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ABSTRACT: Development of metal-free strategies for stereo-
selective hydrogenation of unsaturated substrates is of particular
interest in asymmetric synthesis. The emerging chemistry of
frustrated Lewis pairs offers a promising approach along this line as
demonstrated by recent achievements. However, the stereocontrol
elements in these reactions are not clearly recognized thus far.
Herein, we analyze the origin of stereoinduction in direct
hydrogenation of imines catalyzed by a set of chiral boranes. We
use the tools of computational chemistry to describe the
elementary steps of the catalytic cycle, and we pay special attention
to the stereoselectivity-determining hydride transfer process. The
enantioselectivities predicted by the applied computational
approach are in very good agreement with previous experimental observations. We find that the stereoselectivity is governed by
a thermodynamically less favored conformer of the borohydride intermediate and not by the experimentally observed form. The
most favored hydride transfer transition states are stabilized by specific aryl−aryl and alkyl−aryl noncovalent interactions, which play
an important role in stereoinduction. This computational insight is exploited in proposing additional borane variants to improve the
enantioselectivity, which could be demonstrated experimentally
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■ INTRODUCTION

Chiral amines, particularly those bearing α-stereogenic carbon
atoms, are widely used intermediates in the production of
pharmaceuticals, agrochemicals, and fine chemicals. Therefore,
the development of effective methods for enantioselective
synthesis of these compounds is of high interest.1 Among the
available synthetic strategies, the asymmetric hydrogenation of
prochiral imines and enamines by the direct use of H2 as the
hydrogen source represents a promising atom-economic
approach.2 A variety of transition metal (TM) complexes
comprising chiral organic ligands have been developed, and
some of them have proved to be efficient catalysts for direct
enantioselective imine hydrogenations. Iridium complexes are
known to be particularly powerful hydrogenation catalysts;
however, achieving very high enantioselectivities for a wide
range of substrates remains challenging.3

Metal-free routes to the synthesis of chiral amines via catalytic
hydrogenation have also been developed in the past decade.4

Several successful organocatalytic transfer hydrogenation
reactions catalyzed by chiral phosphoric acids as well as
hydrosilylations mediated by chiral Lewis bases have been
reported, but these transformations require a stoichiometric
amount of other hydrogen sources, such as Hantzsch ester or
trichlorosilane.5 The discovery that sterically hindered Lewis

acid−base pairs are able to cleave molecular hydrogen reversibly
under mild reaction conditions6 opened a metal-free strategy for
direct catalytic hydrogenation of unsaturated molecules.7 These
so-called frustrated Lewis pairs (FLPs)8 were shown to catalyze
various unsaturated organic substrates9 even under water-
tolerant conditions.10

The FLP concept has been successfully adopted to design
asymmetric catalytic hydrogenation processes as well.11

Pioneering contributions from Klankermayer et al.12 provided
the first examples of chiral induction by FLPs. Boranes 1−4
(Chart 1) were prepared via hydroboration of chiral olefins with
Piers’ borane (C6F5)2BH,

13 and they were employed for the
hydrogenation of imines. The (+)-α-pinene derived borane 1
gave only a low enantiomeric excess (ee) in the product amine
(13% ee);12a however, the asymmetric induction was notably
improved (up to 83% ee) using boranes 2−4, which were
derived from (1R)-(+)-camphor.12b
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Repo and co-workers developed intramolecular FLPs with
chiral amine moieties (e.g., 5); however, they resulted in only
moderate enantioselectivities in catalytic hydrogenation of
imines and quinolines (up to 37% ee).14 The same group later
introduced chirality via the binaphthyl framework into ansa-
aminoboranes, and intramolecular FLP 6 was shown to be an
efficient hydrogenation catalyst, particularly for asymmetric
hydrogenation of enamines (ee values up to 99%).15 In 2013, Du
proposed a simple and powerful strategy to generate
enantiomerically pure bis-boranes 7 in situ by direct hydro-
boration of binaphthyl-based terminal dienes.16 Some repre-
sentatives of this family of chiral boranes, especially those with
very bulky Ar substituents on the binaphthyl framework, were
demonstrated to be highly effective catalysts in enantioselective
hydrogenation of imines,16 silyl enol ethers,17 and various
heteroarenes18 as well. Wang and co-workers have recently
developed a series of C2-symmetric bicyclic bis-boranes derived
from cis-fused bicyclic dienes by hydroboration.19 Stereoisomer
8 of this series was found to be exceptionally efficient for imine
hydrogenation providing ee’s above 90% for the first time. In
subsequent work, spiro-bicyclic bis-boranes 9 were also
introduced,20 exhibiting excellent catalytic activities and stereo-
selectivities for the hydrogenation of quinolines and 2-
vinylpyridines. Attempts to control the stereochemistry of
FLP-type hydrogenation by chiral Lewis bases resulted in only
modest enantioselectivities,9b until a very recent study reported
by the Du group,21 which established this approach as a
promising direction for the design of new chiral FLPs. Quite
remarkably, chiral oxazolines such as 10, combined with achiral
boranes were shown to induce high degree of enantioselectivity
in asymmetric hydrogenation of ketones and enones. In addition
to direct catalytic hydrogenation, FLP-type asymmetric hydro-
silylation has also been successfully applied to reduce various
unsaturated substrates with high enantioselectivities.22

Despite these impressive advances, our knowledge regarding
the stereocontrol elements in FLP-catalyzed asymmetric
hydrogenation processes is quite scanty. So far, only a few
computational studies have been reported that supplemented
the synthetic developments and addressed the issue of
stereoselectivity.15,21,23 Density functional theory (DFT)
calculations carried out for the highly selective enamine
hydrogenation with catalyst 6 indicated that the energy
difference obtained for the hydride transfer transition states

leading to the two enantiomeric amine products stems from a
combination of repulsive steric and attractive noncovalent
interactions.15 The stereoselectivity determining transition
states for asymmetric hydrogenation of ketones catalyzed with
the B(p-C6F4H)3/10 pair were also identified computation-
ally.21 The predicted energy differences were consistent with
experimental observations, but the origin of stereoinduction was
not examined.
To gain more insight into the nature of molecular interactions

responsible for the stereoselectivity of FLP-catalyzed hydro-
genation, in our present work we investigated a reaction that is
frequently used as a test case in the evaluation of developed
catalysts, namely, the direct hydrogenation of imine (E)-N-(1-
phenylethylidene)-aniline (im, see Scheme 1). As shown

previously, the enantioselectivity of this reaction varies in a
fairly broad range (from poor to good) when structurally
analogous boranes 1−3 are applied as catalysts; thus, this series
of reactions allows us to inspect the effect of a single chiral
borane substituent on the stereochemical outcome of the
hydrogenation process.
In this work, we focus primarily on the stereoselectivity-

determining hydride transfer step of these reactions; however,
for borane 2, we provide a detailed analysis of the H2 activation
process as well. We closely inspect the conformational space of
the iminium borodyride species, which is a key intermediate
prior to product formation. Accurate prediction of stereo-
selectivities from quantum chemical calculations is rather
challenging.24 In our present analysis, we attempted to pay
respect to the critical issues (e.g., conformational complexity, the
choice of the electronic structure method, estimation of entropic
contributions, and solvent effects), and computed the
enantioselectivity of the examined reactions accordingly (for
computational details, see the Supporting Information (SI)).
The good agreement obtained between the predicted and
observed stereoselectivities allowed us to probe the origin of
stereoinduction in these reactions. Based on the new computa-
tional insights, structural modifications in borane 2 were
proposed, and two of these new chiral boranes were synthesized
and tested as catalysts in asymmetric hydrogenation of imines.

■ RESULTS
Alternative Catalytic Cycles. As described by Klanker-

mayer et al.,12b the camphor-derived boranes 2 and 3 could not
be isolated in pure stereoisomeric forms; however, kinetically
controlled product formation in the reaction of the 2/3mixture
with phosphine PtBu3 (P) and H2 enabled isolation of
diastereomerically pure ion pair compounds PH+/2H− and
PH+/3H−. These phosphonium/hydroborate FLP salts were
then used as catalysts in the hydrogenation of imines. In
principle, the catalysis in these reactions can take place via two
distinct cycles, as illustrated in Scheme 2.
In cycle 1, the heterolytic H2 splitting is induced by the P/B

pair resulting in the PH+/BH− ion pair. Proton transfer from

Chart 1. Selection of Chiral FLP Components Employed in
Enantioselective Catalytic Hydrogenationsa

aAr denotes aromatic substituents; ArF = C6F5 or p-C6F4H.

Scheme 1. Reactions Examined Computationally
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PH+ to im gives the imH+/BH− intermediate, which then
undergoes hydride transfer (HT) to yield the chiral amine
product am. Alternatively, the imine can serve as a base
component of an FLP, so the imH+/BH− intermediate is formed
directly via H2 activation (cycle 2). The HT process represents
the stereoselectivity-determining step in both cycles. Our
computational analysis suggests that cycle 2 is a more feasible
pathway. DFT calculations carried out for the reaction with
borane 2 predict a significantly higher barrier for H2 activation
with the P/2 pair as compared to that with im/2 (19.9 versus
15.8 kcal/mol; see Figure 1).25

Even though PtBu3 is certainly more basic than imine im,26

steric hindrance between the chiral borane substituent and the
bulky phosphine destabilizes the transition state of H2 splitting
(TSHH

P/2) leading to an increased barrier. Furthermore, the

protonation of im on the P/2 pathway is computed to have even
higher barrier (31.6 kcal/mol) rendering cycle 1 far less
favorable.27 Our calculations thus indicate that although the
catalytic process in the hydrogenation of im is initiated by the
PH+/2H− ion pair, the catalysis follows the im/2 pathway. The
high barrier obtained for the initiation step is consistent with the
elevated temperature (T = 65 °C) used in the experimental
setup.12b

Iminium Borohydride Intermediates for Borane 2. The
conformational space of the imH+/BH− intermediate formed
upon H2 activation is rather complex because both ionic
components can adopt different structures and their relative
positions can vary as well. Conformations of borohydrides BH−

can be classified into three groups that differ in the orientation of
the B−H unit with respect to the chiral backbone (Chart 2).
The C6F5 borane substituent may also display altered

orientations within these classes, resulting in several structural
forms. For borohydride 2H−, DFT calculations predict a c1-type
conformation to be the most stable form, wherein one of the
C6F5 rings is in stacking arrangement with the phenyl substituent
of the chiral unit.28 This borohydride structure was charac-
terized experimentally via X-ray diffraction analysis of
compound PH+/2H−, and it was assumed to play an important
role in the catalytic process.12b In principle, both E and Z
isomers of iminium imH+ could be produced in the H2
activation step, so we have considered this possibility in our
computational analysis as well.
For the imH+/2H− ion pair intermediate, we carried out an

extensive conformational analysis and identified 14 different
isomeric forms all lying within a 5 kcal/mol free energy range.29

A few representative structures are displayed in Figure 2.
The most stable form of imH+/2H− involves a c1 borohydride

conformer with the B−H bond interacting closely with the
iminium N−H group (H···H/c1 in Figure 2). This imH+/2H−

isomer is formed directly after transition state TSHH
im/2, and it is

predicted to be 2.0 kcal/mol above the reactant state (im + 2 +
H2). The dihydrogen bond is apparent from the very short
intermolecular H···H distance (1.53 Å), and it provides
considerable stabilization for the ion-pair intermediate.30 Isomer
H···H/c2 features a dihydrogen bonding interaction as well;
however, the borohydride anion adopts a c2-type conformation.
This form lies at 2.8 kcal/mol in free energy. Isomeric forms with
B−H bonds pointing toward the electrophilic carbon atom of
the substrate (H···C/c1 and H···C/c2 in Figure 2) are notably
less stable as compared to their H···H/ci analogues; however,
these isomers are structurally well prepared for the HT step of
the catalytic cycle. Our computational analysis indicates that the
H···H and H···C type imH+/2H− isomers can easily
interconvert with each other. For instance, the transformation

Scheme 2. Alternative Catalytic Cycles in Imine Reductiona

aNotations: P, im and am are defined in the text, B denotes chiral
boranes 2 and 3. HT refers to hydride transfer from BH− to the
prochiral carbon of imH+.

Figure 1. Transition states of H2 activation by the P/2 and im/2 FLPs.
Relative stabilities (in kcal/mol, with respect to the base + B + H2
reactant states) are given in parentheses. H atoms of the FLPs are
omitted for clarity.

Chart 2. Main Borohydride Conformers as Exemplified by 2H−
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of isomer H···H/c2 to H···C/c2 shown in Figure 2 can take place
via a barrier of only 5.3 kcal/mol. Computations also suggest
that facile transformation between the c1 and c2 borohydride
conformers is feasible; the free energy barrier estimated for the c1

→ c2 conversion is only 8.7 kcal/mol.31 These results imply that
the array of conformational isomers identified computationally
for the structurally flexible ion-pair intermediate imH+/2H− is
likely in fast equilibrium even at room temperature.

Hydride Transfer Transition States for Borane 2. The
conformational space of HT transition states leading to the (R)-
am and (S)-am enantiomeric products were explored
comprehensively, and we identified a set of energetically low-
lying conformers on both pathways. The relative stabilities of the
most stable structures are summarized in a free energy diagram
shown in Figure 3, wherein selected transition-state structures
are also depicted.
The most favored HT transition state corresponds to the

formation of product (R)-am (seeTS-2-R1 in Figure 3), and it is
predicted to be 14.8 kcal/mol with respect to the reactant state
(im + 2 + H2). In this structure, the borohydride that donates
H− to the iminium has a c2 conformation, which is somewhat
surprising because the c2 form of 2H− is predicted to be 4.7 kcal/
mol less stable as compared to the c1 form.28 Several
intermolecular contacts, such as π−π stacking between the
iminium phenyl and the borohydride C6F5 substituents, or
CH···π interaction between the iminium CH3 and the
borohydride phenyl groups, are noticeable in TS-2-R1. As
shown previously for TM-catalyzed hydrogenation reactions,
these types of noncovalent interactions can strongly influence
the stereochemical outcome;32,33 therefore, they may provide
notable stabilization to transition state TS-2-R1 as well.
Additional HT transition states involving the c2 form of 2H−

could be identified on the (R) reaction pathway (TS-2-R2 and
TS-2-R3), but they are computed to be 2−3 kcal/mol less stable
than TS-2-R1. The extent of noncovalent interactions in higher
lying transition states is reduced, which corroborates the
stabilizing nature of these intermolecular contacts.
Interestingly, the most favored transition state comprising a

c1-type 2H− conformation (TS-2-R4) is predicted to be even

Figure 2. Selected structures of imH+/2H− ion pair intermediates. In
the labeling, H···H and H···C refer to structures with B−H units
pointing to iminium N−H bond or to prochiral C atom; c1 and c2
denote two different borohydride conformers. Relative stabilities (in
kcal/mol, with respect to the im + 2 + H2) are given in parentheses.
Selected bond distances are in angstroms.

Figure 3. Hydride transfer transition states identified computationally for hydrogenation of im with borane 2. Each line on the free energy diagram
represents a specific isomeric form with the computed relative stability. TS-2-Ri and TS-2-Si denote transition states leading to (R)-am and (S)-am
products (index i defines the stability order). Full and dotted lines refer to transition state isomers involving c2 and c1 borohydride conformers. Selected
structures are depicted and marked with arrows; their relative stabilities are given in parentheses (in kcal/mol, with respect to the most stable form).
The iminium component is highlighted in blue for clarity. Green and red dotted arrows indicate attractive and repulsive intermolecular contacts.
Computed and experimental (in brackets) ee data are shown below the diagram.
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higher in free energy (at 4.3 kcal/mol). This structure is
destabilized by steric repulsion between the chiral borane
substituent and the methyl group of iminium imH+, which
becomes too close as demonstrated by rather short H···H
distances measured in the optimized structure (∼2.1 Å).34
On the HT reaction pathway that furnishes the minor (S)-am

enantiomeric product, iminium imH+ approaches 2H− with the
other face. The most stable transition stateTS-2-S1 also involves
a c2-type borohydride; however, the intermolecular contacts are
different from those in TS-2-R1. Although the CH···π
interaction between the iminium CH3 and the borohydride
phenyl groups is still present in TS-2-S1, no close π−π stacking
interactions are perceived. The phenyl substituent of the
borohydride interacts with the iminium phenyl group, but this
aryl−aryl interaction is far from the ideal stacking or T-shaped
arrangements. Overall, transition stateTS-2-S1 is found to be 1.5
kcal/mol less stable than TS-2-R1. Several other close-lying
transition states were located on the (S) pathway, of which the
next in the stability order (TS-2-S2) incorporates a c1-type
borohydride. Steric hindrance is also a characteristic feature of
this transition state structure (similarly to TS-2-R4), but due to
more favorable π−π stacking interactions, TS-2-S2 is more
stable than TS-2-R4.
The enantioselectivity of catalytic imine hydrogenation is

under kinetic control.35 The rapid equilibration of various
isomers of the imH+/2H− intermediate enables the application
of the Curtin−Hammett principle, so the enantiomeric excess
(ee) can be estimated from the Boltzmann-weighted relative
Gibbs free energies of the identified HT transition states. Using
this procedure, the ee of the kinetically favored (R)-am product

in the present reaction is computed to be 80.7%, which is in good
agreement with the experimental observation (79%).12b,36

Reaction with Borane 3. Assuming that the concepts
discussed in the previous sections and our conclusions regarding
the hydrogenation mechanism can be extended to the analogous
reactions with other boranes, we carried out a systematic
computational study for the HT process with borane 3 as well.
Borane 3 is the diastereomeric pair of 2 having the same bridged
bicyclic (R)-camphor derived framework with the altered
stereochemical arrangement of the B(C6F5)2 and Ph units (see
Chart 1). The free energy diagram illustrating the relative
stabilities of HT transition states computed for im hydro-
genation with borane 3 is shown in Figure 4 along with the most
stable structures identified on the (R) and (S) pathways.
Themost favored transition stateTS-3-S1 can be regarded as a

pseudoenantiomeric form of TS-2-R1 displaying a c2-type
borohydride conformation and the same type of stabilizing
intermolecular contacts (π−π stacking and CH3−π interac-
tions). In this reaction, however, HT transition states involving
the c1 borohydride conformation tend to be energetically more
favored as compared to those in the reaction with borane 2, and
in fact, the lowest lying transition state on the minor (R)
pathway (TS-3-R1) encompasses a c1-type borohydride. This
latter transition state is computed to be only 0.4 kcal/mol apart
from TS-3-S1. Our structural analysis points to a somewhat
reduced steric hindrance between the methyl group of iminium
imH+ and the chiral bicyclic 3H− substituent in transition states
with c1 borohydrides, which explains the tendency of having
these transition state structures more populated in the reaction
with borane 3.37 As a result of reduced steric repulsion, two
transition states (TS-3-R1 and TS-3-S2) shift closer to the most

Figure 4.Hydride transfer transition states identified computationally for hydrogenation of imwith borane 3. For further relevant information, see the
caption of Figure 3.

Figure 5.Hydride transfer transition states identified computationally for hydrogenation of imwith borane 1. For further relevant information, see the
caption of Figure 3. The classification of transition states according to the borohydride conformations is not relevant in this case. The lowest lying
energy level in the (S) ensemble (at 0.4 kcal/mol) represents two different structures, TS-1-S1 and TS-1-S2, of which only the former is depicted.
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favored TS-3-S1 structure in free energy, which of course
influences the enantioselectivity as well. Computations predict
ee = 33.7% for this reaction, which is consistent with the
measured enantioselectivity (48%).12b

Reaction with Borane 1. HT transition state isomers for
the reaction with borane 1 were also explored, and we identified
a set of structures, some of which were found to have very similar
relative stabilities (see Figure 5).38

Due to the lack of any bulky substituent on the α-pinene
framework in borane 1 (such as Ph in 2 and 3), the chiral
environment around the reactive B−H bond of borohydride
1H− is less defined. For instance, no multiple combinations of
stabilizing π−π stacking and CH3−π contacts are developed
between 1H− and imH+; therefore, no structure with
particularly enhanced stabilities exists. For the same reason,
the most favored transition states on the competing (R) and (S)
pathways become less separated in free energy. Indeed,
calculations predict five different transition state structures
within a 0.5 kcal/mol range, and the most stable diastereomeric
forms (TS-1-R1 and TS-1-S1) display very similar intermolec-
ular contacts (a single π−π stacking and a CH···π type
interaction; see Figure 5). Consequently, a very low
enantioselectivity is predicted (ee = 1.5%), which is again in
line with experimental observations (13%).12a

On the Origin of Stereoselectivity. Several important
findings that emerged from our computational analysis are
worth highlighting when discussing the origin of enantiose-
lectivity in the examined reactions. First, it appears that for
camphor-derived boranes 2 and 3, the stereoselectivity of imine
hydrogenation is dictated by thermodynamically less favored
borohydride conformers of c2-type and not by the most stable c1
form that is observed experimentally. The c2 conformer of 2H− is
clearly more reactive in hydride transfer to imH+ and with its
phenyl substituent arranged next to the B−H bond provides a
chiral binding site for the approaching protonated substrate. The
chiral environment is defined by the three aromatic rings of the
borohydride resulting in facial selectivity for the hydride transfer
(Figure 6).

The stereoinduction in the present reactions is found to be
influenced by multiple stabilizing noncovalent interactions
between 2H− and imH+, which are apparent from the NCI
plots39 generated for transition statesTS-2-R1 andTS-2-S1. The
green surface areas on these plots represent weak attractive
noncovalent interactions corresponding to π−π stacking,
CH3−π, Ph−Ph, etc. intermolecular contacts. As noted above,
and also illustrated in Figure 6, the higher stability of transition
state TS-2-R1 could be associated with more favorable aromatic
(C6F5···C6H5) interactions in this structure as compared to that
in TS-2-S1.

ProposedModifications in Borane 2.Our computational
analysis indicates that the phenyl substituent of camphor derived
boranes is an important stereocontrol element in catalytic
hydrogenation of im. This is further supported by calculations
carried out for a model reaction catalyzed by a borane derived
from 2 by omitting the Ph substituent. These calculations
predict very low ee (only 5.6%) in this case.40 We envisioned
that additional substitutions implemented on the Ph group of
borane 2, or replacing the Ph group by a larger aromatic ring,
could alter the enantioselectivity of hydrogenation. The boranes
considered for additional computational analysis are shown in
Figure 7.41

DFT calculations carried out for reactions catalyzed by
boranes derived from 2 by adding either electron-withdrawing
(F and CF3) or electron-donating (CH3 and

tBu) groups at the
meta positions of the Ph ring predicted significantly enhanced
enantioselectivities (ee’s above 98%). We find that in these
reactions, HT transition state conformers analogous to TS-2-S1
are notably destabilized with respect to the corresponding R1
structures. This is due to steric effects induced by the meta
substituents on the catalyst Ph group. As discussed above,
transition state TS-2-S1 is displaced only by 1.5 kcal/mol from
the most stable TS-2-R1 structure (Figure 3), but this free
energy difference increases to 4−5 kcal/mol with the modified
boranes. The strength of the CH3−π interaction is also altered
by introducing themeta substituents,42 but these interactions are
equally present in the most stable diastereomeric transition
states (R1 and S1; see Figure 6), so they have no considerable
influence on the enantioselectivity. For borane 2-ant, calcu-
lations predict somewhat lower ee (90.5%). In this borane
variant, the c1-type borohydride conformations attain further
stabilization via the extended aromatic stacking interactions, so
all HT transition states of c1-type shift closer in free energy to the
most stable form, reducing the enantioselectivity.

Experiments with Borane 2-F. To assess the reliability of
DFT predictions, we first synthesized borane 2-F according to
the procedure established for the reported camphor-derived
boranes 2 and 312 (Scheme 3). Reaction of enantiopure (1R)-

Figure 6. Noncovalent interactions (NCI) in hydride transfer
transition states TS-2-R1 and TS-2-S1. The borohydride is represented
by a gray isodensity surface (ρ = 0.01 au); the iminium is shown in blue.
The applied cutoff for reduced density gradient is s = 0.3 au. π−π
stacking and CH3−π interactions are highlighted by green dotted
arrows.

Figure 7. Modified boranes and predicted ee data.
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(+)-camphor (11) with aryllithium 12, followed by dehydration
of resulting tertiary alcohol 13 with thionyl chloride/pyridine
gave olefin 14. Hydroboration of 14 with Piers’ borane under
solvent-free conditions resulted in a mixture of diastereomeric
boranes 2-F and 2-F′ in a 7:1 ratio according to multinuclear
NMR. Pure 2-F could be isolated from the crude mixture by
recrystallization from pentane at−20°C as a colorless powder in
52% yield, and its structure was confirmed by single-crystal X-ray
diffraction analysis (Figure 8).

Catalytic hydrogenation of imine im with 2-F gave high
conversions (above 90%) in 1 h at room temperature, however,
no improvement could be obtained for the enantioselectivity as
compared to that observed by Klankermayer et al.; the ee
measured in our experiments reached 75% at most, depending
on the reaction conditions (see Table S6 in the Supporting
Information). Noteworthy, hydrogenation of im in the presence
of external base 1,2,2,6,6-pentamethylpiperidine (PMP, 5 mol
%) gave only 13% conversion. These results support the view
emerging from the computational analysis that catalytic
hydrogenation takes place via cycle 2 (Scheme 2) even in the
presence of an external base.
The reason for the disagreement we see between the

computed and measured enantioselectivities is not fully settled.
The discrepancy may certainly arise from the inaccuracy of the
DFT calculations, although the good match obtained for
boranes 1−3 points to other, yet unknown, factors. In an

attempt to provide a plausible explanation, we decided to assess
the stability of 2-F upon the hydrogenation process. In a thick-
wall gas-tight NMR tube, a stoichiometric mixture of 2-F and im
in deuterated toluene was pressurized with 10 bar of dihydrogen.
After 1 h, the sample was analyzed by 1H NMR, which revealed
appearance of a new set of signals related to camphor scaffold in
addition to those of 2-F (44% conversion). Although we could
not reliably identify the structure of the newly formed species, a
detailed NMR data analysis (19F, 11B, HH COSY and HH
NOESY, see the SI) suggested that it was isomeric to both 2-F
and 2-F′. The same species, albeit to a lesser extent (with 18%
conversion), was formed when am was probed instead of im
under the same reaction condition. On the basis of these
observations, it is reasonable to assume that the new borane
species produced in the catalytic process may catalyze a parallel
low-enantioselective hydrogenation of im, which deteriorates
the overall enantioselectivity of this reaction.

Experiments with Borane 2-tBu. Next, we decided to
synthesize and to test borane 2-tBu, which involves bulkier 3,5-
substituents on the phenyl group. Attempt to produce 2-tBu
following the established procedure as for 2-F was unsuccessful
due to predominant enolization of 11 upon addition of either
3,5-di-tert-butylphenyllithium or -magnesium bromide. There-
fore, we designed an alternative synthetic route outlined in
Scheme 4. Camphor 11was transformed into bromobornene 17

via the Shapiro reaction. The subsequent Suzuki-Miyaura cross-
coupling of 17 with 3,5-di-tert-butylphenyl boronic acid 18 gave
alkene 19 in 79% yield. The hydroboration of 19 using Piers’
borane under solvent-free conditions gave exclusively diaster-
eomer 2-tBu in nearly quantitative yield. Recrystallization of
2-tBu from n-pentane at−20°Cprovided colorless crystals (83%
yield) suitable for X-ray crystallographic analysis (Figure 9).
Hydrogenation of imine im using 5 mol % borane 2-tBu at

room temperature and 50 bar H2 in toluene gave only moderate
conversion (52%) after 1 h, however, the enantioselectivity was
high (91% ee; see Table S7 in the Supporting Information).
Prolongation of reaction time to 24 h led to quantitative
hydrogenation of im with similarly high enantiomeric excess
(92%), demonstrating the stability of the catalyst under the
applied conditions. Solvent screening showed only a small effect
on the stereoselectivity, giving slightly lower ees in etherial

Scheme 3. Synthesis of Chiral Borane 2-F

Figure 8. Crystal structure of borane 2-F. H atoms are omitted for
clarity.

Scheme 4. Synthesis of Chiral Borane 2-tBu
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solvents (see Table S7 in the Supporting Information). We note
that this level of selectivity in FLP-type imine hydrogenation
could only be accomplished by recently developed bicyclic
borane 8 at significantly lower temperature (−40 °C).
Broadening of substrate scope was not an objective of our

present work, but catalyst 2-tBu was tested for the hydro-
genation of a few additional imines as well (Table 1 and also
Table S8 in the Supporting Information). Various N-aryl-
substituted-imines 20a−20d and imine 20e bearing non-

aromatic cyclohexyl substituent at nitrogen could be reduced
with high stereoselectivities (91-94% ee). On the other hand,
hydrogenation of the benzyl-substituted imine 20f resulted in a
dramatically lower enantioselectivity (33%). Quantitative
hydrogenation of 2-phenyl quinoline 20g to 2-phenyl-1,2,3,4-
tetrahydroquinoline 21g could also be achieved, albeit in 48 h
with doubling of catalyst loading, and with a significantly
reduced ee (21%). Hydrogenation of selected substrates im and
20c at lower temperature (−15°C) afforded slightly enhanced
enantioseletivities: 95% and 96% ee, respectively.
These results highlight and confirm the importance of specific

aryl−aryl and aryl−alkyl catalyst−substrate interactions in
stereoinduction. For the particular borane catalyst 2-tBu and
imines with topology analogous to im (20a−20e) the overall
effect of attractive noncovalent and destabilizing steric
interactions is highly beneficial; however, this balance is far
from optimal for other substrates (20f and 20g).

■ SUMMARY AND CONCLUSIONS
Utilization of chiral FLP catalysts in direct asymmetric
hydrogenation of unsaturated compounds is a potential metal-
free strategy in stereoselective synthesis. Remarkable develop-
ments have been achieved along this line over the past decade;
however, the current level of comprehension concerning the
stereoselectivity governing factors in these catalytic processes is
not sufficient thus far to facilitate new catalyst design. In our
present work, we performed a detailed computational analysis
for imine hydrogenation reactions reported previously by the
Klankermayer group, namely those catalyzed by chiral boranes
derived from (+)-α-pinene (borane 1 in Chart 1) and (1R)-
(+)-camphor (boranes 2 and 3). Although only a single imine
substrate (im) was considered in our computational study, and
the selection of borane catalysts is limited as well, yet several
interesting findings and conclusions have emerged from our
analysis, which considerably improve our understanding.
Computations carried out for imine hydrogenation with

borane 2 (the most selective reaction in the series) revealed that
catalysis operates preferably via H2 activation with the im/2 pair
even if the borane is introduced in a phosphonium−borohydride
form, as in the original experiments. This computational insight
could be supported experimentally in our work. The analysis
focusing on the hydride transfer step pointed to fast
equilibration of various isomers of the imH+/2H− intermediate.
We showed that the stereoselectivity is dictated by a
thermodynamically unfavored borohydride isomer, and not by
the most stable, experimentally observed form. This latter 2H−

isomer is less reactive for steric reasons. In the active form of
2H−, the phenyl substituent of the camphor framework, along
with the two C6F5 aromatic rings, define a chiral pocket for the
approaching protonated substrate (imH+). The most stable
hydride transfer transition states are found to be stabilized by
specific noncovalent interactions, such as π−π stacking, CH3−π,
and Ph−Ph intermolecular contacts. The enantioselectivity
predicted by DFT calculations is in close agreement with
experimental observations, and we find similarly good match
between computed and measured ee data for the reactions with
boranes 1 and 3.
Based on these promising results, we anticipated that

alteration of the Ph substituent in borane 2 could be beneficial
for stereoinduction, and indeed, calculations for boranes with
3,5-disubstituted Ph groups predicted significantly improved
enantioselectivities. Two of these new borane candidates were
selected for experimental studies. Boranes 2-F and 2-tBu were

Figure 9. Crystal structure of borane 2-tBu. H atoms are omitted for
clarity.

Table 1. Asymmetric Hydrogenations of Imines with 2-tBua

aSubstrate (0.25 mmol), PhMe (0.5ml), conversion by 1H NMR
spectroscopy, ee by HPLC (Chiralcel OD-H or OJ-H column). bFor
detailed optimization, see Table S7 in the Supporting Information.
cReaction time 48 h. d10 mol % of 2-tBu.
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synthesized and probed as catalysts in imine hydrogenation. No
improvement in the measured ee could be demonstrated with
borane 2-F, but the experiments inferred that catalytic
hydrogenation could be performed at room temperature in the
absence of an external base. Borane 2-tBu, however, was shown
to be a robust and efficient FLP catalyst in imine hydrogenation,
providing ee’s above 90%, which could only be achieved so far at
significantly lower temperature.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acscatal.0c04263.

Details regarding the computational analysis, total
energies and Cartesian coordinates for the considered
stationary points, and experimental details (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
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