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Abstract5

VALUE is an open European collaboration to intercompare downscaling approaches6

for climate change research, focusing on different validation aspects (marginal, tem-7

poral, extremes, spatial, process-based, etc.). Here we describe the participating meth-8

ods and first results from the first experiment, using “perfect” reanalysis (and RCM9

reanalysis-driven) predictors to assess the intrinsic performance of the methods for10

downscaling precipitation and temperatures over a set of 86 stations representative of11

the main climatic regions in Europe. This study constitutes the largest and most com-12

prehensive to date intercomparison of statistical downscaling downscaling methods,13

covering the three common downscaling approaches (perfect prognosis, model output14

statistics —including bias correction— and weather generators) with a total of over15

fifty downscaling methods representative of the most common techniques.16

Overall, most of the downscaling methods greatly improve raw model biases and17

no approach or technique seems to be superior in general, since there is a large method-18

to-method variability. The main factors most influencing the results are the seasonal19

calibration of the methods (e.g. using a moving window) and their stochastic nature.20

The particular predictors used also played an important role in cases where the compar-21

ison was possible, both for the validation results and for the strength of the predictor-22

predictand link, indicating the local variability explained. However, the present study23

cannot give a conclusive assessment of the skill of the methods to simulate regional24

future climates, and further experiments will be soon performed in the framework of25

the EURO-CORDEX initiative (where VALUE activities have merged and follow on).26

Finally, research transparency and reproducibility has been a major concern and27

substantive steps have been taken. In particular, the necessary data to run the experi-28

ments is provided at http://www.value-cost.eu/data and data and valida-29

tion results are available from the VALUE Validation Portal for further investigation:30

http://www.value-cost.eu/validationportal.31

KEY WORDS: downscaling, bias adjustment, perfect prognosis, model output statistics, weather gen-32

erators, validation, reproducibility, CORDEX.33

1. Introduction34

Global Climate Models (GCMs) are the primary tools to simulate multi-decadal climate dynamics and to35

generate global climate change projections under different future emission scenarios (Taylor et al. 2011).36

However, these models have a coarse resolution (typically a few hundred kilometers) and suffer from sub-37

stantial systematic biases when compared with observations (Flato et al. 2013, Sec. 9.6). Therefore, they38

are unable to provide actionable information at the regional and local spatial scales required in impact and39

adaptation studies. In order to bridge this gap, two main downscaling approaches have been developed40

since the early 1990s (Leung et al. 2003; Maraun et al. 2010): Dynamical downscaling (based on Regional41

Climate Models, RCMs) and Empirical/Statistical Downscaling (ESD, based on statistical models). The rel-42

ative merits and limitations of both dynamical and statistical downscaling —and combinations of them,—43

have been widely discussed in the literature (see, e.g,. Fowler et al. 2007; Maraun et al. 2010; Winkler et al.44

2011; Takayabu et al. 2016) and it is nowadays recognized that they are complementary in many practical45

applications.46

Dynamical downscaling is carried out running one or several RCMs on a relatively fine grid (e.g. 10-47

20 km) over a limited domain (e.g. Europe) initialized and driven at the boundaries by the coarse GCM48

outputs to be downscaled (Giorgi and Mearns 1991; Rummukainen 2010, for a review). These models49
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are able to generate regional physically-consistent predictions for a suite of climate variables (particularly50

those less affected by model parameterizations), but still may suffer from significant biases (see, e.g. Kot-51

larski et al. 2014; Casanueva et al. 2016b) which require statistical post-processing before they can be used52

in impact applications. Ensembles of RCMs have been extensively intercompared in the framework of a53

series of subsequent community intercomparison initiatives considering increasing resolutions, e.g. PRU-54

DENCE (0.44◦, Christensen and Christensen 2007), ENSEMBLES (0.22◦, Christensen et al. 2010) and,55

more recently, EURO-CORDEX (0.11◦, Jacob et al. 2014), all focusing on Europe. These experiments56

include control simulations driven by “perfect” reanalysis boundary conditions —to evaluate the intrinsic57

performance of the different RCMs,— and GCM driven simulations under different (historical and future)58

scenarios.59

ESD methods rely on statistical models linking informative GCM outputs (predictors) to the local ob-60

served predictand of interest over a particular domain (Benestad et al. 2008; Maraun and Widmann 2017).61

These models are first trained (and tested, e.g., cross-validated) using model and observed data during a62

representative historical period, and later applied to new (e.g. future) GCM data to obtain the downscaled63

local predictions. According to the nature of predictors in the training phase, three main approaches for64

ESD exist (see, e.g. Maraun et al. 2010): 1) Perfect Prognosis (PP), 2) Model Output Statistics (MOS) —65

including the increasingly popular Bias Correction (BC) techniques,— and 3) Weather Generators (WG).66

On the one hand, under the PP approach, quasi-observed predictors from reanalysis are used to train the67

statistical models based on their temporal (e.g. daily or monthly) correspondence with observations in the68

historical training period. Therefore, predictor variables well represented by both reanalyses and GCMs, and69

accounting for a major part of the variability in the predictands, are typically chosen in this approach (usually70

large-scale variables at different vertical levels), whereas variables directly influenced by model parameteri-71

zations and/or orography (e.g. precipitation) are usually discarded (Wilby et al. 2004). As a result, one of the72

most time-consuming tasks of this approach is the selection of a suitable combination of predictors, defined73

over a particular geographical domain which encompasses the main synoptic phenomena influencing the74

climate of the region of interest. On the other hand, under the MOS approach, model outputs from the GCM75

are directly used for training, thus correcting systematic biases against observations. In particular, simple76

MOS alternatives based on BC techniques are becoming increasingly popular in climate change applications77

to adjust both GCM and RCM outputs (see, e.g., Themeßl et al. 2012). These techniques adjust the model78

output distribution towards the observed one to ensure resemblance to the local climatology. The main79

advantage of MOS techniques is their simplicity, since no predictor/domain screening is typically required80

(e.g. GCM output for the target variable from the closest model gridbox is commonly considered as the81

unique predictor). Finally, WG is a third approach which does not explicitly include GCM predictors in the82

training phase (Wilks and Wilby 1999). The simplest form of WGs are Markov-like processess fitted to the83

local observed data, which are able to reproduce the local temporal and marginal statistical properties from84

a set of parameters derived from basic climatological statistics (e.g. autocorrelation, wet-day frequency,85

mean and standard deviation). The global climate change signals from the GCMs are later temporally dis-86

aggregated by producing daily time series from the WG with the parameters transformed according to the87

projected statistics.88

As a result of the intensive research activity carried out in this field during the last two decades, a large89

number of studies exist mostly describing specific ESD methods and/or applications in different regions of90

the world, using different validation methodologies and/or experimental frameworks. There are also some91

intercomparison studies focusing on particular approaches, either PP (Haylock et al. 2006; Frost et al. 2011;92

Teutschbein et al. 2011; Hu et al. 2013; Gutiérrez et al. 2013; San-Martı́n et al. 2017), MOS (Teutschbein and93

Seibert 2013; Gutmann et al. 2014), or WG (Semenov et al. 1998; Hartkamp et al. 2003). Moreover, a few94

multi-approach intercomparison studies are also available, starting with the pioneering work by Wilby et al.95

(1998) who analyzed PP and WG methods, and following with the more recent PP and MOS comparisons96

by Bürger et al. (2012) and Vaittinada Ayar et al. (2016). However, limited comprehensive information is97

yet available at a continental level (e.g. over Europe) for the informed application of the different ESD98

approaches for climate change impact and adaptation studies.99

The EU Cooperation in Science and Technology (COST) Action ES1102 VALUE (2012-2015, Ma-100
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raun et al. 2015, http://www.value-cost.eu) has been the first international initiative to create a101

community for statistical downscaling intercomparison, providing a common experimental framework and102

developing community validation tools for different validation aspects (marginal statistics, temporal struc-103

ture, extremes, spatial coherence, process based). Several experiments have been designed to isolate specific104

points in the downscaling procedure where problems may occur (Maraun et al. 2015). In this paper we de-105

scribe the cross-validation experiment with “perfect” reanalysis —and RCM reanalysis driven— predictors106

to downscale precipitation and temperatures over Europe, with over 50 different participating methods, cov-107

ering the three downscaling approaches (PP, MOS and WG) and the common techniques (quantile mapping,108

analogs, linear and generalized linear regression, weather typing, etc.). The present paper describes in de-109

tail the contributing methods, analyzing the selection and transformation of predictors and the geographical110

extent, and their influence on the resulting predictor-predictand relationships. This paper also focuses on111

key method characteristics (e.g. deterministic/stochastic) and implementation details (e.g. seasonal/annual112

train) which may be relevant for the analysis of the validation results (and is used as metadata in this work).113

In this contribution we only focus on validation results for the marginal distributions (biases in the mean and114

the standard deviation of the distributions), but other validation aspects are analyzed in the different papers115

of this special issue.116

Overall, this work constitutes the most comprehensive to date intercomparison of downscaling methods117

on a continental scale over Europe. We want to remark that the final goal is not ranking the different118

methods according to their performance, but providing an indication of the relative merits and limitations119

of the different approaches and families of techniques. Thus, some clearly poor performing methods have120

been also included to illustrate problems. We want to remark that this experiment alone is not sufficient121

to evaluate the limitations of (MOS) bias correction techniques (see Maraun et al. 2017, for more details).122

Moreover, it also does not fully validate PP techniques since further results using GCM predictors are needed123

to evaluate whether well-represented predictors have been used and the PP assumption is valid. Moreover,124

this work provides no information on the the extrapolation capabilities (to future climates) of the different125

MOS and PP techniques (although the reproduction of reanalysis trends is analyzed in Maraun et al. 2018;126

in this special issue). These problems will be analyzed in subsequent community-open experiments using127

GCM predictors from historical and future scenarios, which will be open for participation in the framework128

of the EURO-CORDEX initiative (where VALUE activities have merged and follow on).129

Research transparency and reproducibility has been a major concern in this work and substantive steps130

have been taken to improve the reproducibility of the methods and results, and to promote awareness131

within the downscaling scientific community. In particular, the necessary data to run the experiments132

is provided at http://www.value-cost.eu/data, and both the downscaled data and the individ-133

ual validation results are available at the VALUE validation portal http://www.value-cost.eu/134

validationportal.135

The paper is organized as follows. The experimental framework followed and the predictor and predic-136

tand data used are described in Sec. 2. Section 3 presents the methods contributing to this study (a brief137

description and specific implementation details for each method are given in Annex 1). It also describes138

the selection of the predictors and data preparation and analyzes the predictor-predictand link established139

by the different methods. Sections 4 and 5 presents the validation results for precipitation and temperatures,140

respectively, focusing on the biases in the mean and the standard deviation resulting from the methods. Infor-141

mation regarding transparency and reproducibility of results is given in Sec. 6. Finally, the main conclusions142

obtained are reported in Sec. 7.143

2. Experimental Framework and Data144

In this section we briefly describe the experimental framework. In order to promote research transparency145

and reproducibility the data described in this section is available at http://www.value-cost.eu/146

data. Further information on the VALUE experimental design is given in Maraun et al. (2015).147
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a. Predictands: Local observations148

A subset of stations covering the different European climates and regions with a homogeneous density was149

selected to enable a comprehensive validation revealing relative strengths and weaknesses of different meth-150

ods. To keep the exercise as open as possible, the downloadable (blended) ECA&D stations (Klein Tank151

et al. 2002) was selected and downloaded (on September 2014). A subset of 86 stations was selected with152

the help of local experts in the different countries, building on high-quality stations with no more than153

5% of missing values in the analysis period (1979-2008); see http://www.value-cost.eu/WG2_154

dailystations for more details. The resulting set of stations is listed in Table 1 and graphically dis-155

played in Figure 1. The Köppen–Geiger climate type (see, e.g. Kottek et al. 2006) shown in Table 1 has been156

calculated directly from the data using MeteoLab http://meteo.unican.es/trac/MLToolbox/157

wiki. Figure 1 shows the eight PRUDENCE (Christensen and Christensen 2007) sub-regions used to com-158

bine and summarize the individual validation results at a sub-regional level along the paper. These regions159

are British Isles, Iberia, France, Central Europe, Scandinavia, the Alps, the Mediterranean, and Eastern160

Europe.161

The resulting dataset (including daily data for precipitation and temperatures for the analysis period) is162

publicly available in text (csv) format at http://www.value-cost.eu/data.163

b. Reanalysis Predictors164

ERA-Interim (Dee et al. 2011) was selected by the CORDEX initiative as the reference reanalysis for the165

coordinated downscaling experiments. Therefore, in order to be aligned with this initiative, VALUE also166

used ERA-Interim to drive the experiment with “perfect” predictors. Although reanalysis uncertainty has167

been recently reported as an additional source of uncertainty for statistical downscaling (Brands et al. 2012),168

the effect on the downscaled results is relevant only in the tropics (Manzanas et al. 2015). Therefore, this169

factor was not tested in VALUE.170

In order to keep the experimental framework as controlled as possible and to facilitate the work of171

the contributing groups, we generated a reference predictor dataset downloading ERA-Interim data from172

ECMWF’s MARS. The dataset includes a reduced number of commonly used predictors, degraded to a173

common 2◦ grid and post-processed by computing daily means from the original 6 hourly fields when174

required (see Table 2). This reference dataset includes most of the circulation and thermodynamic predictors175

at different pressure levels (including some surface predictors), typically used in downscaling applications176

in different European regions (Huth 1999; Benestad 2002; Huth 2002; Timbal et al. 2003; Huth 2005;177

HanssenBauer et al. 2005; Gutiérrez et al. 2013; Hertig et al. 2014; San-Martı́n et al. 2017), excluding178

redundancy as much as possible. For instance, vorticity and divergence have been considered as potential179

predictors in the literature (see, e.g. Hessami et al. 2008), but they were excluded from the standard set180

since they reported similar results to geopotential or wind directions in some studies (Gutiérrez et al. 2013).181

However, some contributors used in-house ERA-Interim datasets instead, for convenience or because they182

needed extra predictors (see Sec. b for more details).183

Since MOS methods typically work with the direct model output at the nearest gridbox to the target sta-184

tion, we also compiled surface precipitation (PRC) and minimum (TMIN) and maximum (TMAX) temper-185

ature from the original ERA-Interim dataset at 0.75◦. In order to illustrate the effect of the model resolution186

on the results, in the analysis we will consider raw ERA-Interim outputs at two different resolutions: 2 and187

0.75◦ (hereafter referred to as ERAINT-200 and ERAINT-075, respectively).188

c. RCM Predictors (for MOS methods)189

Since MOS methods are typically applied to both GCM and RCM outputs, a second (optional) predic-190

tor dataset for MOS methods was produced considering daily surface precipitation (PRC) and minimum191

(TMIN) and maximum (TMAX) temperature from a state-of-the-art RCM (the RACMO2 model) driven in192

climatic mode by ERA-Interim (see Meijgaard et al. 2012, for a detailed description of the model). This193

simulation was produced in the framework of the EURO-CORDEX project (Jacob et al. 2014) using 40194
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hybrid coordinate full vertical levels on a regional 0.11◦ domain over Europe. RACMO2 ranked among the195

best performing RCMs over Europe in this reanalysis-driven experiment (Kotlarski et al. 2014).196

The MOS techniques contributing to this additional experiment are indicated with a check mark in the197

second column (labelled as ‘R’) of Tables 3 and 4. This experiment will allow analyzing the advantages198

and shortcomings of these methods when downscaling to finer spatial scales. Note that a weak day-to-day199

correspondence with observations is expected for the RACMO2 outputs, since temporal synchrony with200

observations is only induced by the boundary conditions with prescribed reanalysis values. This must be201

taken into account when analyzing the results of non-distributional MOS methods, which are better suited202

for nudged climate simulations with a strong synchrony with observations (see, e.g. Eden et al. 2014).203

d. Cross-validation Approach204

In order to appropriately assess and compare the performance of different downscaling methods with “per-205

fect” predictor data, we applied a cross-validation approach to avoid model overfitting and artificial skill.206

Cross-validation allows us to test whether the relationship established between predictor and predictand207

remains valid outside the training period (e.g. in a test period). The most popular and simplest of these ap-208

proaches is data splitting, which considers independent data for training (e.g. 80% of the available data) and209

validation (e.g. the remaining 20%). However, this can yield spurious effects due to the particular partition210

performed. K-folding methods attempt to produce a more rigorous validation through the use of multiple211

calibration/validation period combinations. This is done by partitioning the available data (n = 30 years212

in our study) into k non-overlapping “folds” or subsets, each containing n/k elements. The downscaling213

methods are then calibrated and validated k times, considering in turn each of the folds as a test set and214

training the method with the remaining k − 1 ones. The resulting k test series are typically joined and val-215

idated together in a single series spanning the whole analysis period. This approach also permits analyzing216

the variability of the k validation results and estimating confidence intervals for model performance (see,217

e.g. Gutiérrez et al. 2013).218

In general, the selection of k is subject to a number of factors depending on the particular application.219

In the present case, low k values result in longer validation periods which may be desirable to better charac-220

terize model performance, but limit at the same time the data available for training which may only capture221

part of the climatological distribution. As a compromise, five folds (5-fold cross-validation) were consid-222

ered, each containing 6 consecutive years (1979-1984, 1985-1990, 1991-1996, 1997-2002, 2003-2008) for223

validation. All contributed methods followed this approach and joined together the results downscaled for224

the five test periods into a unique series —covering the whole thirty-years period— which was uploaded225

to the VALUE validation portal and automatically validated to assess model performance. More details are226

given in Sec. 6.227

e. Validation Measures228

We analyze minimum and maximum temperatures (TMIN and TMAX) and precipitation (PRC). For the229

latter we consider separately occurrence and amount, analyzing the variables R01 (Relative wet-day fre-230

quency, PRC >= 1mm) and SDII (mean wet-day precipitation, a.k.a. Simple Day Intensity Index), although231

we also consider the total precipitation amount (PRCTOT) in some illustrative cases. In this paper we fo-232

cus on general validation aspects involving the observed and predicted marginal distributions. In particular233

we validate the biases in the mean and the standard deviation, although additional results on distributional234

similarity (Kolmogorov-Smirnov and Cramer-von Mises tests) have been computed (not shown) and are235

available through the VALUE portal http://www.value-cost.eu/validationportal for fur-236

ther research. The bias in the mean is computed as the difference (for TMIN, TMAX) or ratio (for R01,237

SDII and PRCTOT) between the downscaled and the observed mean values, whereas the bias in the stan-238

dard devidation is always obtained as the ratio.239

Moreover, in order to analyze the strength of the daily predictor-predictand link (informative for non-240

distributional MOS and PP methods), we computed the correlation of the daily downscaled and observed241

6



series (using the ranked Spearman and Pearson correlations for precipitation and temperatures, respectively).242

Further validation analyses of aspects such as the representation of the temporal structure, extremes, key243

processes and multivariate relationships, are analyzed in detail in separate papers of this special issue.244

3. Downscaling Approaches and Methods245

a. Description of Contributing Methods246

Tables 3 and 4 show the statistical downscaling methods contributing to this work for precipitation and247

(minimum and maximum) temperatures, respectively, under the same experimental framework (see Sec.248

2). This constitutes the largest and most diverse ensemble of ESD methods analyzed to date, with a total249

of 45/49 methods for precipitation and temperatures, respectively (28 methods have been applied to both250

precipitation and temperatures, shaded areas). The detailed description of each of these methods and the251

implementation details for reproducibility (when available) are given in Annex 1.252

These methods are first organized according to the three main approaches: MOS, PP and WGs —253

conditional WGs (including some model predictor) are listed under the corresponding PP or MOS category,254

depending on how they are calibrated.— Note that the first three rows indicate the raw model data (RAW)255

for ERA-Interim (both at 2◦ and 0.75◦ resolution), and for the (ERA-Interim driven) RACMO2 RCM at256

0.11◦ resolution. As a second categorization, the methods are organized within each approach according to257

the families of techniques used, typically transfer functions (TF), analogs (A), and weather types (WT) for258

both PP and MOS, and additive/multiplicative scaling (S), parametric quantile mapping (PM), and empir-259

ical quantile mapping (QM) for MOS methods. This organization groups together similar methods (same260

approach and technique) and allows for a better intercomparison of model results (this order will be used in261

all figures in this paper). These families are described in further detail below.262

Tables 3 and 4 also provide some metadata information about the structural properties of the methods263

(full metadata is available in the VALUE validation portal, http://www.value-cost.eu/validationportal).264

In particular the column ‘ST’ indicates the stochastic or deterministic nature of the method (‘yes’ for stochas-265

tic ones, which contributed 100 realizations for the validation process). ‘MS’ and ‘MV’ indicate whether266

the methods are suitable for multi-site and multi-variable problems, respectively; those methods using Prin-267

cipal Components (PCs) as predictors are marked as ‘yes’ in the ‘MS’ column to indicate that some spatial268

coherence could be imprinted by the predictors. Finally, ‘SE’ and ‘AC’ indicate the explicit inclusion of269

seasonal and autocorrelation model components, respectively. The former is typically achieved by training270

the models separately for each of the calendar months (or with a 30-day moving window in some MOS271

methods, see Annex 1 for details). The latter is typically achieved using first-order Markov chains (con-272

ditioning the prediction to the previous predicted value) and has only been used in the contributed WG273

methods. As a result, the temporal structure of all PP and MOS methods in this experiment is driven by274

the particular model predictors used, i.e. directly from the raw model precipitation and temperature series275

for MOS methods. This (metadata) information must be taken into account when comparing the evaluation276

results of different methods, since a method can exhibit good performance for a particular aspect as a result277

of model construction or fitting (an interesting discussion on fair comparison is given in Casanueva et al.278

2016a).279

The participating MOS methods (#4-25, #4-23, for precipitation and temperatures, respectively) com-280

prehensively span the range of widely used methods, from simple local scaling methods (labelled as ‘S’), to281

standard parametric (‘PM’) and empirical (‘QM’) quantile mapping techniques. More specific BC methods,282

such as the trend preserving ISI-MIP bias correction methods, or a circulation-conditioned quantile mapping283

method (EQM-WT) are also included in this study. These methods are usually referred to as distributional284

MOS methods, in order to remark that they work by transforming the distribution of daily model outputs (the285

whole distribution or some statistics) towards the observed one. Moreover, the analysis also covers some286

more experimental recent MOS developments (#21-23, #22) such as stochastic regression (Wong et al. 2014)287

and analog- and regression-based MOS methods (Turco et al. 2011, 2017), which exploit the (weak) tempo-288
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ral correspondence existing in climatic RCM simulations to establish a link with observations. All the MOS289

methods in this study are single-site and single-variable, with the exception of MOS-AN and DBS, respec-290

tively, the latter providing inter-variable consistency by downscaling temperature conditional on the wet/dry291

state of the corresponding precipitation series. Finally, two particular methods for precipitation (FIC02P292

and FIC04P, #24-25) are based on a sequential application of PP and MOS techniques —the input to these293

methods is the output of the corresponding FIC01P and FIC03P PP results.— Note that these methods are294

not directly comparable with the rest of MOS techniques, but provide valuable information on the potential295

added value of mixed downscaling approaches (e.g. applying BC methods to correct systematic biases of PP296

outputs). The same situation occurs for temperatures with FIC02T, which takes as input FIC01T PP results.297

Empirical quantile mapping techniques (‘QM’) constitute the largest family in this approach, with over298

ten contributing methods. It is important to remark that some methods are slightly different implementations299

of the same basic technique (with different number of adjusted percentiles, or extrapolation options; see300

Annex 1 for details). In particular the empirical methods EQM, QM-DAP, EQM-WIC658, and QMBC-301

BJ-PR are slightly different versions of the standard empirical quantile mapping approach (see, e.g. Déqué302

2007). Parametric quantile mapping techniques (‘PM’) mainly differ in the distribution function(s) used303

to calibrate the data. For instance, in the case of precipitation, a gamma distribution is used in EQM, a304

double-gamma is used in DBS and in Ratyetal-M9 —which is a simplified version of the former,— the305

optimum among five distributions is used in BC and, finally, gamma and generalized Pareto are used in306

GPQM to adjust separately the extremes values. It is also important to notice that most MOS methods have307

been trained separately for each month (or considering a moving window), with the exception of GQM,308

GPQM, EQM, EQM-WT, and the MOS-GLM/REG/AN family. Therefore, interesting conclusions could309

be obtained by comparing the results of QM methods taking into account the different configurations and310

implementations.311

The participating PP methods (#26-42,#24-46, for precipitation and temperatures, respectively) broadly312

represent the most popular and widely used families of techniques —analogs (A), transfer function / regres-313

sion (TF) and weather-type (WT) methods— in fairly standard implementations in most of the cases. The314

analog techniques are the only multivariate methods (multi-site and/or multi-variable). However, some of315

the TF methods use PCs as predictors (Sec. b), which may provide some imprinted spatial inter-consistency316

due to their spatial character. Those cases are indicated with a ‘yes’ multi-site code in Tables 3 and 4.317

Nonparametric regression methods (e.g. neural networks) are among the most notorious missing families in318

this study. In some studies these methods have shown to outperform linear models (see, e.g. Gaitan et al.319

2014), but there are also studies showing the opposite. Therefore, the VALUE intercomparison framework320

could provide a better understanding on the added value and limitations of these techniques. The only con-321

tributing machine learning technique is the MO-GP method, which applies genetic programming to obtain322

general symbolic regression equations from data. Therefore, an interesting follow-on of the project would323

be including new nonlinear machine learning methods in the intercomparison.324

The family of Analog (A) methods includes two different variants of the standard technique, consider-325

ing raw fields with no seasonal restriction (ANALOG), and anomalies with seasonal restriction (ANALOG-326

ANOM). FIC and ANALOG-MP/SP methods are more elaborated two-step analog methods considering327

nested global/local domains and predictors. ANALOG-MP/SP are probabilistic methods which include328

here a stochastic component to produce the 100 realizations of the predictand from the probabilistic pre-329

diction available each day. Similarity is quantified by Euclidean distance in all cases with the exception330

of ANALOG-MP/SP, which use the Teweless-Wobus score. WT-WG is a simple stochastic weather typ-331

ing approach simulating temperature/precipitation from gaussian/binomial-gamma distributions within each332

weather type (obtained using only SLP in this study).333

The contributing Transfer Function (TF) methods are different variants of Multiple Linear Regression334

(MLR) techniques and Generalized Linear Models (GLM) and Vectorized GLMs for precipitation. GLMs335

are an extension of linear regression allowing for non-normal predictand distributions (see Chandler 2005,336

for an introduction), which have been used for downscaling precipitation in a number of studies (see, e.g.,337

Chandler and Wheater 2002; Abaurrea and Ası́n 2005). Although MLR has been applied to downscale daily338

precipitation in previous studies (see, e.g., Hessami et al. 2008; Chen et al. 2014; San-Martı́n et al. 2017),339
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these techniques are not suitable to model daily precipitation, even after transforming precipitation —using340

e.g. squared or cubic root values— to make the data more normal. However, we have included them in the341

present work for illustrative purposes, in order to highlight the associated problems. The different MLR and342

GLM methods (#26-42, #24-46) have been trained on a daily basis to establish the link with local data —343

with the exception of the ESD family (#39-42, for temperatures, in italics), trained using monthly aggregated344

data and providing monthly values.— ESD methods are used here for illustrative purposes and results are345

only shown for suitable validation scores (mean bias).346

Most of the TF methods are deterministic, but there are also some stochastic implementations. A particu-347

lar method is provided in both deterministic (GLM-DET) and stochastic (GLM) variants, using the expected348

value in the former case and simulating from the resulting binomial/gamma in the latter, including also an349

implementation conditioned on weather types (GLM-WT). GLM-P combines logistic (binomial GLM) and350

exponential regression to simulate occurrence and amount, but only considers a stochastic version of the for-351

mer one (i.e. only occurrence is simulated). A more sophisticated Vectorised GLM method (Vaittinada Ayar352

et al. 2016) is used in SWG, which also simulates the predicted values from the resulting conditioned bi-353

nomial/gamma distributions. On the other hand, stochastic MLR versions (MLR-ASW/AAW) are based354

on variance inflation using white noise. Note these methods can be compared with the simple determin-355

istic scaling variance inflation versions (MLR-ASI/AAI) in order to analyze the benefit of the stochastic356

component.357

The participating WG methods (#43-48, #47-52, for precipitation and temperatures, respectively) in-358

clude variants of the Richardson model (Richardson 1981), simulating daily time-series of precipitation,359

minimum and maximum temperature using Markov chains (order one for SS-WG and one to three for360

MARFI) and autoregressive models. Moreover, the analysis also covers a recent non-parametric weather361

generator (GOMEZ) based on nearest neighbor resampling.362

b. Selection of Predictors and Data Preparation363

Selection of predictors and data preparation is a key task for statistical downscaling, in particular for PP364

methods. Whereas this task is quite simple for distributional MOS methods —which operate directly with365

model precipitation/temperature, typically on the nearest gridbox, as the single predictor,— the selection of366

informative predictors for PP methods is a key factor both for model performance and for ability to extrapo-367

late under climate change conditions (Huth 2004; Gutiérrez et al. 2013; San-Martı́n et al. 2017). Therefore,368

a region-dependent screening of suitable predictors over different (large or small) domains covering the area369

of study is usually performed as a first step of the downscaling process. In some cases, this task is automat-370

ically performed applying some variable selection method, such as stepwise screening, which is applied in371

most TF methods as described in Annex 1 (e.g. MLR-RSN/RAN/AAN/AAI/AAW/ASI/ASW). Therefore,372

the final set of predictors used in these methods may change from variable to variable and from station to373

station.374

Several studies have shown the convenience of combining circulation and thermodynamic predictors375

in order to include signal-carrying predictors linked to changes in the radiation budget, avoiding to model376

future climate from changes in circulation alone (Wilby et al. 1998; Huth 2004). Therefore, the final decision377

about the predictors to be used in a particular region needs to be based on the physical understanding of the378

problem. The predictors must also be skillfully predicted by GCMs in terms of the statistical characteristics379

of the large scales (e.g., spatial and temporal structures). Ideally, they should also exhibit a strong link with380

the local variable in order to represent the large-scale dependency.381

Table 5 shows the particular combinations of predictors used by the different PP methods in this study382

(Tables 3 and 4). Besides the standard variables shown in Table 2, some contributors have considered383

additional predictors, such as ten meter zonal and meridional wind direction (U10, V10), two meter dewpoint384

temperature (TD), vertical velocity (VV), relative humidity (R), or thickness between two pressure levels385

(TH). Only a few methods (WT-WG, FIC01P and the ESD family) use either circulation or thermodynamic386

predictors alone, whereas the rest of methods build on combinations of circulation predictors and middle-387

troposphere temperature and/or humidity, which have been found among the best predictors for temperatures388
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and precipitation, respectively. Note that the predictors are inhomogeneous (i.e. not directly related to the389

target variable to be downscaled) in all cases for precipitation, and in most of the cases for temperature (with390

the exception of those including T2 as predictor which may be considered an homogeneous predictor for391

minimum and maximum temperatures).392

Table 5 also shows the size of the domain used to define the predictors, ranging from continental scale,393

to smaller national-wide domains, and to local information at the nearest gridboxes (or combinations of394

them). Note that most of the PP methods consider national or continental-wide information since the use395

single gridbox information for large-scale variables is not recommended due to the minimum skillful scale396

of climate models (see, e.g. Takayabu et al. 2016, for more details). The resulting data (values of the397

predictors for multiple gridboxes) is preprocessed in different ways before using it to train the downscaling398

methods. Ten regression methods applied individual or combined EOF analysis to obtain PC predictors399

in order to reduce the spatial redundancy. The rest of regression methods consider raw, standardized, or400

anomaly point-wise values and in most of the cases they apply a step-wise procedure for predictor selection401

(see Annex 1 for details). In this case, the models resulting for different stations may be based on different402

(local) predictors, normally at gridboxes close to the particular station. This constitutes a key factor when403

validating spatial aspects of the predictions (see Widmann et al. 2017, in this special issue).404

Most analog methods consider national-wide information (with the exception of one, which is a applied405

at a continental level) and use raw data, anomalies, standardized values or PCs to compute the similarity of406

different fields. Four of the methods are two-step implementations which consider different large-scale and407

local predictors in nested national- and gridbox-wide domains, respectively.408

Finally, we want to remark that although the ESD family of methods is based on common EOFs (both409

reanalysis and GCM fields are used to compute the EOFs, Benestad et al. 2008) the approach used in this410

paper applies standard EOFs obtained from ERA-Interim.411

c. Strength of the Predictor-Predictand Link412

PP and non-distributional MOS methods build on a synchronous daily link established between predictor(s)413

and predictand in the training phase. The strength of this link indicates the local variability explained414

by the method as a function of the large-scale predictors. In order to provide a quick diagnostic of this415

strength for the different methods, Figures 2 and 3 show the daily Spearman and Pearson correlations for416

the downscaled and observed daily precipitation and maximum temperature values, respectively. The results417

for the raw model outputs (indicated as ERAINT-200, -075 and RACMO22E) are included in the first three418

columns of the figures and show the comparison with the local observations considering the raw model419

values at the closest gridbox. Note that these figures are only informative for PP and non-distributional420

MOS methods since, on the one hand, WG methods have no daily correspondence with the observed data421

—they are purely stochastic and use no model predictors— and, on the other hand, distributional MOS422

methods broadly preserve the temporal structure of the raw model predictor. Therefore, distributional MOS423

and WG results are included in the figures for illustrative purposes, in order to contrast the expected results424

and to identify potential problems.425

As expected, distributional MOS methods closely reproduce the correlation of the corresponding model426

predictors in most of the cases. The most notorious deviation is the EQM-WIC658 model, which in principle427

is similar to other implementations of the empirical quantile mapping (e.g. EQM) and therefore is suspected428

of having an error. There are also noticeable differences for the CDFt model (the case using ERA-Interim,429

particularly for temperature), which may be due to the particular approach followed to correct the data (see430

Annex 1 for more details) or to a problem with temporal arrangement of the downscaled data. Furthermore,431

the ISI-MIP model exhibits smaller correlation than the raw model output for precipitation, which could be432

explained by the two step process followed, adjusting first the monthly values and then the daily residuals.433

Finally, on the other hand, WG methods exhibit close to zero correlations in all cases, as expected.434

Note that the RACMO2 model (and the MOS results obtained using this predictor, with gray shad-435

ing in the figures) show smaller correlations than ERA-Interim —which exhibits similar results for the436

two resolutions considered.— This is due to the climatic nature of the simulation, since day-to-day cor-437
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respondence with observations is only prescribed at the boundaries of the regional simulation domain.438

Therefore, the non-distributional MOS analog (MOS-AN) and transfer function methods (MOS-GLM/REG,439

VGLMGAMMA) —which exploit the (weak) temporal correspondence existing between RACMO2 outputs440

and observations— exhibit smaller correlations than the PM and QM techniques. When applied to ERA-441

Interim, these techniques result in similar (MOS-GLM/REG), or even higher (MOS-AN), correlations when442

compared with their PP counterparts (GLM/MLR and ANALOG, respectively). Note that in this case, the443

methods are in fact homogeneous (using precipitation or temperature as predictor) versions of the PP meth-444

ods (considering a single gridbox instead of PCs in the case of MOS-GLM/REG). The higher correlation of445

the MOS-AN for precipitation in this case is explained by the use of model precipitation as single predictor446

(Widmann et al. 2003), which is superior to the predictors used by the PP ANALOG version (see Table 5).447

However, differently to the analog MOS version, the MOS regression methods (MOS-GLM/MLR) result in448

very small correlations when applied to the weakly synchronized RCM outputs. This may be due to the use449

of a single gridbox, more sensitive to the weak temporal correspondence with observations.450

The range of correlations corresponding to the PP methods are mainly due to the different predictor set-451

tings used and to the deterministic/stochastic character of the methods. For instance, the stochastic versions452

ANALOG-MP/SP, VGLMGAMMA, GLM-P, GLM, GLM-WT, WT-WG and SWG exhibit smaller corre-453

lations due to the stochastic component. Moreover, linear regression methods using white noise variance454

correction (MLR-ASW/AAW) exhibit smaller correlation than the standard (MLR-AAN) or the inflation455

variance correction (MLR-ASI/AAI) implementations (see Annex 1 for details). It is noticeable that the456

stochastic GLM method still preserves a strong correlation when compared to the deterministic implemen-457

tation (GLM-det), indicating that most of the information given by the predictors is still retained in the458

stochastic implementation. Regarding the analog methods, the smallest correlations are obtained with the459

method using anomalies (ANALOG-ANOM). Finally, the last two PP methods (WT-WG and SWG) exhibit460

low correlation values, since they have been designed to have a strong stochastic component weakly forced461

by the predictors. In particular, the correlation of the WT-WG method is similar to that of the un-conditioned462

WGs, indicating that this method is purely stochastic (the weather types obtained solely from SLP do not463

play a relevant conditioning role in this case). Therefore, they can be thought of as weather generators464

weakly conditioned on circulation.465

In the case of maximum temperature, high correlations are obtained in general in all cases. The differ-466

ent correlations observed in the linear regression methods are mainly explained by the different predictor467

settings used. In particular, those methods including the “homogeneous” predictor two-meter tempera-468

ture (MO-GP, MLR-T, MLR, MLR-WT) exhibit larger correlations (particularly during winter), due to the469

stronger connection of this predictor with local surface temperature. Note that this is not an indication of470

better performance of the model for climate change applications, since upper-air predictors may be more471

robust.472

Finally, regional and seasonal differences are observed in the link strength when looking at the results473

aggregated over the eight Prudence regions considered (shown by the colored bars in Figs. 2 and 3). For474

precipitation, both MOS and PP methods mostly preserve the rank of ERA-Interim (and RACMO, for MOS)475

regional results for the different seasons. In summer the highest correlations are obtained for the Alps and the476

weakest in Mediterranean and Iberian Peninsula regions, whereas in winter correlations are larger in Central477

Europe and smaller in Eastern Europe and British Isles. For the case of maximum temperature, correlations478

are higher for Eastern and Central Europe and smaller for Iberia and the British Isles (for summer) and Iberia479

and the Alps (for winter). There exist also some cases where the PP methods show some differences with480

respect to the ERA-Interim and MOS results. For instance, the Alps are among the regions with highest481

winter correlations for PP methods, contrary to the ERA-Interim results. In other cases, PP methods enlarge482

the regional variability of results. For instance, the regional correlations of summer maximum temperatures483

have larger spread for PP methods, mainly due to the small correlation obtained for the British islands,484

particularly for regression methods.485
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4. Validation Results for Precipitation486

In this section we present the first validation results obtained for precipitation, focusing on general marginal487

distributional aspects. Figures 4 and 5 show the relative biases for R01 (relative wet-day frequency) and488

SDII (mean wet-day precipitation), respectively (predicted over observed mean values).489

The results for the raw model outputs (indicated as ERAINT-200, -075 and RACMO22E) are included490

in the first three columns and show the comparison with the local observations considering the raw model491

values at the closest gridbox. Model outputs tend to overestimate wet-day frequency and underestimate492

precipitation amount. Moreover, the resulting biases decrease when increasing the resolution, being largest493

for the 2.0◦ ERA-Interim and smaller for the 0.11◦ RACMO2. Overall, most of the downscaling methods494

greatly improve model biases (both for ERAINT-200 and RACMO2 predictors, the latter shaded in the495

figures) and no downscaling approach or technique seems to be superior in general. An exception is found496

for the four linear regression methods (from MLR-RAN to MLR-ASI), which exhibit very large biases,497

even larger than those corresponding to the raw model outputs. A similar behavior is also found for the498

GLM-P method, with larger biases than the rest of GLM implementations. These results clearly illustrate499

the inadequacy of linear regression methods for downscaling precipitation values. Note that the nonlinear500

regression method (MO-GP) presents smaller biases, though still larger than for the rest of methods. On the501

other hand, GLMs exhibit small biases, particularly in the vectorized versions (VGLMGAMMA, SWG) and502

the version conditioned to weather types (GLM-WT), all including some sort of seasonality, either imposed503

by training the model separately for each month, or indirectly conditioning the model to twelve different504

catalogues of weather types. On the other hand, the different analog implementations present similar biases,505

with exception of FIC01P (using only geopotential fields) which exhibits larger biases for winter SDII.506

Moreover, in this case, training the methods separately for each month/season does not clearly improve the507

results, since the analog method trained with year around data (ANALOG) exhibits similar biases than to508

the rest of (seasonally trained) analog implementations. This different behavior may be a consequence of509

the fact that, as opposed to regression methods, analog methods do not explicitly calibrate the mean value510

towards the observations.511

Regarding the MOS methods, similar results are obtained for the different families of techniques, al-512

though there is an outstanding group of methods with very small biases, formed by the empirical quantile513

methods (QM) including a seasonal component (see Table 3) —with the exception of CDFt, which systemat-514

ically overestimate precipitation intensity.— The key role of the seasonal component can be seen comparing515

EQM and EQMs methods, only differing in the 31-day moving window used to train the latter. Therefore,516

similarly to the regression techniques (TF), seasonal calibration is beneficial for QM methods. On the other517

hand, the results are similar for the two predictor settings —ERA-Interim and RACMO2— with slightly518

smaller (and more centered) biases for the latter, particularly for scaling and parametric quantile mapping519

methods. Those methods with no seasonal component (e.g. GQM, GPQM, EQM) show compensating520

DJF and JJA biases. It is also interesting to note that the particular FIC02P/04P methods (which apply the521

parametric BC quantile method to outputs from FIC01/03, respectively) improve the performance of the cor-522

responding PP counterparts (see, e.g. wet frequency for FIC01P) and also show better results than the direct523

application of the BC method to ERA-Interim. This indicates that the PP method (applied to ERA-Interim)524

produces more realistic local precipitation results, well suited for a parametric correction.525

The WG techniques exhibit small biases, with the exception of the MARFI family which systematically526

over- and under-estimate wet-day frequency and amount, respectively.527

When looking at the regional variability of results (horizontal color bars in Figures 4 and 5), there528

is a high method-to-method regional variability. The largest/smallest biases are found in the Mediter-529

ranean/British Isles for ERA-Interim. However, these regional differences are greatly reduced in all down-530

scaled results, although some methods still exhibits large biases in the Mediterranean region during Sum-531

mer. Figure 6 shows the individual station results for winter (DJF) and summer (JJA) for PRCTOT (total532

precipitation) relative biases, with southernmost stations at the bottom and northernmost stations at the top.533

This figure shows systematic bias patterns across stations for each particular methods (greeny or browny534

vertical bars), although there are some stations where most of the downscaling methods exhibit a similar535
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systematic bias. For instance, most of the methods overestimate total precipitation for station number 12536

(Roma-Ciampino).537

Finally, Figure 7 shows the results of the relative biases for the standard deviation of daily precipitation538

(downscaled over observed standard deviations), manifesting the deficiencies already reported for some of539

the methods (e.g. CDFt and the linear regression family). Among the MOS methods, some techniques tend540

to systematically underestimate (e.g. ISI-MIP) or overestimate (DBS, Ratyetal-M9) variability and, again,541

the best performing methods are QMs including a seasonal component. As opposite to the bias in the mean,542

larger biases are found here for RACMO2 than for ERA-Interim downscaled values for some of the MOS543

methods. Regarding PP methods, analog techniques tend to systematically underestimate variability. It is544

also shown that regression-based deterministic methods (including GLM-det) can only reproduce a small545

part of the observed variance. Moreover, as opposite to the two GLM stochastic versions (GLM and GLM-546

WT), the MLR stochastic versions (GLM-P and MLR-ASW, the former simulating precipitation occurrence547

and the latter inflating with white noise) fail to recover the observed variability. Again, FIC02P/04P methods548

seem to correct the deficiencies of their PP counterparts.549

5. Validation Results for Temperatures550

Figures 8 and 9 show the results for the mean biases (downscaled minus observed mean values) of daily551

maximum and minimum temperatures, respectively. The raw model outputs from ERA-Interim largely552

under/over estimate maximum/minimum temperatures in almost all regions, whereas RACMO2 exhibits553

smaller biases but still with a large regional variability (in this case, the model tend to underestimate both554

minimum and maximum temperatures). Overall, most of the downscaling methods greatly improve model555

biases and again no downscaling approach or technique seems to be superior in general. There are a few556

methods exhibiting very large biases (WT-WG for both TMAX and TMIN, and CDFt, MLR-ASW for557

TMIN) which indicate some problem with the configuration of the method or with the particular execution.558

Moreover, the MOS-REG regression method exhibits large biases when applied to RACMO2 model (much559

larger than when applied to ERA-Interim). Therefore, in this case the synchrony of the climatic run with560

observations is too weak to allow for a suitable implementation of this type of MOS regression technique (at561

least considering information only on the nearest gridbox). Moreover, the methods SB and EQM-WIC658562

exhibit large biases (particularly during winter) which can not be explained from the definition of the method563

(other similar techniques show small biases) and could be an indication of some problem in the application564

of the method.565

In general, the family of methods exhibiting larger biases are the analog techniques, but this could be566

explained because they do not explicitly calibrate the mean during training. Among these methods, the best567

results are obtained with ANALOG and ANALOG-SP, both using 2m temperature as predictor, which seems568

to have an important role in this case. However, the particular choice of the predictor cannot explain the569

differences among the regression techniques. Similarly to the case of precipitation, a key factor explaining570

the variability of MOS results is the seasonal training of the methods (e.g. EQM vs EQMs). Note that the571

cross-validated mean bias for simple linear scaling methods (additive and/or multiplicative; e.g. RaiRat-M6572

and RaiRat-M7) should be zero by construction (in cases with no missing data). In this work, the seasonal573

cross-validated results obtained for these methods are different from zero (although very small) due to the574

two-month moving window used to compute the scaling factors (see details in Annex 1, describing the575

methods).576

The above figures do not show relevant regional differences for the biases of the downscaled methods577

with the exception of the analog methods where the regional biases observed seem to be related to the578

predictors used. Figure 10 gives further information showing the individual station results (sorted as in Table579

1) for daily maximum temperature for winter (DJF, top) and summer (JJA, bottom). Besides of revealing the580

bad performing methods, these figures show the systematic biases exhibited for the methods to under/over581

estimate across the different stations (e.g. the analog methods).582

Finally, Fig. 11 shows the results for the standard deviation (relative biases, downscaled divided by583
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the observed daily standard deviations) of daily minimum temperatures during winter and daily maximum584

temperatures during summer. This figure allows to clearly differentiate those MOS scaling methods not cor-585

recting the variance of the downscaled results (RaiRat-M6/M7, SB, ISI-MIP), which show the same biases586

as the input reanalysis or RACMO2 models. Moreover, as expected, those quantile mapping techniques587

trained annually exhibit larger biases on the seasonal variances than those seasonally trained (see, e.g. EQM588

and EQMs). These two factors explain most of the variability of the MOS results (together with the model589

deficiencies already reported). Regarding the PP methods, the analog techniques tend to systematically un-590

derestimate the variance, with FIC01T being the worst of this group. Note that the results of this method are591

later used as input for the FIC02T, which correct for this deficiency applying a quantile mapping approach.592

In the case of the linear regression methods, all deterministic implementations underestimate the observed593

variance, in correspondence with the daily correlation values shown in Figure 3. However, as expected,594

those methods correcting the seasonal variance (using inflation and white noise, as in MLR-ASW and ASI,595

respectively —note that a problem was already reported for MLR-ASW results for minimum temperature—596

) show more centered results (although there are some outlier stations where the variance is over-estimated).597

Note that variance correction at an annual basis (e.g., MLR-AAI/AAW) yields seasonal biases comparable to598

other deterministic linear regression implementations. Finally, the deterministic symbolic regression method599

MO-GP is a multi-objective method optimizing several statistics, including standard deviation. As a result600

it exhibits smaller seasonal variance biases (even though it is trained on an annual basis), and larger mean601

biases (see Figures 9 and 8), than the regression methods. This could be beneficial for climate change appli-602

cations since it requires no postprocessing but, again, a more comprehensive assessment of other aspects is603

needed.604

6. Promoting Transparency and Reproducibility of Results605

Research transparency and reproducibility is a major concern in the different experimental disciplines (see606

a string of freely available nature articles on reliability and reproducibility of published research at http:607

//go.nature.com/huhbyr). For instance, a recent survey over 1500 scientists recently reported by608

Baker (2016) revealed that the work published in different research fields (including Earth and Environment)609

were mostly not reproducible (over two-thirds). As a result, there is growing alarm about results that cannot610

be reproduced. In VALUE substantive steps were taken in order to improve transparency and reproducibility611

of results, and to promote awareness within the downscaling scientific community.612

The main difficulties for research reproducibility identified include 1) access restrictions to raw input613

data and/or results, 2) poor experimental design information, 3) lack of code availability, and 4) incom-614

plete documentation of the particular configuration and implementation used (data preprocessing, method615

configuration and specific parameter values, training options, etc.). In some cases, the steps involved in616

the downscaling process are very technical and they are not always appropriately documented in practical617

applications, thus making difficult the reproducibility of the results.618

The following actions have been undertaken in VALUE in order to avoid the above mentioned problems:619

• 1) All the data needed for the experiments described in this paper has been collected and made avail-620

able at http://www.value-cost.eu/data. Moreover, the daily downscaled data and the621

resulting validations for each of the methods and experiments are also publicly available under the lib-622

eral Creative Commons Attribution (CC BY) License (http://creativecommons.org/licenses/by/4.0).623

Contributors also get access to VALUE PRIVATE published data, which is made available inter-624

nally to the consortium for quality check and verification purposes before publication (more info in625

http://www.value-cost.eu/terms).626

• 2) The experimental framework was designed and published (Maraun et al. 2015) in advance of the627

open call for contribution to this validation experiment.628

• 3) The code used for the validation framework (from data loading to computing all the validation mea-629

sures) has been coded in R and is publicly available from http://github.com/SantanderMetGroup/630
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R_VALUE. In addition, the packages and/or code needed to reproduce the results for some of the631

downscaling methods are publicly available (see Annex 1). Other methods use proprietary soft-632

ware and cannot be replicated; however, we decided to also include this information to favor method633

inter-comparability, but requiring the open publication of the results (both predictions and validation634

results), which was mandatory for all methods contributing to this paper.635

• 4) Furthermore, a metadata description vocabulary for statistical downscaling methods has been de-636

fined and implemented in the VALUE Validation Portal, providing information on the method char-637

acteristics and implementation details needed to properly analyze the results.638

Finally, transparency is further promoted by the VALUE Validation Portal http://www.value-cost.639

eu/validationportal, providing public access to the metadata and data for all contributing methods640

and also for all validation results, as well as tools to filter and visualize (both in tabular and graphical for-641

mats) the results.642

7. Conclusions643

In this paper we present the ensemble statistical downscaling methods produced in the VALUE collabora-644

tion, which covers the three common downscaling approaches (perfect prognosis, model output statistics645

?including bias correction? and weather generators) with a total of over fifty downscaling methods. We also646

present the first results from the inter-comparisson experiment under the same cross-validation experimental647

framework using “perfect” predictors. Additional experiments with GCM data will follow to contribute to648

the EURO-CORDEX initiative. Appropriate metadata on the main model characteristics (e.g. determin-649

istic or stochastic nature) and implementation details (predictors, geographical domain, monthly/seasonal650

training, etc.) have been collected in order to properly analyze the results.651

Overall, most of the downscaling methods greatly improve model biases and no downscaling approach652

or technique seems to be superior in general, due to the large method-to-method variability of results. Some653

bad performing methods have been identified as potentially failed methods due to different problems giving654

some clues about future quality checks to be implemented in the VALUE validation portal. Our results also655

show the inadequacy of linear regression methods for downscaling daily precipitation values, which is still656

used in some applications (see, e.g., Jeong et al. 2012; Chen et al. 2014). Regarding the MOS methods, em-657

pirical quantile methods including a seasonal component form an outstanding group of methods with very658

small biases. However, there are particular PP and WG methods with a similar performance. In this work659

we found that, in agreement with previous studies (Reiter et al. 2017), introducing a seasonal component660

(e.g. training the methods separately each calendar season, month or moving window) improves the results.661

However, we found that all implementations (even a daily moving window) resulted in a relevant perfor-662

mance improvement, differently to Reiter et al. (2017), where seasons were recommended for calibration.663

The deterministic or stochastic nature of the method was the most relevant factor (together with seasonal664

training) for explaining the variability of results for biases in the standard deviation.665

In this work we have also tested some new experimental developments, such as stochastic and analog-666

or regression-based MOS methods, applied to RCM climatic runs driven by reanalysis. The results seem667

to be promising for precipitation but not for temperatures, apparently due to the weak synchrony between668

RCM outputs and observations. Some promising results have been also obtained when combining PP and669

MOS methods. In particular, parametric quantile methods are shown to produce better results when applied670

to the outputs of an analog method (using ERA-Interim predictor data), than when applied directly to ERA-671

Interim. This indicates that the PP method produces more realistic local precipitation results than ERA-672

Interim, well suited for a parametric bias correction. A similar result is obtained with MOS methods when673

applied to RCM climatic runs driven by reanalysis than to the reanalysis outputs directly. However, these674

first validation results should be interpreted with caution, since a good performance in terms of bias may675

not be an indication of a better performance of the model for climate change applications. Therefore, a676

comprehensive validation analysis of different aspects is needed in order to properly assess the performance677
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of this technique (e.g. temporal and extreme aspects, as described in the companion papers of this special678

issue). Moreover, the present study cannot give a conclusive assessment of the skill of downscaling methods679

to simulate regional future climates, and further experiments (Maraun et al. 2015) will be soon performed680

in the framework of the EURO-CORDEX initiative, thus completing the analysis initiated in the present681

manuscript.682

Finally, in order to favor research reproducibility, the experimental framework is precisely de-683

fined, all datasets needed for this experiment are publicly distributed http://www.value-cost.eu/684

datasets and, in some cases, the packages and/or code to reproduce the results are publicly available.685

A metadata description vocabulary has been defined and implemented in the VALUE Validation Portal686

http://www.value-cost.eu/validationportal, which provides metadata information for all687

contributing methods (approach, technique, predictors, method configuration, etc.). Transparency is also688

promoted by the VALUE Validation Portal http://www.value-cost.eu/validationportal,689

which provides public access to data and metadata information for all contributing methods and also for all690

validation results, as well as tools to filter and visualize (both in tabular and graphical formats) the results.691

In particular, most of the figures of the paper can be reproduced with these tools.692
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9. ANNEX 1. Description of methods710

This annex includes the detailed description of the methods used in this work (Tables 3 and 4). They are711

organized alphabetically within each downscaling approach (MOS, PP and WG ) in the following sections.712

a. MOS Methods713

• BC (only precipitation): Parametric bias-correction method using the optimum among five theo-714

retical distributions (Gamma, Weibull, Classical Gumbel, Reversed Gumbel and Log-logistic, all of715

them with four parameters) for each station on a monthly basis (Monjo et al. 2014).716

Implementation: In-house R code.717

• CDFt: The CDFt approach links the local-scale CDF of the variable of interest to the associated large-718

scale CDF through a “quantile-quantile” approach performed between the future large- and local-719

scale CDFs (and not between present CDFs as in the classical quantile-quantile method). To do so,720
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the future local-scale CDF is first estimated based on the assumption of a mathematical transformation721

to link the evolution of the large-scale CDF to the evolution of the local-scale one. Hence, CDFt is722

a variant of quantile-quantile but CDFt accounts for the CDF changes from the calibration to the723

projection (or future) time periods (Vrac et al. 2012).724

• DBS: Distribution based parametric quantile mapping (Yang et al. 2010, 2015). The cumulative725

distribution of precipitation and temperature are fitted by double-gamma and normal distributions,726

respectively. A wet-day correction is applied to precipitation series. In case of too many wet-days in727

the predictor data, all wet-days below a derived threshold are removed so that the wet-day frequency728

is the same as in the predictand data. In case of too few wet-days in the predictor data, the wet-day729

correction is done by adding wet-days to already existing wet-spell, starting with the longest ones.730

Temperature correction is done conditional on the wet/dry state of the corresponding precipitation731

series. The parameters were seasonally calibrated for every month in the annual cycle.732

Implementation: In-house FORTRAN code.733

• DBD/DBBC (only temperatures): Bias is calculated separately for all percentiles (from 1 to 99)734

and a polynomial function of second degree is fitted as a function of the temperature values (DBD)735

or the probabilities (DBBC). In the validation period the model temperature (or the corresponding736

percentile) is used to calculate the bias to be subtracted in the adjustment process. The difference737

between DBD and DBBC is that the bias is connected with temperature and percentile values, re-738

spectively. In both cases, calculations are performed for each season separately.739

Implementation: In-house Matlab code.740

• EQM/EQMs/EQM-WT: Implementation of Empirical Quantile Mapping (EQM) adjusting 99 per-741

centiles and linearly interpolating inside this range every two consecutive percentiles; outside this742

range a constant extrapolation (using the correction obtained for the 1st or 99th percentile) is applied743

(Déqué 2007). In the case of the precipitation, when the predicted dry frequency is larger than the744

observed one the frequency adaptation proposed by Themeßl et al. (2012) is applied. In order to745

explicitly model the seasonal cycle, the variant EQMs considers a 31 day moving window centered746

on every calendar day to calibrate the method. EQM-WT is a state-dependent version of EQM, con-747

ditioning the training to 12 Weather Types defined using a k-means algorithm (k=12) applied to the748

daily SLP over Europe. For the experiment with the RACMO2 RCM predictors, SLP is taken from749

the RCM model and smoothed to a 1◦ resolution.750

Implementation: EQM is implemented in the downscaleR (Bedia et al. 2016) R package (bias-751

Correction function) with the options method = ”eqm” and extrapolation=”constant”, including752

precipitation = TRUE and pr.threshold = 1 for precipitation. For EQMs the extra argument window753

= c(30, 1) was included. This package is freely available without restriction.754

• EQM-WIC658: Implementation of the empirical quantile mapping method (Déqué 2007) sorting755

the values into bins with adjustable width (e.g. 0.1◦) and applying a linear interpolation between two756

percentiles (bins); out of range values are adjusted using constant extrapolation (using the correction757

obtained for the minimum or maximum). In order to cope with the seasonal cycle, a 31 day moving758

window centered on every calendar day is used to calibrate the method. More details in Wilcke et al.759

(2013).760

• FIC02P/04P (only precipitation): Parametric bias correction technique (method BC above) applied761

to FIC01P/03P results. The method is applied separately for each month (Monjo et al. 2014).762

• FIC02T (only temperatures): Parametric bias correction technique considering Gaussian distribu-763

tions applied to FIC01T results. The method is applied separately for each station and for each month764

(Monjo et al. 2014).765
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• GQM/GPQM: Gamma/Gaussian parametric Quantile Mapping (GQM) to approximate the empiri-766

cal distribution of precipitation intensity / temperature. In the case of the precipitation, the frequency767

adaptation proposed by Themeßl et al. (2012) is previously applied to calibrate precipitation oc-768

currence (a 1mm threshold is used). The Generalized Pareto Quantile Mapping (GPQM) version769

considers a Generalized Pareto to adjust separately the extremes values (over the 95th percentile) as770

in Gutjahr and Heinemann (2013).771

Implementation: GQM/GPQM are implemented in the downscaleR (Bedia et al. 2016) R pack-772

age (biasCorrection function) with the options method = ”gqm”/”gpqm”, including precipitation =773

TRUE and pr.threshold = 1 for precipitation. This package is freely available without restriction.774

• ISI-MIP: The trend preserving ISI-MIP method proposed by Hempel et al. (2013) in the framework775

of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). This method works in a two-776

step approach. First, the monthly mean is adjusted with a linear/multiplicative scaling and, then,777

the resulting daily anomalies are corrected by means of a parametric (gaussian/exponential) quantile778

mapping, for temperatures/precipitation, respectively. In the case of precipitation also a frequency779

adjustment is included for both the monthly and daily components. This method has been designed780

to simultaneously adjust groups of variables (precipitation-snow, temperatures, wind speed and com-781

ponents).782

Implementation: ISI-MIP is implemented in the downscaleR (Bedia et al. 2016) R package (isimip783

function). This package is freely available without restriction.784

• MOS-AN (only precipitation): MOS implementation of the analog method considering precipita-785

tion as the single predictor, and trained across different zones (similar to the Prudence regions) com-786

puting similarity using Euclidean distances of the precipitation fields. As a benchmark this method787

has been applied directly to ERA-Interim precipitation, with “perfect” (day-to-day) synchrony with788

observations. When applied to the ERA-Interim driven RCM simulation, this method exploits the789

marginal temporal synchrony within the RCM domain given by the synchronous forcing at the bound-790

ary (Turco et al. 2011, 2017). Note that this method is best suited for for nudged RCM simulations.791

Implementation: In-house Matlab code.792

• MOS-REG/GLM (only temperatures/precipitation): MOS implementation of linear (and gener-793

alized linear) methods considering as predictor the mean of the predicted temperature (precipitation)794

at the four nearest gridboxes (Herrera et al. 2017).795

Implementation: In-house Matlab code.796

• QM-DAP: Implementation of the empirical quantile mapping method (Déqué 2007) smoothing the797

final corrections (obtained for individual percentiles) with a low-pass Gaussian filter (over 20 per-798

centiles) to reduce noise in the individual percentile values. Each month was treated separately and799

a time window including the previous and following month was applied. To preserve reasonable ex-800

trapolated values (in the tails of the distribution), changes between the last percentiles (likely to be801

very noisy) were limited to certain values (such as a coefficient of 1.5 for maximal extrapolated value,802

compared to the last percentile, and a ratio of 3.0 as a change between the last two percentile values).803

More details in Štěpánek, P. et al. (2016).804

Implementation: In-house R code, incorporated in ProClimDB software (www.climahom.eu).805

• QMm: Equidistant empirical quantile mapping. Empirical CDFs are calculated for the observation806

and the calibration and validation periods. The probabilities are calculated for bins with widths set807

for the resolution of the observational data (e.g. 0.1◦). For each day in the validation period, the808

probability obtained from the validation CDF is used in the observational and calibration CDFs to809

obtain the corresponding data values (Li et al. 2010). The difference between the observed and810

calibration data is used as the correction term for the validation. In the case of precipitation and811

in order to reduce the models drizzle effect, the percentile of the dry days of the validation period812
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is matched to the observations, i.e. the precipitation in the validation period which corresponds813

to a percentile lower than the observational percentile is set to zero. In order to account for the814

seasonal cycle, the CDFs are constructed for a 31 day window centered on each day of the year.815

Implementation: In-house FORTRAN code. Available upon request to R.M. Cardoso.816

• QMBC-BJ-PR: Implementation of the empirical quantile mapping method (Déqué 2007) adjusting817

101 percentiles (including the minimum and maximum values) and using constant interpolation (with818

the mean of the two correction factors) between every two consecutive percentiles. Out of range819

values are adjusted using constant extrapolation (using the correction obtained for the minimum or820

maximum). The calibration is performed separately for each month. More details in Pongrácz et al.821

(2014); Bartholy et al. (2015).822

Implementation: In-house FORTRAN code.823

• Ratyetal-M6-M9 (only precipitation): Monthly bias correction of daily precipitation implemented824

as in Räty et al. (2014). Methods M6 and M7 adjust the mean and standard deviation using linear825

and power scaling functions, respectively. M8 is a non-parametric quantile mapping with smoothing826

tailored for precipitation. The smoothing parameter value a=0.02 in Eq. (5) of Räty et al. (2014). M9827

is a simplified version of the DBS method monthly transfer functions are estimated by fitting separate828

gamma distributions below and above the 95th percentile of daily precipitation (Yang et al. 2010);829

this constitutes a simplified version of the DBS method where the wet-day correction is only applied830

when there are too many wet days in the predictor data. No correction is done if the modeled wet831

day frequency is smaller than the observed one. In this sense M9 is less sophisticated than the actual832

DBS version. A 0.1 mm threshold was used to define wet-days. All methods use three-month time833

window when deriving the monthly corrections (e.g. data from December-January-February used for834

the correction applied in January).835

Implementation: In-house Fortran code.836

• RaiRat-M6-M9 (only temperatures): Monthly varying bias correction of temperature following837

(Räisänen and Räty 2013). M6 adjusts only the mean value, M7 mean and standard deviation, and M8838

mean, standard deviation and skewness. M9 uses a non-parametric quantile mapping approach with839

smoothing parameter D = 0.05 in Eq. (5) of (Räisänen and Räty 2013). A two-month data window is840

used in deriving the corrections (e.g. from mid-April to Mid-June for the correction applied in May)841

in all these methods.842

Implementation: In-house Fortran code.843

• SB (only temperatures) A local scaling method where mean bias calculated separately for each844

season is subtracted from simulations in validating period.845

Implementation: In-house Matlab code.846

• VGLMGAMMA (only precipitation): A stochastic single-site MOS approach to predict precipita-847

tion occurrence and amounts conditionally on simulated daily precipitation as predictor. Precipitation848

occurrence is modeled via a logistic regression; precipitation amounts on wet days based on a vec-849

tor generalised linear model that expresses the rate and shape parameters of the 2-parameter gamma850

distribution as a function of simulated daily precipitation. Temporal dependence is not explicitly851

modelled but only imprinted by the predictor, i.e., individual occurrences and amounts are condition-852

ally independent (Wong et al. 2014; Volosciuk et al. 2017).853

Implementation: In-house R code.854

b. PP Methods855

• ANALOG: Standard analog technique using Euclidean distance considering the complete fields to856

compute distances (Gutiérrez et al. 2013; San-Martı́n et al. 2017). The method has been trained across857

different zones covering Europe (similar to the Prudence regions) and has no seasonal component.858
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The method used raw predictor values applying a compression preprocess keeping the PCs explaining859

95% of the total variance.860

Implementation: MeteoLab public Matlab toolbox (http://meteo.unican.es/trac/861

MLToolbox/wiki) using downTrain function with parameters em method.type = ’analogs’,862

AnalogsNumber = 1, resampling=’no’.863

These results (for the case of the ERA-Interim predictors) can be also reproduced (and modified)864

online using the statistical downscaling portal http://meteo.unican.es/downscaling, which builds on865

MeteoLab, and includes as illustrative examples the same standard predictor data and the VALUE866

regions used in this study. This package is freely available without restriction.867

• ANALOG-ANOM: For a given day to be downscaled, the ANALOG-ANOM (Vaittinada Ayar et al.868

2016) determines the day in the calibration period which has the closest atmospheric situation. This869

is determined by a similarity metric (here a Euclidean distance) between the predictor set of the day870

to be downscaled and the predictor set of the day in the calibration period, considering the whole871

European domain. For this method, the predictors are fields of daily anomalies with respect to the872

annual cycle computed from cubic regression smoothing splines fitted on the empirical daily annual873

cycle. Moreover, a seasonal restriction is applied: the selected analogs have to be in a +/-15 day-874

window around the climatological day of interest.875

• ANALOG-MP/SP: Two versions of the analog model developed by Obled et al. (2002), optimized876

for the multivariate prediction of weather variables over the European region (Raynaud et al. 2016).877

For each prediction day, the probabilistic prediction is obtained from the 30 best atmospheric analogs878

selected in the atmospheric archive (selection in a calendar window of +/- 30 days). A two-level879

stepwise analogy is used for the analog selection: The first analogy level leads to 100 analogs from880

which are identified the 30 best final ones thanks to the 2nd analogy level. In both MP and SP versions,881

the first level of analogy is based on the shapes of 1000 and 500 hPa geopotential fields over a spatial882

domain centred on the target station (or centered on the region in the case of the multisite experiment).883

The analogy criterion is the Teweless-Wobus Score (Teweless, 1954). The 2nd level of analogy884

relies on a thermodynamic mesoscale predictor (analogy criterion is the RMSE). In ANALOG-SP,885

the predictor (T-Td at 2m) is the same for the three predictants (precip., Tmin, Tmax). The values of886

local temperature obtained with each analog day are post corrected using the difference between the887

mesoscale 2m temperature of a given target day with the one of the analog. In ANALOG-MP, the 2nd888

analogy predictor is predictand specific (VV600 for precip., T850 for temp. variables). In the present889

work, ANALOG-MP/SP include a stochastic process to produce the 100 required realizations of the890

predictand from the probabilistic prediction computed for each day.891

• ESD-EOFSLP/EOFT2/SLP/T2 (only temperatures): Multiple linear regression method using892

monthly aggregated predictor and predictand data. It is important to remark that the ESD pack-893

age is not designed to downscale daily values, but parameters describing the seasonal distribution894

of daily (or hourly) data, and combine this with a weather generator to produce time series. In this895

contribution this method has been trained on a monthly basis (using monthly aggregated data) in the896

traditional way, but this package is more flexible and it is typically calibrated differently when applied897

to GCM data. In that case, common EOFs (representative of both reanalysis and GCMs, Benestad898

et al. 2015b) are used as predictors and normally PCA are used as predictands for groups of stations899

which are subject to similar weather phenomena (multi-site application), although the method can be900

also applied to downscale more general information, such as the occurrence of intense local 24-hour901

precipitation events over seasonal intervals (Benestad and Mezghani 2015).902

Implementation: ESD is implemented in the esd R package (Benestad et al. 2015a). This package903

is freely available without restriction.904

• FIC01P/03P (only precipitation): FIC01P is a two-step analog methods. In a first step, the 30905

closest analogs are computed for each test day based on Z1000 and Z500. Every analogue is defined906
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in a three-windows nested grid (for short, medium, and large scale) with different weights. For this907

experiment we have used 42 main windows, each one with 3 nested windows, covering Europe.908

Instead of considering the weighted (according to similarity) mean observations of the analog days909

(pi), the second step performs a pooling and ranking of the analog days month by month (900 values910

for each month) and computes the mean of consecutive blocks of 30 days qi according to their mean911

values. Afterwards the values pi are substituted by the new values qi following a rank order, i.e.912

maximum by maximum, and so on (see, Ribalaygua et al. 2013, for more details). FIC03P is a913

version of FIC01P using near surface Wind, Wind at 500 hPA, relative humidity at 850 hPa and914

relative humidity at 700 hPa for computing the analogues. Moreover, we sort the n selected analogues915

for each problem day using their relative humidities at 850 hPa values and we weight the precipitation916

of the analogue day using the relation between the specific humidities at 700 hPa of the problem day917

and the analogue day. Then, as in FIC01P, we reassignate the previously daily simulated precipitation918

of a month, by using the distribution of the used analogue days for the whole month.919

• FIC01T (only temperatures): A two-step analog method with the same first step as FIC01P with920

the same predictors, but considering 150 analogs for each test day. The second step consisting of921

a multiple linear regression using 1000-850 thickness, 1000-500 thickness and daily solar radiation922

(calculated as a function of the day of the year and the latitude of the station) as regressors; the923

regression is fitted considering the analog days. More details in Ribalaygua et al. (2013).924

• GLM-DET/GLM/GLM-WT (only precipitation): Standard two-stage implementation of General-925

ized Linear Models (GLMs) for precipitation, in which a GLM with Bernoulli error distribution and926

logit canonical link-function (also known as logistic regression) is used to downscale daily precipita-927

tion occurrence (as characterized by a threshold of 0.1mm) and a GLM with gamma error distribution928

and log canonical link-function is applied to downscale daily precipitation amount (San-Martı́n et al.929

2017). The method is trained across different zones covering Europe (similar to the PRUDENCE930

regions) with no seasonal component. The predictors are the 20 leading PCs (15 for GLM-WT)931

of the joined predictor fields (which account for 75-90% of the explained variance across the dif-932

ferent zones). Particular methods are provided in both deterministic (GLM-DET) and stochastic933

(GLM) variants, using the expected value in the former case and simulating from the resulting bino-934

mial/gamma in the latter. An implementation conditioned to weather types (GLM-WT) is also used,935

considering 12 weather types defined using a k-means algorithm (k=12) applied to the daily SLP (this936

variable is excluded from the predictor set in this case).937

Implementation: MeteoLab public Matlab toolbox (http://meteo.unican.es/trac/938

MLToolbox/wiki) using downTrain function with parameters type = ’glm’, ThresholdPrecip =939

0.1, NumberOfNearestNeighbours = 0, NumberOfPCs = 15, SimOccurrence = ’true’, SimAmount =940

’true’, minrainydays = 5.941

These results (for the case of the ERA-Interim predictors) can be also reproduced (and modified)942

online using the statistical downscaling portal http://meteo.unican.es/downscaling, which builds on943

MeteoLab, and includes as illustrative examples the same standard predictor data and the VALUE944

regions used in this study. This package is freely available without restriction.945

• MLR/MLR-WT (only temperatures): (Gutiérrez et al. 2013) Multiple linear regression trained946

across different zones covering Europe (similar to the Prudence regions) with no seasonal component.947

The predictors are the 15 leading PCs of the joined predictor fields (which account for 75-90% of the948

explained variance across the different zones considered). MLR-WT is a state-dependent version of949

MLR, conditioning the training to 12 Weather Types defined using a k-means algorithm (k=12) ap-950

plied to the daily SLP over Europe (this variable is excluded from the predictor set).951

Implementation: MeteoLab public Matlab toolbox (http://meteo.unican.es/trac/952

MLToolbox/wiki) using downTrain function with parameters type = ’linear regression’, Num-953

berOfNearestNeighbours = 0, and NumberOfPCs = 15.954

These results (for the case of the ERA-Interim predictors) can be also reproduced (and modified)955
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online using the statistical downscaling portal http://meteo.unican.es/downscaling, which builds on956

MeteoLab, and includes as illustrative examples the same standard predictor data and the VALUE957

regions used in this study. This package is freely available without restriction.958

• MLR-PCA-ZRT (only temperatures): Linear regression model using s-mode PCs as predictors.959

The selection of predictors has been automated by iterating through all possible predictor combina-960

tions, minimizing the mean squared error and maximizing the time series correlation in calibration961

and validation (Hertig and Jacobeit 2008; Hertig et al. 2013; Jacobeit et al. 2014). The selection was962

done for each station separately and models were developed for each month separately.963

Implementation: In-house Fortran (for PC calculation) and R code (using ”lm” for regression).964

• MLR-RSN/RAN/AAN/AAI/AAW/ASI/ASW: Multiple linear pointwise regression (with stepwise965

screening) using gridpoint raw data (or anomalies), trained at an annual (or seasonal) basis and in-966

cluding optional variance corrections in the form of inflation or addition of white noise. The first967

letter of the code refers to the raw (R) or anomaly (A) data used as predictors, the second letter refers968

to the annual (A) or seasonal (S) training, and the third letter refers to inflation (I) or white noise (W)969

variance correction (N for no correction). More details in Huth (2002); Huth et al. (2015).970

Implementation: In-house Fortran code.971

• MLR-T/GLM-P: These methods have been implemented following the Statistical DownScaling972

Method SDSM, which builds on linear regression (Wilby et al. 2002). The parameters of the regres-973

sion model are obtained by the least squares method from standardized variables. The link between974

the predictands and predictors is either an unconditional model, used for temperature (MLR-T), or a975

conditional model, used for precipitation (GLM-P), being the conditioning variable the probability of976

wet-day occurrence. The GLM-P method uses a logistic regression to estimate the probability of wet-977

day occurrence and an exponential regression to calculate the total daily precipitation amounts (Kilsby978

et al. 1998). Rainfall occurs when the probability of wet-day occurrence is greater than or equal to a979

uniform random number like in Wilby et al. (2002), thus incorporating an additional stochastic pro-980

cess. The selection of predictors changes from one site to another and from one variable to another981

and is based on a step-wise approach building on the adjusted determination coefficient.982

Implementation: In-house C code.983

• MO-GP: Multi-objective Genetic Programming (MOGP) performs a symbolic regression building984

a tree (six levels at most) with arithmetic functions and if-statements, i.e., not only the parameters985

but also the structure of the regression models are generated by GP. The multi-objective approach986

aims at a simultaneous optimization of RMSE, bias, standard deviation, selected quantiles and, for987

precipitation, the number of precipitation days. MOGP is applied individually for each station and988

variable. Except for precipitation, the predictors are interpolated from the four closest GCM grid989

cells to the location of the respective station. Precipitation is taken at the GCM grid box closest990

to a station. The MOGP code is based on the Strength Pareto Evolutionary Algorithm (SPEA) by991

Zitzler and Thiele (1999) and the GPLAB by Silva and Almeida (2003). SPEA returns not one single992

regression model for each station and variable but a set of Pareto optimal models. From each set of993

potential downscaling models one has been selected that optimizes a trade-off between all objectives.994

The automatic selection results in 8 predictors on average for precipitation and 6 for temperature.995

More details can be found in Zerenner et al. (2016).996

Implementation: In-house MATLAB code (based on the GPLAB).997

• SWG: A two-step approach is implemented to model precipitation in a Vectorised Generalized Linear998

Models (VGLM). First, the rainfall occurrence is modeled through a logistic regression, allowing999

to characterize the probability of rainfall occurrence for a given day conditionally on atmospheric1000

predictors. Then, the probability density function (pdf) of the rain intensity (given that it rains) is1001

assumed to be a Gamma distribution whose logarithms of the shape and rate parameters are linear1002
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functions of the large-scale predictors. For temperature, a single step is used, where temperature is1003

supposed to follow a Gaussian distribution with the mean and the logarithm of the standard deviation1004

linearly dependent on the predictors (Vaittinada Ayar et al. 2016).1005

• WT-WG: Gaussian/binomial-gamma distributions are fitted to the observed tempera-1006

ture/precipitation values within each of the 100 weather types obtained applying k-means to1007

the SLP fields. These distributions are obtained to simulate downscaled values. More details in1008

Gutiérrez et al. (2013); San-Martı́n et al. (2017).1009

Implementation: MeteoLab public Matlab toolbox (http://meteo.unican.es/trac/1010

MLToolbox/wiki) using downTrain function with parameters method.type = ’WT’. This package1011

is freely available without restriction.1012

c. WG methods1013

• GOMEZ-BASIC/TAD: Non-parametric weather generator based on a nearest neighbors resampling1014

technique making no assumption on the distribution of the variables being generated. To represent the1015

interdiurnal variability, each term (except for the first one) of the synthetic time series is derived from1016

followers of K terms (selected from the learning observed series) closest to the previously generated1017

term; the first term in the series is selected randomly from all available terms, which are within 101018

days from January 1. The distance between individual terms is based on the Mahalanobis distance,1019

in which precipitation is a binary variable (0 stands for the dry day, 1 for the wet day). Two versions1020

of the generator were used in the VALUE experiment. In BASIC temperature is represented by1021

TMAX and TMIN. In temperature is represented by TAVG and DTR (defined above in description of1022

MARFI).1023

• MARFI-BASIC/TAD/M3: Parametric multivariate stochastic Richardson-type Richardson (1981)1024

weather generator, which is a flexible follower of the Met&Roll generator (Dubrovský 1997;1025

Dubrovský et al. 2004). Precipitation occurrence is modeled by Markov chain (order may vary1026

between 1 and 3) and precipitation amount on wet day is sampled from the Gamma distribution.1027

Standardized values of the temperature variables are modeled by the first-order bi-variate autoregres-1028

sive model, in which the means and standard deviations of the two variables are conditioned on the1029

state (wet or dry) of the day. Three versions of the settings were used in the experiment. In BASIC the1030

two temperature variables are TMAX and TMIN, order of the Markov chain is one. TAD is similar1031

to BASIC, but temperature is represented by TAVG (defined as an average of TMAX and TMIN) and1032

DTR =(TMAX-TMIN) transformed (using quantile-mapping) into normally distributed variable. M31033

is the same as BASIC, but a third-order Markov chain is used to model wet day occurrence.1034

• SS-WG: Multi-variate Richardson-type (Richardson 1981) weather generator simulating daily time-1035

series of precipitation, minimum and maximum temperature (Keller et al. 2015, 2016). First, daily1036

precipitation occurrence is modelled based on a first-order two-state Markov chain using 1mm/day1037

as a wet threshold. Precipitation intensities are simulated from a mixture model of two exponential1038

distributions. To ensure inter-variable consistency, the parameters of the temperature statistics are1039

conditioned on the precipitation state. Synthetic temperature time-series are simulated using a first-1040

order autoregressive model (AR1). All WG parameters are determined for each station and each1041

month separately.1042
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classification updated. Meteorologische Zeitschrift, 15 (3), 259–263, doi:10.1127/0941-2948/2006/0130.1241

Leung, L. R., L. O. Mearns, F. Giorgi, and R. L. Wilby, 2003: Regional Climate Research. Bulletin1242

of the American Meteorological Society, 84 (1), 89–95, doi:10.1175/BAMS-84-1-89, URL http:1243

//journals.ametsoc.org/doi/abs/10.1175/bams-84-1-89.1244

Li, H., J. Sheffield, and E. F. Wood, 2010: Bias correction of monthly precipitation and temperature fields1245

from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Jour-1246

nal of Geophysical Research: Atmospheres (1984–2012), 115 (D10), doi:10.1029/2009JD012882, URL1247

http://onlinelibrary.wiley.com/doi/10.1029/2009JD012882/abstract.1248

Manzanas, R., S. Brands, D. San-Martı́n, A. Lucero, C. Limbo, and J. M. Gutiérrez, 2015: Statistical1249

Downscaling in the Tropics Can Be Sensitive to Reanalysis Choice: A Case Study for Precipitation in1250

the Philippines. Journal of Climate, 28 (10), 4171–4184, doi:10.1175/JCLI-D-14-00331.1, URL http:1251

//journals.ametsoc.org/doi/abs/10.1175/JCLI-D-14-00331.1.1252

Maraun, D. and M. Widmann, 2017: Statistical Downscaling and Bias Correction for Cli-1253

mate Research by Douglas Maraun. Cambridge University Press, URL /core/books/1254

statistical-downscaling-and-bias-correction-for-climate-research/1255

4ED479BAA8309C7ECBE6136236E3960F.1256

28



Maraun, D., et al., 2010: Precipitation downscaling under climate change: Recent developments to1257

bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3), n/a–1258

n/a, doi:10.1029/2009RG000314, URL http://onlinelibrary.wiley.com/doi/10.1029/1259

2009RG000314/abstract.1260

Maraun, D., et al., 2015: VALUE: A framework to validate downscaling approaches for climate1261

change studies. Earth’s Future, 3 (1), 2014EF000 259, doi:10.1002/2014EF000259, URL http://1262

onlinelibrary.wiley.com/doi/10.1002/2014EF000259/abstract.1263

Maraun, D., et al., 2017: Towards process-informed bias correction of climate change simulations. Nature1264

Climate Change, in press.1265

Meijgaard, E. v., L. H. v. Ulft, G. Lenderink, S. R. d. Roode, E. L. Wipfler, R. Boers, and1266

R. M. A. Timmermans, 2012: Refinement and Application of a Regional Atmospheric Model1267

for Climate Scenario Calculations of Western Europe. Programme Office Climate changes Spatial1268

Planning, URL http://www.wur.nl/de/Publicatie-details.htm?publicationId=1269

publication-way-343237303937.1270

Monjo, R., G. Chust, and V. Caselles, 2014: Probabilistic correction of RCM precipitation1271

in the Basque Country (Northern Spain). Theoretical and Applied Climatology, 117 (1-2),1272

317–329, doi:10.1007/s00704-013-1008-8, URL http://link.springer.com/article/10.1273

1007/s00704-013-1008-8.1274
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tistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework:1352

present climate evaluations. Climate Dynamics, 46 (3-4), 1301–1329, doi:10.1007/s00382-015-2647-5,1353

URL http://link.springer.com/article/10.1007/s00382-015-2647-5.1354

Volosciuk, C., D. Maraun, M. Vrac, and M. Widmann, 2017: A combined statistical bias correction1355

and stochastic downscaling method for precipitation. Hydrol. Earth Syst. Sci., 21 (3), 1693–1719, doi:1356

10.5194/hess-21-1693-2017, URL http://www.hydrol-earth-syst-sci.net/21/1693/1357

2017/.1358

Vrac, M., P. Drobinski, A. Merlo, M. Herrmann, C. Lavaysse, L. Li, and S. Somot, 2012: Dynam-1359

ical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat.1360

Hazards Earth Syst. Sci., 12 (9), 2769–2784, doi:10.5194/nhess-12-2769-2012, URL http://www.1361

nat-hazards-earth-syst-sci.net/12/2769/2012/.1362

Widmann, M., C. S. Bretherton, and E. P. Salathé, 2003: Statistical Precipitation Downscal-1363
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Table 1: List of stations indicating the order (sorted by latitude),
ECA&D IDs, name, longitude, latitude, elevation, country, and
Köppen–Geiger climate type.

# ID Name Lon. Lat. Elev. Country Köppen
1 231 Malaga -4.49 36.67 7 Spain Csa
2 63 Methoni 21.70 36.83 51 Greece Csa
3 214 Lisboa-Geofisica -9.15 38.72 77 Portugal Csa
4 229 Badajoz/Talavera-La-Real -6.83 38.88 185 Spain Csa
5 175 Cagliari 9.05 39.23 21 Italy Csa
6 3919 Palma-De-Mallorca 2.74 39.56 8 Spain BSk
7 59 Corfu 19.92 39.62 11 Greece Csa
8 62 Larissa 22.45 39.65 72 Greece BSk
9 3946 Madrid-Barajas -3.56 40.47 609 Spain BSk

10 232 Navacerrada -4.01 40.78 1894 Spain Csb
11 236 Tortosa-Observatorio-Ebro 0.49 40.82 44 Spain Csa
12 176 Roma-Ciampino 12.58 41.78 105 Italy Csa
13 212 Braganca -6.73 41.80 690 Portugal Csb
14 1394 Santiago-De-Compostela -8.41 42.89 370 Spain Cfb
15 1686 Hvar 16.45 43.17 20 Croatia Csa
16 234 San-Sebastian-Igueldo -2.04 43.31 251 Spain Cfb
17 39 Marseille-Marignane 5.23 43.44 5 France Csa
18 800 Toulouse-Blagnac 1.38 43.62 151 France Cfa
19 355 Mont-Aigoual 3.58 44.12 1567 France Cfb
20 2062 Constanta 28.63 44.22 13 Romania Cfa
21 219 Bucuresti-Baneasa 26.08 44.52 90 Romania Cfa
22 1684 Gospic 15.37 44.55 564 Croatia Cfb
23 1687 Zavizan 14.98 44.82 1594 Croatia Dfc
24 177 Verona-Villafranca 10.87 45.38 68 Italy Cfa
25 173 Milan 9.19 45.47 150 Italy Cfa
26 450 Sibiu 24.15 45.80 444 Romania Cfb
27 21 Zagreb-Gric 15.98 45.82 156 Croatia Cfa
28 242 Lugano 8.97 46.00 300 Switzerland Cfa
29 217 Arad 21.35 46.13 116 Romania Cfb
30 1662 Sion-2 7.33 46.22 482 Switzerland Cfb
31 15 Sonnblick 12.95 47.05 3106 Austria ET
32 32 Bourges 2.37 47.07 161 France Cfb
33 12 Graz 15.45 47.08 366 Austria Cfb
34 951 Iasi 27.63 47.17 102 Romania Cfa
35 243 Saentis 9.35 47.25 2502 Switzerland ET
36 13 Innsbruck 11.40 47.27 577 Austria Cfb
37 244 Zueriswitzerland 8.57 47.38 556 Switzerland Cfb
38 4002 Oberstdorf 10.28 47.40 806 Germany Cfb
39 58 Zugspitze 10.99 47.42 2964 Germany ET
40 239 Basel-Binningen 7.58 47.55 316 Switzerland Cfb
41 14 Salzburg 13.00 47.80 437 Austria Cfb
42 48 Hohenpeissenberg 11.01 47.80 977 Germany Cfb
43 322 Rennes -1.73 48.07 36 France Cfb
44 16 Wien 16.35 48.23 198 Austria Cfb
45 38 Paris-14e 2.34 48.82 75 France Cfb
46 2762 Rheinstetten 8.33 48.97 116 Germany Cfb
47 4004 Regensburg 12.10 49.04 365 Germany Cfb
48 3991 Giessen-Wettenberg 8.65 50.60 203 Germany Cfb
49 17 Uccle 4.37 50.80 100 Belgium Cfb
50 483 Dresden-Klotzsswitzerlande 13.76 51.13 227 Germany Cfb
51 274 Oxford -1.27 51.77 63 UK Cfb
52 2006 Brocken 10.62 51.80 1142 Germany Dfc
53 333 Siedlce 22.25 52.25 152 Poland Dfb
54 54 Potsdam 13.06 52.38 81 Germany Cfb
55 42 Bremen 8.80 53.05 4 Germany Cfb
56 351 Waddington 0.52 53.17 68 UK Cfb
57 350 Valley -4.53 53.25 11 UK Cfb
58 468 Helgoland 7.89 54.18 4 Germany Cfb
59 1020 Lazdijai 23.52 54.23 133 Lithuania Dfb
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Table 1: List of stations indicating the order (sorted by latitude),
ECA&D IDs, name, longitude, latitude, elevation, country, and
Köppen–Geiger climate type.

# ID Name Lon. Lat. Elev. Country Köppen
60 3994 Arkona 13.44 54.68 42 Germany Cfb
61 332 Leba 17.53 54.75 2 Poland Dfb
62 200 Kaunas 23.83 54.88 77 Lithuania Dfb
63 272 Eskdalemuir -3.20 55.32 242 UK Cfb
64 201 Klaipeda 21.07 55.73 6 Lithuania Cfb
65 113 Tranebjerg 10.60 55.85 11 Denmark Cfb
66 1009 Birzai 24.77 56.20 60 Lithuania Dfb
67 107 Vestervig 8.32 56.77 18 Denmark Cfb
68 465 Visby 18.33 57.67 42 Sweden Cfb
69 462 Goteborg 11.99 57.72 5 Sweden Cfb
70 349 Stornoway -6.32 58.33 9 UK Cfb
71 275 Wick -3.08 58.45 36 UK Cfb
72 192 Faerder 10.53 59.03 6 Norway Cfb
73 194 Utsira-Fyr 4.88 59.31 55 Norway Cfb
74 28 Helsinki-Kaisaniemi 24.95 60.18 4 Finland Dfb
75 708 Jokioinen-Jokioisten 23.50 60.81 104 Finland Dfb
76 5585 Salen 13.26 61.17 360 Sweden Dfc
77 191 Kjoeremsgrende 9.05 62.10 626 Norway Dfc
78 330 Fokstua 9.28 62.12 952 Norway Dfc
79 1051 Tafjord 7.42 62.23 15 Norway Csb
80 29 Jyvaskyla-Lentoasema 25.68 62.40 139 Finland Dfc
81 7682 Siikajoki-Revonlahti 25.09 64.68 48 Finland Dfc
82 339 Haparanda 24.14 65.83 5 Sweden Dfc
83 1427 Jackvik 17.00 66.38 430 Sweden Dfc
84 30 Sodankyla-Lapin-Ilmatiet 26.63 67.37 179 Finland Dfc
85 190 Karasjok 25.50 69.47 129 Norway Dfc
86 195 Vardoe 31.08 70.37 14 Norway ET

34



Variable Code Levels Units Temporal Aggregation
Minimum Temperature TMIN - K Daily minimum
Maximum Temperature TMAX - K Daily maximum
Total Precipitation PRC - m Daily accumulated
Mean Sea Level Pressure MSL - Pa Daily Mean
2m Temperature 2T 2m K Daily mean
Geopotential Z 250 500 700 850 1000 mb m2 s-2 Daily Mean
Temperature T 250 500 700 850 1000 mb K Daily Mean
westerly wind component U 250 500 700 850 1000 mb m s-1 Daily Mean
southerly wind component V 250 500 700 850 1000 mb m s-1 Daily Mean
Specific humidity Q 250 500 700 850 1000 mb kg kg-1 Daily Mean

Table 2: Description of the variables, pressure levels, units and temporal aggregation of the common set of
predictors used in the reference VALUE dataset.
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Table 3: Table of ESD methods contributing to VALUE Experiment 1a for precipitation using ERA-
Interim predictors (and RACMO2 RCM predictors additionally, for those methods with a cross in the sec-
ond column). CODE is the public code of the method as shown in (http://www.value-cost.eu/
validationportal). APPRO. and TECH. indicate the approach and techniques used, respectively. The
codes used for the approaches are: RAW (raw data), MOS (Model Output Statistics), PP (Perfect Prog-
nosis), WG (Weather Generators), and the families of techniques: S (additive/multiplicative scaling), PM
(parametric quantile mapping), QM (empirical quantile mapping), WT (weather types), A (analogs), TF
(transfer function), WG (Markov-type WGs). ST indicates the stochastic nature of the method (yes for
stochastic ones, providing 100 realizations); MS and MV indicate whether the methods are multi-site and
multi-variable, respectively (methods using PCs as predictors are indicated with a yes in the MS column).
Finally, SE and AC indicate the explicit inclusion of seasonal and autocorrelation components, respectively.
All methods provide daily data for the 86 stations. The shading indicates the subset of methods applied also
for temperatures. (*) Only occurrence is randomized, amounts are based on inflated regression (in this case,
a single realization was provided and used for validation).

# R INSTITUTION CODE APPRO. TECH. ST MS MV SE AC
1 - ECMWF ERAINT-200 RAW - - - - - -
2 - ECMWF ERAINT-075 RAW - - - - - -
3 X KNMI RACMO22E RAW - - - - - -
4 X UHEL Ratyetal-M6 MOS S no no no yes no
5 X UHEL Ratyetal-M7 MOS S no no no yes no
6 X UCAN/CSIC ISI-MIP MOS S|PM no no no yes no
7 X SMHI DBS MOS PM no no yes yes no
8 X UHEL Ratyetal-M9 MOS PM no no no yes no
9 X FIC BC MOS PM no no no yes no
10 X UCAN/CSIC GQM MOS PM no no no no no
11 X UCAN/CSIC GPQM MOS PM no no no no no
12 X UCAN/CSIC EQM MOS QM no no no no no
13 X UCAN/CSIC EQMs MOS QM no no no yes no
14 X UCAN/CSIC EQM-WT MOS QM|WT no no no no no
15 X IDL QMm MOS QM no no no yes no
16 X ELU QMBC-BJ-PR MOS QM no no no yes no
17 X LSCE/IPSL CDFt MOS QM no no no yes no
18 X GCRI-CAS QM-DAP MOS QM no no no yes no
19 X SMHI EQM-WIC658 MOS QM no no no yes no
20 X UHEL Ratyetal-M8 MOS QM no no no yes no
21 X UB MOS-AN MOS A no yes no no no
22 X UCAN/CSIC MOS-GLM MOS TF yes no no no no
23 - UNIGRAZ VGLMGAMMA MOS TF yes no no yes no
24 - FIC FIC02P MOS|PP PM|A|TF no no no yes no
25 - FIC FIC04P MOS|PP PM|A|TF no no no yes no
26 - FIC FIC01P PP A|TF no yes no yes no
27 - FIC FIC03P PP A|TF no yes no yes no
28 - LSCE/IPSL ANALOG-ANOM PP A no yes yes yes no
29 - UCAN/CSIC ANALOG PP A no yes yes no no
30 - CNRS/IGE ANALOG-MP PP A yes yes yes yes no
31 - CNRS/IGE ANALOG-SP PP A yes yes yes yes no
32 - MIUB MO-GP PP TF no no no no no
33 - AEMET GLM-P PP TF yes(*) no no no no
34 - CUNI MLR-RAN PP TF no no no no no
35 - CUNI MLR-RSN PP TF no no no yes no
36 - CUNI MLR-ASW PP TF yes no no yes no
37 - CUNI MLR-ASI PP TF no no no yes no
38 - UCAN/CSIC GLM-DET PP TF no yes no no no
39 - UCAN/CSIC GLM PP TF yes yes no no no
40 - UCAN/CSIC GLM-WT PP TF|WT yes yes no no no
41 - UCAN/CSIC WT-WG PP WT yes no no no no
42 - LSCE/IPSL SWG PP TF yes yes no yes no
43 - METEOSWISS SS-WG WG WG yes no yes yes yes
44 - IAP-CAS MARFI-BASIC WG WG yes no yes yes yes
45 - IAP-CAS MARFI-TAD WG WG yes no yes yes yes
46 - IAP-CAS MARFI-M3 WG WG yes no yes yes yes
47 - IAP-CAS GOMEZ-BASIC WG WG yes no yes yes yes
48 - IAP-CAS GOMEZ-TAD WG WG yes no yes yes yes
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Table 4: As Table 3 but for minimum and maximum temperatures. All methods provide daily data for the
86 stations, except the ESD family (#39-42, in italics) which provide monthly data. The shading indicates
the subset of methods applied also for precipitation.

# R INSTITUTION CODE APPRO. TECH. ST MS MV SE AC
1 - ECMWF ERAINT-200 RAW - - - - - -
2 - ECMWF ERAINT-075 RAW - - - - - -
3 X KNMI RACMO22E RAW - - - - - -
4 X UHEL RaiRat-M6 MOS S no no no yes no
5 X UHEL RaiRat-M7 MOS S no no no yes no
6 X UHEL RaiRat-M8 MOS S no no no yes no
7 X UL SB MOS S no no no yes no
8 X UCAN/CSIC ISI-MIP MOS S|PM no no no yes no
9 X SMHI DBS MOS PM no no yes yes no
10 X UCAN/CSIC GPQM MOS PM no no no no no
11 X UCAN/CSIC EQM MOS QM no no no no no
12 X UCAN/CSIC EQMs MOS QM no no no yes no
13 X UCAN/CSIC EQM-WT MOS QM|WT no no no no no
14 X IDL QMm MOS QM no no no yes no
15 X ELU QMBC-BJ-PR MOS QM no no no yes no
16 X LSCE/IPSL CDFt MOS QM no no no yes no
17 X GCRI-CAS QM-DAP MOS QM no no no yes no
18 X SMHI EQM-WIC658 MOS QM no no no yes no
19 X UHEL RaiRat-M9 MOS QM no no no yes no
20 X UL DBBC MOS QM no no no yes no
21 X UL DBD MOS QM no no no yes no
22 X UCAN/CSIC MOS-REG MOS TF no no no no no
23 - FIC FIC02T MOS|PP PM|A|TF no no no yes no
24 - FIC FIC01T PP A|TF no yes no yes no
25 - LSCE/IPSL ANALOG-ANOM PP A no yes yes yes no
26 - UCAN/CSIC ANALOG PP A no yes yes no no
27 - CNRS/IGE ANALOG-MP PP A yes yes yes yes no
28 - CNRS/IGE ANALOG-SP PP A yes yes yes yes no
29 - MIUB MO-GP PP TF no no no no no
30 - AEMET MLR-T PP TF no no no no no
31 - CUNI MLR-RAN PP TF no no no no no
32 - CUNI MLR-RSN PP TF no no no yes no
33 - CUNI MLR-ASW PP TF yes no no yes no
34 - CUNI MLR-ASI PP TF no no no yes no
35 - CUNI MLR-AAN PP TF no no no no no
36 - CUNI MLR-AAI PP TF no no no no no
37 - CUNI MLR-AAW PP TF yes no no no no
38 - IGUA MLR-PCA-ZTR PP TF no yes no yes no
39 - AMU ESD-EOFSLP PP TF|WT no yes no yes no
40 - AMU ESD-EOFT2 PP TF|WT no yes no yes no
41 - AMU ESD-SLP PP TF|WT no no no yes no
42 - AMU ESD-T2 PP TF|WT no no no yes no
43 - UCAN/CSIC MLR PP TF no yes no no no
44 - UCAN/CSIC MLR-WT PP TF|WT no yes no no no
45 - UCAN/CSIC WT-WG PP WT yes no no no no
46 - LSCE/IPSL SWG PP TF yes yes no yes no
47 - METEOSWISS SS-WG WG WG yes no yes yes yes
48 - IAP-CAS MARFI-BASIC WG WG yes no yes yes yes
49 - IAP-CAS MARFI-TAD WG WG yes no yes yes yes
50 - IAP-CAS MARFI-M3 WG WG yes no yes yes yes
51 - IAP-CAS GOMEZ-BASIC WG WG yes no yes yes yes
52 - IAP-CAS GOMEZ-TAD WG WG yes no yes yes yes
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Table 5: Details about the predictors, geographical domains and preprocessing transformations used in
the different MOS and PP statistical downscaling methods (note that distributional MOS and WG methods
are not included since they use precipitation/temperatures at the closest gridbox, or use no predictor, re-
spectively). The first column refers to the codes given in Tables 3 and 4. The last two columns indicate the
transformations applied to the predictors (standardization, anomalies over the annual cycle, EOF/PC compu-
tation) and the size of the domain used: ‘cont’ for a single continental domain, ‘nat’ for multiple nation-wide
domains, and ‘gb’for information from the closest gridbox (or four gridboxes, ’4 gb’). Two-step methods
are indicated by including a ’>’ symbol between the two predictor/domain configurations used.

CODE PREDICTORS TRANSFORM DOMAIN
MOS-GLM Precip./Temp. standardized 4 gb
MOS-REG Precip./Temp. standardized 4 gb
MOS-AN Precip. raw data nat
VGLMGAMMA Precip. standardized gb
FIC01P Z1000+500 standardized nat
FIC03P U+V10, U+V500, R850+700 > R850, Q700 standardized nat > gb
FIC01T Z1000-500 > TH1000-850 + 1000-500 standardized nat > gb
ANALOG-ANOM SLP, TD, T2, U850, V850, Z850 anomalies cont
ANALOG SLP, T2, T500+700+850, Q500+850, Z500 PCs (95% variance) nat
ANALOG-MP Z1000+500 > VV600, T850 raw data nat > gb
ANALOG-SP Z1000+500 > T2-TD, T2 raw data nat > gb
MO-GP Standard set raw data gb
GLM-P SLP, U+V10, T+Q+U+V850+700+500 standardized gb
GLM-DET SLP, T2, T500+700+850, Q500+850, Z500 20 joined PCs nat
GLM SLP, T2, T500+700+850, Q500+850, Z500 20 joined PCs nat
GLM-WT T2, T500+700+850, Q500+850, Z500 (SLP for WT) 15 joined PCs nat
MLR-RAN Z500, T850 raw data cont
MLR-RSN Z500, T850 raw data cont
MLR-ASW Z500, T850 anomalies cont
MLR- ASI Z500, T850 anomalies cont
MLR-AAN Z500, T850 anomalies cont
MLR-AAI Z500, T850 anomalies cont
MLR-AAW Z500, T850 anomalies cont
MLR-PCA-ZTR Z850, T850, R850 s-mod PCs cont
MLR-T T2, SLP, U+V10, T+Q+U+V850-700-500 standardized gb
MLR SLP, T2, T500+700+850, Q500+850, Z500 15 joined PCs nat
MLR-WT SLP, T2, T500+700+850, Q500+850, Z500 15 joined PCs nat
ESD-EOFSLP SLP 20 PCs cont
ESD-EOFT2 T2 20 PCs cont
ESD-SLP SLP raw data cont
ESD-T2 T2 raw data cont
WT-WG SLP 15 PCs nat
SWG SLP, TD, T2, U850+V850+Z850 2 PCs each cont
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Figure 1: Location of the 86 stations used in the paper, sorted according to latitude (see Table 1). Colors
represent the orography (for the EURO-CORDEX 0.11◦ resolution grid, in meters). The colored boxes (and
circles) show the eight PRUDENCE sub-regions (and the corresponding stations); the legend at the bottom
of the figure indicates the names of the different regions.
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Figure 2: Spearman correlation of downscaled and observed daily precipitation for winter (DJF, top)
and summer (JJA, bottom). For each method, the box-whisker-plot summarizes the results of the 86 sta-
tions. Boxes span the 25-75% range and the whiskers the minimum/maximum value (within 1.5 times the
interquartile range); outliers are plotted individually. Average results over the different Prudence regions
are indicated by a colored horizontal bar for each method (see the colors in the bottom legend). Shading
indicates the MOS results using RACMO2 predictors (all others use ERA-Interim). The methods are sorted
as in Table 3.
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Figure 3: As Figure 2 but for Pearson correlation of downscaled and observed daily maximum temperature.
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Figure 4: Observed climatological R01 (relative wet-day frequency) values for winter (DJF, top left) and
summer (JJA, top right). The biases of the downscaling methods (Table 3) are shown in the middle and
bottom panels, for winter and summer, respectively. For each method, the box-whisker-plot summarizes the
results of the 86 stations. Boxes span the 25-75% range and the whiskers the maximum value (within 1.5
times the interquartile range); outliers are plotted individually. A red asterisk indicates that values lie outside
the plotted range. Average results over the different Prudence regions are indicated for each method (see the
colors in the bottom legend). Shades indicate the MOS results using RACMO2 predictors (all others use
ERA-Interim). The methods are sorted as in Table 3 (first the raw model outputs, followed by MOS, PP and
WG methods).
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Figure 5: As figure 4, but for SDII (mean wet-day precipitation).
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Figure 6: Individual station results (sorted as in Table 1) for total precipitation (PRCTOT) biases for winter
(DJF, top) and summer (JJA, bottom). Vertical dashed lines separate the different approaches and techniques
(see Table 3).
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Figure 7: As figure 4, but for the standard deviation of daily precipitation for winter (DJF, top left) and
summer (JJA, top right). Relative standard deviation biases (predicted over observed deviations) are shown
in the middle and bottom panels, for winter and summer, respectively.
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Figure 8: Observed mean climatologies (deg C) of daily maximum temperature for winter (DJF, top left)
and summer (JJA, top right). The biases of the downscaling methods (Table 4) are shown in the middle and
bottom panels, for winter and summer, respectively. For each method, the box-whisker-plot summarizes the
results of the 86 stations. Boxes span the 25-75% range and the whiskers the maximum value (within 1.5
times the interquartile range); outliers are plotted individually. A red asterisk indicates that values lie outside
the plotted range. Average results over the different Prudence regions are indicated for each method (see the
colors in the bottom legend). Shades indicate the MOS results using RACMO2 predictors (all others use
ERA-Interim).
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Figure 9: As Figure 8, but for daily minimum temperature.
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Figure 10: Individual station results (sorted as in Table 1) for daily maximum temperature biases for winter
(DJF, top) and summer (JJA, bottom). Vertical dashed lines separate the different approaches and techniques
(see Table 4).
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Figure 11: As Figure 8, but for the standard deviation of daily minimum temperature for winter (DJF, top
left) and maximum temperature for summer (JJA, top right). Relative standard deviation biases (predicted
over observed values) are shown in the middle and bottom panels, for winter and summer, respectively.
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