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1 Background

A proper dynamic simulation model provides a tool
for simultaneously evaluating process and control de-
sign. This is especially valuable for engineering complex
industrial processes. While various modelling method-
ologies have already gained a lot of attention, effective
means to exploit the developed models are equally cru-
cial for increasing the use of simulation-aided engineer-
ing, and deserves more attention. This research is spe-
cially focusing at complex maritime problems involving
energy systems and operative aspects [1, 2].

2 Aims

Our objective is to use dynamic simulators out of the
box without significant model reformulation, harness
cloud resources for simulation-based optimization and
facilitate the work flow by developing a framework ca-
pable of coping with their complexity and exploiting
their scalability.

3 Materials and methods

A schematic view of the optimization framework is pre-
sented in Figure 1. An optimizer executes dynamic sys-
tem simulations to evaluate solution candidates. In such
simulation-based optimization, the simulations are usu-
ally the dominant computational workload. Our frame-
work provides parallel execution of these simulations in
the cloud. This benefits optimization methods that are
able to exploit parallel evaluation; we use a genetic algo-
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Fig. 1. Architecture of the optimization framework

rithm [3], which can evaluate each generation of solution
candidates in parallel.

In our framework the simulations are actually ex-
ecuted by a distributed simulation service. The opti-
mizer posts simulation jobs to the service and retrieves
results via a REST and WebSocket interface. Such a
strict interface allows the optimizer and the simulation
service to run on different hosts. It also allows them
to be implemented in different languages: currently we
use Opt4J [4], a Java-based open source optimization
framework, whereas the simulation service is written
in Python. The simulation service makes use of several
open source libraries and frameworks: Flask for the web
service, Dask for managing distributed computation and
ZODB for data storage.

For cloud deployment the simulation server is pack-
aged in a Docker image along with the simulator and
whatever model data is required. It can then be installed
in a Kubernetes cluster with Helm. It is possible to have
multiple instances of the simulation service in the same
cluster; each instance is specific to a particular model.
An ingress server provides them with a common access
point and handles security. The optimizer may execute
in the cloud or locally on the user’s computer. Its com-
putational load is minimal but a reliable network con-
nection to the simulation service is necessary.

4 Results

The framework has been implemented and initial tests
have been conducted with a simple Matlab-based model,
which was compiled into a Linux executable with the
Matlab Compiler. It was then packaged with the simu-
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Fig. 2. The Opt4J graphical user interface. The graph shows the
best objective value by each generation.

lation server and the required Matlab runtime, and de-
ployed to an Azure Kubernetes Service (AKS) instance.
The optimizer was executed locally, allowing us to mon-
itor progress with the graphical interface provided by
Opt4]J (Figure 2).

We initially hoped to run the simulation service on
Azure Container Instances (ACI), without managing
virtual machines. Virtual Kubelet would dispatch our
containers from AKS to ACI. This technology turned
out to have significant restrictions and reliability prob-
lems. Eventually we had to settle for regular AKS nodes,
i.e., virtual machines. That seemed to work fairly reli-
ably but requires scaling the cluster to an appropriate
number of nodes before the optimization run and scaling
it down to a minimal size afterwards (to avoid paying
for unused capacity).

5 Future work

Our test model was so simple that the simulation effort
largely consisted of starting the Matlab runtime. The
next step is to work with large-scale dynamic simulators.
The models origin from different simulation platforms,
including Apros and Matlab/Simulink. As the main re-
sults so far, we are sharing our experiences on the plat-
form implementation and its performance. A more com-
prehensive report is presented in [5].

In the later phase of the project, we continue with
industrial simulation cases. We want to find out the type
and scope of optimization problems that best fit this
approach. We also investigate which optimization algo-
rithms promote the optimization with the framework,

and how they should be tuned and modified to deliver
the best performance in the cloud environment.
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