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Abstract1

Airplane sanitary facilities are shared by an international audience. We hypothesized2

the corresponding sewage to be an extraordinary source of antibiotic resistant bacteria3

(ARB) and resistance genes (ARG) in terms of diversity and quantity. Accordingly,4

we analyzed ARG and ARB in airplane-borne sewage using complementary approaches:5

metagenomics, quantitive PCR, and cultivation. For the purpose of comparison, we also6

quantified ARG and ARB in the inlets of municipal treatment plants with and without7

connection to airports. As expected, airplane sewage contained an extraordinary rich8

set of mobile ARG and the genes’ relative abundances were mostly increased compared9

to typical raw sewage of municipal origin. Moreover, combined resistance against third10

generation cephalosporins, fluorochinolones and aminoglycosides was unusually common11

(28.9%) among E. coli isolated from airplane sewage. This percentage exceeds the one12

reported for German clinical isolates by a factor of eight. Our findings suggest that13

airplane-borne sewage can effectively contribute to the fast and global spread of antibiotic14

resistance.15
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1 Introduction17

Since their discovery in the 1940s, antibiotics saved millions of lives, but due to the18

global spread of resistance genes these drugs rapidly lose their activity. This threat-19

ens the very core of modern medicine by limiting the means to effectively cure bacterial20

infections (World Health Organization, 2015). In the era of globalization and high mobil-21

ity, pathogenic strains carrying antibiotic resistance genes (ARG) are spreading quickly22

and globally (Nordmann et al., 2011). In the endeavor to decelerate or stop the spread23

of antibiotic resistance, it is necessary to identify the hotspots and pathways of ARG24

dissemination.25

Airports are places where sewage of people from different parts of the world is collected26

and, after treatment, released in the local aquatic environment. It is thus reasonable to27

assume that airports serve as an entrance for ARG which are endemic in specific parts of28

the world while being rare or absent in the flights’ country of destination. This should be29

reflected in a particularly high diversity of ARG in airplane-borne sewage as compared30

to conventional municipal wastewater (hypothesis 1).31

The prevalence of antibiotic resistant bacteria (ARB) is known to be linked with32

veterinary and human antibiotic use (World Health Organization, 2014). Specifically,33

Forslund et al. (2013) found the resistance potential in human guts to be positively34

correlated with country-specific antibiotic use. In Germany, antibiotic consumption is35

relatively low compared to, e.g., China, India, or the USA (Van Boeckel et al., 2014)36

and it is also lower than in many member states of the EU (European Surveillance of37

Antimicrobial Consumption Network, 2017). Consequently, airplane-borne sewage was38

hypothesized to contain ARB and ARG in elevated abundances as compared to standard39

municipal sewage generated by the local population (hypothesis 2).40

The two hypotheses related to the diversity and abundance of ARG were tested by41

the complementary approaches of metagenome sequencing, quantitative PCR (qPCR),42

and cultivation, thereby providing a comprehensive picture of antimicrobial resistance43

in studied systems. Specifically, the strength of the metagenomics approach lies in its44

capability to detect and quantify the full spectrum of ARG with the downside of lim-45

ited sensitivity. Quantitative PCR, on the other hand, allows even rare genes and gene46

variants to be quantified since the target sequences are specifically amplified. However,47

qPCR necessarily has a narrow focus dictated by the chosen primers. Finally, suscepti-48

bility tests provide the only means to study phenotypic antibiotic resistance, including49

multi-resistance. Unlike the other techniques, cultivation covers a small part of the mi-50

crobial community only.51

In this study, any of the three approaches was used to quantify antibiotic resistance52

in untreated sewage collected from (1) airplane tanks and (2) the inlets of municipal53

wastewater treatment plants (WWTP). The set of WWTP was chosen such that some of54

the plants received wastewater from the nearest airport while others did not. The latter55

distinction was made to test whether the hypothesized peculiarities of airplane-borne56

sewage are still noticeable after mixing with "conventional" municipal wastewater.57

2 Material and methods58

2.1 Sampling59

Eight grab samples of airplane-borne sewage were obtained from five different airports,60

three of which were sampled twice (with sufficient delay to ensure independence). Three61

of the airports had >20 million passengers p.a. in 2015 while the other two were of62

intermediate size (>10 million passengers p.a.) or smaller. The sewage was gathered63

from vacuum trucks collecting the waste from multiple aircrafts. Since the aircraft’s64
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tanks are emptied on demand, each tank contains sewage from multiple flights. The65

samples thus represent pooled samples integrating over space and time.66

Incoming sewage from WWTP having a connection to airports was collected at six67

different locations, two of which were visited twice (total number of eight samples; each68

being a 24 h composite). At the respective plants, airport-borne sewage was known69

to contribute at least 20% of the total inflow. These 20% represent a mixture of fecal70

material from airplane tanks with sewage from other airport facilities such as terminal71

buildings. Detailed data on mixing ratios and its temporal variation were unavailable to72

us. Surface runoff from airports is generally disposed separately from sewage not least73

because of the possible contamination with, e.g., de-icing agents.74

Incoming sewage from WWTP without connection to airports was collected at six75

locations. At one of the locations, samples were taken from four different sewers and76

another plant was sampled multiple times (with sufficient delay to ensure independence).77

The total number of 24 h composite samples was 19.78

All samples were stored in 1 L sterile glass bottles at 4 ◦C and processed within 24 h.79

Relevant meta-information is provided in Table S.1.80

2.2 Metagenomics81

DNA was extracted using the PowerWaterKit (MoBio, Vancouver, Canada; see Ta-82

ble S.1 for amount and quality of DNA). All samples were shotgun-sequenced on a83

MiSeq device (2×150 bp; GATC Biotech AG, Konstanz, Germany). Quality checking and84

trimming (q=28, minimum length=100 bp) was performed using TrimGalore! (http:85

//www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The preprocessed86

forward reads were then aligned to the latest (2019-03-05) resfinder data base (Zankari87

et al., 2012). Specifically, we relied on the python implementation of the resfinder88

script which is publicly available from the Center for Genomic Epidemiology (http:89

//www.genomicepidemiology.org/). The resfinder script attempts to match the nu-90

cleotide sequences contained in the samples with the sequences of known ARG as stored in91

the resfinder data base. Internally, the resfinder script calls the Basic Local Align-92

ment Search Tool (blastn; http://blast.ncbi.nlm.nih.gov) to compare nucleotide93

sequences. blastn-reported alignments with e-values exceeding 10−10 were generally94

ignored to minimize the chance of false positive hits.95

The set of unique ARG contained in a particular sample was established from the full96

list of resistance genes whose signatures matched with a nucleotide sequence from the97

sample. Technically speaking, the obtained list of hits was filtered to remove any dupli-98

cate gene identifiers. The resfinder data base holds information on a large number genes99

and variants, e.g. about 2000 of the registered ARG target beta-lactams. So as to focus100

on ARG diversity at a higher level, we generally truncated the genes’ identifiers at the101

first underscore before establishing the unique set of ARG. For example, instead of count-102

ing the tetracycline resistance gene variants tet(M)_7_FN433596 and tet(M)_1_X92947103

as individual instances, they were commonly registered as just tet(M). For the purpose104

of additional quality assurance, a particular gene was only registered as present if its105

signature was detected at least three times. Moreover, nucleotide sequences matching106

the signatures of multiple ARG registered in the resfinder data base (ambiguous hits),107

were ignored altogether.108

2.3 Quantitative PCR109

Fourteen ARG were selected for qPCR-based quantification in line with activities of110

international research consortia investigating antimicrobial resistance in aquatic environ-111

ments. The set of ARG includes common and rare ones with a special focus on clinically112
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relevant genes coding for carbapenemases (blaTEM, blaCTX-M-15, blaCTX-M-32, blaCMY-2,113

blaOXA-48, blaOXA-58, blaKPC-3, blaNDM-1, blaVIM-2, ermB, mecA, mcr1, tetM, sul1). All114

ARG as well as 16S rRNA genes were quantified following the same procedure as de-115

scribed in Heß et al. (2018). The relevant references for the primers of the additionally116

quantified ARG are the NORMAN network (www.norman-network.net) for blaTEM, and117

blaCTX-M-32, the ANSWER project (www.answer-itn.eu) for blaCTX-M-15, Kurpiel and118

Hanson (2012) for blaCMY-2, Monteiro et al. (2012) for blaOXA-48, Hembach et al. (2017)119

for mcr1, and Peak et al. (2007) for tetM. Primer sequences can be found in Table S.2. For120

the 16S rRNA gene, sul1 and blaCTX-M-32 the pNORM plasmid designed by Ch. Merlin121

(University of Lorraine, France; www.norman-network.net) was used as standard. For122

the remaining genes, standards were created by cloning the respective qPCR amplicons123

into the pGEM-T vector (Promega, Madison, Wisconsin, USA).124

The detection limit was 102 copies per reaction for all genes. The efficiency of these125

assays was between 0.9 and 1 with R2>0.997 for all the runs. All genes were quantified126

in duplicates with a standard deviation of the cycles <0.2.127

2.4 Standardization of data and community analysis128

In the context of this study, the diversity and abundance of ARG was to be compared129

across samples of varying composition and dilution (toilet waste, municipal wastewater),130

hence, standardization was required. With regard to ARG abundances, we adopted the131

common practice of dividing absolute ARG counts by the corresponding number of 16S132

rRNA copies (see, e.g. Pärnänen et al., 2019). The resulting numbers are referred to as133

relative abundances. We applied the same standardization also to metagenomics-based134

information on ARG diversity. Specifically, the diversity of resistance genes was expressed135

as the number of unique ARG per 1000 copies of 16S rRNA genes.136

The calculation of relative ARG abundances from qPCR-based data involved a qPCR-137

based quantification of 16S rRNA genes (see Table S.2 for primer). Likewise, metagenomics-138

based information on ARG was standardized using metagenomics-based estimates on the139

abundance of 16S rRNA genes. The latter was extracted from the nucleotide sequences140

using METAXA2 (Bengtsson-Palme et al., 2015b, version 2.1.3).141

The number of 16S rRNA gene copies per bacterial cell is known to vary between142

taxonomic groups. Consequently, a comparison of relative ARG abundances (or ARG143

diversities) requires that the respective microbial communities are similar in terms of144

taxonomic composition or, at least, with regard to the community-weighted average145

number of 16S rRNA gene copies per cell. We employed METAXA2 to infer information146

on the composition of the microbial community based on 16S rRNA. Finally, we relied147

on the rrnDB data base (Stoddard et al., 2015) to compute for all metagenomics-samples148

the expected average number of 16S rRNA copies per bacterial cell taking into account149

taxonomic groups and their proportions. The matching of taxonomic items reported by150

METAXA2 with items registered in rrnDB was successful at family level in 86% of the cases,151

at genus level in 54% of the cases and at species level in 10% of the cases.152

2.5 Bacteria isolation and susceptibility testing153

Escherichia coli was chosen as a model organism because it is widely considered as a fecal154

indicator and resistance levels of E. coli from different origins are well documented (e.g.155

European Centre for Disease Prevention and Control, 2017; Osińka et al., 2017; Rosas156

et al., 2015). E. coli is furthermore a potential pathogen and its harboring of resistance157

genes can thus directly impact human health.158

To obtain at least 24 E. coli isolates from each sample, suitable dilutions were plated159

on mFC agar (Carl Roth, Karlsruhe, Germany). After 18 ± 2 h of incubation at 44 ◦C160
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blue colonies were streaked on Brilliance agar (Oxoid, Wesel, Germany) and grown161

overnight at 37 ◦C to obtain pure cultures. To identify the isolates as E. coli, colony162

PCR was performed as in Heß et al. (2018) to amplify a species specific fragment of the163

yccT gene.164

In total, 1140 E. coli isolates (Table S.1) were tested against 24 antibiotics which are165

commonly used to treat the respective infections (187 isolates from airplanes, 161 and166

362 isolates from the inflow of municipal treatment plants with and without connection167

to an airport). The tests followed the EUCAST guidelines (agar diffusion test; www.168

eucast.org) with Escherichia coli ATCC 25922 as a quality control. Applying the clinical169

breakpoints defined by EUCAST, the isolates were classified as resistant or susceptible170

(intermediary was counted as susceptible).171

2.6 Statistics172

Data analysis was conducted with R 3.4.3 (R Core Team, 2017). Relative ARG abun-173

dances in samples of different origin were compared using the Welch test (t.test())174

with log-transformed data. A non-parametric rank sum test (wilcox.test()) was used175

to test for differences in ARG richness. Proportion data were tested for significant dif-176

ferences using Fisher’s exact test (fisher.test()). In case of multiple tests, p-values177

were conservatively adjusted with the default p.adjust() method Holm (1979). p-values178

were marked with asterisks according to the usual convention where ∗ indicates p ≤ 0.05,179

∗∗ denotes p ≤ 0.01 and ∗∗∗ corresponds to p ≤ 0.001. Bootstrap confidence inter-180

vals (Fig. 5) were generated with boot() using ordinary resampling and 104 replicates.181

Rarefaction curves (Fig. 3) were constructed from metagenomics data by evaluating an182

increasing number of sequences from the whole set of sequences available for a particular183

sample by means of sampling without replacement (R method sample). To minimize184

random effects, we considered the medians of five replicate rarefaction curves per sam-185

ple. Statistical models fitted to empirical rarefaction curves (Fig. 3) take the structure186

of Eqn. 1 where R represents the number of different ARG, n denotes the number of187

analyzed sequences, and Rinf and h are free parameters, respectively, fitted with R’s188

default optimizer (optim).189

R = Rinf ·
(

n

n+ h

)0.5

(1)

Based on the overall number of sequences in a sample and the corresponding num-190

ber of 16S rRNA copies, the variable n was adjusted individually for each sample to191

pragmatically compensate for varying proportions of bacterial and non-bacterial DNA.192

3 Results193

3.1 Characterization of samples194

In accordance with expectation, untreated wastewater sampled at WWTP inlets was195

generally more diluted as compared to the sewage derived from airplane tanks. This is196

reflected, for example, in the electric conductivity but also in the number of 16S rRNA197

gene copies per volume (Table 1). In addition, airplane sewage exhibited higher values198

of pH which is likely due to an elevated concentration of soap residues.199

The metagenomics-derived information on 16S rRNA fragments allowed for a deeper200

characterization of the samples in terms of the composition of the bacterial community.201

The latter was very similar in all samples taken at the inlets of WWTP whereas airplane-202

borne samples showed larger variations in the contribution of different bacterial orders203

(Fig. 1). Moderate contrasts were observed between samples of different origins in terms204
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Table 1: Mean values of electric conductivity (EC), pH, and the concentration of 16S
rRNA genes in samples of different origins. The corresponding information for individual
samples can be found in Table S.1.

Origin EC (mS cm-1) pH 16S rRNA gene copies mL-1

Airplane 10.1 8.9 1.6×109

WWTP, with airport 1.7 7.3 2.6×108

WWTP, no airport 1.1 7.3 2.9×108

of taxonomic diversity. For example, the signatures of 6.5 bacterial families (median) were205

detected in 105 nucleotide sequences obtained from airplane sewage. This compares to206

values of 4 and 3 for wastewater from WWTP with and without connection to airports,207

respectively. This fact is also visible in Fig. 1 which shows a greater evenness in the208

contribution of taxonomic groups for airplane-borne samples as compared to WWTP209

samples. Characteristic differences between samples of different origins were observed,210

e.g., for Aeromonadales and Campylobacterales (rare in airplane sewage but common211

in WWTP samples) as well as Enterobacterales and Erysipelotrichiales (rare in WWTP212

samples but highly abundant in some airplane samples).213

0% 20% 40%
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Pseudomonadales

Neisseriales

Lactobacillales

Flavobacteriales
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Figure 1: Percentage of 16S rRNA fragments attributable to different bacterial orders.
Lines depict individual samples. Bacterial orders which did not contribute at least 5%
in any of the samples were dropped for the sake of clarity.

.

In spite of the differences in taxonomic composition, the expected number of 16S214

rRNA genes per cell varied only little between sample of different origin. The merging215

of the metagenomics-based taxonomy data with information from the rrnDB data base216

resulted in a mean value of 4.9 copies of 16S rRNA genes per cell for airplane-borne217

samples. The respective mean values for raw wastewater with and without connection to218

airports were 4.5 and 4.8, respectively. The most extreme ratios observed for individual219

samples ranged between 4 and 5.5 and none of the differences in means fulfilled the220

criteria of statistical significance (ANOVA: p > 0.23; all p > 0.13 in post-hoc rank sum221

tests). In view of that, a standardization of ARG counts by the corresponding number222

of 16S rRNA genes (see Sec. 2.4) was considered appropriate. In other words, it is very223

unlikely that marked shifts in the relative abundance of ARG, e.g. between samples of224

different origin, merely reflect dissimilarities of the respective bacterial communities.225
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3.2 Diversity of antibiotic resistance genes226

As outlined in Sec. 2.2, the diversity of antibiotic resistance genes was expressed as the227

number of unique ARG per 1000 copies of 16S rRNA genes. That measure of diversity228

was found to be significantly increased in airplane sewage as compared to untreated229

sewage sampled from the inlets of municipal WWTP (Fig. 2; p < 0.05, Wilcoxon rank230

sum test). On average, a unique ARG was detected every 580 copies of 16S rRNA genes231

in airplane sewage. In the WWTP samples, a unique ARG appeared every 750 copies of232

16S rRNA genes. WWTP samples were statistically similar in terms of ARG diversity233

regardless of whether the plant received sewage from an airport or not (blue vs. green234

boxes in Fig. 2).235

●●

1.0 1.5 2.0 2.5

Number of unique ARG per 1000
 16S rRNA gene copies

Airplane
(n = 6)

WWTP,
with airport

(n = 7)

WWTP,
no airport

(n = 7)

Figure 2: Diversity of antibiotic resistance genes in samples of untreated sewage collected
from airplanes and WWTP with/without connection to airports. Whiskers extend to the
most extreme data points not being classified as outliers.

.

The numbers on ARG diversity presented in Fig. 2 represent point estimates based236

on the number of sequences in each sample and the respective number of 16S rRNA gene237

copies. In order to verify the robustness of these estimates, we computed rarefaction238

curves for all samples processed with metagenomics (Fig. 3). The latter confirm that239

samples of airplane sewage are likely to contain a greater number different ARG in a240

given amount of DNA as compared to untreated wastewater. For example, the average241

number of unique ARG per 5×106 sequences was about 110 in airplane-borne samples242

compared to about 85 in samples taken from the inlets of WWTP (Fig. 3).243
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Figure 3: Rarefaction curves relating the number of unique ARG to the number of
analyzed sequences (adjusted for varying abundances of 16S rRNA genes). Point symbols
represent empirical estimates for individual samples. Statistical models of the form of
Eqn. 1 (lines) were fitted to all points of a particular sample origin.

.

3.3 Abundance of antibiotic resistance genes244

The metagenomics data indicate an increased relative abundance of ARG in airplane245

sewage as compared to sewage sampled at the inlets of WWTP (Fig. 4). The elevated246

prevalence in airplane-borne sewage was most pronounced for ARG directed against247

phenicols, sulphonamides, and tetracyclin (p < 0.01) as well as aminoglycosides and248

macrolides (p < 0.05, two-sided Welch test, conservatively adjusted for multiple testing).249

Contrary to the trend, ARG targeting colistin were more abundant in municipal sewage250

than in airplane sewage (value near limit of quantification). Generally, the samples taken251

at treatment plants with and without connection to airports (green and blue symbols in252

Fig. 4) did not exhibit significant differences in terms of relative abundances according253

to the Welch test.254

The auxiliary qPCR-based analyses support the main outcome of the metagenomics255

approach depicted in Fig. 4. Specifically, the relative abundances of sul1 (sulphonamide)256

and tetM (tetracycline) resistance genes were significantly increased in airplane samples257

compared to samples taken at the inlets of WWTP (Table 2). The median relative258

abundances differ between the two sample origins by factors of 5 (sul1) and 18 (tetM),259

respectively.260

With the exception of blaVIM-2, differences in relative abundance between airplane261

and WWTP samples were not statistical significant for the remaining ARG (Table 2).262

Especially for the ß-lactamase genes, this finding is compatible with the metagenomic263

results (Fig. 4) according to which the total prevalence of genotypic ß-lactam resistance264

was only slightly increased in airplane-borne samples.265

8



●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

lo
g 1

0 
re

la
tiv

e 
ab

un
da

nc
e

−
5

−
4

−
3

−
2

−
1

M
ac

ro
lid

e

Te
tr

ac
yc

lin

A
m

in
og

ly
co

si
de

B
et

a−
la

ct
am

S
ul

ph
on

am
id

e

P
he

ni
co

l

Q
ui

no
lo

ne

C
ol

is
tin

Tr
im

et
ho

pr
im

Airplane
WWTP, with airport
WWTP, no airport

Figure 4: ARG copies per 16S rRNA gene copies in untreated sewage collected from air-
planes and WWTP with/without connection to airports. The respective information on
ARG and 16S rRNA genes is based on the metagenomics analysis. Genes were aggregated
by target drug classes to reduce the complexity of information.

WWTP samples with and without contribution of airport sewage were also processed266

through qPCR. Like with the metagenomics approach, statistically significant differences267

between the two origins in terms of relative abundance could not be established (same268

set of ARG as in Table 2, results not shown).269

Table 2: Relative abundance of resistance genes (ARG copies per 16S rRNA gene copies)
in airplane sewage and the influent of wastewater treatment plants with connection to
airports. Reported numbers are median values obtained by qPCR. Adjusted p-values
refer to a two-sided Welch test.

Target class ARG Airplane
(n=8)

WWTP, with airport
(n=8)

adj.
p-value

Colistin mcr1 2.8×10-6 9.7×10-6 0.81
MLSB ermB 2.0×10-2 1.7×10-2 1
ß-lactam blaKPC-3 1.6×10-7 2.0×10-7 1
ß-lactam blaOXA-48 6.5×10-6 1.3×10-3 0.33
ß-lactam blaOXA-58 1.6×10-6 6.1×10-4 0.22
ß-lactam blaTEM 1.1×10-3 4.3×10-4 1
ß-lactam mecA 2.7×10-7 2.3×10-7 1
ß-lactam blaCMY-2 2.2×10-4 1.8×10-5 0.81
ß-lactam blaCTX-M-15 3.2×10-4 4.5×10-5 0.81
ß-lactam blaCTX-M-32 8.3×10-4 1.3×10-4 0.81
ß-lactam blaNDM-1 1.5×10-5 2.2×10-5 1
ß-lactam blaVIM-2 0 1.4×10-4 0.037∗

Sulphonamide sul1 4.7×10-2 9.2×10-3 0.019∗

Tetracyclin tetM 2.4×10-2 1.3×10-3 9.4e-05∗∗∗
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3.4 Phenotypic resistance in Escherichia coli270

The highest percentage of resistant E. coli isolates was generally detected in airplane271

samples (Table 3). The difference in proportions between airplane and WWTP sam-272

ples was statistically significant for 18 out of 24 antibiotics. Some Odds ratios reached273

values around 40, namely for two cephalosporins (cefotaxime, cefuroxime) and one of274

the fluoroquinolones (ciprofloxacin). At the same time, the influent of treatment plants275

receiving sewage from airports did not exhibit elevated proportions of resistant E. coli276

when compared to treatment plants that do not receive such input (p-values generally277

> 0.15, results not shown).278

Table 3: Antibiotic resistance among E. coli isolated from airplane sewage and the inlet
of WWTP with connection to airports. Odds ratios (OR) greater than one indicate
a higher level of resistance in the airplane samples compared to WWTP samples. p-
values refer to Fisher’s exact test. SXT stands for the combination of trimethoprim and
sulfamethoxazole also known as co-trimoxazole.
Antibiotic Airplane WWTP, with airport OR adj. p-value
Ampicillin 125:187 21:161 13.3 2.9e-24∗∗∗

Amoxicillin-CA 65:187 8:161 10.1 1.3e-11∗∗∗

Piperacillin 21:187 5:161 3.9 0.032∗

Ticarcillin 55:187 4:161 16.3 1.3e-11∗∗∗

Cefepime 7:187 0:161 Inf 0.099
Cefotaxime 97:187 4:161 41.9 1.2e-26∗∗∗

Cefoxitin 9:187 1:161 8.1 0.12
Cefopodoxim 97:187 16:161 9.7 1.2e-16∗∗∗

Ceftazidim 67:187 8:161 10.6 3.3e-12∗∗∗

Cefuroxim 109:187 5:161 43.1 1.1e-30∗∗∗

Doripenem 4:187 3:161 1.2 1
Ertapenem 4:187 2:161 1.7 1
Imipenem 83:187 7:161 17.4 3.5e-18∗∗∗

Meropenem 56:186 7:161 9.4 7.8e-10∗∗∗

Ciprofloxacin 94:187 4:161 39.3 2.2e-25∗∗∗

Levofloxacin 82:187 8:161 14.8 4.8e-17∗∗∗

Norfloxacin 31:187 10:161 3.0 0.024∗

Amikacin 136:187 24:161 15.1 2.2e-27∗∗∗

Gentamycin 64:187 10:161 7.8 4.1e-10∗∗∗

Netilmicin 15:187 4:161 3.4 0.13
Tobramycin 126:187 17:161 17.3 1.2e-27∗∗∗

Tigecyclin 4:187 1:161 3.5 1
Chloramphenicol 128:187 39:161 6.7 1.4e-15∗∗∗

SXT 52:187 25:161 2.1 0.046∗

Almost 90% of the E. coli isolates from airplane samples were resistant to at least279

one of the tested antibiotics (Fig. 5). This compares to about 45–60% in samples taken280

at WWTP. The peculiarity of airplane sewage is also reflected in the proportion of multi-281

resistant isolates. Airplane-borne E. coli were far more likely to be resistant against282

≥ 3 classes of antibiotics than isolates obtained from raw sewage entering the WWTP283

(Fig. 5).284
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Figure 5: Prevalence of single- and multi-drug resistance among E. coli isolated from air-
plane sewage and WWTP influents with/without connection to airports. X-axis labels
indicate the number of ineffective classes of drugs. The classes covered by susceptibility
tests include penicillins, cephalosporines, carbapenemes, fluoroquionolones, aminogly-
cosides where each class is represented by 3–6 antibiotics (see 1st column of Table 3).
Further drug classes represented by a single substance include tetracyclines, phenicols,
and trimethoprim/sulfamethoxazole. Error bars represent 90% confidence intervals esti-
mated by bootstrapping.

3.5 Methodological aspects285

Since many of the available samples were processed in parallel through shotgun-sequencing286

and qPCR, there was a unique chance to compare the two approaches regarding the quan-287

tification of ARG. Doing so, we had to distinguish between unambiguous and potential288

hits in the metagenomes (Fig. 6). Unambiguous hits are those where a sample sequence289

(≈ 150 bp) matched just a single ARG registered in the data base (black symbols).290

This is in contrast to potential hits (gray symbols), where the sample sequence matched291

multiple related ARG among which is the particular gene of interest.292

In general, we observed a reasonable agreement between the metagenomics and qPCR293

data for ARG with relative abundances greater than about 10-3 copies (16S rRNA gene294

copies)-1. The correlation coefficients were > 0.98 for sul1 and tetM, for example, and295

> 0.93 for ermB (based on unambiguous hits). Nevertheless, Fig. 6 also shows some296

characteristic mismatches between the two approaches. Most notably, there appears to297

be a negative bias in the metagenomics-based estimates. At relative abundances > 0.01298

the deviation hardly exceeds 1/2 log unit but underestimation gets stronger as relative299

abundances decline. That negative bias gradually turns into failure of the metagenomics300

approach (symbols accumulating on the lower axis) as the signatures of rare ARG occur301

just by chance in the set of sample sequences (about 5×107 in this study).302

However, not all of the deviations depicted in Fig. 6 should be blamed on the limi-303

tations of metagenomics. For example, symbols associated with blaOXA-48 and blaTEM304

are far off the 1:1 line. This might well be due to unspecific amplification of primers305
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resulting in an overestimation of ARG abundances by qPCR.306
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Figure 6: Comparison of relative ARG abundances obtained with qPCR and metage-
nomics for identical extracts of DNA. The diagonal indicates a 1:1 match. The data
include raw sewage samples from all sources (airplane and WWTP). Note the custom
axes resulting from square-root transformation.

4 Discussion307

Cultivation and culture-independent techniques yielded a largely consistent and well308

differentiated picture of the prevalence of ARB/ARG in untreated wastewater of different309

origins. In agreement with initial expectations, sewage from airplane tanks was found to310

stand out from conventional sewage in terms of ARG diversity (Fig. 2). Nevertheless, the311

rarefaction models plotted in Fig. 3 suggest that the difference between airplane sewage312

and untreated municipal wastewater in terms of ARG diversity might level off for very313

large numbers of analyzed sequences. Considering the fact that municipal wastewater314

integrates bacteria from various sources besides those related to human waste (e.g. from315

pets, slaughterhouses, soil runoff, etc.) a convergence of the curves seems plausible. Thus,316

the main feature of airplane sewage appears to be the fact that a large number of different317

ARG can already be found in limited quantities of bacterial DNA. The mixing of human318

gut bacteria from different geographical backgrounds (hypothesis 1) provides a plausible319

explanation for this finding. Considerable variation in human resistomes is known to320

exist already at European level (European Centre for Disease Prevention and Control,321

2017; Pärnänen et al., 2019) and even larger disparities are expected on global scales. For322

example, Bengtsson-Palme et al. (2015a) demonstrated the import of ESBL-producing323

E. coli by travelers returning from India while no such import was observed from Africa.324

However, the elevated diversity of ARG in airplane sewage could also be due to alternative325
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mechanisms. For example, disparities in ARG diversity between samples of different326

origin might – at least in parts – reflect contrasts in taxonomic diversity. In particular, the327

elevated number of unique ARG in airplane sewage coincided with an increased diversity328

of bacterial groups as reflected in taxonomic evenness (Fig. 1) as well as in the number of329

bacterial families detected per 105 DNA sequences (Sec. 3.1). Against this background,330

the true cause(s) of the increased ARG diversity in airplane-borne sewage are yet to be331

explored. Instead of focusing on ARG diversity, future research might also attempt to332

identify specific ARG which are characteristic for wastewaters of different origin. Our333

metagenomics-based data suggest that such characteristic genes exist. For example, the334

beta-lactamase gene blaCARB-4 was found in high relative abundances in airplane sewage335

while it was never detected in any sample of municipal wastewater without contribution336

from airports. Similarly, the carbapenemase resistance gene blaOXA-427 was frequently337

detected in samples from WWTP influents while its signature was not found in any338

sample of airplane sewage.339

Our data clearly support the second hypothesis according to which airplane-borne340

sewage stands out from common untreated municipal wastewater in terms of the rel-341

ative abundance of ARG. The elevated prevalence of antibiotic resistance in airplane342

sewage was most clearly demonstrated by drug susceptibility tests carried out on E. coli343

(Table 3, Fig. 5). The high abundance of multi-resistant E. coli in airplane sewage is344

particularly remarkable. For example, the proportion of isolates carrying a combined re-345

sistance against 3rd generation cephalosporins, fluorochinolones and aminoglycosides was346

increased by a factor of about eight compared to German clinical isolates (28.9% com-347

pared to 3.5%; European Centre for Disease Prevention and Control, 2017). With regard348

to the prevalence of genotypic resistance, the clearest differentiation between wastewa-349

ters of different origin was obtained by the metagenomics approach (Fig. 4). The median350

relative abundance of ARG was higher in airplane-borne sewage than in conventional351

sewage for seven out of nine classes of target drugs. Similar to the case of gene diver-352

sity, the elevated prevalence of ARG/ARB in airplane sewage might reflect differences in353

gut microbiomes between the local population (Germany) and the flights’ or passengers’354

countries of origin. However, storage conditions in the airplanes’ wastewater tanks pro-355

vide an alternative explanation. Those tanks typically contain disinfectants. A common356

formulation certified for use in aircraft toilets lists alkylbenzyldimethylammonium chlo-357

ride, a quaternary ammonium compound, as its major ingredient. A number of potential358

linkages between this compound and antibiotic resistance bacteria is known to exist (see359

SCENIHR, 2009, Sec. 3.8.5). The sewage tanks might thus serve as incubators that select360

for antibiotic resistance via mechanisms of, e.g, cross- or co-resistance (Buffet-Bataillon361

et al., 2012). The "breeding" of ARB should be particularly efficient if the tanks are362

not completely purged, leaving a highly resistant inoculum for continued vertical and363

horizontal ARG transfer.364

In order to assess the potential risk associated with the special resistome of airplane365

sewage, information on the fate of the respective ARG/ARB is required. Our data in-366

dicate that airplane-borne sewage is strongly "diluted" upon mixing with wastewater367

from other sources. None of the employed methods (susceptibility tests, qPCR, metage-368

nomics) indicated significant shifts in ARG diversity or ARG/ARB prevalence between369

samples of raw sewage acquired from WWTP with and without connection to airports.370

Assuming that bacteria and genes do not undergo considerable retention or degradation371

in the sewer system, that lack of significance should mainly reflect the limits of current372

analytical methods to detect small increments in ARG/ARB abundances in the presence373

of considerable background levels (unfavorable signal-to-noise ratio).374

One might be tempted to conclude that airport-borne sewage is of little relevance375

for the dissemination of ARG because of the apparently strong dilution. Furthermore,376

13



airplane tanks are just one source of ARG and other hot-spots of antibiotic resistance377

are known to exist, e. g. large health care facilities. Such reasoning, however, disregards378

an essential property of genetic material, namely the potential for replication via hor-379

izontal and vertical transfer. Consequently, even very small amounts of ARG released380

into the water cycle may spread within the aquatic environment with the chance of381

(re)emerging in human pathogens. From this point of view, the potential threat coming382

from airport-borne sewage is not the quantity of imported ARG but the dissemination383

of resistances which are rarely found in the local environmental systems. This relates384

not only to rare ARG but also to combined resistances against multiple classes of drugs.385

With the example of E. coli, airplane-sewage was shown to be an unusual source of highly386

multi-resistant isolates. Nevertheless, we currently cannot provide evidence for the fact387

that rare ARG and/or combined resistances originating from airplane-sewage actually388

undergo considerable enrichment via selection or horizontal gene transfer in the receiv-389

ing treatment plants. As pointed out by Bengtsson-Palme et al. (2016), comprehensive390

analyses of resistant and susceptible strains in WWTP influents and effluents would be391

necessary to specifically target that question. As a consequence of our study, we suggest392

to first explore evolutionary processes inside airplane waste tanks and to look for options393

that prevent (or deal with) the increased level of antibiotic resistance "begin-of-pipe".394
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Table S.2: List of qPCR primers.
Amplicon

Gene Primer sequence size (bp) Reference
blaTEM Fwd. TTCCTGTTTTTGCTCACCCAG 112 NORMAN Network 1

Rev. CTCAAGGATCTTACCGCTGTTG
ermB Fwd. TGAATCGAGACTTGAGTGTGCAA 71 Alexander et al. (2016)

Rev. GGATTCTACAAGCGTACCTT
tetM Fwd. GGTTTCTCTTGGATACTTAAATCAATCR 88 Peak et al. (2007)

Rev. CCAACCATAYAATCCTTGTTCRC
sul1 Fwd. CGCACCGGAAACATCGCTGCAC 161 NORMAN Network 1

Rev. TGAAGTTCCGCCGCAAGGCTCG
blaCMY-2 Fwd. CGTTAATCGCACCATCACC 172 Kurpiel and Hanson (2012)

Rev. CGTCTTACTAACCGATCCTAGC
blaCTX-M-15 Fwd. CTATGGCACCACCAACGATACTYM 103 ANSWER Network 2

Rev. ACGGCTTTCTGCCTTAGGTT
blaCTX-M-32 Fwd. CGTCACGCTGTTGTTAGGAA 155 NORMAN Network 1

Rev. CGCTCATCAGCACGATAAAG
blaOXA-48 Fwd. TGTTTTTGGTGGCATCGAT 177 Monteiro et al. (2012)

Rev. GTAAMRATGCTTGGTTCGC
blaOXA-58 Fwd. GCAATTGCCTTTTAAACCTGA 152 Szczepanowski et al. (2009)

Rev. CTGCCTTTTCAACAAAACCC
mecA Fwd. CGCAACGTTCAATTTAATTTTGTTAA 91 Volkmann et al. (2004)

Rev. TGGTCTTTCTGCATTCCTGGA
blaNDM-1 Fwd. TTGGCCTTGCTGTCCTTG 82 Monteiro et al. (2012)

Rev. ACACCAGTGACAATATCACCG
blaVIM-2 Fwd. GAGATTCCCACGCACTCTCTAGA 93 van der Zee et al. (2014)

Rev. AATGCGCAGCACCAGGATAG
probe ACGCAGTGCGCTTCGGTCCAGT

blaKPC-3 Fwd. CAGCTCATTCAAGGGCTTTC 196 Szczepanowski et al. (2009)
Rev. GGCGGCGTTATCACTGTATT

mcr1 Fwd. GGGCCTGCGTATTTTAAGCG 183 Hembach et al. (2017)
Rev. CATAGGCATTGCTGTGCGTC

16S rRNA Fwd. TCCTACGGGAGGCAGCAGT 195 NORMAN Network 1

Rev. ATTACCGCGGCTGCTGG
1www.norman-network.net
2www.answer-itn.eu
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