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SUMMARY 20 

 21 
1. Citizens’ field observations are increasingly stored in accessible databases, which makes it 22 

possible to use them in research. Citizen science (CS) complements the field work that must 23 
necessarily be carried out to gain an understanding of any of bird species’ ecology. However, 24 
CS data holds multiple biases (e.g. presence only data, location error of bird observations, 25 
spatial data coverage) that should be paid attention before using the data in scientific research.   26 

 27 
2. The use of Airborne Laser Scanning (ALS) enables investigating forest bird species’ habitat 28 

preferences in detail and over large areas. In this study the breeding time habitat preferences 29 
of 25 forest bird species were investigated by coupling CS observations together with nine 30 
forest structure parameters that were computed using ALS data and field plot measurements. 31 
Habitat preferences were derived by comparing surroundings of presence-only observations 32 
against the full landscape. Also, in order to account for bird observation location errors, we 33 
analysed several buffering alternatives.  34 

 35 
3. The results correspond well with the known ecology of the selected forest bird species. The 36 

size of a bird species’ territory as well as some behavioural traits affecting detectability (song 37 
volume, mobility etc.) seemed to determine which bird species’ CS data could be analysed with 38 
this approach. Especially the habitats of specialised species with small or medium sized 39 
territories differed from the whole forest landscape in the light of several forest structure 40 
parameters. Further research is needed to tackle issues related to the behaviour of the 41 
observers (e.g. birdwatchers’ preference for roads) and characteristics of the observed species 42 
(e.g. preference for edge habitats), which may be the reasons for few unexpected results. 43 

 44 
4. Our study shows that coupling CS data with ALS yield meaningful results that can be presented 45 

with distribution figures easy to understand and, more importantly, that can cover areas larger 46 
than what is normally possible by means of purpose-designed research projects. However, the 47 
use of CS data requires an understanding of the process of data collection by volunteers. Some 48 
of the biases in the data call for further thinking in terms of how the data is collected and 49 
analysed. 50 

 51 
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1 INTRODUCTION 56 

 57 

Citizen science (CS) involves the collaboration of professionals and non-professionals in scientific 58 

research. During the past decades citizen participation has become a common practice in collecting 59 

ecological data for environmental monitoring (Conrad & Hilchey 2011; Dickinson et al. 2012). Due to 60 

their detectability and the high level of ornithological expertise among non-professionals, birds are 61 

among the species groups of which CS observations hold the most potential to be used in research. 62 

There are several well-established procedures for sampling birds that contain elements of CS (e.g. 63 

Sullivan et al. 2009; Laaksonen & Lehikoinen 2013). Observation schemes involving a strong CS 64 

component have been used to study the timing of migration (Jonzén et al. 2006; Saino et al. 2010; 65 

Lehikoinen et al. 2013). However, few if any previous attempts have been made to use CS data in 66 

studying the habitat preferences of forest birds, especially in connection with remote sensing. 67 

 68 

Information on habitat characteristics has improved both in terms of accuracy and spatial extent over the 69 

past century along with the development of remote sensing (RS) techniques (Kerr & Ostrovsky 2003; 70 

Cohen & Goward 2004). In particular, habitat and species distribution modelling have benefited a great 71 

deal from the development of RS, which supplements or sometimes even replaces traditional field work 72 

(Pettorelli et al. 2014). Airborne Laser Scanning (ALS) provides three-dimensional information which 73 

greatly advances the spatial analysis of habitat structures (e.g. Lefsky et al. 2002; Hill & Thompson 74 

2005; Davies & Asner 2014; Valbuena et al. 2017) and helps detecting changing patterns of habitat use 75 

in a changing climate (Melin et al. 2014). Since human activity has a strong effect on the structural 76 

complexity of forests (e.g. Brokaw & Lent 1999), ALS derived information has been acknowledged 77 

valuable for biodiversity assessments (Vierling et al. 2008). ALS parameters assist in the detection of 78 

those species that depend on or benefit from the structural heterogeneity of canopy structure (Goetz et 79 

al. 2007; Vierling et al. 2008; Palminteri et al. 2012). 80 

 81 

Birds are a species group that respond to environmental changes relatively promptly (Barbet-Massin et 82 

al. 2012; Frishkoff et al. 2014; Virkkala & Lehikoinen 2014) which makes them, along with several other 83 

characteristics (including ecological traits such as position in a food chain and non-ecological traits such 84 

as popularity), good indicators of biodiversity (Butchart et al. 2010; Gregory & van Strien 2010). 85 

Traditionally, forest bird-habitat relations have been studied in the field by measuring certain habitat 86 

variables (e.g. tree species, height, diameter etc.) and connecting these measurements with bird 87 

observations (see e.g. MacArthur & MacArthur 1961, Wiens 1989a and references therein). This kind of 88 

analysis produces detailed information of species’ habitat selection, but can usually be carried out only 89 

over relatively small areas. Importantly, there is also stochasticity in species occurrence, which makes 90 

difficult to extrapolate results of bird-habitat studies conducted at fine scales (Wiens et al. 1987; Haila et 91 

al. 1996; Virkkala & Rajasärkkä 2006). Bird-habitat relationships must therefore be studied on different 92 

spatial scales (Wiens et al. 1987; Wiens 1989b). On the other hand, ALS and other RS datasets 93 

connected with species observations can be used over large areas, and thus they are not susceptible to 94 
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small scale variation in the occurrence of bird species. In fact, the Group on Earth Observations 95 

Biodiversity Observation Network (GEO BON) has identified the potential of remote sensing and in situ 96 

data combinations to contribute for extensive and cost-efficient biodiversity monitoring (GEOBON 2015). 97 

Using high quality CS observation could greatly advance this goal. 98 

 99 

Several previous studies have proven the capability of ALS derived parameters to predict the species-100 

richness of habitats (reviewed in Simonson et al. 2014) and, more recently, the differentiation of diversity 101 

among habitats (e.g. Zellweger et al. 2017). Further, some studies have successfully examined the 102 

specific species-habitat relations by using ALS, but these have focused only on a few habitat indicators 103 

or species or both (e.g. Graf et al. 2009; Goetz et al. 2010; Hagar et al. 2014; Melin et al. 2016). To date, 104 

only few papers have examined the habitat preferences of multiple forest song birds with ALS. E.g. in 105 

Hinsley et al. (2009) and Müller et al. (2009) the observation data was surveyed by professional 106 

ecologists. To our knowledge, no previous studies have examined the use of CS data as rigorously (but 107 

see Vihervaara et al. 2015). In this study the relatively high number of species (25) was achieved by 108 

using CS data – collecting such a large dataset over such a large area would have been out of our reach 109 

by means of a purpose-designed research project. 110 

 111 

In this study we explore the extent to which CS data can be used to assess the habitat preferences of 112 

forest birds, and identify potential pitfalls when doing so. We use positioned observations from 25 forest 113 

bird species and nine ALS derived parameters to: I) Explore whether CS observations in connection with 114 

ALS based forest structure parameters can provide information that is in line with the known ecological 115 

characteristics (e.g. habitat preferences) of the bird species included in the study, II) Investigate which 116 

bird species’ habitats could be best modelled by using the combination of CS and ALS data, and III) 117 

Examine which forest structure parameters are most suitable for predicting bird species’ habitats in this 118 

connection. In order to facilitate the replicability of the method, the low-density ALS data were used as 119 

today they are typically acquired at national scale. However, we used a selection of ALS derived forest 120 

parameter layers that can be computed with field plot measurements to examine whether they can offer 121 

more detailed or complementary information for research. The potential applications of our study relate 122 

not only to the field of animal ecology, but can also help in determining where to focus conservation 123 

activities (Rose et al. 2015). Potentially, the combination of CS observations and ALS data could enable 124 

us to cover areas as large as administrative regions or even nations, and, in the future, also to model 125 

and predict the occurrence of species of conservation interest.  126 

 127 

 128 

 129 

2 MATERIALS AND METHODS 130 

 131 

2.1 Study area 132 

 133 
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The study area is located in Southern Finland in the Lake Vanajavesi catchment area of 3 000 km2 134 

(Figure 1). The area belongs to the southern boreal taiga vegetation zone and the landscape is 135 

dominated by boreal forests. The majority of the forests are commercially managed. Large lakes and 136 

small rivers, agricultural areas and wetlands are also typical in the area. The study area was selected 137 

based on the available ALS data and CS bird observations.  138 

 139 

Figure 1. The study area is located in southern Finland. The area is determined by the coverage of ALS 140 

data (black line). Data: Corine Land Cover 2012. 141 

 142 

2.2 Species observations 143 

 144 

In our study, we included species of conservation concern, such as the European Union’s Birds Directive 145 

Species (Annex I) and redlisted species in Finland, species preferring old-growth or mature forests, and 146 

species of herb-rich, lush, and deciduous forests (see Vihervaara et al. 2015). We also included species 147 

occurring in boreal agricultural-forest mosaics. The forest bird observation data were acquired from two 148 

sources; (i) Bird Atlas data from the database of the Finnish Museum of Natural History and (ii) faunistic 149 

observations from the Tiira database maintained by BirdLife Finland. Both of these data have been 150 

collected by mostly non-professional volunteers and, although the Bird Atlas was more goal-oriented and 151 

structured, can be described with good reason as citizen science. All observations were recorded in 152 

years 2006–2012. Only the observations that had higher location accuracy than 100 m (marked by the 153 

observers) were included in the final dataset. For each species only the observations during their known 154 

breeding time were included in the data. In the end, 25 bird species were included and the numbers of 155 

observations per species vary between 31 and 355 (Table 1).  156 

 157 
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Table 1. Bird occurrence data points (N of points), separated by data source (Atlas and Tiira), each 158 

species territory size and observation distance. 159 

 Abbrevia
tion 

Latin name English name N of 
point
s 

Tiira 
data 

Atlas 
data 

Home 
range 
size* 

Observat
ion 
distance
** 

1 ACCGEN Accipiter gentilis Goshawk 90 70 20 L 396 

2 ACCNIS Accipiter nisus Sparrowhawk 81 73 8 L 171 

3 AEGCAU Aegithalos caudatus Long-tailed Tit 121 111 10 S 20 

4 AEGFUN Aegolius funereus Boreal Owl 54 48 6 L  483 

5 ASIOTU Asio otus Long-eared Owl 148 128 20 L 266 

6 BONBON Bonasa bonasia Hazel Grouse 315 303 12 M 21 

7 BUBBUB Bubo bubo Eagle Owl 31 25 6 L 487 

8 BUTBUT Buteo buteo Buzzard 57 47 10 L 167 

9 CAPEUR Caprimulgus europaeus Nightjar 39 35 4 M 234 

10 DENMIN Dendrocopos minor Lesser Spotted Woodpecker 232 221 11 M 62 

11 DRYMAR Dryocopus martius Black Woodpecker 330 319 11 L 169 

12 FICPAR Ficedula parva Red-breasted Flycatcher 42 33 9 S 50 

13 GLAPAS Glaucidium passerinum Pygmy Owl 57 51 6 L 166 

14 HIPICT Hippolais icterina Icterine Warbler 119 109 10 S 60 

15 JYNTOR Jynx torquilla Wryneck 92 82 10 S 77 

16 LUSLUS Luscinia luscinia Thrush Nightingale 355 342 13 S 254 

17 PERAPI Pernis apivorus Honey Buzzard 77 69 8 L 165 

18 PHYDES Phylloscopus trochiloides Greenish Warbler 34 29 5 S 40 

19 PICCAN Picus canus Grey-headed Woodpecker 216 203 13 M 120 

20 PICTRI Picoides tridactylus Three-toed Woodpecker 44 36 8 M 28 

21 STRALU Strix aluco Tawny Owl 150 126 24 L 382 

22 STRURA Strix uralensis Ural Owl 78 71 7 L 450 

23 TETRIX Tetrao tetrix Black Grouse 155 151 4 L 302 

24 TETURO Tetrao urogallus Capercaillie 133 127 6 L 35 

25 TURVIS Turdus viscivorus Mistle Thrush 42 35 7 M 58 

 160 

* The size of the area over which the species is likely to be observed during the breeding period (normally the 161 

territory that the birds defend by singing, but in some cases a larger area used for hunting etc.);  L = large, > 100 162 

ha; M = medium, 10–100 ha; S = small, < 10 ha. 163 

** Species-specific maximum distance between the bird and observer that covers 75 % percent of Tiira 164 

observations (data contain a number of outliers). See Vihervaara et al. (2015). 165 

 166 

  167 
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2.3 ALS data  168 

 169 

ALS data were collected on May–June 2008 using Optech ALTM GEMINI laser scanning system. The 170 

ALS data point is offset at most by four years from the bird data (2006–2012). In a previous study a gap 171 

of this size between the acquisition of ALS and CS data was found to be of marginal impact on the 172 

results (Vierling et al. 2014). The area was measured from an altitude of 2 000 metres above ground 173 

level using half angle of 20°. This resulted in a swath width of 1 450 metres and a nominal sampling 174 

density of about 0.5 measurements per square metre. A digital terrain model (DTM) was generated from 175 

the ALS data by classifying ALS echoes as ground points and other points as explained in Axelsson 176 

(2000). Finally, the orthometric heights of ALS echoes (Z) were converted to above ground heights (dZ) 177 

by subtracting the DTM at the corresponding location.  178 

 179 

2.4 Forest sample plots 180 

 181 

The sample plot data were acquired during the summers of 2007 and 2008. A network of circular sample 182 

plots with a radius of 9 meters was established on the area. Sample plots were placed over forest stands 183 

with different development stages and dominant tree species. Only one sample plot was placed to a 184 

stand so usually the distance between nearest plots is at least hundreds of meters. A total of 249 sample 185 

plots were measured. The Global Positioning System with differential correction was used to determine 186 

the position of the centre of each plot to an accuracy of about 1 meter (the accuracy of the positioning 187 

system was tested in a comparable forest area; unpublished data). The diameter at breast height (DBH) 188 

and tree species were recorded for all trees with DBH above 5 cm. Tree height was measured from 189 

basal area median tree by tree species and storey class on each plot. Näslund’s (1937) model was used 190 

to predict the height for the rest of the trees. The size of each individual tree was described by its basal 191 

area, stem volume and the biomass stocked above ground. Stem volume was predicted using models by 192 

Laasasenaho (1982) and above ground biomass (AGB) using models by Repola et al. (2007). Plot level 193 

stem volumes and AGBs were computed by summing up individual trees by plot and finally species 194 

proportions (Pine, Spruce and Deciduous) were calculated based on plot volume. Dominant height 195 

(Hdom) was determined at the plot level as the mean height of the 100 trees with the largest diameter at 196 

breast height per hectare. Forest structure was described by two parameters: the Gini coefficient (GC) 197 

and the proportion of basal area larger than mean (BALM), respectively describing tree size dispersion 198 

and asymmetry (Valbuena et al. 2013). The GC measures the relative inequality in individual tree basal 199 

areas, and therefore it evaluates the heterogeneity of tree sizes in the forest population (Weiner & 200 

Solbrig 1984). Using GC to describe forest structural heterogeneity is similar to the more common 201 

parameter for foliage height diversity (FHD) based on Shannon’s diversity (MacArthur & MacArthur 202 

1961), which is more commonly used in ALS-based studies (e.g. Clawges et al. 2008). Valbuena et al. 203 

(2012) explained the mathematical links between these two parameters and why GC was preferred 204 

above FHD. On the other hand, BALM was used to evaluate relative dominance among various tree 205 
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storeys, since understorey ingrowth decreases the proportion of basal area stocked above its mean, and 206 

hence BALM (Gove 2004; Valbuena et al. 2015).  207 

2.5 Forest structure parameters  208 

 209 

We considered two main types of ALS derived forest structure parameters (Table 2): (i) those estimated 210 

using the field sample plot data together with metrics computed from the ALS data (Næsset 2002; 211 

Maltamo et al. 2005; Valbuena et al. 2013; Asner & Mascaro 2014) and (ii) those calculated directly from 212 

the ALS data (Nelson et al. 1984; Miura & Jones 2010; Valbuena et al. 2017). The variables of former 213 

group were first modelled using field sample plots as response variables and ALS metrics as predictor 214 

variables (Vihervaara et al. 2015). This group consists of parameters: AGB, Hdom, GC, BALM, Pine, 215 

Spruce and Deciduous. Error rates and biases were reported in Vihervaara et al. (2015). The latter group 216 

were metrics calculated directly from the heights above ground of ALS echoes (dZ), which have been 217 

demonstrated to be directly related to the structural properties of forests. One such metric was the 218 

proportion of ALS echoes backscattered from of vegetation (F_veg), in other words, those echoes that 219 

are backscattered from vegetation above half a meter. F_veg is regarded as a good proxy for canopy 220 

cover (Nelson et al. 1984). Another metric employed was the coefficient of L-skewness (Lskew) (Hosking 221 

1990), which has been regarded as a good proxy for light availability and therefore understorey 222 

regeneration (Valbuena et al. 2017). Finally, forest parameters were either predicted or calculated to the 223 

whole study area using a grid with 15 m cell size.  224 

 225 

Table 2. Forest structure parameters that were used in this study.   226 

* These parameters could be computed from ALS data without field measurements.    227 

  228 

Code Description Resolution Data used 

AGB Above ground biomass of trees (Mg/ha) 15 m ALS + sample plots 

BALM Basal area larger than mean: Relative 

development of overstorey and 

understorey (Valbuena et al. 2013). 

15 m ALS + sample plots 

Deciduous 

(%) 

Proportion of deciduous trees (%) with 

respect to stem volume 

15 m ALS + sample plots 

F_veg* Proportion of vegetation ALS echoes (%). 

An ALS proxy for amount of canopy 

cover (Nelson et al. 1984). 

15 m ALS only 

GC* Gini coefficient. Inequality of sizes among 

trees (Valbuena et al. 2012). 

15 m ALS + sample plots 

Hdom (m)* Dominant height of trees (m). 

Average upper canopy 

15 m ALS + sample plots 

Lskew* L-Skewness of ALS echo heights. An 

ALS proxy for light availability and 

regeneration (Valbuena et al. 2017). 

16 m ALS only 

Pine (%) Proportion of pine (%)  with respect to 

stem volume 

15 m ALS + sample plots 

Spruce (%) Proportion of spruce (%) with respect to 

stem volume 

15 m ALS + sample plots 
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2.6 Linking forest parameters to bird observations 229 

 230 

We generated buffers around bird observation points (Figure 2). To define a suitable buffer size that 231 

captures relevant information on the surroundings of bird observation point, we generated buffers with 232 

30, 50, 100 and 150 m radii. The forest parameter layers were intersected with the buffers assuming that 233 

the cells having a centre point within the buffer are inside.  234 

 235 

 236 

Figure 2. Buffers around observation points. As an example a forest parameters in the background (15 237 

m grid). 238 

 239 

The overlapping buffers were considered only once to avoid over-representation of areas where the 240 

same species had been observed many times. The cells that included urban or water areas were 241 

excluded from both datasets. For each buffer, data was processed for 25 birds and for 9 forest 242 

parameters (25 x 9 = 225). Additionally, a dataset that represents the landscape of the entire study area 243 

was created. Density curves were created for each bird and parameter combination and the landscape 244 

and they were normalized with respect to landscape. It was therefore employed as a measure of the 245 

divergence between the habitat preferences of a given species relative to what it is available in the whole 246 

study area. 247 

 248 

2.7 Tests for differences 249 

 250 

We computed overlap (OL) and Kolmigorov-Smirnov’s D (KS-D) metrics to all bird and forest parameter 251 

combinations and for the landscape. These were computed in the R environment using ‘overlap’ 252 

(Meredith & Ridout 2016) and ‘stats’ packages (R Core team 2016). The overlapping values indicate how 253 

much the distribution of a certain forest parameter of a certain bird species sample and the landscape of 254 



 

9 
 

the same forest parameter overlap (%). Smaller percentages would indicate bigger differences between 255 

the distributions whereas an overlap value of 100 would mean perfect similarity.  256 

 257 

We used Kolmogorov-Smirnov D statistics to measure the maximum distance between the empirical 258 

distribution function of the sample and the cumulative distribution function of the landscape distribution. 259 

Higher Kolmogorov-Smirnov D values indicate higher maximum difference between the two distributions 260 

and therefore help detecting the species-specific habitat preferences “peaks” in relation to the chosen 261 

forest parameters. The actual Kolmogorov–Smirnov significance test was not used because CS bird 262 

observations cannot be considered as probability samples. Finally, profiles for each bird species with all 263 

forest parameter were generated (see figure 4 as an example).   264 

 265 

3 RESULTS 266 

 267 

The Kolmogorov-Smirnov D statistics showed greater differences between the sample and landscape 268 

when we used smaller buffers (30 m and 50 m). The results with two of the largest buffers (100 m and 269 

150 m) appeared to lose information on bird-specific habitat preferences. An example of this effect is 270 

shown in Fig. 3.). The D statistics captured the greatest differences with 30 m buffer. Across all species 271 

and forest structure parameters, 50 m, 100 m and 150 m buffers respectively obtained differences 11%, 272 

22% and 29% smaller than 30 m buffers. Therefore, the results in this paper are further reported only for 273 

30 m buffer for each bird species, because this buffer most accurately measures bird-habitat relations 274 

(see Discussion).  275 

 276 

 277 
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Figure 3. An example showing how the size of the buffer around each bird observation point affects the 278 

density curves and D statistics as calculated for nightjar in relation to above ground biomass. The D 279 

statistic expresses the maximum distance between the distribution curve representing the landscape 280 

(red line) and those of the nightjar observation points surrounded by different sized buffers). 281 

 282 

3.1 Landscape structure according to forest parameters 283 

 284 

The density curves computed at the landscape level are presented in red in figure 4 and ALS based 285 

forest parameters presented in Table 3. The landscape of the study area is highly covered by vegetation 286 

(F_veg). The largest part of the study area has quite a closed canopy structure (Lskew). Tree biomass is 287 

less than 100 ton/ha in the majority of the area (AGB) and tree height is typically between 20–25 meters 288 

(Hdom). Spruce is the dominating tree species (Spruce %), but pine trees are also common (Pine %). 289 

The proportion of deciduous trees is low (Deciduous %). The two three-dimensional parameters show 290 

that the largest part of the forests is even-sized (GC), but also that the area includes structurally complex 291 

forests with a heterogeneous tree composition (BALM).  292 

 293 

 294 

 295 

 296 
Table 3. Description of the landscape (excluding water and urban areas) in the light of the ALS based 297 

forest parameters (landscape curve in red in Figure 4). See Table 2 for parameters descriptions. 298 

Parameter How indicator defines study area? 

AGB Significant amount of areas where there is no tree biomass (fields, clear cuts). Forest 

biomass is mostly below 100 ton/ha.  

BALM Two peaks show that there are structurally complex forests with understorey 

developed underneath the dominant canopies (lower peak), but that the greater 

share of forests have a single-layered vertical structure of vegetation (higher peak). 

Deciduous (%) The proportion of deciduous trees is quite low. There are only a few purely deciduous 

forest patches (> 80%) pixels.  

F_veg The proportion of vegetation hits shows that vegetation cover is high across the study 

area. The high peak shows that vegetation is dense in a large share of the area. 

GC Values below 0.5 indicate that the forests are mostly structurally homogenous.  

Hdom (m) The largest share of the forests is 20–25 meters in height.  

Lskew Negative skewness indicates closed canopy structure and applies to majority of the 

study area.  

Pine (%) There is rather high amount of forest with low percentage of pine. Pure pine forests 

(< 80%) are rare, but not as rare as pure deciduous forests.  

Spruce (%) Spruce is the dominant tree species in the area. 

 299 
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 300 

Figure 4. An example of a bird profile that was created for each species. In this case the 30 meter 301 

buffers around goshawk observation points (blue line) are compared with the landscape (red line).  302 

 303 

 304 

3.2 Bird species’ habitat preferences  305 

 306 

Differences between the bird habitat preferences and the landscape characteristics were detected by 307 

calculating the D-values (Table 4) and overlapping metrics (Table 5). The results can be interpreted from 308 

several angles. One is to look over all the nine forest parameters and see which species’ habitat use 309 

differ the most from the range of available habitat. The thrush nightingale’s (LUSLUS) average D-value is 310 

clearly the highest (0.27) and its overlapping percentage lowest (72.3). The next two species ranked the 311 

same way are honey buzzard (PERAPI; 0.22 / 78.6%) and three-toed woodpecker (PICTRI; 0.20 / 312 

80.2%). At the other end of the spectrum the two grouse species, western capercaillie (TETURO; 0.07 / 313 

91.2%) and hazel grouse (BONBON; 0.05 / 93.3%), do not show much deviation from the available 314 

habitat at all. The D-values and overlapping percentages rank the species mostly in the same order.   315 

 316 

The species can also be ranked by looking at one forest parameter at a time. Four species, for example, 317 

receive a D-value of over 0.2 for dominant height. These are three-toed woodpecker (PICTRI; 0.34), red-318 

breasted flycatcher (FICPAR; 0.29), thrush nightingale (LUSLUS; 0.23) and greenish warbler (PHYDES; 319 

0.20). However, to understand how these species’ habitat preference differs from the available habitat, 320 
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one needs to look at the species specific distribution curves (Figure 5 and Appendix I). The curves show 321 

that three of the species deviate from the available habitat distribution (landscape) towards taller trees 322 

and one, the thrush nightingale, towards shorter trees.         323 

 324 

 325 
Table 4. D-values for a 30 m buffer. Higher values indicate higher maximum difference between the 326 

distributions. Table cells in darker colours indicate greater differences between the habitat used by the 327 

bird species and that of the whole study area.  328 

 329 

Bird (30 m) AGB BALM Deciduous % f_veg GC Hdom LSKEW Pine % Spruce % 

ACCGEN 0,129 0,097 0,07 0,12 0,115 0,121 0,075 0,047 0,063 

ACCNIS 0,222 0,202 0,105 0,198 0,072 0,153 0,064 0,106 0,111 

AEGCAU 0,203 0,163 0,179 0,198 0,038 0,075 0,141 0,048 0,133 

AEGFUN 0,153 0,062 0,037 0,197 0,119 0,09 0,195 0,072 0,052 

ASIOTU 0,265 0,214 0,11 0,249 0,172 0,137 0,201 0,122 0,216 

BONBON 0,038 0,052 0,022 0,052 0,082 0,054 0,062 0,054 0,044 

BUBBUB 0,204 0,182 0,14 0,237 0,16 0,132 0,124 0,186 0,133 

BUTBUT 0,192 0,149 0,178 0,199 0,057 0,11 0,088 0,147 0,086 

CAPEUR 0,206 0,076 0,212 0,208 0,067 0,106 0,219 0,237 0,171 

DENMIN 0,156 0,091 0,313 0,137 0,097 0,061 0,089 0,084 0,231 

DRYMAR 0,146 0,086 0,11 0,169 0,066 0,041 0,138 0,041 0,081 

FICPAR 0,241 0,199 0,137 0,151 0,035 0,293 0,175 0,224 0,138 

GLAPAS 0,103 0,043 0,156 0,134 0,092 0,114 0,092 0,065 0,071 

HIPICT 0,17 0,129 0,184 0,19 0,114 0,033 0,084 0,084 0,234 

JYNTOR 0,264 0,223 0,107 0,258 0,117 0,119 0,124 0,064 0,13 

LUSLUS 0,367 0,322 0,167 0,336 0,285 0,232 0,206 0,179 0,354 

PERAPI 0,316 0,234 0,174 0,335 0,154 0,193 0,251 0,141 0,142 

PHYDES 0,053 0,068 0,095 0,069 0,059 0,201 0,066 0,155 0,061 

PICCAN 0,118 0,075 0,12 0,12 0,101 0,066 0,116 0,053 0,054 

PICTRI 0,292 0,287 0,186 0,128 0,078 0,339 0,174 0,224 0,13 

STRALU 0,153 0,084 0,15 0,179 0,069 0,058 0,124 0,063 0,103 

STRURA 0,188 0,088 0,124 0,222 0,081 0,057 0,148 0,05 0,086 

TETRIX 0,262 0,177 0,152 0,305 0,069 0,142 0,222 0,109 0,091 

TETURO 0,101 0,025 0,082 0,064 0,052 0,076 0,044 0,101 0,063 

TURVIS 0,094 0,05 0,144 0,121 0,067 0,092 0,095 0,172 0,104 

 330 

  331 
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Table 5. Overlapping values for a 30 m buffer (%). Lower percentages indicate higher difference 332 

between the distributions. Table cells in darker colours indicate greater differences between the habitat 333 

used by the bird species and that of the whole study area. 334 

 335 

Bird (30 m) AGB BALM Deciduous % F_veg GC Hdom LSKEW Pine % Spruce % 

ACCGEN 79.77 83.51 88.10 84.70 88.07 82.16 91.68 91.77 89.96 

ACCNIS 78.76 78.93 85.56 78.59 90.84 85.56 90.15 87.89 88.80 

AEGCAU 80.84 81.59 77.35 79.38 91.16 92.94 86.71 91.64 87.47 

AEGFUN 85.86 87.62 89.64 78.93 83.27 89.53 81.02 93.21 90.59 

ASIOTU 74.45 78.28 80.76 75.24 84.10 87.65 79.44 84.84 79.04 

BONBON 93.18 90.45 94.36 92.34 91.20 93.87 94.14 94.81 95.05 

BUBBUB 81.40 73.76 84.20 75.36 83.89 81.30 86.39 85.42 85.75 

BUTBUT 82.26 81.17 83.64 78.12 93.31 86.97 90.39 84.59 92.04 

CAPEUR 81.12 85.70 80.21 78.63 89.20 84.48 74.97 76.40 83.07 

DENMIN 84.93 86.74 64.34 85.27 88.11 92.72 89.61 91.34 77.64 

DRYMAR 85.05 85.88 82.79 82.20 92.08 93.60 86.02 91.93 91.12 

FICPAR 74.71 79.75 82.39 86.70 94.57 72.60 83.81 78.90 86.62 

GLAPAS 90.25 91.33 78.84 84.81 88.39 89.42 91.09 94.26 90.79 

HIPICT 84.11 84.25 73.73 80.07 82.96 95.85 92.06 88.74 77.32 

JYNTOR 75.05 76.59 81.04 73.74 86.79 88.47 87.23 88.04 87.68 

LUSLUS 64.34 68.08 77.30 66.16 73.17 77.50 77.95 80.20 65.58 

PERAPI 69.96 76.28 82.51 66.99 84.29 82.91 75.59 83.75 86.55 

PHYDES 90.43 86.48 82.80 91.61 90.21 78.78 88.96 86.16 89.90 

PICCAN 87.20 86.71 82.74 86.66 87.68 91.87 88.77 94.92 93.70 

PICTRI 70.48 70.54 80.42 89.91 91.33 67.55 83.54 79.43 88.37 

STRALU 85.48 85.02 79.90 81.41 87.03 94.29 87.01 92.34 90.32 

STRURA 82.25 87.77 86.34 77.06 89.60 94.28 86.73 90.04 86.99 

TETRIX 74.57 81.86 85.08 69.69 91.14 86.45 77.49 87.22 90.38 

TETURO 88.60 91.79 90.82 92.09 91.40 90.54 95.49 88.95 91.67 

TURVIS 84.90 88.76 86.28 88.80 90.89 87.33 85.99 82.13 90.83 

 336 

 337 
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 338 

Figure 5. Density curves for dominant height for the habitat used by four species; three-toed 339 

woodpecker, red-breasted flycatcher, thrush nightingale and greenish warbler as well as the landscape 340 

(red line).  341 

 342 
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4 DISCUSSION 343 

 344 

4.1 Success of habitat modelling 345 

 346 

Our results conform to previous knowledge of the bird species’ habitat preferences. The habitat 347 

characteristics of the buffers around the observation points of specialist species with strict habitat 348 

requirements (e.g. three-toed woodpecker; Angelstam & Mikusiński 1994) differed generally more from 349 

the characteristics of the entire study area than those of more generalist species or, putting it in other 350 

words, species of which preferred habitat was common in all parts of our study area (e.g. hazel grouse; 351 

Åberg et al. 2003). The three-toed woodpecker clearly chose those forest patches within the study area 352 

that are characterised by tall trees, high above ground biomass and heterogeneous structures with 353 

structurally complex understoreys (BALM). The hazel grouse did not show any clear preference in 354 

relation to any of the nine ALS parameters we employed.  355 

 356 

However, in the case of some bird species the analysis did not show habitat specialisation although 357 

some specialisation was expected based on previous knowledge. We found several reasons for this. 358 

First, species that have a large territory and/or home range (> 100 hectares; see Table 1) showed the 359 

least difference between the forest characteristics generally available in the landscape and the habitat 360 

they used. In a forest landscape consisting of relatively small habitat parcels, the individuals with a large 361 

home range are ultimately observed in many different habitat types. Due to private forest ownership and 362 

the dominant even-aged stands forest management practice the forests in our study area have a high 363 

level of small-scale heterogeneity. In southern Finland the average size of managed stands is 364 

approximately 1.2 hectares (Parviainen & Västilä 2011). As a rule of thumb the home range size of a 365 

species increases with its body size, and carnivores have larger ranges than herbivores (e.g. Reiss 366 

1988). Accordingly, large birds of prey like hawks and owls (e.g. ACCGEN, AEGFUN) are among 367 

species that in our results showed least habitat preferences. An analysis on a larger landscape scale 368 

(i.e. larger grids and buffers) would probably be better suited to study birds with large home ranges. 369 

 370 

Second, some characteristics related to the CS observations themselves are quite likely reflected in the 371 

results. Compared with other species in the analysis, the majority of the observations of birds of prey 372 

were made from afar. The observations of four owl species – Eurasian eagle-owl, Ural owl, tawny owl, 373 

and boreal owl – together with northern goshawk had the highest average distances between the bird 374 

and observer (75th observation distance percentile approx. 400–500 metres; see Table 1). Further, a 375 

large part of the owl observations were auditive; the birds were often observed hooting in the dark. This 376 

makes the bird locations even more inaccurate. The finding supports eliminating such inaccurate 377 

observations from the dataset.  378 

 379 

All but one large sized species with a large territory were observed at a great distance. In the case of the 380 

one exception, western capercaillie, the distance between the bird and observer was normally very short 381 
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(75th percentile 35 metres). As a result, there should not be any location error arising from a long 382 

observation distance, yet our data indicate almost no difference between the characteristics of the 383 

available habitat and those of the sites where capercaillies were observed. In contrast with our results 384 

that showed no preference for tall trees of high biomass, for example, the western capercaillie has even 385 

been considered as a species preferring continuous old-growth forest or even an old-growth forest 386 

specialist (Helle 1985; Saniga 2003; Virkkala & Rajasärkkä 2006: Gregersen & Gregersen 2008). This 387 

can be due to a number of reasons. According to Sirkiä et al. (2011) the capercaillie prefers fine-grained 388 

mosaic and heterogeneity of forest in its spring time lekking areas. Fragmentation of very dense forests 389 

may produce more space for capercaillie males in their lekking sites. Moreover, capercaillies may, for 390 

example, prefer younger stands and moist edge habitats with bilberry during the breeding and fledgling 391 

(post-breeding) period (see Miettinen et al. 2008) than at other parts of their annual cycle. The result 392 

may also be an artefact created by the situation in which both birdwatchers and capercaillies prefer 393 

forest roads: birdwatchers for the ease of movement and capercaillies for collecting small pebbles for 394 

their gizzard. 395 

 396 

Bird species with a small or medium sized territory, especially those that were most often observed from 397 

a short distance, stands out by showing clearest signs of habitat preference in relation to the landscape 398 

available. Three bird species, in particular, had high preference for the characteristics of mature or old-399 

growth stands (esp. dominant tree height): the three-toed woodpecker, red-breasted flycatcher and 400 

greenish warbler. The two latter ones are small passerine birds with a small territory. Normally they are 401 

observed singing close by and at the core of their breeding habitat (75 th observation distance percentile 402 

50 and 40 metres, respectively). The three-toed woodpecker, in contrast, is a medium sized bird with a 403 

medium sized territory. However, it is also normally observed close by (75 th observation distance 404 

percentile 28 metres) which makes the observations very accurate. These characteristics together with 405 

the fact that these species are known as habitat specialists of mature and old-growth coniferous forests 406 

(Tiainen 1980; Virkkala et al. 1994; Roberge et al. 2008; Pakkala et al. 2014), makes the identification of 407 

their habitats by means of ALS derived parameters successful.  408 

 409 

Other species which results seem to conform to previous knowledge of their ecology include species 410 

preferring deciduous stands and edge habitats. Alike three-toed woodpecker, the lesser spotted 411 

woodpecker has a medium sized territory and is normally observed at short range. Out of all species in 412 

the analysis, the lesser spotted woodpecker showed the greatest preference for deciduous stands, which 413 

is well in accordance with previous studies (Roberge & Angelstam 2006; Roberge et al. 2008). Other 414 

species preferring deciduous forests included the icterine warbler and thrush nightingale. The latter 415 

received surprisingly low values for parameters describing the volume of vegetation (AGB and F_veg, 416 

especially). This is likely to be due to the fact that thrush nightingales are normally observed singing 417 

close to an edge and therefore the buffer around the observation point is likely to include habitat pixels 418 

with zero values (i.e. agricultural lands, urban areas, water and so on). We ran a test of the individual 419 

thrush nightingale buffers and found out that nearly half of the pixels had zero values for the number of 420 
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vegetation hits (F_veg), for example. This is in high contrast with the habitat pixels inside red-breasted 421 

flycatcher buffers of which only 15% had zero values. A similar pattern probably holds true for the 422 

Eurasian wryneck and long-eared owl both of which are species that also prefer edge habitats (Väisänen 423 

et al. 1998).  424 

 425 

There were, however, few species for which the results found were in discordance with their known 426 

ecology and habitat preferences. These results are likely to be artefacts caused by the combination of 427 

the species’ ecological traits and observation factors. Our results regarding the honey buzzard, for 428 

example, suggest that the species would prefer habitats with low biomass, low lying trees, and sparse 429 

vegetation. This is not in accordance with what is known about the breeding habitats of honey buzzard: 430 

the species nests in mature mixed stands with Norway spruce, birches and European aspen (Björklund 431 

et al. 2015). However, the CS data are mostly of individuals seen hunting or displaying over their 432 

territory, and not from their nest site where the species is very hard to observe. Therefore, the results 433 

relate more to the characteristic of honey buzzard’s hunting grounds than its core territory.  434 

 435 

4.2 Applicability of the methodological setup 436 

 437 

Our results indicate the usefulness of structural ALS based forest parameters for studying bird ecology 438 

as previous studies have already revealed (Hill et al. 2004; Bradbury et al. 2005; Clawges et al. 2008; 439 

Graf et al. 2009; Goetz et al. 2010). Our set of structural forest parameters revealed habitat preferences 440 

in the case of several bird species which implies potential for using them in habitat models. However, CS 441 

data should not be used with models/tools that require the assumption of the dataset being independent 442 

sample from the unknown probability distribution. Particularly BALM (basal area larger than mean) and 443 

Hdom (dominant height) revealed differences among multiple bird species. While Hdom describes the 444 

development of the higher canopy, BALM expresses the ingrowth of understorey vegetation under the 445 

dominant tree crowns. Previous studies have shown that joint variables explain better patterns related to 446 

bird habitat selection (Heikkinen et al. 2004). These particular parameters, Hdom and BALM, were both 447 

obtained using a combination of ALS and field plots. An alternative to Hdom derived from ALS data only 448 

could be the height of the CHM which, although we employed it in an earlier study (Vihervaara et al. 449 

2015), it was ruled out among the parameters reported in this article because Hdom showed more 450 

relevant results. On the other hand, no ecology studies have considered the use of BALM before, and its 451 

use has so far been restricted to forest science (Gove 2004). Although many alternatives for estimating 452 

BALM from ALS have been proved reliable (Valbuena et al. 2014), current research has not yet found 453 

any alternatives to BALM derived from ALS data only. 454 

 455 

Our set of structural forest parameters revealed habitat preferences in the case of several bird species 456 

which implies potential for using them in habitat models. However, one essential assumption of 457 

modelling species distributions from presence-only records is that the data are an independent sample 458 

from the species’ unknown probability distribution of occurrence (Gomes et al. 2018). Our CS data do 459 
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not fulfil this requirement, and we believe that in general most CS data of birds do not meet this 460 

condition. This may be a serious drawback from the monitoring point of view. It is essential to understand 461 

the characteristics and limitations of CS data, and assumptions and pitfalls of the used species 462 

distribution modelling method. 463 

 464 

The ALS data are already freely available and the data are expected to cover the entire land area of 465 

Finland by 2019 (National Land Survey 2016), which creates an opportunity to apply the same 466 

methodology elsewhere. Multiple European countries have already reached the 100% ALS data 467 

coverage. Because of the increasing availability of ALS data, we also tested the reliability of indicators 468 

derived directly from the ALS data (e.g. Nelson et al. 1984; Lefsky et al. 2002; Miura & Jones 2010; 469 

Valbuena et al. 2017) without the support of field information for modelling and estimating forest 470 

parameters (e.g. Næsset 2002; Nelson et al. 2007; Asner & Mascaro 2014). Among many options that 471 

were initially tested (data not shown), we found two variables– Lskew and F_veg – that could be 472 

employed as proxies of forest parameters and linked to the bird species considered in this study. While 473 

F_veg (the proportion of ALS first echoes reflected from vegetation) can be considered as a ALS proxy 474 

for canopy cover (Nelson et al. 1984), Lskew (a ratio of L-moments showing the skewness of ALS echo 475 

height distribution) tells us about the availability of light passing through the dominant tree crowns 476 

(Valbuena et al. 2017). The reason for obtaining relevant results from these in particular is an indication 477 

that these characteristics can be among the most relevant in defining bird habitat preferences. In 478 

contrast with the remaining forest parameters requiring the acquisition of field plots, variables obtained 479 

directly from the ALS data could substantially increase the potential uses of these data. It can, as well as 480 

to decrease costs, enable us to measure the environment directly from ALS for the purpose of habitat 481 

characterization (Vierling et al. 2008) – in some cases as accurately as when including field data in the 482 

analysis. Further research should be devoted to investigating whether the inclusion of field data from 483 

forest plots could be critical to the habitat characterization of any particular species. 484 

 485 

One important question to consider is the size of the buffer around each observation point. The buffer 486 

has to be large enough to deal with the inaccuracies of the CS observation data. The accuracy by which 487 

bird enthusiasts mark a spot on a digital map when reporting a bird observation is rarely very high. 488 

Choosing one or only a few pixels as the bird’s habitat (location) would quite likely also exceed the 489 

accuracy of the ALS data. On the other hand, increasing the buffer radius around each observation point 490 

beyond 50 metres (0.8 hectares in area) leads to a decrease in the difference between the buffers and 491 

the whole landscape. Mainly due to private ownership, which in Finland typically implies small forest 492 

stands (Parviainen & Västilä 2011) and large structural heterogeneity (Valbuena et al. 2016), buffers 493 

larger than one hectare begin to include parts of other habitat patches than of that where the bird was 494 

actually observed. Determining the suitable buffer size would require further investigation.          495 

 496 

It is important to keep in mind that the CS data that we used do not represent a probability sample and 497 

therefore it should be carefully considered whether statistical testing should be applied for the data, and 498 
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whether statistical significance tests would be valid for these purposes. The approach of combining CS 499 

and ALS (with or without field plots) should always be considered species-specifically in relation to 500 

species ecology and the quality of observations (Pettorelli et al. 2014; Vihervaara et al. 2015). 501 

Nevertheless, we consider that combinatory studies with CS and ALS data holds considerable potential 502 

to be used in revealing the suitable habitats of many specialised species across the landscape. Because 503 

of this, similar analyses would also be applicable to detecting areas of special conservation value (Farrell 504 

et al. 2013; Rechsteiner et al. 2017), and in biodiversity conservation in general (Butchart et al. 2010). 505 

Further, proxy maps for biodiversity in landscape-scale ecosystem service assessments (Nelson et al. 506 

2009; Kopperoinen et al. 2014) can be created by similar means. Furthermore, the tested forest 507 

parameters have many potential applications in ecosystem service analyses (Pettorelli et al. 2014). Our 508 

study will be taken further by running the species distribution maps based on the results of this study.  509 

 510 

Citizen science, with careful data refinement and consideration of the limits of CS observations, showed 511 

much potential for being used in further analyses in predicting the potential habitats of some forest bird 512 

species. These were species that were typically observed close-by and at the core of their territories. 513 

Using these types CS observations for predicting the habitats of species with large home ranges, for 514 

example, would require a somewhat different approach (larger buffers, more careful consideration of the 515 

observation times and other circumstances etc.). Means of coping with the uneven distribution 516 

observation effort could also be developed. A compensation factor for roads and nearness of towns and 517 

cities could be devised, for example. The quality of CS observations could also be raised by some quite 518 

easy means. Location errors in observations could be overcome by in-situ reporting with smart phone 519 

applications using GPS (already partly in place) and birdwatchers could be directed to report more useful 520 

data by redesigning reporting forms (now, in Tiira, only giving the location of the observer in mandatory, 521 

for example).  522 

 523 

 524 

5 CONCLUSIONS  525 

 526 

This study showed the potential of combining CS bird observation data with forest parameters derived 527 

from ALS with field measurements or ALS alone in detecting the habitats preferred by several forest 528 

dwelling bird species. In general, bird species with small or medium territories reflected better their true 529 

habitat preferences than species with large territories. Also the way how CS observations are made and 530 

recorded plays a role – if the observation is made from a close distance and if the species is rather seen 531 

than only heard the coordinates can be expected to be more accurate. We therefore conclude that the 532 

precision of species location in data collected via CS must be in accordance with the spatial resolution of 533 

the RS data for this type of analysis to be useful. We emphasize that expertize of species ecology is 534 

essential as well as a thorough understanding of the CS data including factors related to reporting 535 

observations. On the whole, the use of CS with ALS holds great promise for modelling bird habitats for 536 
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specialised species and can be expected to contribute to ecosystem mapping and assessment also on a 537 

larger scale.   538 
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