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ICE(BERG) TRANSPORT COSTS∗

Maarten Bosker and Eltjo Buringh

Iceberg transport costs are a key ingredient of modern trade and economic geography models. Using detailed
information on Boston’s nineteenth-century global ice trade, we show that the cost of shipping the only good
that truly melts in transit is not well-proxied by this assumption. Additive cost components account for the
largest part of per unit ice(berg) transport costs in practice. Moreover, the physics of the melt process and
the practice of insulating the ice in transit meant that shipping ice is subject to economies of scale. This
finding supports, from an unexpected historical angle, recent efforts to incorporate more realistic features of
the transportation sector in trade and economic geography models.

Iceberg transport costs are one of the main ingredients of modern trade and economic geography
models. This important ‘trick of the genre’ (Krugman, 1998, p.164), was introduced by Samuelson
(1954).1 Transport costs are modelled by assuming that in order to deliver a quantity x of a good
produced in i to another destination j, one needs to ship τ ijx goods from i, where τ ij > 1. A

constant fraction of the goods, mi j =
(

τi j −1
τi j

)
, melts in transit. Total transport costs equal the cost

of producing these melted goods.2 As a result, per unit transport costs, Ti j , are proportional to
the good’s producer price in i, pi:

Ti j = (τi j − 1)pi . (1)

The iceberg assumption has important limitations. It abstracts from determinants of per unit
transport costs that are not proportional to the good’s producer price (e.g., specific tariffs, admin-
istrative barriers, freight costs). Also, it takes τ ij as exogenous. Transport costs however often
depend on the opportunity for return or onward cargoes or the competitiveness of the shipping
industry, and tend to fall with individual shipment size and/or the overall quantity shipped on a
route.

Despite these well-known shortcomings, see, e.g., Hummels (2007), assuming transport costs
‘to be iceberg’ remains the standard in most general equilibrium models of trade and economic
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1 In economic geography, von Thünen (1826) modelled the cost of transport in a very similar way. He justified it using
the example of shipping grain, where part of the grain was eaten during the journey from farm to market by the horses
pulling the cart of grain.

2 Basically, the iceberg assumption implies that the transport sector produces transportation services using the exact
same production function as the firm(s) producing the transported good.
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geography. Its popularity stems from its synergy with the assumed utility and production func-
tions. It provides for a mathematically elegant, tractable way to incorporate trade costs in these
models, that, importantly, avoids the need to explicitly model a transport sector.

Recent papers show that deviations from iceberg transport costs can however have nontrivial
(theoretical) implications. The presence of additive cost components, the degree of competi-
tion in the transport sector, the possibility to choose between different transportation modes
(technologies), and the opportunity for return or onward cargoes at the destination can affect
trade flows (see, e.g., Hummels et al., 2009; Behrens and Picard, 2011; Brancaccio et al.,
2017; Coşar and Demir, 2018; Wong, 2019), the type and quality of goods exported (Alchian
and Allen, 1964; Hummels and Skiba, 2004; Hummels and Schaur, 2013; Feenstra and Roma-
lis, 2014), and even the predicted welfare gains from trade cost reductions (see, e.g., Behrens
et al., 2009; Irarrazabal et al., 2015; Hornok and Koren, 2015a; Asturias, 2019). The pres-
ence of economies of scale in transport can induce firms to focus on fewer export markets, to
send fewer, but larger, individual shipments while holding larger inventories in its export mar-
kets (Alessandria et al., 2010; Hornok and Koren, 2015b), or to even combine shipments with
other products (Holmes and Singer, 2018), possibly even made by other firms (Bernard et al.,
2018).

In this article, we shed light on the relevance of the iceberg assumption from an unex-
pected historical angle, providing empirical evidence that should only further encourage the
above-mentioned attempts to ‘move beyond shipping icebergs’ in trade and economic geogra-
phy models. We do this using a detailed data set on the costs involved in shipping the product
that gave its name to this important assumption: ice, the only product that literally melts in
transit.

Our data primarily comes from the records of the Tudor Ice Company, Boston’s leading
ice exporting company that, during the nineteenth century, shipped over one million tons of
natural ice all over the world on wooden sailing ships.3 Ice(berg) transport costs in practice
consisted of both a true ‘iceberg’ component: melt in transit, as well as the standard transport
cost components (freight, landing, loading and insurance costs). They are not well-proxied by
the iceberg assumption for two main reasons:

First, the ice’s freight, landing and loading costs were all additive. And, importantly, they were
several orders of magnitude larger than the ad valorem melt and insurance costs. The ice trade’s
small, unimportant share in Boston’s and each destination’s overall port traffic, the importance of
a destination’s opportunities for profitable onward or return cargoes in determining freight rates,
and of journey duration in determining freight rates as well as the insulation technology used in
transit, make it very unlikely that any of these ice(berg) transport costs depended systematically
on the price of the ice in Boston.

Second, ice(berg) transport costs in practice depended systematically on shipment size. In-
terestingly, it is melt in transit itself that is primarily to blame for this violation of the iceberg
assumption. The physics of the melt process and the practice of insulating the ice in transit to
prevent this melt, make ice(berg) transport subject to economies scale.

3 Transporting actual icebergs from Antarctica to be used as a fresh water resource in the arid regions of South
America, Australia and the Middle East has been seriously studied (see, e.g., Weeks and Campbell, 1973; Montfort and
Oudendijk, 1979). For a very extensive RAND report on true iceberg transport costs, see Hult and Ostrander (1973).
To date, no full iceberg has been shipped, but the idea is still very much alive (Gramer, 2017). Some companies are
harvesting small icebergs for use in upmarket mineral water, beer, vodka or icecubes (see, e.g., Sarchet, 2015).
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1. The Frozen Water Trade

The ice trade is by now a largely forgotten trade.4 But, before the widespread adoption of
artificial refrigeration and ice making in the early-twentieth century, natural ice was a heavily
traded natural resource in almost all parts of the world. It was used for cooling purposes and
the preservation and preparation of food, both by households and businesses. Ice houses, storing
large quantities of ice, dotted the North American landscape, and many (wealthy) people’s homes
had a private ice cellar. To give an idea of the size of the trade, the 20 largest US cities consumed
nearly 4,000,000 tons of ice in 1879 (Hall, 1880). New York alone consumed 500,000 tons per
year (Encyclopedia Brittanica, 1881).

For most of history, the ice trade was very localised, with ice harvested from nearby frozen
lakes, rivers or mountains. This changed in 1806 when Frederic Tudor shipped 130 tons of
natural ice from Boston to the Caribbean island of Martinique. After further refining the process
of insulating the ice during the voyage and at the destination, shipments to other Caribbean
destinations and the main cities in the southern US quickly followed. In 1833 Tudor sent an
experimental shipment to Calcutta, and upon its success expanded this long-distance ice trade to
Brazil, Indonesia, China, the Philippines, Australia and even (around Cape Horn) Peru and San
Francisco.5 Drawn by the extreme profitability of the trade, other companies soon entered the
market, further expanding Boston’s ice trade.6

Figure 1 shows the rise and fall of Boston’s tropical ice exports. The trade’s heyday was around
1860. The rise of artificial ice making and refrigeration led to its eventual demise.7 Natural ice
first lost its competitiveness to artificial ice in tropical locations. The localised trade in natural
ice lasted longer, eventually also dying out after WWI.8

2. Ice(Berg) Transport Costs in Practice

The ice was shipped from Boston on wooden sailing ships. The transport costs of each shipment
consisted primarily of loading, freight, landing and insurance costs. On top of this, a fraction of
the shipment literally melted in transit. Each cargo was insulated to limit this melt. Following
his initial shipment to Martinique, Tudor quickly settled on the optimal insulation strategy.
Shipping the ice in standardized rectangular blocks allowed it to be tightly stowed, limiting
melt by minimising the outward exposure of the ice. And, sawdust and wood shavings, both in
ample supply as waste products from Maine’s lumber industry, were found to be the preferred
insulation materials. For the shorter trips to the southern US and Caribbean, the ice was simply
loaded onto the ship and covered on all sides with insulation material. For longer trips beyond
the Caribbean, more precautions were taken and ships were fitted with a special insulated ice
hold (The Mechanics’ Magazine, 1836, p.10; or Scientific American, 1863, p.339).

4 For a comprehensive historical account of the trade (see, e.g., Hall, 1880; or Weightman, 2003).
5 Ice was mostly shipped to destinations where profitable return or onward cargo could be obtained. Boston boats

previously sailed in ballast to these destinations. Ice replaced this ballast. Shipping ice without a profitable return or
onward cargo was too costly.

6 Ice in the tropics was often sold for more than 50 times its unit cost in Boston. Tudor was able to keep competition
at bay in most far-flung tropical destinations (either by securing monopoly rights, or by simply lowering prices to
an unprofitable level until the competitor’s ice had completely melted). Competition was toughest in the southern US
destinations.

7 The North’s naval blockade of southern US cities during the American Civil War spurred the development of artificial
ice making machines efficient enough to compete with imported natural ice.

8 The (very) localised trade of artificially produced ice still exists in many developing countries today. Eltjo still
remembers the weekly deliveries of blocks of ice to his childhood home in Baghdad in 1955.
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Fig. 1. Boston’s Global Ice Trade.
Source. Herold (2011, p.168).

The Tudor Company chartered ships to deliver the ice in its tropical destinations. They were
only chartered for the outward journey. Freight costs were usually paid on the intake weight
(Parker, 1981, p.5; Wyeth, 1848, p.180). They were relatively low as most ships would otherwise
have sailed in ballast.9 The bills of lading specified additional melt mitigating measures to be
taken by the crew during the voyage: the hold was to be kept closed at all times, and the meltwater
had to be regularly pumped out until all the ice had been discharged (Proctor, 1981, p.5). Dock
workers were hired to load the ice onto the ship in Boston and fitted it with insulation material.
Upon arrival, the ice ships were oftentimes given right of way on the docks (to limit melt). Local
dock workers were hired to offload the blocks of ice and stored them in the company’s local ice
house.10

2.1. Melt and Transport Costs

One scribble in the Tudor Company Records shows exactly how melt and transport costs together
drove a wedge between the ice’s unit cost in Boston and that in a particular destination. At the

9 Prior to the ice trade, Boston’s trade with the Caribbean, Asia, and South America was primarily a one-way trade:
Boston ships sailed out in ballast and returned with cargoes of cotton, hemp, sugar and other tropical commodities
(Boston Board of Trade, 1862; Parker, 1981, p. 6; Dickason, 1991, p. 64). The ice trade even expanded Boston’s export
portfolio: a few ships also carried apples, butter and cheese. Their main icy cargo ensured that these perishables arrived
well-preserved at their destination.

10 Ice was exempt of (im)port duties. There was simply no local industry to protect with import duties. Also, the Tudor
Company effectively had a monopoly in most of its destinations, so that it would simply pass on any (im)port duties to
the consumer(s).

C© 2020 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ej/article/130/629/1262/5775474 by guest on 30 M

arch 2021



1266 the economic journal [july

Fig. 2. Calculation of Per Unit Cost of Ice in New Orleans (1847).
Source. The Tudor Records, Tudor II, Volume 3.

end of each year, the Tudor Company had to value its remaining stock of ice in each destination
for accounting purposes. It did this at the per ton cost of the ice in each destination.The scribble,
shown on the left of Figure 2, is the only time that the Tudor Records detail how the firm
calculated its unit costs in a particular destination (New Orleans in 1847).

First, they paid for the ice in Boston ($1.93 per ton). Next, they paid different transport costs
per ton to ship the ice from Boston to its destination, i.e., loading ($0.45), freight ($3.50), landing
($0.80), and other (small) miscellaneous costs (sundries: $0.07). Finally, melt kicked in. Only
a fraction of each unit shipped from Boston arrived at the destination: an iceberg transport cost
in the literal sense. Overall, the cost per unit of ice landed in each destination equals the per
unit cost of the ice loaded in Boston including all transport costs ($6.75 in total) divided by the
fraction of the ice surviving the journey (65%, or 0.65),11 explaining the $10.37 per ton at which
the company valued its remaining stock of ice in New Orleans in 1847. For comparison, the sales
price in New Orleans in that year averaged $35 per ton (Wetherell, 1863).

Using the scribble, we can write the transport costs incurred per ton of ice landed in destination
j in year t as (all shipments depart from Boston so that we suppress the origin index i from
now on):

11 The Tudor Company Records do not further specify the 65% ‘melt markup’ in the scribble. It is hard to ascribe it
to anything but melt however. The company had a very good idea of the substantial differences in melt that shipments to
different destination were suffering (see also footnote 19). The cases of actual reported melt for New Orleans are 35%,
33% and 20%, and a shipment to Pensacola (1–2 sailing days closer to Boston than New Orleans) reports 27.5% melt; see
Subsection 3.1 or Appendix A.1 for more details. The 35% used by the firm in the scribble is on the higher end of these
numbers. The firm may have used a conservative melt estimate, or might also take melt at the destination into account.
The only evidence that we have on local melt concerns the stock of ice in Calcutta. The percentage of local melt there is
much higher (up to 50%) than would be implied by the difference between the 35% melt markup used in Figure 2 and
the 29.3% average melt in transit to New Orleans in our data, making it unlikely that the reported producer price also
takes local melt into account. If at all, the firm might have also taken the ice lost while offloading into account.
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T j t = p jt − pB
t =

(
pB

t + f load
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j t + f freight
j t + f sundries

j t

1 − m jt

)
− pB
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=
(

m jt

1 − m jt

)
pB

t︸ ︷︷ ︸
‘pure melt’ cost

+
(

f j t

1 − m jt

)
︸ ︷︷ ︸

‘melt augmented’
transport cost

, (2)

where f j t = f load
j t + f land

j t + f freight
j t + f sundries

j t denotes the transport cost per ton loaded in
Boston. pjt and pB

t denote the producer price of the ice in j and in Boston respectively. f load
j t , f land

j t ,

f freight
j t and f sundries

j t capture the cost of loading the ice in Boston, the cost of offloading the ice
in j, the freight costs involved in shipping the ice from Boston to j, and any other miscellaneous
transport costs (notably insurance), respectively.12 Finally, mjt denotes the fraction of the ice that
melts in transit.

Comparing equation (2) to (1), immediately reveals that ice(berg) transport costs in practice
are well-approximated by the iceberg assumption if two conditions are met:

1. Melt: the fraction of ice melting in transit, mjt, is exogenous; it does not depend on the price
nor the quantity of the ice shipped.

2. Transport costs: the transport cost per ton of ice loaded in Boston, fjt, is proportional to the
producer price of the ice in Boston; it does not depend on the quantity of ice shipped.

The first condition is unique to the ice trade. Despite the fact that melt in transit poses a true
ad valorem ‘iceberg’ cost, the iceberg assumption would still be violated if melt in transit varied
systematically between shipments depending on either the price or quantity of the ice shipped.
The second condition is nothing but the standard iceberg assumption, now applied to all costs
involved in loading, offloading, insuring and transporting the ice between Boston and a particular
destination.

3. Iceberg Transport Costs in Practice?

3.1. Data

Most of our data comes from the Tudor Company Records that are located in the Baker Library of
the Harvard Business School. All our information on the prices and quantities of ice shipped from
Boston, the freight, loading, landing and insurance costs incurred when shipping the ice, as well
as on the (producer) prices in each destination are taken from these records. We complement it
with information from the US Maury Collection on the average sailing days to each destination.
The Maury collection, that is available through the US National Oceanic and Atmospheric
Administration, contains information on the duration of over 12,000 voyages made by US ships
over the period 1784–1863. Most of these trips (about 11,000) took place between 1830–63,
exactly the period best covered in the Tudor Company Records. Finally, we collected data on
actual melt in transit. With the exception of the average yearly fraction of ice lost in transit
to Calcutta over the period 1833–50, the Tudor Company Records do not report melt. Our
47 melt observations come from a variety of sources, including newspapers, journal articles,

12 The observed landing costs of individual shipments arriving in New Orleans in 1847 reveal that the firm also reports
these costs as the landing costs per ton of ice loaded in Boston. The 65% ‘melt markup’ on these landing costs would
not have been necessary if they had been reported per ton actually offloaded.
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Fig. 3. ‘Pure Melt’ vs ‘Melt Augmented’ Transport Costs.
Notes: The ‘pure melt’, and ‘melt augmented’ transport costs per ton landed are calculated as in (2), where
we make use of our data on producer prices in Boston and in each destination, as well as the (predicted)
melt on each route. This predicted melt measure is based on a regression of actual observed melt on the
number of sailing days to each destination (distinguished by the type of insulation regime used by the Tudor
Company); see Subsection 3.3 for the details.

contemporaneous accounts of the ice trade, and books written on the trade. Appendix A.1 details
their exact sources.

Overall, our data set covers shipments to 28 destinations over the period 1806–80. Most
observations are from the 1840–80 period however, the heyday of Boston’s global ice trade (see
Figure 1). From the Tudor Company Records alone we have information on 1,469 shipments
of ice. For each of these shipments, we know the amount of ice loaded onboard in Boston,
the cost of fitting, loading and insuring this ice, the price that the Tudor Company paid for it
in Boston (its unit costs), as well as producer prices (unit costs) in each destination. Freight
and landing costs are much less well recorded: we only observe these for 66 and 62 shipments
respectively (for 59 shipments we observe both) that sailed from Boston to Calcutta (32), New
Orleans (25), Charleston (7), Mobile (2), Bombay (2) and Madras (1) in the earlier years of our
sample (1846–50). Appendix A.3 provides summary statistics of the most important variables
for each destination reported in the Tudor Company Records.

3.2. Melt vs Transport Costs

Figure 3 shows the relative importance of the ‘pure melt’, and ‘melt augmented’ transport cost
components that together make up ice(berg) transport costs in practice; see (2). It plots the
average melt cost per ton of ice landed in a destination against the average transport cost per ton
of ice landed in a destination.13 These ‘pure melt’, and ‘melt augmented’ transport costs per ton

13 Figure A2 shows that a very similar picture emerges when instead plotting the melt and transport costs per ton
loaded in Boston against each other. Also, column 9 of Table A2 in Appendix A.3 reports the average transport cost per
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are calculated as in (2), where we make use of our yearly data on producer prices in Boston and
in each destination, as well as the (predicted) melt on each route. Inferring transport costs from
producer price differentials is, in fact, a unique feature of our paper. Earlier papers typically rely
on sales price differentials of identical goods between locations to do so (see, e.g., Anderson and
van Wincoop, 2004; Atkin and Donaldson, 2015). Such sales prices differentials can however
also reflect differences in consumer preferences or market structure between destinations.14

To all destinations, the transport costs component dominates the melt component in determining
overall ice(berg) transport costs in practice. On average, ‘pure melt’ makes up just 15% of the
total ice(berg) transport costs per ton. This is simply due to the fact that the producer price
of the ice in Boston, pB

t , was always (much) smaller than the combined transport cost per ton
loaded onboard in Boston, fjt.15 We also observe substantial variation between destinations and
years in both the melt and transport cost components, with the variation in the latter again
being dominant in determining the overall variation in ice(berg) transport costs, both within- and
between destinations.

In the next subsections, we focus on Conditions 1 and 2, and verify how well this variation in
ice(berg) transport costs in practice is captured by the iceberg assumption.

3.3. Melt

We first establish whether or not the fraction of the ice that melts in transit is well-approximated
by an exogenous constant that does not vary with the price nor quantity of the ice shipped;
Condition 1. The Laws of Physics tell us that melt depends positively on the duration of the
journey and the temperature difference between the ice and the surrounding sea/air. Also, it
depends negatively on the value of the heat transfer coefficient (crucially determined by the
measures taken to insulate the ice), and the exposed surface area of the ice.16 Importantly, the
latter implies an immediate violation of the iceberg assumption: all else equal, a factor x larger
load of ice only increases the exposed surface area by approximately x

2
3 , resulting in less melt

per unit of ice shipped. Melt makes the transportation of ice subject to economies of scale.17

In this section we show that melt in transit, in the data, is nevertheless well approximated by the
iceberg assumption. It is well captured by a destination-specific constant that depends primarily
on the duration of the journey and the insulation regime chosen by the Tudor Ice Company. The

ton of ice loaded in Boston for each destination. It is more easily comparable to the per ton freight, loading and landing
costs reported in the Tudor Company Records that are all per ton of ice loaded in Boston.

14 The Tudor Ice Company sold the ice at prices ranging from two to twenty times the reported producer price,
depending on the destination. It faced competition in its southern US markets, whereas it enjoyed full monopoly power
in most of its Asian, Australian and South American markets. See Atkin and Donaldson (2015) for a detailed discussion
on the use of price differentials between locations to infer transport costs.

15 This result is robust to any plausible measurement error in the construction of our predicted melt measure; see
Subsection 3.3. The median (mean) producer price of the ice in Boston is $2.65 ($2.82) per ton, so that even when all
ice would have melted, the ‘pure melt’ cost would still be substantially smaller than the other transport cost components
combined for all but the very closest destinations—see column 9 in Table A2.

16 Newton’s Law of Cooling approximates the convective heat transfer between the melting ice and its surroundings.
It states that the energy transferred between the surrounding air and the ice (that drives melt) at time t equals: dQ/dt =
hA�T(t), where h is the heat transfer coefficient, A the exposed surface area and �T(t) the temperature difference between
the air and ice at time t. Precisely modelling the melting process is much more complicated, it involves among others
physics, chemistry, and differential calculus, to take into account, e.g., the changing shape of the melting block, the
nonconstant outside temperature, the purity of the ice, and the different modes of heat transfer (convection, conduction,
advection or radiation) (see, e.g., Fukusako and Yamada, 1993).

17 See also, e.g., Hummels and Skiba (2004), Stopford (2009), or Coşar and Demir (2018) for a discussion, and
evidence, of economies of scale in transport (for different reasons than melt).
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remaining variation in melt between shipments going to the same destination in the same year is
not systematically related to shipment size.18

The Tudor Ice Company used two different insulation regimes: one for shipments to the US
south and Caribbean, and another, better one for shipments to Asia, South America and Australia
(see Section 2). This clearly shows in the data: the per ton cost of fitting and loading the ice
onboard in Boston is an average $0.51 (SD $0.14) for ‘standard’ shipments to the US South
and Caribbean, and an average $1.16 (SD $0.28) for ‘tropics’ shipments to destinations further
away. Given this choice of insulation regime, melt depended primarily on the length of the
journey.19

Figure 4 shows the relationship between melt and sailing days for shipments using a standard,
tropics or minimal insulation regime. The latter concerns two of Tudor’s earliest shipments to
Martinique (in 1806) and Havana (in 1807), and two reshipments from the ship Walpole bound
for Calcutta that had to make an emergency stop in Mauritius in 1854 (New York Daily Tribune,
1854). On average, one extra sailing day resulted in 2.25ppt, 1.36ppt, 0.42ppt additional melt loss
in case of the minimal, standard and tropics insulation regime respectively.20 Strikingly, variation
in sailing days alone explains 82% and 80% of the variation in melt in case of the standard and
the tropics insulation regime (55% in case of minimal insulation).21

One complication in showing the role of shipment size in explaining the remaining unexplained
variance is that we observe melt ànd shipment size for only one ‘standard’ shipment to London,
and ten ‘tropics’ shipments. Regressing both shipment size and the number of sailing days on
melt for these ten ‘tropics’ shipments shows that shipment size is, conditional on the duration of
the journey and insulation regime, not significantly related to melt.22 But, of course, the (very)
small sample could be to blame for this.

Under a mild assumption, we can however use the available shipment-specific information on
the quantity of ice loaded onboard in Boston, and the total landing costs paid upon arrival in the
destination per ton loaded in Boston—see footnote 12—to shed further light on the existence of
a systematic relationship between melt in transit and shipment size. This information is available

18 We do not pay explicit attention to the fourth melt determining variable: the temperature difference between the
melting ice and the outside sea/air temperature. Most shipments left Boston at the same time of year (winter/early spring),
so that there was hardly any variation between shipments sailing to the same destination in the outside sea/air temperature.
Including the average January and/or July temperature in the destination to our regressions as a proxy for this, does not
change the results shown in Figure 4 in any way, whereas these temperature variables themselves are highly insignificant.

19 See Subsection 3.4.2 and Appendix A.2 for an in-depth discussion of the firm’s choice of insulation regime. This
choice, and thus melt in transit, in principle, does depend on the producer price of the ice in Boston. In practice, however,
its single-most important determinant was a destination’s sailing distance from Boston.

20 Only in case of the minimal regime does this number change (to 1.69ppt) when including a constant to the regression.
21 There is very little reason to believe that melt changed systematically over our sample period. Figure A3 in

Appendix A.3 illustrates this for Calcutta, the only destination for which we observe melt for a sufficient number of
years to draw meaningful inferences. The Tudor Company quickly settled on the optimal way to insulate the ice in transit
(see Section 1). Also, there were no major improvements in the design of the ships used for transporting the ice nor
in sailing techniques during our sample period. Ice was primarily shipped on wooden-hulled (to avoid rust) schooners,
barques, brigs or full rigged ships. The faster clipper ships introduced in the second half of the nineteenth century were
only sporadically used for the ice trade. Also, ice was not shipped on steamships. Until the late nineteenth century this
was not profitable as there was simply not enough room left for the ice in the cargo hold after loading sufficient coal
to take the steamship from Boston to its tropical destination. The data in the US Maury collection indeed shows no
systematic change in the number of sailing days from Boston to any of the destinations in our sample. Figure A4 in
Appendix A.3 illustrates this in case of New Orleans and Calcutta. Including year dummies to allow for general changes
in shipping/insulation technology over the years in our sample hardly affects the point estimate of the relation between
melt and the number of sailing days nor its significance.

22 The estimated coefficient on the tons of ice loaded in Boston is 0.003 (SE 0.003). The estimated coefficient on the
number of sailing days is very similar to that depicted in Figure 4: 0.41 (SE 0.04).
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Fig. 4. Sailing Days and Insulation Explain Melt in Transit.
Notes: Minimal, standard, tropics refers to shipments with minimal insulation, good insulation (for ship-
ments to the US south and Caribbean), and the best insulation (for shipments to South America, Asia and
Australia) respectively. The plotted lines are fitted regression lines that are forced to go through the origin.
The slopes of these lines are 2.25, 1.36, 0.42 for the minimal, standard, and tropics regime respectively (all
significant at the 1% level using standard errors clustered at the destination level). The observations marked
with an ‘x’ concern special observations. For the minimal and standard regimes, this concerns shipments
with a different origin than Boston (two reshipments from the Walpole bound for Calcutta that had to make
an emergency stop in Mauritius, one shipment from Norway to London, and the average melt loss over the
period 1852–67 for 88 shipments between Kodiak, Alaska and San Francisco). For the tropics regime this
concerns three outliers that are not used to draw the regression line: two documented failures (one to Hong
Kong, and one to Calcutta), and one case in which melt is reported for a Calcutta shipment on the ship
Arabella whose departure from Boston we cannot confirm in the Tudor Records. See Appendix A.1 for the
exact source of each melt observation.

for 59 shipments. To see how this works, first note the following identity:

f land,k
j t = Ck

jt

(Q B)k
t

=
(

Qk
jt

(Q B)k
t

)
︸ ︷︷ ︸

1−mk
jt

ck
j t , (3)

where k and t index individual ships and years respectively. mk
jt denotes the fraction of ice that

melted during ship k’s transit from Boston to j, (Q B)k
t and Qk

jt the quantity of ice that ship k
loaded in Boston and landed in destination j respectively, and Ck

jt and ck
jt the total and per ton

cost incurred to offload the surviving ice.
Using (3), we can infer the existence of a systematic relationship between melt and shipment

size by looking at the significance of α in the following regression:

ln f land,k
j t = α ln(Q B)k

t + γ j t + εk
j t , (4)
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Fig. 5. Melt in Transit Unrelated to Shipment Size (by boat).
Notes: The figure plots the residuals of a regression of ln f land,k

j t on a full set of origin-destination-year
dummies (on the y-axis) against the residuals of a regression of (Q B)k

t on a full set of origin-destination-
year dummies (on the x-axis).

where γ jt captures any destination-year specific factors explaining differences in melt (notably the
insulation regime used, (average) journey duration and the (average) outside sea/air temperature
during the journey). Given that f land,k

j t only proxies the fraction of ice surviving in transit up to
ck

jt —see (3)—the validity of this exercise depends crucially on the assumption that the quantity
of ice loaded onboard in Boston, (Q B)k

t , is, conditional upon the included destination-year fixed
effects, uncorrelated to a shipment’s per ton landing cost, ck

jt , that is, by construction, part of εk
j t

in (4).23

Under this plausible assumption,24 Figure 5 clearly shows no evidence that the variation in
shipment size helps to explain the observed variation in melt in transit.25 Of course, this does
not lead us to question the Laws of Physics. What it does show, is that, in practice, variation
in shipment size was a relatively unimportant determinant of the observed variation in melt
in transit.26 The unexplained variance in Figure 4 can much more likely be attributed to the

23 Note that our inclusion of destination-year fixed effects also mitigates any reverse causality concerns. The landing
costs per ton landed were determined by the local supply of and demand for dock workers. Given the small size of the
ice trade in each destination’s overall imports, it is very unlikely that they will have varied between ships sailing to the
same destination in the same year. And, even if they did, this variation would not yet have been known at the time the
boat departed from Boston. As such, they will not have been a causal driver of the observed differences in shipment size
between ships sailing to the same destination in the same year.

24 Dock workers hired to offload the ice were typically paid an hourly (or daily) wage, making it even unlikely that
landing costs per ton depended on the quantity of ice offloaded.

25 α̂ = −0.002 (SE 0.102). It is depicted by the slope of the solid regression line in Figure 5.
26 The γ jt explain 87% of the overall variation in ln f land,k

j t .
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substantial variation between shipments in time in transit,27 and in the adherence of the crew to
the agreed melt mitigating measures (see Section 2).28

Summing up, the physics of the melting process itself implies an immediate violation of the
iceberg assumption: transporting ice is subject to economics of scale. However, in practice, that
these economies of scale were overshadowed by other, much more important, melt determining
factors. Melt in transit primarily depended on the (average) duration of the journey and choice
of insulation regime that both did not depend on the price nor quantity of ice shipped. As such,
the iceberg assumption approximates the melt-related component of ice(berg) transport costs in
practice rather well.

3.4. Transport Costs

Next, we turn to Condition 2 and focus on the actual transport costs paid to transport the ice. As
illustrated in Figures 3 and A2, these costs made up the lion’s share of ice(berg) transport costs in
practice, accounting for over 85% of them. From the scribble in the Tudor Archives, see Figure 2,
we know that these transport costs consisted of four components: freight costs, landing costs,
fitting and loading costs, and sundries. Sundries were a negligibly small part of total transport
costs (2¢−7¢ per ton), that primarily consisted of the cost of insuring the ice in transit. These
insurance costs were paid as a fixed percentage of the total value of the ice loaded onto a ship,29

i.e., they adhere to the iceberg assumption by definition. We focus on the other three components
from now on, and show that they are, in contrast to melt in transit and these insurance costs, not
well-approximated by the iceberg assumption: they are additive cost components that, moreover,
depend systematically on shipment size.

3.4.1. Additive loading, freight and landing costs
Per unit transport costs did vary substantially across the years and destinations served by the
Tudor Company, and even between shipments sent to the same destination (see, e.g., Figure 3). At
the same time, the Tudor Records show that the per ton cost of the ice in Boston was identical for
all shipments sent out in the same year, regardless of the final destination. This complicates things
as we lack the necessary variation in producer prices between shipments departing from Boston
in the same year (to the same destination) to convincingly establish whether per unit transport
costs are proportional to producer prices or are instead, at least partially, additive in nature using,
e.g., the approach in Hummels and Skiba (2004).30 Nevertheless, in this subsection, we set out
why it is very unlikely that either the loading, freight, or landing costs were systematically related
to the producer price of the ice in Boston. Instead all these costs were additive in nature, and did
not depend on the ice’s unit value at all.

Fitting and Loading: First, the ice had to be loaded on board and insulated. The dock
workers loading the ice onto the ship were paid a daily or hourly wage. This wage depended

27 In the US Maury data, the standard deviation of sailing days for shipments to Calcutta is 19 days on an average trip
of 124 days. For New Orleans these numbers are 6 and 21 days respectively. See also Figure A4 in Appendix A.3.

28 Also, (some of) the reported melt numbers are likely to include the ice lost while offloading. The number of sailing
days and the choice of insulation regime are clearly imperfect predictors of this loss.

29 1–1.5%, with no systematic differences over time, between destinations, nor between shipments sent to the same
destination in the same year.

30 We could of course rely on the variation in the per ton cost of the ice in Boston over time in doing so. However, this
would preclude us from allowing τ ij in (1) to vary over the years. The destination-year dummies that would have to be
included to the regression to do so, would simply leave us without any variation to identify the coefficient on producer
prices. There is nothing in the iceberg assumption that does not allow τ ij to (exogenously) vary over the years.
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on the total number of ships in port that needed to be (off)loaded regardless of their cargo and
destination/origin, and was often set by dock worker unions (Holmes and Schmitz, 2001). Even
in the ice trade’s heydays, ships carrying ice constituted a much too small fraction of Boston’s
total port traffic to have been an important determinant of these wages.31 The Tudor Company
did endogenously choose how well to insulate the ice in transit, trading off the cost of additional
insulation material against the benefit of less expected melt. This choice did, in principle, did
depend on the producer price of the ice in Boston (see Subsection 3.4.2). In practice however,
the sailing distance from Boston was the only important determinant of this choice. As such, the
cost of fitting and loading the ice per ton did not vary with producer prices.

Freight: The Tudor Company chartered the ships carrying the ice. Freight costs were relatively
low as ice replaced the ballast that these ships would otherwise have had to carry to, and dispose
of in, each destination. They were usually paid on the intake weight. A bargaining process with
the owner of the ship determined the freight rate per ton paid by the Tudor Company (Proctor,
1981). Journey duration was one of the most important determinants of these freight costs. It
determined the total wage bill paid to the crew, as well as the typical ship type plying the route
(larger vessels were used in long-distance ocean shipping as they were better to handle on the
high seas). But, we do also observe substantial differences in freight costs between destinations
located at roughly equal sailing distance (compare, e.g., Calcutta and Galle to Batavia, Hong
Kong and Singapore; or Kingston to Charleston; see also Table A2 in the Appendix). Generally,
(average) freight rates were lowest to destinations offering the best opportunities for profitable
return or onward cargoes, and to those importing little from Boston. The number of ships sailing
out to these destinations in ballast, and thus potentially looking for ice to serve as a cheaper
alternative, was simply the largest (explaining the low rates to, e.g., Calcutta and Kingston). On
top of this, any differences in the experience of the ship owner/crew in sailing to a particular
destination and/or in shipping ice, and how quickly the ship would be ready to depart mattered
in explaining the observed variation in per ton freight costs between shipments going to the same
destination in the same year.32 It is very unlikely that the price that the Tudor Company paid for
the ice in Boston had any bearing on the agreed freight rate per ton.

Landing: Finally, upon arrival in its final destination, the ice had to be offloaded. The local
dock workers hired to do this were paid an hourly or daily wage. This wage depended primarily
on the total number of ships in port that needed to be (off)loaded, as well as on the local supply
of dock workers. As in Boston, the ice trade simply made up a much too small percentage of the
total port traffic in each destination, for any of its characteristics to affect these costs. The price
paid for the ice in Boston certainly did not have any bearing on these costs.

3.4.2. Choice of shipping (insulation) technology
As described in Section 2, the Tudor Company used two different technologies to insulate the
ice in transit. Using the better insulation regime, a lower fraction of ice was lost per day in transit
(see Figure 4), but at a higher per ton cost to insulate the ice on board. In other words, the firm

31 Total foreign and coastal clearances from Boston’s port were 3,198 and 2,526 in 1847 and 2,979 and 3,078 in 1849
(The Merchants’ Magazine and Commercial Review, 1848; 1850). The number of foreign and coastal ice shipments by
the Tudor Company in those years were only 13 and 35 in 1847 and 19 and 32 in 1849. And, in 1855, the total number of
East Asia and Pacific clearances from Boston’s port were 75 (The Merchants’ Magazine and Commercial Review, 1856),
of which only 9 ships carried Tudor ice.

32 See North (1968; 1965) for more detail on the determinants of ocean freight rates in the nineteenth century.
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faced a trade-off between a low ad valorem, high specific trade cost insulation technology and
another, higher ad valorem, but lower specific trade cost technology.

Interestingly, this trade-off is very similar to that in Rua (2014) and Coşar and Demir (2018),
who model the choice between breakbulk or container shipping, or that in Hummels and Schaur
(2013) who focus on the choice of using air or ocean shipping. In the latter paper firms trade-off
the higher additive cost of using air shipping against the benefit of being able to charge higher
prices for goods that arrive more timely when using this mode of transport (see Hummels and
Schaur, 2013, p.2939). Just as in our setting, time in transit increases the likelihood of using the
more expensive shipping technology, as the cost savings in terms of quality loss (melt loss in our
case) are larger when shipping goods to farther off destinations.

In Appendix A.2 we formally derive what determines the optimal choice of insulation technol-
ogy. Just as in Hummels and Schaur (2013), Coşar and Demir (2018) or Rua (2014), this choice
depends on the marginal cost of production, which in our case is simply the price that the Tudor
Company paid for the ice in Boston. It implies that, even though ice(berg) transport costs in
practice consisted for the largest part of additive transport cost components, see Subsection 3.4.1,
the choice of insulation technology makes them, de facto, depend on producer prices. But, in
contrast to the iceberg assumption, they, even those associated with melt, increase less than
proportionally with these prices—see Figure A1 in Appendix A.2.

In practice, however, the Tudor Company always used the same insulation regime to a particular
destination. It never changed this in response to the observed changes in ice prices in Boston. A
destination’s sailing distance from Boston was the single-most dominant factor determining this
choice of insulation technology. The better, more expensive, insulation technology was simply
the only option for all farther-off destinations, regardless of the price paid for the ice in Boston: all
ice would melt away when using the other, cheaper insulation technology. For nearby destinations
instead, the better, more expensive insulation regime is never used by the Tudor Company. We
show suggestive evidence that producer prices were simply never high enough to induce a switch
to using this technology for shipments to these destinations (see Figure A1).

As such, the role of the ice’s producer price in Boston in determining the choice of insulation
regime was very limited, if not absent. The loading, freight and landing costs paid to ship the ice to
its various destinations did, in practice, not depend on the price paid for the ice in Boston, neither
directly nor indirectly through their dependence on the Tudor Companies choice of insulation
regime.

3.4.3. Economies of scale
Even though most of the ice(berg) transport costs in practice consisted of additive and not ad
valorem cost components, one could still argue that they were, in fact, still perfectly well-proxied
by an ad valorem iceberg specification. The lack of variation in the producer price of the ice
between shipments leaving Boston in the same year implies that each individual shipment’s per
unit transport costs can be written as a shipment-specific constant multiplied by the prevailing
producer price in Boston in that year; see (1). However, we show that, instead of being exogenous
as implied by the iceberg assumption, this shipment-specific constant depends systematically on
shipment size: shipping ice is subject to economies of scale. Interestingly, it is the practice of
insulating the ice in transit that is primarily to blame for this.

We show this by regressing the available individual shipment-specific freight, fitting and
loading, and landing costs per ton (as well as their sum) on a full set of destination-year dummies
as well as the quantity of ice loaded onboard in Boston. An obvious concern in interpreting our
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Table 1. Iceberg Transport Costs in Practice?

(1) (2) (3) (4) (5)
Dep.var.: ln f load,k

j t ln f load,k
j t ln f freight,k

j t ln f land,k
j t ln f load+freight+land,k

j t

ln(Q B )k
t −0.235∗∗∗ −0.220∗∗∗ −0.013 −0.002 −0.064∗∗

(0.038) (0.038) (0.006) (0.102) (0.018)

FEs jt jt jt jt jt
N 1,469 63 63 59 54
R2 0.92 0.94 0.87 0.86 0.78

R2 if only FEs 0.90 0.93 0.87 0.86 0.78

Notes: Standard errors clustered at the destination level in parentheses. ∗, ∗∗, ∗∗∗ denotes significance at the 10%, 5%,
1% respectively. Column 2 shows results when restricting the sample to those shipments for which either also per unit
freight costs or per unit landing costs are available.

results is that of reverse causality: lower transport costs causing the Tudor Company to send
larger shipments. The inclusion of destination-year fixed effects however substantially limits
these worries, as they take account of any differences in transport costs between destinations
(over the years) that might have led the Tudor Company to ship more to some destinations than
to others33 (see also Hummels et al., 2009, p.91; and Hummels and Schaur, 2013, p.2948, for
a similar argument). In case of the fitting and loading and the landing costs, it arguably even
completely deals with this concern. The labor costs per ton of ice loaded in Boston and per ton
landed in its final destination, as well as the costs per yard of insulation material, were basically
the same for shipments sent to the same destination in the same year (see Subsection 3.4.1). Any
variation between shipments in the per ton cost of fitting and loading, or landing the ice was, thus,
the result rather than the cause of differences between shipments in the quantity of ice loaded
onto the ship (see also footnote 23).

Table 1 shows our findings. The bottom row of columns (1)–(5) shows that, in fact, most of
the variation in all three transport costs components (as well as their combination) is picked
up by the included destination-year dummies that capture many of the important transport
cost determinants that we highlighted in Subsections 3.4.1 and 3.4.2. They do not explain all
the variation in transport costs however: 7%–12% of this variation comes from differences in
per unit transport costs between shipments sent to the same destination in the same year. If
this remaining unexplained variation were purely idiosyncratic noise, one could still argue that
the iceberg assumption approximates iceberg transport costs in practice quite well. However,
the reported coefficient estimates in Table 1 show that this remaining within destination-year
variation is systematically related to shipment size, i.e., the tons of ice loaded onboard in Boston:
(Q B)k

t .
This is most clearly the case for the per ton cost of fitting and loading the ice on board in Boston

(see columns 1 and 2).34 The insulation material was applied to the exposed surface area of the
ice. All else equal, increasing the size of a shipment by a factor x thus only increases the need for
insulation material by approximately x

2
3 , implying that the per ton cost to insulate the ice falls by

a factor x− 1
3 . If the per ton cost of fitting and loading consisted primarily of the cost of fitting, the

estimated coefficient on ln shipment size should be close to −0.33. It is −0.235, and significantly
different from −0.33 at the 2.2% level, indicating that the per ton cost of loading also mattered.

33 Notably those caused by differences in journey duration, a destination’s opportunities for onward/backhaul cargoes,
local dock workers’ wages, and the choice of insulation regime used in transit.

34 Shipment size explains 19% of the within destination-year variation in the per ton cost of fitting and loading.
Figure A5 in Appendix A.3 illustrates this.
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The dock workers loading the ice on board were typically paid an hourly or daily wage. The per
ton loading costs are therefor unlikely to have fallen with shipment size, explaining an estimated
coefficient that is larger than −0.33.35

Column 3 shows that the per ton freight costs are not significantly related to shipment size.
The estimated coefficient in column (3) is however significant at the 10.7% level, and does
suggest the presence of economies of scale in transporting the ice: doubling shipment size lowers
the freight cost per ton by 1.3%. It is not unlikely that we simply lack the power to reject the
null hypothesis at the (only marginally higher) conventional significance levels due to the much
smaller sample of shipments for which freight costs are available.36 At the same time however,
this result remains vulnerable to any remaining reverse causality concerns, which if anything
would imply that our estimated coefficient is an underestimate of the true effect of shipment size
on per ton freight costs, i.e., (further) weakening the case that differences in shipment size caused
any of the observed between-shipment variation in freight costs per ton.

Finally, column 4 also shows no evidence of economies of scale in offloading the ice. This is
not unexpected as the dock workers hired to offload the ice in each destination were typically
paid a daily or hourly wage, making it unlikely that landing costs per ton depended much on
the quantity of ice offloaded.37 When we next sum up all three transport costs components,
the significantly negative relationship with initial shipment size remains (see column 5). A 1%
increase in shipment size decreases these per ton transport costs combined by 0.064%.

The presence of economies of scale in ice(berg) transport, particularly salient due to the
practice of insulating the ice in transit, implies a clear violation of the iceberg assumption.
And, in fact, we do find suggestive evidence that these economies of scale did affect the Tudor
Company’s shipping strategy, chartering the larger ships sailing to each destination. The average
tonnage of the 4,535 foreign clearances out of Boston in 1846 and 1847 was 132 tons (The
Merchants’ Magazine and Commercial Review, 1848). The 29 ships carrying Tudor ice to a
non-US destination in these same years held on average 462 tons. And, of the 99 ships carrying
Tudor ice in 1847 and 1849, 48% were full rigged ships, the largest type of sailing vessel at
the time, 44% were brigs or barks, both medium to large sailing vessels, and only 7% were the
smaller schooners. Of Boston’s total 11,951 clearances in these two years, only 6% were full
rigged ships, 36% brigs and barks and 57% the smaller schooners (The Merchants’ Magazine
and Commercial Review, 1851).38

35 Based on the difference in the average per unit cost of fitting and loading, and the average melt per sailing day
between shipments using the standard or the tropical regime (see Figure 4), one can get a rough estimate of the ice’s
loading cost per ton: $0.17 (this assumes it is constant across locations, and independent of shipment size). When
regression the ln cost of fitting per ton, i.e., the cost of fitting and loading per ton in the data minus this $0.17, on ln tons
shipped and a full set of destination-year dummies, the estimated coefficient on ln tons shipped is −0.34 (SE 0.06). This
is strikingly close to −0.33.

36 The results shown in columns (1) and (2) suggest that selection issues may be limited: the estimated relationship
between shipment size and the per unit cost of fitting and loading is almost identical when using all 1,469 shipments or
the much smaller selected sample of 63 shipments for which either also per unit freight costs or per unit landing costs
are available.

37 Do remember however that the per unit landing costs in the data are only reported per ton of ice loaded onboard in
Boston; see Subsection 2.1. They only proxy for the landing cost per ton of ice offloaded up to melt in transit; see (3).
Only if melt were uncorrelated to initial shipment size, could the results in column 4 be taken as evidence that also the
landing cost per ton of ice offloaded did not depend on initial shipment size. The physics of the melt process however
implies a positive correlation between initial shipment size and melt, meaning that our estimate in column 4 is biased
upwards. However, in Subsection 3.3 we showed that, in practice, other melt determining factors swamp shipment size
in explaining actual melt in transit, so that we do expect this bias to be small.

38 For Boston’s foreign trade this pattern is even more pronounced. Of Boston’s total 5,636 foreign clearances in
1847 and 1849, 5% were full rigged ships, 36% brigs and barks, and 59% schooners. For the 32 ships carrying Tudor
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4. Conclusion

Iceberg transport costs are a key ingredient of modern trade and economic geography models. This
article shows that the transportation of the good that lent its name to this important ‘trick of the
genre’, ice, actually features many characteristics that have led people to criticise this assumption:
additive transport cost components, economies of scale, the importance of backhaul/onward
shipping opportunities and the endogenous choice of shipping technology. Using our data on
Boston’s nineteenth century global ice trade, we show that, as a result, ice(berg) transport costs
in practice are not well-captured by the iceberg assumption. They consisted for the largest part of
additive loading, freight and landing costs. Moreover, they depended systematically on shipment
size. Interestingly, the practice of insulating the ice to limit melt in transit is primarily to blame
for this violation of the iceberg assumption: ice(berg) transport is subject to economies scale.

Of course, these findings do not mean that we should immediately abandon the iceberg
assumption in trade or economic geography models. But, we do think that the recent efforts
to tractably incorporate more realistic features of the transport sector into these models (e.g.,
Alessandria et al., 2010; Irarrazabal et al., 2015; Brancaccio et al., 2017; Asturias, 2019) should
only be encouraged.

ice to a non-US destination in these years, these percentages are 72%, 28% and 0% respectively. By comparison, 7.5%,
35%, 56% of Boston’s 6,315 coastal US clearances were full rigged ships, brigs and barks, and schooners. For the 67
of them carrying Tudor ice these percentages are 37%, 52% and 10% respectively. The lower number of ships sailing
out in ballast to US coastal destinations is one explanation of this difference; another is the greater uncertainty about
local market conditions in, and the longer delivery lags to, farther off destinations, leading the Tudor Company to prefer
sending larger but less frequent shipments to those places (consistent with predictions by, e.g., Alessandria et al., 2010).
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Appendix A

A.1. Melt Data

Table A1. Melt Observations and Their Sources.

Destination Year % melt Source

St Pierre, Martinique 1806 96 Scientific American (1863)
Havana, Cuba 1807 50 Kistler et al. (1984)
Calcutta, India 1833 44 The Mechanics’ Magazine (1836)
Calcutta, India 1833; 1835–50 Tudor Company Records (1752–1863) [yearly

averages]
Rio de Janeiro, Brazil 1834 26 The Rights of Man (1834, p.2), Tinhorão (2005)
Bombay, India 1835 45 The Asiatic Journal (1835)
Sydney, Australia 1839 38 Isaacs (2011)
Singapore 1845 50 Singapore Free Press and Mercantile Advertiser

(1845)
Hong Kong 1846 87 Bunting (1981, p.22)
Hong Kong 1846 50 Ride et al. (1995, p.48)
New Orleans, USA 1847 35 Tudor Company Records (1752–1863)
Manila, Philippines 1847 50 Legarda (1999, p.311)
San Francisco, USA 1851 58 Hittell (1898, p.423)
London, UK 1852 35 Smith (1962)
Calcutta, India 1854 76 Smith (1962) [not in Tudor Records]
Mauritius—Calcutta, India 1854 62 Tudor Company Records (1752–1863)
Mauritius—Calcutta, India 1854 83 Tudor Company Records (1752–1863)
Madras, India 1858 62 Alden et al. (1858)
Madras, India 1858 50 Alden et al. (1858)
Honolulu, USA 1859 57 The Polynesian (1859)
Batavia, Indonesia 1860 47 De Economist (1860)
Charleston, USA 1860 10 Parker (1981, p.6)
New Orleans, USA 1860 20 Parker (1981, p.6)
Calcutta, India 1868 50 Scientific American (1863)
Havana, Cuba 1868 33 Scientific American (1863)
New Orleans, USA 1868 33 Scientific American (1863)
Batavia, Indonesia 1869 37.5 Java Bode (1869)
Pensacola, USA 1880 27.5 Hall (1880, p.35)
Panama (via Cape Horn) 1854∗ 68.1 Tomes (1855, p.204)
Norway—London, UK 1880 7.5 Blain (2006, p.8)
Kodiak, Alaska—San
Francisco

1852–67 18.4 Saul (2018, p.14) [overall average]

∗ Exact year uncertain, Tomes (1855) describes Panama in 1855. In the Maury Collection the only boat sailing for Panama
from Boston arrived in Panama on December 6, 1853 after a journey of 141 days.

A.2. Choice of Insulation Technology

As discussed in Section 1, the Tudor company used two different insulation technologies. One
for shorter trips to the Southern US and Caribbean, and another, better, but more expensive one
for the much longer trips to Asia, Australia, and those around Cape Horn. In this Appendix, we
derive the firm’s optimal choice of insulation technology. Of particular interest for our purposes,
we show how this choice, and thus the ice’s per unit transport cost, depends on the price paid for
the ice in Boston.

The firm’s choice problem is to choose that insulation technology that minimises its per unit
‘production cost’ of the ice in the destination, which is nothing but the price paid for the ice
in Boston plus the transport costs paid for shipping the ice to its final destination. The former
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did not vary with the insulation technology used en route, so that this decision boils down to
simply choosing that insulation technology that minimises the ice’s per unit transport cost per
ton landed—see (2). This depends on the costs associated with insuring, loading, transporting,
and offloading the ice, as well as those associated with the ice that melted in transit. Choosing
the better insulation technology raises the former while lowering the latter. Importantly, the cost
savings associated with the lower melt loss when using the better insulation technology increase
in the sailing days needed to reach the destination from Boston: using the standard instead of the
better tropics insulation regime results in 0.94ppt more melt loss per sailing day—see Figure 4.

The Tudor Company is indifferent between using either insulation regime when they result in
the same per unit transport costs, T j , i.e., using (2):

T T
j = T S

j ⇔ (αT D j )pB + f T
j

1 − (αT D j )
= (αS D j )pB + f S

j

1 − (αS D j )
, (A1)

where superscripts T(ropics) and S(tandard) denote the insulation regime used, Dj is the number
of sailing days from Boston to destination j, we have suppressed the year index t, and replaced
mj in (2) by the estimated linear relationship between melt loss (in ppt) and sailing days for the
two insulation regimes, i.e., mI

j = αI D j , for I ∈ {T, S}.
Rearranging (A1) we can easily derive how the choice of insulation regime depends on the

prevailing producer price in Boston, pB.39 More specifically, given the number of sailing days
from Boston, Dj, it is optimal to use the better tropics insulation regime if:40

pB > p∗
j = ( f T

j − f S
j ) + ( f S

j αT − f T
j αS)D j

(αS − αT)D j
. (A2)

As also illustrated in Figure A1, this implies that, in principle, upon taking explicit account of
the choice of insulation regime, per unit ice(berg) transport costs in practice, both those associated
with melt as well as with loading, shipping and landing the ice, did depend on producer prices in
Boston. In contrast to the iceberg assumption, however, they increased less than proportionally in
these prices.41 Also, ceteris paribus, the longer the journey from Boston to a particular destination,
the more likely that the more expensive, but better insulation regime was the optimal insulation
technology to use (∂p∗

j /∂ D j < 0).
In the data we, however, never observe the Tudor Company switching the insulation technology

used to any of its destinations, regardless of the variation in producer prices over the years in our
sample. In practice, the price of the ice in Boston did not influence the Tudor Company’s choice
of insulation regime. Instead, sailing distance from Boston appears to have been the single-most
important determinant of this choice. For the farther off destinations this can easily be explained
by the fact that using the better, more expensive insulation regime was the only way to ensure that
any ice would reach its final destination. Had the cheaper technology been used, all ice would

39 Note that this is the case as long as f T
j and f S

j are not proportional to producer prices in Boston—as was the case

in practice, see Subsection 3.4.1. If they were, the choice of insulation regime would not depend on pB at all.
40 tropics insulation regime: we could also let transport costs depend on distance, and, e.g., specify them as f I

j + γ D j

instead of f I
j , I ∈ {T, S}. This would add the term −γ Dj to the expression for p∗

j in (A2).
41 This would have shown even more saliently had (many) more different insulation regimes been available to the

firm, as long as a better insulation regime always came with a higher per ton cost of fitting and loading the ice on board,
as well as less melt per day in transit.
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Fig. A1. Ice(berg) Transport Costs and Producer Prices.
Notes: The vertical lines correspond to the observed price paid for the ice in Boston in 1846, 1847, 1848
and 1849. The other lines depict the relationship between each destination’s per unit ice(berg) transport
costs and producer prices in Boston. They are drawn taking αS = 0.0136 and αT = 0.0042 (see Figure 4),
and observed median values for f S

j = f S,load
j + f S,freight

j + f S,land
j in the earliest years of our sample (1846–

1850) for which data on freight and landing costs are available for several destinations. No shipment to these
destinations ever used the tropics regime, so that we do not directly observe f T,load

j , f T,freight
j , nor f T,land

j . We

infer f T,load
j from all shipments sent beyond the Caribbean that all use the tropics regime, and approximate

f T,freight
j and f T,land

j as follows. First, f T,land
j = 1.5 f S,land

j : applying and disposing of the additional insulation
material when using the tropics regime increases the time to (off)load the ice by a factor 1.5. Second,

f T,freight
j = f S,freight

j

(
D j +1.5(DS,load

j +DS,land
j )

D j +DS,load
j +DS,land

j

)
: the freight cost per ton using the tropics regime equals that when

using the standard regime multiplied by the number of days one needs to charter the ship using the tropics
regime relative to those needed when using the standard regime instead. The number of days one has to
charter the ship is simply the sum of j’s sailing days from Boston, Dj, and those spent loading, Dload

j , and
offloading, Dland

j , the ice. It is larger for the tropics regime, but only because (off)loading the ice takes

1.5 times longer (see our earlier assumption above). For the standard regime we simply infer DS,load
j from

the observed average shipment size sent to j taking an average loading speed of 300 tons of ice per day
(Forbes, 1875), and assume that landing the ice takes three times longer—loading involved placing regularly
shaped, easy to handle, blocks of ice into the ship’s hold at freezing temperatures, whereas landing meant
offloading one, melted together, block of ice at tropical temperatures—i.e., DS,land

j = 3DS,load
j . For Havana

and Kingston we, in addition, do not observe f S,freight
j and f S,land

j . For these destinations, we set f S,land
j = 0.81,

the observed landing cost per ton in New Orleans, and we infer f S,freight
j from the corresponding number for

New Orleans multiplied by the average overall transport cost per ton implied by the observed producer price
in, and predicted melt loss to, each destination relative to that in New Orleans (see column (9) in Table A2).
The producer price at which it is optimal to switch from using the standard to the tropics insulation regime,
pB∗

j is 7.83, 4.20, 2.22 and 1.68 $/ton for Charleston, Havana, New Orleans and Kingston respectively.
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have simply melted in transit.42 For the other, closer, destinations, the Tudor Company instead
always used the cheaper technology.

The lack of (counterfactual) freight and landing cost data make it difficult to infer whether or
not this choice was in fact optimal given the prevailing ice prices in Boston. However, making
use of our estimated melt loss per sailing days for the two insulation regimes (see Figure 4),
the observed per ton fitting and loading, freight and landing costs by destination, f S

j , and
assumptions to infer each destination’s counterfactual f T

j (see the Notes to Figure A1 for more
details), Figure A1 plots the resulting relationship between the overall ice(berg) transport costs
per ton landed and producer prices in Boston for four destinations for which the choice between
the standard and tropics regime is in principle relevant: Charleston (12 sailing days), Havana
(17.8 sailing days), New Orleans (21.8 sailing days), Kingston (25.5 sailing days).43

Figure A1 indeed shows suggestive evidence that, in the earliest years of our sample, the
producer price of the ice in Boston never reached a level that should have induced the Tudor
Company to switch from using the cheaper to the better, but more expensive insulation technology.
Kingston is the exception here, where according to our calculations the Tudor Company should
have switched to using the better insulation technology in 1847 and 1848. However, do note that
for Kingston we needed to make additional assumptions to also infer its, otherwise unobserved,
freight and landing costs under the standard insulation regime from the observed numbers for
New Orleans (see the Notes to Figure A1).

42 Given the estimated melt loss per day for the standard insulation regime, 1.36ppt per day, it is never an option to
use this technology when sailing to destinations beyond 73.5 sailing days from Boston.

43 For the other two furthest destinations within 73.5 sailing days from Boston, Pernambuco (41 days) and Rio de
Janeiro (49 days), it is, based on similar calculations, optimal to use the tropics regime at any producer price in Boston,
i.e., ∂p∗

j < 0.
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A.3. Descriptives and Additional Figures

Table A2. Descriptives for Destinations in Tudor Records.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total
tons

Avg.
ton/ship

No.
ships E[% melt] Sailing

days

Cost per ton ($)

Destination Loading Landing Freight f̄ j ·

Batavia, Indonesia 39,478 1,067 37 42.0 99.8 1.21 . . 9.3 (3.6)
Bombay, India 110,182 958 115 46.4 110.4 1.25 . 6.24 8.1 (1.7)
Calcutta, India 154,634 822 187 50.7 120.6 1.22 0.27 3.35 5.1 (1.4)
Charleston, USA 54,498 277 197 16.3 12.0 0.55 0.67 1 3.9 (1.5)
Colombo, Sri Lanka 1,818 606 3 50.5 120 1.81 . . 7.9 (.)
Galle, Sri Lanka 16,447 748 22 50.5 120 1.44 . . 5.4 (1.7)
Havana, Cuba 179,282 549 325 24.2 17.8 0.58 . . 5.6 (0.9)
Hong Kong 32,996 1,222 27 40.5 96.3 1.32 . . 10.3 (3.3)
Kingston, Jamaica 74,265 485 153 34.6 25.5 0.57 . . 3.0 (1.4)
Madras, India 65,364 647 101 49.5 117.8 1.28 . 3.49 6.8 (1.3)
Mobile, USA 8,526 194 44 29.9 22.0 0.63 0.47 1.89 4.0 (1.4)
New Orleans, USA 142,913 581 246 29.6 21.8 0.47 0.81 2.75 4.5 (0.7)
Pernambuco, Brazil 111 111 1 17.3 41.2 0.92 . . .
Rangoon, Myanmar 391 391 1 . . 1.87 . . .
Rio de Janeiro, Brazil 2,372 593 4 20.7 49.3 1.78 . . 3.0 (.)
Singapore 3,563 594 6 46.7 111 1.48 . . 9.7 (1.3)

Notes: The descriptives in columns (1)–(3) and (6)–(8) are based on the individual shipment data taken from the Tudor Records (see
Subsection 3.1 for more detail). Column (4) reports predicted melt to each destination in transit based on an insulation regime specific
regression of observed melt in transit on the average number of sailing days from Boston to each destination (taken from the US Maury
Collection, and shown here in column (5)). Figure 4 depicts this relationship for each of the insulation regimes. The US Maury Collection
does not report information on a journey from Boston to Rangoon, explaining the missing values for the number of sailing days and
expected melt for this destination. Column (9) reports each destination’s average transport costs per ton of ice loaded in Boston over
our sample period, accompanied by its standard error. It is calculated—see (2)—using our data on producer prices in Boston and each
destination, in combination with the predicted melt numbers reported in column (4): f̄ j · = 1

T j

∑
t

(
p jt (1 − m j ) − pB

t

)
, where Tj denotes

the number of years for which we observe the necessary producer price data to calculate fjt. Standard errors are missing for destinations
where we observe fjt in one year only.
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Fig. A2. Melt and Transport Costs Per Ton Loaded.
Notes: The melt, and transport costs per ton loaded are obtained by multiplying the ‘pure melt’, and ‘melt
augmented’ transport costs per ton landed in (2) by (1 − mjt). They are calculated making use of our
data on producer prices in Boston and in each destination, as well as the (predicted) melt on each route.
This predicted melt measure is based on a regression of actual observed melt on the number of sailing
days to each destination (distinguished by the type of insulation regime used by the Tudor Company); see
Subsection 3.3 for the details.
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Fig. A3. Melt Over Time.
Notes: The slope of the fitted regression line is 0.01 (SE 0.14). The observations marked with an ‘x’
concern two outliers—the same two Calcutta outliers as in Figure 4. One, the 1835 observation, concerns
a documented failure, and one, the 1854 observation, concerns melt reported for a shipment on the ship
Arabella whose departure from Boston we cannot confirm in the Tudor Records.
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Fig. A4. Sailing Days 1830–60—Maury Collection.
Notes: The slope of the fitted regression line is 0.150 (SE 0.207) and 0.097 (SE 0.595) in case of New
Orleans and Calcutta respectively.
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Fig. A5. Cost of Fitting and Loading vs Shipment Size [by boat].
Notes: The figure plots the relationship between the two variables controlling for a full set of destination-
year dummies. In other words, it shows the relationship between the cost of fitting and loading per ton and
shipment size for ships travelling to the same destination in the same year. That is, it plots the residuals of
a regression of ln f load,k

j t on a full set of destination-year dummies (on the y-axis) against the residuals of a
regression of ln(Q B)k

t on a full set of destination-year dummies (on the x-axis).
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