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Abstract—We have developed a coded excitation scanning 

acoustic microscope (CESAM) that operates in range of 0.1 to 1 

GHz. We used a focusing transducer with 375 MHz central 

frequency to image two different tree species (birch and hybrid 

aspen) at different stem height to study their micromechanical 

difference. The method was able to capture the fresh wood 

anatomy with cellular resolution. A full stem section scan 

revealed the heterogeneity of micromechanical properties 

throughout tissues, and highlighted the higher stiffness of the 

phloem fibers compared to other vascular cells. This 

demonstrates the applicability of the method for plant 

developmental biology.  

Keywords— Acoustic microscopy, Wood developmental biology, 

Acoustic impedance, Imaging 

I. INTRODUCTION  

The Scanning acoustic microscope (CESAM) is an 
instrument that employs high frequency focused ultrasound to 
map micromechanical properties of a sample with a few 
micrometer resolution. The contrast mechanism of this 
microscope differs from that of other instruments, e.g. optical 
microscopy with contrast of optical properties or atomic force 
microscopy (AFM) with contrast of surface elasticity. In 
acoustic microscopy the contrast is evident from the scattering 
(reflection) of acoustic waves at an acoustic impedance 

interface i.e. the surface of the sample. Local surface properties 
(stiffness tensor, density, and roughness at the scale of the 
wave length) define the magnitude, time-of-flight (ToF), and 
phase of the reflected signal. In comparison to AFM, CESAM 
can quickly map large areas with nearly the same small 
resolution. This makes CESAM a unique imaging modality to 
image mesoscale samples such as developing wood, which 
requires high resolution combined with large imaging area with 
a contrast mechanism based on mechanical properties. Wood is 
a complex composite with unique biomechanical properties. 
Beyond its excellent performance as raw material, little is 
known about how the mechanical properties of wood are 
acquired during the development of trees. Wood development 
takes place during the radial growth of a tree trunk. In this 
process a tissue constituted of stem cells called vascular 
cambium divides parallel to the stem axis and produces phloem 
tissues outwards, that later conform the bark, and xylem tissues 
inwards, commonly referred to as wood. Xylem tissues are 
essential to provide physical support to the stem of trees. 
Xylem cells are at the same time responsible for transporting 
water and nutrients from the roots to the rest of the plant body. 
Phloem tissues provide mechanical support to the bark and 
transport photoassimilates. During the development of these 
vascular tissues, plant cells produce rigid secondary cell walls, 
a cellular shielding not present in animals. Thus, 
undifferentiated tissues such as cambium or highly specialized 



tissues such as xylem or phloem are easy to differentiate 
anatomically, and their biomechanical properties are expected 
to change on the radial direction during secondary growth.  We 
employ CESAM to study this phenomenon. In particular we 
dissected the stems of birch (Betula pendula) and hybrid aspen 
(Populus tremula x tremuloides) trees, and compare their 
relative mechanical properties across tissues, developmental 
stages, and between species. The wood samples remain very 
close to their natural state due to minimal sample preparations. 

  

II. MATERIALS AND METHODS 

A.  Coded Excitation Scanning Acoustic Microscope 

(CESAM)  

Our custom-built CESAM operates in a frequency range of 
0.1 to 1 GHz. We used a 375 MHz focusing transducer (-6 dB 
bandwidth: from 303 to  443 MHz, Kibero) to excite a 300 
MHz to 500 MHz linear chirp with an gaussian amplitude 
envelope. A detailed description of the device is found in [1].   
 First, we aligned the sample and the transducer with the 
scanning axis of the translation stage. Utilizing time-of-flight 
values we selected samples that could be imaged with a single 
C-scan. A 375 MHz center band transducer was chosen as a 
compromise between resolution and working distance and was 
used to image the samples with single C-scans without too 
much defocusing. Acoustic impedance maps were calculated 
using acoustic impedance calibration described in [2].  

B. Sample Preparation 

Samples were obtained from 4 months old greenhouse 
grown birch (Betula pendula) and hybrid aspen (Populus 
tremula x tremuloides) trees. Stem sections were collected 
from the second internode below the shoot apex (internode 2), 
the middle stem (half-height), and at the stem base. All stem 
sections were collected on the imaging day. The samples were 
attached to a glass using superglue (cyanoacrylate, Gorilla 
glue) and then immersed in ion-exchanged water at room 
temperature. All samples were treated with vacuum for ~10 
minutes before measurements to remove air from the sample 
and to avoid bubble formation that would have distorted the 
images.  

 

 

 

 

 

 

 

 

 

 

 

III. RESULTS 

 
Fig.1. 4 x 4mm2 amplitude C-scan with 1 µm steps of the cross-

section of an aspen stem cut from the middle height of the tree. 
Imaging time 45 min. The red square marks the area of Fig.2. 

 

 

Fig.2. Zoom-in (marked with red square) from the Fig.1. 

demonstrating the resolution of this method.  
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IV. DISCUSSION 

The focal echo amplitude is proportional to the local 
acoustic impedance of the tissue. The value measured is 
lowered by possible defocusing and scattering. The acoustic 
impedance estimations in Fig. 4 have smaller values than the 
V(z)-analysis done by Dawei Wu et al. [6] possibly due to 
sample being non-ideal reflector. Also, fresh cells have high 
water content which affects the acoustic interface of reflection. 
The echo amplitude maps revealed with cellular resolution the 
tissue-specific focal mechanics of both species. Hybrid aspen 
and silver birch are model organisms of angiosperm tree 
species [4]. In both species the early stages of wood 
development can be appreciated in the internode 2 (fig. 1, fig. 

2, and fig. 3. B, E). In this section the largest area of the stem is 
occupied by the pith that is rich in parenchymatic cells. This 
cell type lacks secondary cell walls, therefore the apparent 
stiffness in some pith cells may be a cause of their high water 
content. Wood at this developmental stage consist of primary 
xylem that is rich in vessels, water transporting cells with 
secondary cell walls. On the phloem side of the cambium 
phloem fibers appear to have a higher amplitude indicative of 
higher mechanical stiffness compared to any other bark tissue. 
This characteristic is more evident in birch compared to aspen 
sections of internode 2. Interestingly, phloem fibers appear to 
be from this perspective, as stiff as or even stiffer than the 
xylem tissues themselves. The contribution of this cell type to 
mechanical functions in the stem of trees has recently been 
revisited, suggesting that they provide longitudinal postural 
control [3]. Along the radial direction the sections of both 
species showed a cylindrical ring of lower focal echo 
amplitude that coincides with the vascular cambium and 
developing xylem tissues. Towards the base of the stem were 
tissues are more mature, this cambial ring is more irregular in 
hybrid aspen and more cylindrical in silver birch. Additionally, 
phloem fibers at the stem base appear to be arranged in large 
isolated clusters of cells in hybrid aspen but forming nearly 
complete rings in silver birch. Combined these observations 
suggest that the different anatomical organization across 
species or developmental stages is also reflected in a variable 
mechanical architecture inside the stem of trees.  

V. CONCLUSIONS 

The application of CESAM on stem cross-sections revealed 

for the first time the relative differences in mechanical 

properties across vascular tissues in trees. The support 

function of trees is typically attributed to xylem tissues. While 

this is the case in adult trees were xylem occupies a larger 

sectional area, the mechanical maps presented here further 

encourage us to study the contribution of additional cell types, 

such as phloem fibers, to the mechanical stability of stems in 

early stages of tree development. 
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Fig.3. Amplitude C-Scans from different heights of both species. A) 

Birch 2nd internode. B) Birch middle height C) Base of the stem of a 

birch. D) 2nd internode of an aspen. E) Aspen middle height. F). Base 

of the stem of an aspen 
 

 

Fig. 4. Acoustic impedance histograms of xylem tissue from 2nd 

internodes of birch (red) and aspen (blue).  

 

 


