K forms
254	
255	The different forms of soil K determined included available K, slowly available K

and mineral K. The available K concentration was determined by the method of Zhang et

257	al. (2013). Briefly, 10 g of oven-dried soil sample was suspended in 50 mL of 1.0 mol L^{-1}
258	NH_4OAc , shaken for 0.5 hours at 150 rpm at 25°C, and the suspension was centrifuged at
259	$5{,}000\times g$ for 10 minutes and then passed through a 0.45-µm membrane filter (Millipore
260	Corp, USA). The concentration of K in the filtrate was measured using a flame
261	photometer (Tiecher et al. 2017). The slowly available K concentration was determined by
262	suspending 10 g of oven-dried soil in 50 mL of 1.0 mol L^{-1} HNO ₃ , heated to boiling in an
263	oil bath for 10 minutes, transferred to a 100-mL volumetric flask, and the K concentration
264	was measured using a flame photometer. The soil total K (TK) concentration for each soil
265	sample was determined using the NaOH melting method (Hanway and Heidel, 1952).
266	Slowly available K was calculated as the difference between the concentration of K
267	extracted by the hot HNO3 solution and the concentration of the K extracted by the
268	NH ₄ OAc solution. Mineral K was calculated as the difference between the concentration
269	of total K and the concentration of the K extracted by the hot HNO ₃ solution.
270	
271	2.7. Analysis of soil microbial biomass and soil enzymes
272	

279	in an automated TOC-TN analyzer (TOC-Vcph, Shimadzu, Kyoto, Japan). The soil MBC
280	concentration was calculated as the difference in the concentration of C between the
281	fumigated and non-fumigated samples (Wu et al., 1990; Burton et al., 2010). Similarly, the
282	soil MBN concentration was calculated as the difference in the concentration of N
283	between the fumigated and non-fumigated samples (Li et al., 2014). The concentration of
284	MBP was determined following the method of Brookes et al. (1982). Briefly, the MBP
285	was calculated as the difference between the concentrations of inorganic P extracted with
286	0.5 mol L^{-1} NaHCO ₃ (pH = 8.5) from fumigated and non-fumigated soil.
287	The soil protease (EC 3.4.2.21–24) activity was measured following the method of
288	Ladd and Butler (1972). 1 g of fresh sample was mixed with 2.5 mL of Tris buffer (0.1
289	mol L ⁻¹ , pH = 8.1) and 2.5 mL of 2% sodium caseinate, and incubated at 50 °C for 2 hours
290	At the end of the incubation, 1 mL of 17.5% trichloroacetic acid (TCA) was added, then
291	centrifuged for 10 minutes at 5,000 \times g. 2 mL of the supernatant was mixed with 3.0 mL
292	Na_2CO_3 (1.4 mol L ⁻¹) and 1 mL threefold diluted Folin-Ciocalteu reagent. After 10
293	minutes, the absorbance was determined at 700 nm. The protease activity is expressed as
294	the amount of tyrosine released per hour per gram of soil (μ mol g ⁻¹ h ⁻¹).
295	The soil urease (EC 3.5.1.5) activity was determined following the method described
296	in Kandeler and Gerber (1988). Briefly, a fresh soil sample equivalent to 5 g of oven-dried
297	soil was suspended in 2.5 mL of 80 mmol L^{-1} urea and 20 mL of Tris buffer (0.075 mol
298	L^{-1} , pH = 10), and incubated at 37 °C for 2 hours. After incubation, 50 mL of a mixture of
299	1 mol L ⁻¹ KCl and 10 mmol L ⁻¹ HCl was added, and the suspension was shaken at 125
300	rpm for 30 minutes. The suspension passed through a filter, and the concentration of

301	ammonia in the filtrate was determined using the colorimetric method described in
302	Marschner et al. (2003). The urease activity is expressed as the amount of NH_3 -N
303	produced per unit mass of soil per hour (μ mol g ⁻¹ h ⁻¹).
304	The soil acid phosphatase (EC 3.1.3.2) activity was determined following the method
305	of Tabatabai and Bremner (1969). A fresh soil sample equivalent to 1 g of oven-dried soil
306	was suspended in 0.2 mL of toluene, 4 mL of acetate buffer solution (pH = 6.5) and 1 mL
307	of 50 mmol L^{-1} <i>p</i> -nitrophenol phosphate solution. The suspension was shaken at 150 rpm
308	at 37°C for 1 hour, and then 1 mL of CaCl ₂ solution (0.5 mol L^{-1}) and 4 mL of NaOH
309	solution (0.5 mol L^{-1}) were added. After shaking for several seconds, the suspension was
310	passed through filter paper, and the absorbance of the filtrate was determined at 400 nm.
311	The acid phosphatase activity is expressed as the amount of p -nitrophenyl produced per
312	unit mass of soil per hour (μ mol g ⁻¹ h ⁻¹).
313	The soil catalase (EC 1.11.1.6) activity was measured following the method of
314	Johnson and Temple (1964). A fresh soil sample equivalent to 2 g of oven-dried soil was
315	suspended in 40 mL of distilled water and 5 mL of 0.3% H_2O_2 , and shaken at 150 rpm for
316	20 minutes at 25°C. Then, 5 mL of 3 mol L^{-1} sulfuric acid was added, and the mixture was
317	titrated using 0.1 mol L^{-1} KMnO ₄ solution. The baseline was determined by titrating a
318	mixture of 5 mL of 0.3% H_2O_2 and 5 mL of 3 mol L^{-1} sulfuric acid with 0.1 mol L^{-1}
319	KMnO ₄ . The catalase activity is expressed as the amount of consumption of KMnO ₄ per
320	hour per gram of soil (μ mol g ⁻¹ h ⁻¹).

322 2.8. Statistical analyses

324	The data presented in this paper are the mean values of four replicates. One-way
325	analysis of variance (ANOVA) and the least significant difference (LSD) test was adopted
326	to determine the land-use conversion effects on the soil physiochemical properties,
327	microbial biomass and enzyme activities. Prior to performing the ANOVA, the normality
328	and homogeneity of variance were evaluated, and data were log-transformed when needed.
329	The relationships between the soil enzyme activity and different soil N and P forms were
330	tested using linear regression analyses. Unless otherwise indicated, differences were taken
331	as statistically significant at $P = 0.05$. Data analyses and visualization were completed
332	using Microsoft Excel 2013 and Origin 9.0, respectively, and the statistical analyses were
333	conducted using SPSS version 18.0 (SPSS, Chicago, IL, USA).
334	
335	3. Results
336	
337	3.1. Soil total C, N, P and K concentrations and stocks
338	
339	Regardless of soil layer, the SOC concentration in the Moso bamboo plantation was
340	lower than that in the evergreen broadleaf forest (Fig. 1a), while the total K concentration
341	in the bamboo plantation was higher than that in the broadleaf forest (Fig. 1g). The total N
342	and P concentrations in the bamboo plantation were higher than those in the broadleaf
343	forest in the 0–20 cm soil layer, while no differences were observed in the 20–40 cm layer
344	(Fig. 1c, e). The effects of land-use conversion on the total C, N, P and K stocks were
345	similar to the effects on the total C, N, P and K concentrations (Fig. 1).

3.2. Soil N forms

349	Regardless of soil layer, the NO_3^N and NH_4^+-N concentrations in the Moso bamboo
350	plantation were higher than those in the evergreen broadleaf forest (Fig. 2a and b), while
351	the WSON concentration in the bamboo plantation was lower than that in the broadleaf
352	forest (Fig. 2c).
353	
354	3.3. Soil P forms
355	
356	Regardless of soil layer, the resin-P _i and NaHCO ₃ -P _i concentrations in the Moso
357	bamboo plantation were higher than those in the evergreen broadleaf forest, while the
358	NaHCO ₃ -P _o concentration in the bamboo plantation was lower than that in the broadleaf
359	forest (Table 1). The NaOH-P _i , HCl-P _i and residual-P concentrations in the bamboo
360	plantation were higher than those in the broadleaf forest in the 0-20 cm soil layer, while
361	no differences were detected in the 20–40 cm layer (Table 1). The NaOH- P_0 concentration
362	in the bamboo plantation was lower than that in the broadleaf forest in the 0-20 cm soil
363	layer, while no significant difference was found in the 20-40 cm layer (Table 1).
364	
365	3.4. Soil K forms
366	
367	Regardless of soil layer, the total K, available K and slowly available K

368	concentrations in the Moso bamboo plantation were higher than those in the evergreen
369	broadleaf forest (Fig. 3a-c). The mineral K concentration in the bamboo plantation was
370	higher than that in the broadleaf forest in the 0–20 cm soil layer, while no difference was
371	found in the 20–40 cm layer (Fig. 3d).
372	
373	3.5. Soil microbial biomass and enzyme activities
374	
375	Regardless of soil layer, the MBC, MBN and MBP concentrations in the Moso
376	bamboo plantation were higher than those in the evergreen broadleaf forest (Fig. 4).
377	Regardless of soil layer, the activities of protease, urease, and acid phosphatase in the
378	bamboo plantation were lower than those in the broadleaf forest (Fig. 5 a–c). The catalase
379	activity in the bamboo plantation was lower than that in the broadleaf forest in the $0-20$
380	cm soil layer, while no difference was found in the 20-40 cm layer (Fig. 5d). Acid
381	phosphatase activity correlated positively with MBP and NaHCO ₃ -P _o (Fig. 6), and urease
382	and protease activities correlated positively with the concentrations of MBN and WSON
383	(Fig. 7) (<i>P</i> < 0.01).
384	
385	4. Discussion
386	
387	4.1. Land-use conversion effects on soil nutrient pools
388	
389	Our results revealed that the land-use conversion from evergreen broadleaf forests to

390	Moso bamboo plantations significantly decreased the concentration and stock of SOC (Fig.
391	1). This result coincides with that of Guillaume et al. (2015), who reported that conversion
392	from lowland rainforests to intensively managed rubber plantations significantly decreased
393	the SOC stock. The decrease in concentration and stock of SOC due to the land-use
394	change in our study has two possible explanations. Practices of fertilization and tillage
395	may accelerate the mineralization of SOC and the leaching of soluble soil organic matter
396	(Mancinelli et al., 2010; Sheng et al., 2015; Liu et al., 2018), and the removal of
397	understory vegetation in the plantations may decrease C input into the soil (Wang et al.,
398	2011; Li et al., 2013; Zhang et al., 2014).
399	In addition, this land-use conversion significantly increased the concentrations and
400	stocks of N, P and K (Fig. 1), which is in agreement with Yang et al. (2010) and Zhang et
401	al. (2017b), who reported that conversion from natural forests to larch and pine plantations,
402	respectively, increased the concentrations and stocks of N in the surface soil. Plausibly,
403	the main sources for the increased concentrations and stocks of N, P and K were the
404	synthetic fertilizers applied in the Moso bamboo plantation, as the natural evergreen
405	broadleaf forest did not receive any fertilization.
406	
407	4.2. Land-use conversion effects on different soil N forms
408	
409	In this study, we found that the conversion from broadleaf forest to bamboo

plantation increased the concentrations of NO_3^--N and NH_4^+-N (Fig. 2), in agreement with Yang et al. (2004) who reported that the concentration of NO_3^--N increased after the conversion from secondary forest to a larch plantation. In addition, we also found that the aforementioned land-use change significantly decreased the WSON concentration (Fig. 2),

414	which accords with the result of Li et al. (2014), who reported that the conversion of
415	natural shrub forests to intensively managed Chinese chestnut plantations significantly
416	reduced the WSON concentration in the soil.
417	The changes in soil N forms caused by land-use change can be attributed to a number
418	of possible mechanisms. Intensive managements that include fertilization, tillage and
419	understory vegetation removal, could lead to a decrease in water and soil conservation
420	ability, and consequently cause the loss of WSON (Yüksek et al., 2009; Sheng et al.,
421	2015). Fertilization can accelerate the mineralization of organic N and enhance the uptake
422	of soluble organic N by plants, consequently reducing the WSON concentration in soils
423	(Schimel and Bennett, 2004; Tao et al., 2018). The increase in NO_3^N and NH_4^+-N
424	concentrations in soils after land-use change are evidently related to the increase in N
425	input from fertilization (Asadiyan et al., 2013).
426	
427	4.3. Land-use conversion effects on different soil P forms
428	
429	Results of the present study revealed that converting broadleaf forests to Moso
430	bamboo plantations increased the resin-Pi and NaHCO3-Pi concentrations but decreased
431	the NaHCO ₃ -P _o concentration (Table 1). Similarly, Yang et al. (2010) found that
432	converting natural secondary forests to larch plantations increased the TP and iron-bound
433	P (Fe-P) concentrations in soils but decreased the MBP and NaHCO ₃ -P _o concentrations.
434	The changes in soil P forms caused by land-use change have two possible
435	explanations. Fertilization significantly increased the inorganic P concentration but

436	reduced the organic P concentration in intensively managed rubber and oil palm
437	plantations (Maranguit et al. 2017). In addition, Yang et al. (2012) showed that
438	fertilization caused a significant increase in the inorganic P concentration and a significant
439	decrease in the organic P concentration in soils. Thus, the increase in the concentration of
440	inorganic P fractions is at least partially related to the application of phosphate fertilizer in
441	the Moso bamboo plantation. In addition, the intensive management measures, e.g. deep
442	tillage and fertilization, applied in the Moso bamboo plantation may decrease the organic
443	P concentration since they can promote the mineralization of P-containing organic matter
444	(Yang et al., 2012; Obour et al., 2017).
445	
446	4.4. Land-use conversion effects on different soil K forms
447	
448	Studying the effects of land-use change on different forms of K can help us to
449	understand the response of K nutrient status to land-use conversion (Wang et al., 2016;
450	Islam et al., 2017). The available K concentration increased after the conversion of natural
451	evergreen broadleaf forests to Phyllostachys praecox stands and in the conversion from
452	virgin natural forests to alder and sequoia plantations (Zhang et al. 2013; Moghimian et al.
453	2017). Likewise, our results indicated that conversion from broadleaf forests to Moso
454	bamboo plantations significantly increased the concentrations of total K, available K,
455	slowly available K, and mineral K (Fig. 3).
456	The KCl fertilizer applied in the Moso bamboo plantation was the possible source of
457	the increased K in soils. The fertilizer can quickly increase the available K, and a part of

the available K will be transformed to slowly available K and mineral K forms (Rupa et al.,
2003; Islam et al., 2017).

460

461 4.5. Land-use conversion effects on soil microbial biomass and enzyme activity

462

The soil microbial biomass is a sensitive index of the soil nutrient pool, since soil 463 nutrients provide the basis for the survival of soil microbes (Guo et al., 2016; Vitali et al., 464 2016). In agreement with Fang et al. (2017), who reported that converting natural old-465 466 growth broadleaf Korean pine mixed forest to a spruce plantation caused a reduction in the soil MBC concentration, we noticed that the soil MBC concentration was lower in the 467 Moso bamboo plantation than in the broadleaf forest (Fig. 4). In line with our previous 468 469 study where the MBN concentration decreased significantly 10 years after the conversion from shrub forests to Chinese chestnut plantations (Li et al., 2014), the land-use change in 470 this study decreased the concentrations of MBN and MBP (Fig. 4). The decreased 471 concentrations of MBC, MBN and MBP in the bamboo plantation might have been 472 partially due to the lower pH, which is known to inhibit microbial growth (Luo et al., 2013; 473 Guo et al., 2016; Moghimian et al., 2017). Another possible explanation is the markedly 474 decreased SOC concentration, which might have had a negative impact on the growth of 475 soil microorganisms (Vitali et al., 2016; Moghimian et al., 2017). 476 The soil enzyme activity is one of the most sensitive indicators of soil nutrient status 477 and fertility, and it is greatly affected by land-use conversion and alterations in 478 management practices (Moghimian et al., 2017). Converting tropical forests to rubber 479

480	plantations decreased the activity of acid phosphatase, catalase activity decreased after the
481	conversion from a broadleaf forest to a Michelia macclurei Dandy plantation, and acid
482	phosphatase activity decreased after converting a broadleaf forest to a Pinus massoniana
483	Lamb plantation (Yang et al. 2012; Wang et al. 2013). In this study, the activities of
484	protease, urease, acid phosphatase and catalase, involved in N and P cycling, were
485	significantly lower in soils after the land-use change of broadleaf forests to bamboo
486	plantations (Fig. 5). Low soil pH is likely to have a negative effect on the activity of some
487	soil enzymes (Wallenius et al., 2011; Zhang et al., 2015b), which may partially explain the
488	lower activities in bamboo plantation. Also, the lower activities might have resulted from
489	lower microbial biomass. Since soil enzymes originate mainly from soil microorganisms,
490	changes in microbial growth, activity and function resulting from land-use change could
491	affect enzyme activities (Yang et al., 2012; Kader et al., 2017). Zhang et al. (2015b) found
492	a significant relationship between the decrease in acid phosphatase activity and the
493	application of calcium superphosphate fertilizer. Furthermore, urease activity decreased
494	significantly with an increase in nitrogen fertilizer application (Shen et al. 2010). Thus,
495	fertilization in the bamboo plantation might have decreased the soil enzyme activity.
496	Soil enzyme activity is closely associated with the level of soil nutrients (Chen et al.,
497	2003; Islam et al., 2011; Zhang et al., 2015b). Xing et al. (2010) reported that the
498	decomposition of soil organic N into NH_4^+ -N could be enhanced by increased activities of
499	urease and protease in the subtropics of China. Chen (2003) found that soil acid
500	phosphatase activity in a subtropical fir (Cunninghamia lanceolata) plantation in China
501	was closely related with most of the inorganic P fractions except Ca-P. In this study, we

found that acid phosphatase activity correlated positively with MBP and NaHCO₃-P_o (Fig. 6), and urease and protease activities correlated positively with the concentrations of MBN and WSON (Fig. 7). Therefore, the effects of land-use conversion on the soil enzyme activities may be attributed to its effect on the soil nutrient pools.

506

507 **5. Conclusions**

508

Converting natural evergreen broadleaf forests to intensively managed Moso bamboo 509 510 plantation significantly decreased the soil pH and the concentration and stock of SOC, but significantly increased the concentrations and stocks of TN, TP and TK. Further, this land-511 use conversion increased the concentrations of NH4⁺-N, NO3⁻-N, resin-P_i, NaHCO3-P_i, 512 513 NaOH-P_i, HCl-P_i, residual-P, available K, slowly available K and mineral K but significantly decreased the concentrations of WSON, NaHCO₃-P_o, and NaOH-P_o, as well 514 as the soil microbial biomass and enzyme activity. These results clearly demonstrate that 515 the aforementioned land-use conversion had positive effects on the soil inorganic N, P and 516 K pools, while the effects on the soil organic N, P and K pools were negative. Therefore, 517 to manage the Moso bamboo plantations sustainably, it is advisable to increase the organic 518 nutrient pools by applying organic fertilizers and re-establishing understory vegetation. As 519 the duration under intensive management will markedly affect the soil nutrient status, both 520 the short- and long-term effects of intensive management on soil N, P and K forms and 521 enzyme activity need to be explored in further studies. 522

524	Acknowledgements
-----	------------------

~	^	~
~	• •	~
.,	L	.,

526	This research was financially supported by the National Natural Science Foundation
527	of China (No. 31470626) and the Natural Science Foundation for Distinguished Young
528	Scholars of Zhejiang Province (No. LR18C160001).
529	
530	References
531	
532	Asadiyan, M., Hojjati, S.M., Pourmajidian, M.R., Fallah, A., 2013. Impact of land-use
533	management on nitrogen transformation in a mountain forest ecosystem in the north
534	of Iran. J. Forestry Res. 24, 115-119.
535	Bhattacharyya, P., Chakrabarti, K., Chakraborty, A., 2005. Microbial biomass and enzyme
536	activities in submerged rice soil amended with municipal solid waste compost and
537	decomposed cow manure. Chemosphere 60, 310-318.
538	Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Measurement of microbial biomass
539	phosphorus in soil. Soil Biol. Biochem. 14, 319-329.
540	Burton, J., Chen, C.R., Xu, Z.H., Ghadiri, H., 2007. Gross nitrogen transformations in
541	adjacent native and plantation forests of subtropical Australia. Soil Biol. Biochem. 39,
542	426-433.
543	Burton, J., Chen, C.R., Xu, Z.H., Ghadiri, H., 2010. Soil microbial biomass, activity and
544	community composition in adjacent native and plantation forests of subtropical
545	Australia. J. Soil. Sediment. 10, 1267-1277.

546	Chang, E.H., Chung, R.S., Tsai, Y.H., 2007. Effect of different application rates of
547	organic fertilizer on soil enzyme activity and microbial population. J. Soil Sci. Plant
548	Nut. 53, 132-140.
549	Chavarría, D.N., Verdenelli, R.A., Serri, D.L., Restovich, S.B., Andriulo, A.E., Meriles,
550	J.M., Vargas-Gil, S., 2016. Effect of cover crops on microbial community structure
551	and related enzyme activities and macronutrient availability. Eur. J. Soil Biol. 76, 74-
552	82.
553	Chen, C.R., Xu, Z.H., 2008. Analysis and behavior of soluble organic nitrogen in forest
554	soils. J. Soil. Sediment. 8, 363-378.
555	Chen, H., 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir
556	(Cunninghamia lanceolata) plantation. Forest Ecol. Manag. 178, 301-310.
557	Chen, L.C., Wang, H., Yu, X., Zhang, W.D., Lü, X.T., Wang, S.L., 2017. Recovery time
558	of soil carbon pools of conversional Chinese fir plantations from broadleaved forests
559	in subtropical regions, china. Sci. Total Environ. 587, 296-304.

- 560 Dangal, S.P., Das, A.K., Paudel, S.K., 2017. Effectiveness of management interventions
- on forest carbon stock in planted forests in Nepal. J. Environ. Manage. 196, 511-517.
- 562 Darunsontaya, T., Suddhiprakarn, A., Kheoruenromne, I., Prakongkep, N., Gilkes, R. J.,
- 563 2012. The forms and availability to plants of soil potassium as related to mineralogy
 564 for upland Oxisols and Ultisols from Thailand. Geoderma 170, 11-24.
- 565 Dawoe, E.K., Quashie-Sam, J.S., Oppong, S.K., 2014. Effect of land-use conversion from
- 566 forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in
- 567 lowland humid Ghana. Agroforestry Syst. 88, 87-99.

568	Don, A., Schumacher, J., Freibauer, A., 2011. Impact of tropical land-use change on soil
569	organic carbon stocks-a meta-analysis. Global Change Biol. 17, 1658-1670.
570	Eriksson, A.K., Gustafsson, J.P., Hesterberg, D., 2015. Phosphorus speciation of clay
571	fractions from long-term fertility experiments in Sweden. Geoderma 241, 68-74.
572	Fang, X., Zhang, J., Meng, M.J., Guo, X.P., Wu, Y.W., Liu, X., Zhao, K.L., Ding, L.Z.,
573	Shao, Y.F., Fu, W.J., 2017. Forest-type shift and subsequent intensive management
574	affected soil organic carbon and microbial community in southeastern China. Eur. J.
575	Forest Res. 136, 689-697.
576	Fukuzawa, K., Shibata, H., Takagi, K., Nomura, M., Kurima, N., Fukazawa, T., Satoh, F.,
577	Sasa, K., 2006. Effects of clear-cutting on nitrogen leaching and fine root dynamics
578	in a cool-temperate forested watershed in northern Japan. Forest Ecol. Manag. 225,
579	257-261.
580	Ge, T.D., Wei, X,M., Bahar, R.S., Zhu, Z.K., Hu, Y.J., Kuzyakov, Y., Jones, D.L., Jinshui
581	Wu, J.S., 2017. Stability and dynamics of enzyme activity patterns in the rice
582	rhizosphere: Effects of plant growth and temperature. Soil Biol. Biochem. 113: 108-
583	115.
584	Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A., (ed) Methods of soil
585	analysis. Part 1, vol 9, 2nd edn, Agron Monogr. Soil Sci Soc Am J, Madison, pp 383-
586	412.
587	Guan, F.Y., Tang, X.L., Fan, S.H., Zhao, J.C., Peng, C., 2015. Changes in soil carbon and
588	nitrogen stocks followed the conversion from secondary forest to Chinese fir and
589	Moso bamboo plantations. Catena 133, 455-460.

590	Guillaume, T., Damris, M., Kuzyakov, Y., 2015. Losses of soil carbon by converting
591	tropical forest to plantations: erosion and decomposition estimated by $\delta^{13}C$. Global
592	Change Biol. 21, 3548-3560.
593	Guo, X., Chen, H.Y.H., Meng, M., Biswas, S.R., Ye, L. Zhang, J., 2016. Effects of land
594	use change on the composition of soil microbial communities in a managed
595	subtropical forest. Forest Ecol. Manag. 373, 93-99.
596	Hanway, J.J., Heidel, H., 1952. Soil analysis methods as used in Iowa State College Soil
597	Testing Laboratory. Iowa Agric 57, 1-31
598	Hedley, M.J., Stewart, J.W.B., Chauhan, B.S., 1982. Changes in inorganic and organic
599	soil phosphorus fractions induced by cultivation practices and by laboratory
600	incubations. Soil Sci. Soc. Am. J. 46, 970-976.
601	Hu, S.D., Li, Y.F., Chang, S.X., Li, Y.C., Yang, W.J., Fu, W.J., Liu, J., Jiang, P.K., Lin,
602	Z.W. 2018. Soil autotrophic and heterotrophic respiration respond differently to
603	land-use change and variations in environmental factors. Agr. Forest Meteorol. 250,
604	290-298.
605	Islam, A., Karim, A.J.M.S., Solaiman, A.R.M., Saleque, M.A., Islam, M.S., 2017. Eight-
606	year long potassium fertilization effects on quantity/intensity relationship of soil
607	potassium under double rice cropping. Soil Till. Res. 169, 99-117.
608	Islam, M.R., Chauhan, P.S., Kim, Y., Kim, M., Sa, T., 2011. Community level functional
609	diversity and enzyme activities in paddy soils under different long-term fertilizer
610	management practices. Biol. Fert. Soils 47, 599-604.
611	Johnson, J.L., Temple, K.L., 1964. Some variables affecting the measurement of "Catalase

- 612 Activity" in soil1. Soil Sci. Soc. Am. J. 28, 207-209.
- Jones, D.L., Willett, V.B., 2006. Experimental evaluation of methods to quantify
- dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil
- 615 Biol. Biochem. 38, 991-999.
- 616 Kader, M.A., Yeasmin, S., Akter, M., Sleutel, S., 2017. Response of hydrolytic enzyme
- 617 activities and nitrogen mineralization to fertilizer and organic matter application in
- subtropical paddy soils. Eur. J. Soil Biol. 80, 27-34.
- 619 Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using colorimetric
- determination of ammonium. Biol. Fert. Soils 6, 68-72.
- 621 Ladd, J.N., Butler, J.H.A., 1972. Short-term assays of soil proteolytic enzyme activities
- using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 19-30.
- Li, R., Tao, R., Ling, N., Chu, G.X., 2017a. Chemical, organic and bio-fertilizer
- 624 management practices effect on soil physicochemical property and antagonistic
- bacteria abundance of a cotton field: implications for soil biological quality. Soil Till.
 Res. 167, 30-38.
- Li, Y., Lee, C.G., Watanabe, T., Murase, J., Asakawa, S., Kimura, M., 2011. Identification
 of microbial communities that assimilate substrate from root cap cells in an aerobic
 soil using a DNA-SIP approach. Soil Biol. Biochem. 43, 1928-1935.
- 630 Li, Y.C., Li, Y.F., Chang, S.X., Liang, X., Qin, H., Chen, J.H., Xu, Q.F., 2017b. Linking
- soil fungal community structure and function to soil organic carbon chemical
- 632 composition in intensively managed subtropical bamboo forests. Soil Biol.
- 633 Biochem. 107, 19-31.

634	Li, Y.F., Hu, S.D., Chen, J.H., Müller, K., Li, Y.C., Fu, W.J., Lin, Z.W., Wang, H.L.,
635	2018. Effects of biochar application in forest ecosystems on soil properties and
636	greenhouse gas emissions: a review. J. Soil. Sediment. 18, 546-563.
637	Li, Y.F., Zhang, J.J., Chang, S.X., Jiang, P.K., Zhou, G.M., Fu, S.L., Yan, E.R., Wu, J.S.,
638	Lin, L., 2013. Long-term intensive management effects on soil organic carbon pools
639	and chemical composition in Moso bamboo (phyllostachys pubescens) forests in
640	subtropical China. Forest Ecol. Manag. 303, 121-130.
641	Li, Y.F., Zhang, J.J., Chang, S.X., Jiang, P.K., Zhou, G.M., Shen, Z.M., Wu, J.S., Lin, L.,
642	Wang, Z.S., Shen, M.C., 2014. Converting native shrub forests to Chinese chestnut
643	plantations and subsequent intensive management affected soil C and N pools. Forest
644	Ecol. Manag. 312, 161-169.
645	Liu, D., Li, S., Islam, E., Chen, J.Z., Wu, J.C., Ye, Z.Q., Peng, D.L., Yan, W.B., Lu, K.P.,
646	2015. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens)
647	seedlings: applications of phytoremediation. J. Zhejiang UnivSci. B. 16, 123-130.
648	Liu, H., Li, J., Zhao, Y., Xie, K., Tang, X., Wang, S., Li, Z., Liao, Y., Xu, J., Di, H., Li, Y.,
649	2018. Ammonia oxidizers and nitrite-oxidizing bacteria respond differently to
650	long-term manure application in four paddy soils of south of China. Sci. Total
651	Environ. 633, 641-648.
652	Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Devonshire, B.J., Brookes, P.C., 2013.
653	Microbial biomass growth, following incorporation of biochars produced at 350 °C
654	or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 57,
655	513-523.

656	Luo, Y., Zang, H., Yu, Z., Chen, Z., Gunina, A., Kuzyakov, Y., Xu, J., Zhang, K.,
657	Brookes, P.C., 2017. Priming effects in biochar enriched soils using a three-source-
658	partitioning approach: ¹⁴ C labelling and ¹³ C natural abundance. Soil Biol. Biochem.
659	106, 28-35.
660	Ma, B., Wang, H.Z., Dsouza, M., Lou, J., He, Y., Dai, Z.M., Brookes, P.C., Xu, J.M.,
661	Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological
662	features for soil microbiota at continental scale in eastern China. The ISME
663	Journal 10, 1891-1901.
664	Malchair, S., Carnol, M., 2009. Microbial biomass and C and N transformations in forest
665	floors under European beech, sessile oak, Norway spruce and Douglas-fir at four
666	temperate forest sites. Soil Biol. Biochem. 41, 831-839.
667	Mancinelli, R., Campiglia, E., Tizio, A.D., Marinari, S., 2010. Soil carbon dioxide
668	emission and carbon content as affected by conventional and organic cropping
669	systems in Mediterranean environment. Appl. Soil Ecol. 46, 64-72.
670	Maranguit, D., Guillaume, T., Kuzyakov, Y., 2017. Land-use change affects phosphorus
671	fractions in highly weathered tropical soils. Catena 149, 385-393.
672	Marschner, P., Kandeler, E., Marschner, B., 2003. Structure and function of the soil
673	microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35,
674	453-461.
675	Moghimian, N., Hosseini, S.M., Kooch, Y., Darki, B.Z., 2017. Impacts of changes in land
676	use/cover on soil microbial and enzyme activities. Catena, 157, 407-414.
677	Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of

678 phosphate in natural waters. Anal. Chim. Acta 27, 31-36.

- Obour, A.K., Mikha, M.M., Holman, J.D., Stahlman, P.W., 2017. Changes in soil surface
- chemistry after fifty years of tillage and nitrogen fertilization. Geoderma 308, 46-53.
- Ouyang, W., Xu, Y.M., Hao, F.H., Wang, X.L., Siyang, C, Lin, C.Y., 2013. Effect of
- long-term agricultural cultivation and land use conversion on soil nutrient contents in
- the Sanjiang Plain. Catena 104, 243-250.
- Pransiska, Y., Triadiati, T., Tjitrosoedirjo, S., Hertel, D., Kotowska, M.M., 2016. Forest
- 685 conversion impacts on the fine and coarse root system, and soil organic matter in
- tropical lowlands of Sumatera (Indonesia). Forest Ecol. Manag. 379, 288-298.
- 687 Ross, D.J., Tate, K.R., Scott, N.A., Feltham, C.W., 1999. Land-use change: effects on soil
- carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil
 Biol. Biochem. 31, 803-813.
- 690 Rupa, T.R., Srivastava, S., Swarup, A., Sahoo, D., Tembhare, B.R., 2003. The availability
- of potassium in Aeric Haplaquept and Typic Haplustert as affected by long-term
- 692 cropping, fertilization and manuring. Nutr. Cycl. Agroecosys. 65, 1-11.
- 693 Sainju, U.M., Lenssen, A.W., Caesar-TonThat, T., Jabro, J.D., Lartey, R.T., Evans, R.G.,
- Allen, B.L., 2012. Dryland soil nitrogen cycling influenced by tillage, crop rotation,
- and cultural practice. Nutr. Cycl. Agroecosys. 93, 309-322.
- 696 Schimel, J.P., Bennett, J., 2004. Nitrogen mineralization: challenges of a changing
- 697 paradigm. Ecology 85, 591-602.
- 698 Schoenau, J.J., Huang, W.Z., 1991. Anionâ-exchange membrane, water, and sodium
- bicarbonate extractions as soil tests for phosphorus. Commun. Soil Sci. Plan. 22, 465-

492. 700

701

702

703

704	Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial
705	functional diversity and nitrification capacity in a Chinese polytunnel greenhouse
706	vegetable land. Plant Soil 337, 137-150.
707	Sheng, Z., Zhou, P., Zhang, Y., Kuzyakov, Y., Zhou, Q., Ge, T., Wang, C., 2015. Loss of
708	labile organic carbon from subsoil due to land-use changes in subtropical china. Soil
709	Biol. Biochem. 88, 148-157.
710	Tabatabai, M.A., Bremner, J.M., 1969. Use of <i>p</i> -nitrophenyl phosphate for assay of soil
711	phosphatase activity. Soil Biol. Biochem. 1, 301-307.
712	Tao, R., Wakelin, S.A., Liang, Y., Hu, B., Chu, G., 2018. Nitrous oxide emission and
713	denitrifier communities in drip-irrigated calcareous soil as affected by chemical and
714	organic fertilizers. Sci. Total Environ. 612, 739-749.
715	Tiecher, T., Calegari, A., Caner, L., Rheinheimer, D.D.S., 2017. Soil fertility and nutrient
716	budget after 23-years of different soil tillage systems and winter cover crops in a
717	subtropical Oxisol. Geoderma 308, 78-85.
718	Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring
719	soil microbial biomass C. Soil Biol. Biochem. 19, 703-707.
720	Vitali, F., Mastromei, G., Senatore, G., Caroppo, C., Casalone, E., 2016. Long lasting
721	effects of the conversion from natural forest to poplar plantation on soil microbial
	2
	c

33

Scott, E.E., Rothstein, D.E., 2011. Amino acid uptake by temperate tree species

characteristic of low- and high-fertility habitats. Oecologia 167, 547-557.

Shen, W.S., Lin, X.G., Shi, W.M., Ju, M., Nan, G., Zhang, H.Y., Yin, R., He, X.H., 2010.

communities. Microbiol. Res. 182, 89-98.

- 723 Wallenius, K., Rita, H., Mikkonen, A., Lappi, K., Lindström, K., Hartikainen, H.,
- Raateland, A., Niemi, R.M., 2011. Effects of land use on the level, variation and
- spatial structure of soil enzyme activities and bacterial communities. Soil Biol.
- 726 Biochem. 43, 1464-1473.
- Wang, H.Y., Cheng, W., Li, T., Zhou, J.M., Chen, X.Q., 2016. Can nonexchangeable
 potassium be differentiated from structural potassium in soils? Pedosphere 26, 206215.
- Wang, Q., Wang, S., Yu, X., 2011. Decline of soil fertility during forest conversion of
 secondary forest to Chinese fir plantations in subtropical china. Land Degrad. Dev.
 22, 444, 452
- 732 22, 444-452.
- 733 Wang, Q., Xiao, F., He, T., Wang, S., 2013. Responses of labile soil organic carbon and
- enzyme activity in mineral soils to forest conversion in the subtropics. Ann. ForestSci. 70, 579-587.
- 736 Wang, X.H., Kent, M., Fang, X.F., 2007. Evergreen broad-leaved forest in Eastern China:
- 737 Its ecology and conservation and the importance of resprouting in forest restoration.
 738 Forest Ecol. Manag. 245, 76-87.
- 739 Wei, X.M., Hu, Y.J., Peng, P.Q., Zhu, Z.K, Atere, C.T., G O'Donnell, A., Wu, J.S., Ge,
- T.D., 2017. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in
- 741 phosphorus-limited paddy soil. Biol. Fert. Soils 53: 767-776.
- 742 World Reference Base for Soil Resources (WRB), 2006. A Framework for International
- 743 Classification, Correlation and Communication. Food and Agriculture Organization

744 of the United Nations, Rome.

- 745 Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990.
- 746 Measurement of soil microbial biomass C by fumigation-extraction-an automated
- 747 procedure. Soil Biol. Biochem. 22, 1167-1169.
- 748 Wu, J.S., Jiang, P.K., Chang, S.X., Xu, Q.F., Yang, L., 2010. Dissolved soil organic
- carbon and nitrogen were affected by conversion of native forests to plantations in
 subtropical china. Can. J. Soil Sci. 90, 27-36.
- 751 Xie, X.F., Pu, L.J., Wang, Q.Q., Zhu, M., Xu, Y., Zhang, M., 2017. Response of soil
- physicochemical properties and enzyme activities to long-term reclamation of coastal
 saline soil, Eastern China. Sci. Total Environ. 607, 1419-1427.
- Xing, S.H., Chen, C.R., Zhou, B.Q., Zhang, H., Nang, Z.M., Xu, Z.H., 2010. Soil soluble
- 755 organic nitrogen and active microbial characteristics under adjacent coniferous and
- broadleaf plantation forests. J. soil. Sediment. 10, 748-757.
- 757 Xu, Z.F., Hu, R., Xiong, P., Wan, C., Cao, G., Liu, Q., 2010. Initial soil responses to
- experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau,
- China: Nutrient availabilities, microbial properties and enzyme activities. Appl. Soil
 Ecol. 46, 291-299.
- 761 Yan, E.R., Wang, X.H., Huang, J.J., Li, G.Y., Zhou, W., 2008. Decline of soil nitrogen
- 762 mineralization and nitrification during forest conversion of evergreen broad-leaved
- forest to plantations in the subtropical area of Eastern China. Biogeochemistry 89,239-251.
- Yan, W.B., Mahmood, Q., Peng, D.L., Fu W.J., Chen, T., Wang, Y., Li, S., Chen, JR., Liu,

766	D., 2015. The spatial distribution pattern of heavy metals and risk assessment of
767	moso bamboo forest soil around lead-zinc mine in Southeastern China. Soil Till. Res.
768	153, 120-130.

- Yang, J.C., Huang, J.H., Pan, Q.M., Tang, J.W., Han, X.G., 2004. Long-term impacts of
- land-use change on dynamics of tropical soil carbon and nitrogen pools, J. Environ.
 Sci-China. 16, 256-261.
- Yang, K., Zhu, J.J., Yan, Q.L., Sun, J.X.O.S., 2010. Changes in soil P chemistry as
- affected by conversion of natural secondary forests to larch plantations. Forest Ecol.
- 774 Manag. 260, 422-428.
- 775 Yang, M., Li, Y.F, Li, Y.C., Chang, S.X., Yue, T., Fu, W.J., Jiang, P.K. Zhou, G.M., 2017.
- Effects of inorganic and organic fertilizers on soil CO₂ efflux and labile organic
- carbon pools in an intensively managed Moso bamboo (*Phyllostachys pubescens*)

plantation in subtropical China. Commun. Soil Sci. Plan. 48, 332-344.

- Yang, W., Cheng, H., Hao, F., Ouyang, W., Liu, S., Lin, C., 2012. The influence of land-
- use change on the forms of phosphorus in soil profiles from the Sanjiang Plain of
- 781 China. Geoderma 189, 207-214.
- Yuan, H.Z., Ge, T.D., Chen, X.B., Liu, S.L., Zhu, Z.K, Wu, X.H., Wei, W.X., Whiteley,
- A.S., Wu, J.S., 2015. Abundance and diversity of CO₂-assimilating bacteria and algae
- within red agricultural soils are modulated by changing management practice. Microl.
- 785 Ecol. 70, 971-980.
- 786 Yuen, J.Q., Fung, T., Ziegler, A.D., 2017. Carbon stocks in bamboo ecosystems
- 787 worldwide: Estimates and uncertainties. Forest Ecol. Manag. 393, 113-138.

788	Yüksek, T., Göl, C., Yüksek, F., Yüksel, E.E., 2009. The effects of land-use changes on
789	soil properties: the conversion of alder coppice to tea plantations in the Humid
790	Northern Blacksea Region. Afr. J. Agr. Res. 4, 665-674.
791	Zhang, C.S., Xie, G.D., Fan, S.H., Zhen, L., 2010. Variation in vegetation structure and
792	soil properties, and the relation between understory plants and environmental
793	variables under different phyllostachys pubescens forests in southeastern China.
794	Environ. Manage. 45, 779-792.
795	Zhang, J.J., Li, Y.F., Chang, S.X., Qin, H., Fu, S.L., Jiang, P.K., 2015a. Understory
796	management and fertilization affected soil greenhouse gas emissions and labile
797	organic carbon pools in a Chinese chestnut plantation. Forest Ecol. Manag. 337, 126-
798	134.
799	Zhang, J.J., Li, Y.F., Chang, S.X., Jiang, P.K., Zhou, G.M., Liu, J., Wu, J.S., Shen, Z.M.,
800	2014. Understory vegetation management affected greenhouse gas emissions and
801	labile organic carbon pools in an intensively managed Chinese chestnut plantation.
802	Plant Soil 376, 363-375.
803	Zhang, R., Zhang, Y.L., Song, L.L., Song, X.Z., Hänninen, H., Wu, J.S. 2017a. Biochar
804	enhances nut quality of torreya grandis, and soil fertility under simulated nitrogen
805	deposition. Forest Ecol. Manag. 391, 321-329.
806	Zhang, T., Li, Y.F., Chang, S.X., Jiang, P.K., Zhou, G.M., Liu, J., Lin, L., 2013.
807	Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil
808	nutrient concentrations, labile organic carbon pools, and organic carbon chemical
809	compositions. Plant Soil 367, 249-261.

810	Zhang, X.Y., Dong, W.Y., Dai, X.Q., Schaeffer, S., Yang, F.T., Radosevich, M., Xu, L.L.,
811	Liu, X.Y., Sun, X.M., 2015b. Responses of absolute and specific soil enzyme
812	activities to long term additions of organic and mineral fertilizer. Sci. Total Environ.
813	536, 59-67.
814	Zhang, Z.L., Yuan, Y.S., Zhao, W.Q., He, H.L., Li, D.D., He, W., Liu, Q., Yin, H.J.,

- 815 2017b. Seasonal variations in the soil amino acid pool and flux following the
- 816 conversion of a natural forest to a pine plantation on the eastern Tibetan plateau,
- 817 China. Soil Biol. Biochem. 105, 1-11.

821	Fig. 1 Effects of conversion from evergreen broadleaf forests to Moso bamboo plantations
822	on the total stocks (a, c, e and g) and concentrations (b, d, f and h) of C, N, P and K in
823	soils. Error bars are the standard deviations of the mean $(n = 4)$; different lowercase letters
824	within each panel indicate significant differences between different land-use types in each
825	soil layer at $P = 0.05$ level based on the least significant difference (LSD) test.
826	
827	Fig. 2 Effects of conversion from evergreen broadleaf forests to Moso bamboo plantations
828	on the (a) NH_4^+ -N concentration, (b) NO_3^- -N concentration, and (c) water soluble organic
829	N (WSON) concentration in soils. Error bars are standard deviations of the mean $(n = 4)$;
830	different lowercase letters within each panel indicate significant differences between
831	different land-use types in each soil layer at $P = 0.05$ level based on the least significant
832	difference (LSD) test.
833	
831	Fig. 3 Effects of conversion from evergreen broadleaf forests to Moso hamboo plantations

Fig. 3 Effects of conversion from evergreen broadleaf forests to Moso bamboo plantations on the (a) total K concentration, (b) available K concentration, (c) slowly available K concentration, and (d) mineral K concentration in soils. Error bars are the standard deviations of the mean (n = 4); different lowercase letters within each panel indicate significant differences between different land-use types in each soil layer at P = 0.05 level based on the least significant difference (LSD) test.

840

841 Fig. 4 Effects of conversion from evergreen broadleaf forests to Moso bamboo plantations

842	on the (a) microbial biomass C, (b) microbial biomass N, and (c) microbial biomass P.
843	Error bars are the standard deviations of the mean $(n = 4)$; different lowercase letters
844	within each panel indicate significant differences between different land-use types in each
845	soil layer at $P = 0.05$ level based on the least significant difference (LSD) test.
846	
847	Fig. 5 Effects of conversion from evergreen broadleaf forests to Moso bamboo plantations
848	on the soil (a) protease activity, (b) urease activity, (c) acid phosphatase activity, and (d)
849	catalase activity. Error bars are the standard deviations of the mean $(n = 4)$; different
850	lowercase letters within each panel indicate significant differences between different land-
851	use types in each soil layer at $P = 0.05$ level based on the least significant difference (LSD)
852	test.
853	
854	Fig. 6 Relationship between acid phosphatase activity and (a) microbial biomass P, (b)
855	$NaHCO_3-P_O$, and (c) $NaHCO_3-P_i$ in the evergreen broadleaf forest and Moso bamboo
856	plantation.
857	
858	Fig. 7 Relationships (a-d) between urease activity and the concentrations of NH_4^+ -N,
859	NO ₃ ⁻ -N, WSON and MBN, and (e-h) between protease activity and the concentrations of
860	NH4 ⁺ -N, NO3 ⁻ -N, WSON and MBN in the evergreen broadleaf forest and Moso bamboo
861	plantation. WSON: water soluble organic N; MBN: microbial biomass N.

(m 3roadleaf forest 2.17 3amboo plantation 3.51	:				2		
3roadleaf forest 2.17 3amboo plantation 3.51	ng kg ⁻¹)	$(mg kg^{-1})$	$(mg kg^{-1})$	(mg kg ⁻¹)	(mg kg ⁻¹)	$(mg \ kg^{-1})$	(mg kg ⁻¹)
3roadleaf forest 2.17 3amboo plantation 3.51			0-20 cm				
3.51 3amboo plantation	7 (0.21) b	4.50 (0.26) b	32.1 (2.7) a	47.5 (4.2) b	67.1 (3.9) a	5.89 (0.53) b	241.7 (14.3) b
	1 (0.18) a	7.23 (0.48) a	24.0 (1.7) b	56.7 (2.6) a	54.7 (2.9) b	9.25 (0.52) a	312.6 (30.4) a
			20-40 cm				
3roadleaf forest 1.12	2 (0.10) b	4.20 (0.31) b	27.0 (2.1) a	48.3 (3.0) a	63.2 (3.2) a	6.24 (0.52) a	226.0 (24.0) a
3amboo plantation 1.86	6 (0.13) a	6.79 (0.37) a	21.3 (2.1) b	52.4 (4.6) a	58.3 (4.3) a	7.12 (0.47) a	249.3 (24.9) a

889 Fig. 7