
Vol.:(0123456789)1 3

European Journal of Epidemiology 
https://doi.org/10.1007/s10654-021-00726-8

COMMENTARY 

Are Mendelian randomization investigations immune from bias due 
to reverse causation?

Stephen Burgess1,2  · Sonja A Swanson3 · Jeremy A Labrecque3

Received: 16 September 2020 / Accepted: 1 February 2021 
© The Author(s) 2021

Mendelian randomization uses genetic variants as instru-
mental variables to make causal inferences about the effect 
of a risk factor on an outcome [1, 2]. If a genetic variant 
satisfies the instrumental variable assumptions for the given 
risk factor and outcome [3], then an association between 
the genetic variant and the outcome implies the risk fac-
tor affects the outcome in some individuals at some point 
in the life-course [4]. Combining the instrumental variable 
assumptions with further assumptions and precise specifica-
tion of the outcome (including specifying a time period for 
the outcome) allows valid testing of a more specific causal 
hypothesis and/or valid estimation of global or local, and 
point or period average causal effects [5].

Two motivations for Mendelian randomization are pri-
marily stated: avoiding bias from unmeasured confound-
ing and avoiding bias from reverse causation [6]. Reverse 
causation occurs when the outcome variable at an earlier 
timepoint, or a proximal precursor of the outcome (such as 
pre-clinical disease), has a causal effect on the risk factor 
which can bias estimates of the effect of the risk factor on 
the outcome. Though it can often be viewed as a specific 
form of confounding (when pre-clinical disease is a shared 
cause of the risk factor and outcome leading to violation of 
exchangeability conditions [7]), reverse causation has been 
treated as distinct from other forms of confounding in the 
motivation for Mendelian randomization [6, 8]. (We under-
score that reverse causation does not imply that time flows 
backwards or somehow that future measurements influence 

the past, but that even if the outcome is measured at a later 
timepoint to the risk factor, either the outcome at an earlier 
timepoint or a precursor of the outcome may have influenced 
the measured value of the risk factor.)

An individual’s genetic code is fixed at conception. This 
implies that associations between genetic variants and sub-
sequent outcomes are less vulnerable to bias from many 
sources of confounding and reverse causation. For example, 
environmental or lifestyle factors that occur post-conception 
cannot be a cause of the genetic variants and therefore can-
not be a shared cause of the variants and outcome. Further 
protection from confounding comes from the random allo-
cation of genetic variants during meiosis and from random 
mating within the population (although completely random 
mating is not plausible, mating is often plausibly random 
with respect to the genetic variants included in Mendelian 
randomization analyses) – meaning that genetic variants are 
often independent of confounding factors other than ancestry 
[9, 10].

It has also often been stated that the fixed nature of the 
genetic code provides complete immunity to bias from 
reverse causation in Mendelian randomization studies 
because genetic variants must precede the outcome in time. 
For example, Davey Smith and Ebrahim [8] wrote about 
“the lack of possibility of reverse causation as an influence 
on exposure–outcome associations in both Mendelian ran-
domization and randomized controlled trial settings” and 
remarked “the instrument will not be influenced by the 
development of the outcome (i.e., there will be no reverse 
causation)”. Here, we demonstrate how reverse causation 
can lead to bias in Mendelian randomization analyses. For 
each scenario, we show that even though the variant–out-
come associations may not suffer from reverse causation, 
reverse causation between the risk factor and outcome 
either in individuals or across generations can result in bias 
in Mendelian randomization analyses. That is, even though 
the outcome may not cause the genetic variant (and thus 
the variant–outcome association may not seem to suffer 
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from reverse causation), the type of reverse causation that 
affects traditional analyses may still indeed bias estimates 
from Mendelian randomization studies (when a Mendelian 
randomization analysis is undertaken to estimate a causal 
parameter) and invalidate causal conclusions (when a Men-
delian randomization analysis is undertaken to test a causal 
hypothesis) [11, 12]. In the former case, bias relates to a 
specified average causal effect estimate; in the latter case, 
bias relates to the test statistic for a causal hypothesis.

Scenario 1. Genetic association with the risk 
factor is not primary

The first mechanism we consider is that a genetic variant 
is associated with the risk factor via a primary effect of the 
variant on the outcome variable or on a precursor of the 
outcome (Fig. 1). By primary, we mean that the risk factor 
occurs upstream of the outcome in all directed causal paths 
from the genetic variant to the outcome; that is, any directed 
causal pathway from the genetic variant to the outcome at a 
specified follow-up time pass via the risk factor at preced-
ing times. In the opposite scenario, the genetic association 
with the risk factor is not primary if the effect of the genetic 
variant on the risk factor is mediated (at least in part) by the 
outcome.

As an example, testosterone has been hypothesized as a 
possible causal risk factor for polycystic ovary syndrome 
(PCOS). Genetic variants that predict testosterone concen-
tration in women have been shown to be associated with 
risk of PCOS [13]. However, one of the symptoms of PCOS 
is increased testosterone. Therefore, it may not be that 
elevated testosterone that leads to increased risk of PCOS, 
but increased predisposition to PCOS that leads to elevated 
testosterone levels. Genetic variants identified as instru-
ments for testosterone may not affect testosterone directly, 
but rather via their association with PCOS. The variants 
may affect risk of PCOS directly (Fig. 1a) or indirectly via 
an alternative risk factor for PCOS or pre-clinical PCOS 
(Fig. 1b). The genetic variants are still primary in the causal 

chain, but reverse causation between the putative risk factor 
and outcome means that the variants influence the risk factor 
secondarily. In this case, an association between the genetic 
variants and outcome can be present without a causal effect 
of the risk factor on the outcome.

As a further example, genetic variants associated with 
aspirin treatment were used in a Mendelian randomization 
analysis to assess the effect of aspirin use on risk of lung 
cancer [14]. However, all the genetic predictors of aspirin 
use are all also associated with risk of coronary heart disease 
[15]. It is likely that the genetic associations with aspirin 
use arise due to individuals with coronary heart disease or 
high levels of risk factors for coronary heart disease being 
preferentially prescribed aspirin. As coronary heart disease 
and lung cancer are competing outcomes, the reported pro-
tective effect of aspirin on lung cancer risk in the Mendelian 
randomization analysis may be due to the genetic associa-
tions with aspirin being secondary to their effects acting 
via coronary heart disease and/or risk factors for coronary 
heart disease. This could lead to alternative pathways from 
the genetic variants to the outcome not via the risk factor.

Genetic associations will broadly be lesser in strength 
when the path from the gene to the trait is less direct. How-
ever, as sample sizes for genetic discovery increase, it is 
increasingly likely that some genetic associations with risk 
factors are secondary to their association with another vari-
able. The chances of finding such a variant also increase 
when reverse causation between the risk factor and outcome 
is stronger. In other words, if Mendelian randomization is 
being used specifically because of concerns about reverse 
causation in a traditional observational analysis, the risk of 
bias due to reverse causation via this mechanism in Mende-
lian randomization will also be higher. In this scenario, not 
only are effect estimates expected to be biased, but tests of 
causal null hypotheses are also not valid.

Scenario 2. Feedback mechanism

Secondly, Mendelian randomization studies with genetic 
variants that have direct effects only on the risk factor (i.e. 
they do not directly affect the outcome) can still suffer from 
bias due to reverse causation. For instance, if the risk factor 
influences the outcome and the outcome influences the risk 
factor at a later time-point (Figure 2a), then genetic associa-
tions with the risk factor will be distorted, and Mendelian 
randomization estimates may be misleading.

As an example, genetic variants that predict obesity have 
been shown to associate with income in women [16]. How-
ever, income affects many lifestyle factors, including obesity, 
leading to a feedback loop. A similar story can be told for 
cigarette smoking and obesity: genetic predictors of obe-
sity associate with increased smoking prevalence (perhaps 

(a) (b)

Fig. 1  Diagrams illustrating relationships between a genetic vari-
ant (G), risk factor (X), and an outcome (Y), where the effect of the 
genetic variant on the risk factor is a) through its effect on the out-
come previous to the risk factor ( Y

0
 ) and b) through a confounder 

(C) – a common cause of risk factor and outcome. Unmeasured con-
founding is represented by U. In both diagrams, the effect of interest 
is the effect of X on Y 
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smokers seeking to reduce weight) [17], but genetic predic-
tors of cigarette smoking associate with decreased weight (as 
cigarette smoking is an appetite suppressant) [18]. Depend-
ing on the strength and direction of the reverse causal effect 
and the prevalence of the outcome, genetic associations with 
the measured value of the risk factor can be over- or under-
estimated due to reverse causation [19]. However, some 
tests of causation will be valid regardless of the presence 
of this type of reverse causation [5]. For instance, this type 
of reverse causation will not affect the validity of a test of 
the sharp causal null (that there is a causal effect in at least 
one person at one point in time) of the risk factor on the out-
come assuming the instrumental variable assumptions hold 
(Fig. 2b). This is because an association between the genetic 
variant and outcome still reflects the existence of pathways 
that go through the risk factor first, even though effect esti-
mation cannot as readily tease apart the feedback loops.

Feedback scenarios can occur other than due to reverse 
causation. A different feedback scenario is that individu-
als with high levels of a risk factor will preferentially take 
medication to lower the risk factor. For example, individuals 

with high levels of cholesterol are more likely to take cho-
lesterol-lowering medication, and similarly for blood pres-
sure. The reverse is true for factors that are beneficial for 
health outcomes. For example, pregnant women with low 
iron status are more likely to take iron supplements [20]. 
In extreme cases where intervention on the risk factor is 
common and substantial, it may even be that medication 
or supplementation attenuates completely or even reverses 
genetic associations with the risk factor. This is particularly 
important in the example of iron and pregnancy, as the risk 
factor of interest is not maternal iron levels in general, but 
maternal iron levels during the critical period of pregnancy.

Scenario 3. Cross‑generational effects

Finally, even though they are fixed at the start of an indi-
vidual’s life, genetic variants are inherited from an indi-
vidual’s parents. Hence when considering effects that may 
span across generations, an individual’s genetic variants are 
no longer primary in the causal chain. Therefore, when try-
ing to estimate the effect of a risk factor for individuals in 
one generation, the outcome in the parental generation could 
influence the outcome or confounders of the outcome in the 
target generation directly, leading to a pathway from the 
genetic variants of an individual in the target generation to 
their outcome that is not via their risk factor (Fig. 3). While 
this scenario stretches the common understanding of reverse 
causation somewhat, this is still an example of the outcome 
influencing a downstream variable, even if the outcome in 
this case is in the previous generation, and so we believe it 
is worth discussing while addressing the topic of reverse 
causation.

For instance, the same genetic variants that predispose 
an individual to increased alcohol consumption also predis-
posed at least one of the individual’s parents to increased 
alcohol consumption. Outcomes in the offspring generation 

(a) (b)

Fig. 2  Diagrams illustrating time-varying relationships between a 
genetic variant (G), risk factor (X), an outcome (Y) and unmeasured 
confounder (U) at time 0 and time 1 (indicated by subscripts) where 
a the genetic variant has a primary effect on the risk factor, and there 
are bidirectional effects between the risk factor and outcome and b 
the genetic variant has a primary effect on the risk factor, but only 
the reverse causal effect of the outcome on the risk factor is present, 
meaning that genetic variant is independent of the outcome. The 
effect of interest is the joint effect of X

0
 and X

1
 on Y

1

(a) (b)

Fig. 3  A cross-generational diagram of genetic variant (G), risk fac-
tor (X), and outcome (Y) in both the parent and child. The potential 
cross-generational reverse causal effect of parental outcome on off-
spring confounder or outcome is displayed in grey. If estimating the 
effect of the risk factor in the child on the outcome in the child, when 
the risk factor causes the outcome in either or both generations (panel 
a), Mendelian randomization estimates will typically be non-null, 

but biased. When the risk factor does not cause the outcome in either 
generation (panel b), Mendelian randomization estimates will not be 
biased and will provide a valid test of the sharp causal null hypoth-
esis. Shared causes of the parent’s exposure and outcome, and their 
effects on the child’s exposure and outcome that are not relevant to 
the bias under study, are omitted for clarity



 S. Burgess et al.

1 3

may be driven by the outcomes caused by the parents’ alco-
hol consumption, rather than from the offspring’s alcohol 
consumption directly. Hence there may be causal effects of 
alcohol even amongst individuals who themselves do not 
drink. Additionally, increased parental predisposition to 
drinking alcohol may affect offspring alcohol consumption, 
distorting Mendelian randomization estimates. As a further 
example, genetic variants associated with body mass index 
may be associated with outcomes not only due to the effect 
of obesity in the individuals observed, but also due to obe-
sity and its consequences in the parent generation.

From the perspective of aetiology, this is not always such 
a serious problem as even if the offspring outcomes are 
driven by the risk factor and its consequences in the par-
ents, it is still the risk factor that is causal for the outcome. 
However, from the perspective of intervention, changing the 
risk factor in the offspring may not lead to the consequences 
for offspring outcomes that are predicted by straightforward 
interpretation of a Mendelian randomization estimate. Hence 
Mendelian randomization investigations with cross-genera-
tional effects are able to assess the causal relevance of the 
risk factor in a broad sense, in that they can test the sharp 
causal null that the risk factor affects the outcome in at least 
one generation. However, the pathway by which the risk 
factor influences the outcome may be driven by the effect of 
the risk factor in a previous generation.

Discussion and conclusion

In this short manuscript, we have discussed three ways in 
which Mendelian randomization analyses may be suscepti-
ble to bias due to reverse causation. Although in some cases 
a causal hypothesis can still be validly tested, in other cases 
causal inferences of all types from the approach may be 
unreliable. Several methodological researchers have already 
cautioned against interpretation of causal effect estimates 
from Mendelian randomization as the expected impact of 
intervening on the risk factor in a clinical setting, or even 
advised against presenting causal effect estimates at all [4, 
11, 21]. This manuscript provides further reasons for caution 
not only in the interpretation of effect estimates, but also in 
the validity of causal null hypothesis testing. It is impor-
tant to appreciate context when interpreting findings from a 
Mendelian randomization analysis, and to be aware that the 
estimated causal effect of the risk factor (which typically 
gets interpreted as the impact of a lifelong change in the 
trajectory of a risk factor) may not be achievable by a practi-
cal intervention on the risk factor in the target population. 
Drawing directed acyclic graphs, carefully defining the risk 
factor and outcome (in a way that acknowledges time), and 
thinking closely about how the genetic variant influences the 
trajectory of the risk factor will help analysts to precisely 

define the causal effect of interest, and hence detect the pos-
sibility for findings to be influenced by reverse causation.

There are several approaches that can be taken by inves-
tigators to mitigate or identify bias due to reverse causation. 
Some of this guidance follows best practices for Mendelian 
randomization studies more broadly [12]. Overall, where 
possible, Mendelian randomization analyses should be per-
formed using genetic variants for which the mechanism of 
association of the variants with the risk factor is both pri-
mary and well-understood. As a consequence of this, inves-
tigators should prioritize Mendelian randomization analyses 
for risk factors that have proximal genetic variants. When 
the mechanism linking genetic variants and risk factors is 
unclear or distant, inferences from Mendelian randomiza-
tion generally carry less evidential weight. As for more 
advice more specific to the scenarios considered here, first, 
statistical methods have been developed to help distinguish 
whether genetic variants primarily influence the risk fac-
tor or another variable (as per Scenario 1). The MR-Steiger 
method measures the proportion of variance explained by 
a genetic variant in the risk factor and in the outcome [22] 
and can be used to flag for removal from the analysis vari-
ants that are more strongly linked to the outcome than the 
risk factor. This method is not guaranteed to identify Sce-
nario 1, and is sensitive to measurement error. Secondly, 
simulations can be used to explore the extent of bias due 
to feedback mechanisms (as per Scenario 2), although this 
relies on strong assumptions about the temporal nature and 
magnitude of the feedback [19]. Thirdly, statistical methods 
have been developed to consider cross-generational effects 
(as per Scenario 3) when data are available on parents and 
offspring [23, 24]. If such data are not available, research-
ers should express caution in the interpretation of a Men-
delian randomization investigation when it is plausible that 
causal effects may span across generations. Scenarios 2 and 
3 further underscore the general recommendation to view 
Mendelian randomization as primarily testing a causal null 
hypothesis rather than estimating a causal effect [12].

In conclusion, while it is fair to say that Mendelian rand-
omization investigations offer some protection against biases 
that can be conceptualized as reverse causation, it is not rea-
sonable to claim that Mendelian randomization investiga-
tions are totally immune from the phenomenon. Researchers 
should consider carefully whether their findings could be 
explained by genetic variants having a primary association 
with the outcome, and how previous versions of an outcome 
(within an individual or across generations) can impact the 
stated risk factor.
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