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Writing in Nature Ecology & Evolution in 2018, we argued that there existed during the later 
Miocene of the Old World (ca 15-5 million years ago) “a single cohesive Old-World savannah 
palaeobiome of which the modern African savannah fauna is the surviving branch”1. Subse-
quently, Denk et al have taken issue with this interpretation and argued, using palaeobotanical 
data, that no such cohesive biome existed, and that a more compelling reconstruction sees 
mixed trees and shrublands dominant at that time2. In addition to defending our original inter-
pretation we would like here to clarify some terms used in our paper, as we feel that much of 
the apparent discrepancy may actually reflect differences in terminology. 

 We used the term savannah in a broad sense, common in Neogene and Quaternary palaeo-
ecology3, meaning a woodland to grassland biome characterised by co-dominance of trees 
and grasses4, the “mixed grass–tree biome” of Ref 5. In contrast, Denk et al, approaching the 
matter from a botanical perspective, adhere to a more restricted definition of savannah as 
grasslands. We formulated the term Old World Savannah Paleobiome (OWSP) to describe 
localities showing high similarity to our selected reference localities representing open-
adapted large mammal communities: Lower Nawata, Pikermi, and Baode. These localities 
have all been previously identified as representing woodland-dominated, or mixed woodland-
grassland ecosystems6-9 through methods independent of mean ordinated hypsodonty. The 
evidence includes microwear, mesowear, stable isotope, phytolith, sedimentological, and 
functional morphological approaches, and covers Late Miocene sites from Turkey, Hungary, 
Bulgaria, Greece, Iran, and China6-16. Denk and colleagues’ critique of our interpretations 
therefore stands against a wide, multiproxy literature repeatedly confirming the dominance of 
woodland and grassy woodland environments across a wide swath of Eurasia and Africa dur-
ing the late Miocene.  
 
We used the term cohesive, to which Denk et al2 object, to imply interconnectedness of the 
faunal assemblages rather than uniformity of vegetation cover, which we should have made 
more explicit. The genus-level similarity analysis of large mammal faunas was used to trace 
the origin and dispersal of mammals within the OWSP as it expanded and contracted, in sync 
with the environment as approximated by mean hypsodonty (our figures 2 and 3)1. It was 
cohesive in the sense of connectedness of internal dispersal, not in the sense of being at all 
times and in all places a uniform system. We propose that in the OWSP, the diverse habitat 
of the Hipparion fauna17, increasing overall and seasonal aridity created a world in which her-
bivores were progressively adapting to similar limiting conditions over vast areas.  
 
It is not unexpected for phytological and zoological proxies to result in differing reconstruc-
tions. Even present-day mammal zoogeography (e.g., Ref. 18, Fig. 3c) does not exactly match 
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terrestrial vegetation biomes (e.g., Ref. 19, Fig. 4.3). Within a zoogeographic region, the ter-
restrial vegetation biomes may vary from semi-desert to forest.  It has also been suggested 
that vertebrate fossils and macrofossils/palynomorph floras may reflect different environmen-
tal conditions and climatic cycles9 though space prohibits further discussion here. 
 
In principle, the existence of vegetational differentiation – including forests – within the large 
area covered by the OWSP is of course inevitable and we never doubted it. Indeed, such 
heterogeneity is also suggested by our own results, e.g., our Figs 2-31. We deliberately used 
the robust but coarse metric of mean ordinated hypsodonty as a proxy for environmental 
harshness in general20. We did so because we expected that, while the local details would 
vary, the overall effect would be one of lowered ecosystem productivity, increased seasonality, 
and other factors contributing to harshness. Although more detailed ecometric models of cli-
mate or vegetation were available, we accordingly selected mean hypsodonty as the appro-
priate metric21- 25. 
 
Denk and colleagues’ paper2 is a welcome opening towards the holistic survey of evidence 
and we look forward to discovering what exactly the floristic patterns mean in terms of habitats 
and ecosystems, and whether there is any actual disagreement in the reconstructions or in-
terpretations of either of the methodologies. 
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