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Abstract. Motivated by the success of preprocessing in Boolean
satisfiability (SAT) solving, development and analysis of preprocess-
ing in maximum satisfiability (MaxSAT)—the optimization exten-
sion of SAT—has received noticeable attention recently. The correct-
ness of preprocessing techniques for MaxSAT is standardly estab-
lished by arguing that optimal solutions are maintained. However,
the effects of preprocessing on the relative perceived costs of non-
optimal solutions has not been considered, despite the fact that one of
the most recent directions in MaxSAT research is developing incom-
plete solvers, i.e., solvers that are designed to provide good (but not
necessarily optimal) solutions fast. In this paper, we bridge this gap
by showing that employing central preprocessing techniques mis-
leads MaxSAT solvers in terms of their interpretation of the costs
of non-optimal solutions seen during search. This issue impacts both
complete and incomplete solvers and the effects can be shown to be
present also in practice with different types of MaxSAT solvers. Fur-
thermore, we propose ideas for circumventing these negative effects
in the context of stochastic local search algorithms for MaxSAT.

1 INTRODUCTION

Extending Boolean satisfiability (SAT) to optimization, maximum
satisfiability (MaxSAT) is today a viable Boolean optimization
paradigm for various NP-hard optimization problems arising from
AI and industrial applications. Various algorithmic advances, based
on iterative applications of SAT solvers, have brought on this suc-
cess.

A main focus in algorithmic MaxSAT research—especially until
recently—has been on developing new search techniques to obtain
further improvements in the scalability and robustness of state-of-
the-art complete MaxSAT solvers, i.e., solvers that can provide prov-
ably optimal solutions. A recent new direction, complementing com-
plete solvers, is the development of incomplete solvers which ideally
can provide good (albeit not optimal, or provably optimal) solutions
fast. Incomplete solving is motivated by the fact that in many real-
world application settings, obtaining relatively good solutions fast is
beneficial. Since 2012, the MaxSAT Evaluations [3, 5] have provided
further incentives for developing incomplete MaxSAT solving tech-
niques via a special track for incomplete solvers.

In addition to advances in search techniques for MaxSAT solv-
ing [7, 2, 20, 35, 9, 37], there is noticeable recent progress in solver-
independent preprocessing techniques for MaxSAT [6, 8, 11, 13, 10,
28, 12], motivated by the success of preprocessing as a central part
of the modern SAT solving workflow. However, while MaxSAT pre-
processing has been shown to be beneficial, currently preprocessing
appears to bring more modest performance improvements in the con-
text of MaxSAT solving compared to SAT solving.
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In this work, we strive for a deeper understanding about the impact
of preprocessing on the internal behavior of MaxSAT solvers, start-
ing from the facts that (i) both complete and incomplete MaxSAT
solvers during their search encounter not only optimal but also non-
optimal solutions, and that (ii) the correctness analysis of various
MaxSAT preprocessing disregards non-optimal solutions, centering
around proving that the cost of optimal solutions is maintained in a
controlled way.

In this paper we will bridge these two seemingly somewhat un-
related facts together. In particular, we will show that preprocess-
ing can, both in theory and in practice, result in various types
of state-of-the-art MaxSAT solving algorithms misinterpreting the
costs of non-optimal solutions to be higher than they actually are.
This is problematic in particular since solvers make use of the in-
formation provided by the costs of non-optimal solutions encoun-
tered during search in various ways, depending on the algorithmic
approach: in the core-guided approach [37, 38, 40] for bounding
and hardening via stratification [1], in the implicit hitting set ap-
proach [18, 19, 17, 41] for bounding and reduced cost fixing [4],
in the model-improving approach [36, 29, 39] for deciding the next
bound to check, and in local search approaches for heuristic guid-
ance [16, 14, 15, 20, 22, 30, 33, 34], etc. Through a more detailed
analysis, we show that for what we refer to as locally minimal so-
lutions the issue can be avoided in the case of most preprocessing
techniques, but this requires changes to MaxSAT solvers.

More specifically, we show that most central preprocessing tech-
niques (as we consider here, many of which are liftings of SAT
preprocessing techniques) preserve locally minimal solutions in the
sense that the cost of a locally minimal solution equals that of a
corresponding solution obtained through standard linear-time solu-
tion reconstruction techniques for the original MaxSAT instance at
hand. Hence such techniques—including e.g. bounded variable elim-
ination [21], self-subsuming resolution and subsumed label elimina-
tion [13, 28]—applied together with a MaxSAT solver that is guaran-
teed to consider only locally minimal solutions—are not problematic
in terms of misinterpreting costs of non-optimal solutions. However,
it turns out that not all preprocessing techniques have such a property;
in particular, we identify that blocked clause elimination [26] results
in misinterpretations of the costs of non-optimal solutions even in the
case of locally minimal solutions.

Towards developing MaxSAT algorithms which are guaranteed
to work on locally minimal solutions, we propose an adaptation of
stochastic local search (SLS) for MaxSAT which—in contrast to the
current state-of-the-art SLS algorithms for MaxSAT—has this prop-
erty. Empirical results suggest that searching over locally minimal
solutions in this context can yield practical performance improve-
ments.

After preliminaries on MaxSAT and preprocessing (Sect. 2), we
analyze the impact of preprocessing on the perceived costs of non-
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optimal solutions as seen by MaxSAT solvers during search (Sect. 3).
Finally, we propose an SLS approach that is guaranteed to search
over locally minimal solutions and empirically evaluate its perfor-
mance (Sect. 4).

2 PRELIMINARIES

We start with preliminaries on MaxSAT and preprocessing.

2.1 Maximum Satisfiability

A literal is a Boolean variable x or its negation ¬x. A clause is a dis-
junction of literals (often viewed as the set of its literals), with satis-
faction defined in the standard way. We will interchangeably consider
a truth assignment τ as either a mapping from literals to {0, 1} or the
set of literals assigned to 1 by τ . An assignment satisfies a set F of
clauses (a CNF formula) if it satisfies all C ∈ F . We use VAR(F )
and LIT(F ) to denote the variables and literals, respectively, of the
clauses in F . A clause is a tautology if it contains both literals over
some variable.

For L ⊆ LIT(F ), the set CL(F,L) ⊆ F consists of the clauses
of F which contain a literal in L. The set ¬L contains the negation
of each literal in L. The restriction F

∣
∣
τ

of a set of clauses wrt a truth
assignment (i.e. a set of literals) τ is obtained by removing all clauses
C ∈ F satisfied by τ and all literals falsified by τ from other clauses.

A standard way of defining the maximum satisfiability problem
is as follows. A MaxSAT instance F = (Fh, Fs, w) consists of the
sets Fh and Fs of hard and soft clauses, respectively, and a func-
tion w : Fs → N that assigns a positive cost to each soft clause.
Any truth assignment τ that satisfies Fh is a solution to F . The cost
COST(F , τ) of τ is the sum of the weights of the soft clauses it fal-
sifies, i.e., COST(F , τ) =

∑

C∈Fs
(1− τ(C)) · w(C). A solution τ

is optimal if COST(F , τ) ≤ COST(F , τ ′) holds for all solutions τ ′

to F . The (weighted partial) MaxSAT problem asks to compute an
optimal solution to a given instance F .

A central concept in MaxSAT solving is that of a correction set
(CS). A subset S ⊆ Fs is a correction set if Fh ∪ (Fs \ S) is sat-
isfiable. A correction set S is minimal (an MCS) if no S′ ⊂ S is
a CS. We denote the set of all MCSes of a MaxSAT instance F by
MCS(F). Each solution τ of F corresponds to a CS Mτ = {C ∈
Fs | τ(C) = 0} of F . Conversely, for each correction set M of F ,
there is a corresponding solution τ that satisfies Fh∪(Fs\M). A so-
lution τ is minimal if Mτ ∈ MCS(F). A CS M is optimal if it corre-
sponds to an optimal solution. Since COST(F , τ) =

∑

C∈Mτ w(C),
every optimal CS is minimal and MaxSAT can be seen as the prob-
lem of computing an optimal MCS of F .

Example 1 Let F = (Fh, Fs, w) be a MaxSAT instance with
Fh = {(y ∨ x)}, Fs = {(x), (¬x), (¬y)} with w((x)) =
w((¬x)) = 1 and w((¬y)) = 2. For this instance, MCS(F) =
{{(¬x)}, {(x), (¬y)}}. The solution τ = {¬y, x} is optimal for F .
It has COST(F , τ) = 1 and corresponds to the optimal correction
set Mτ = {(¬x)} ∈ MCS(F). The solution τ2 = {¬x, y} is min-
imal, but not optimal since Mτ2 = {(x), (¬y)} ∈ MCS(F) but
COST(F , τ2) = 3. Finally, the solution τ3 = {x, y} is not minimal
as Mτ3 = {(¬x), (¬y)} ⊃Mτ .

2.2 Applying SAT Preprocessing in MaxSAT

We will focus on recently proposed MaxSAT-liftings of central
SAT preprocessing techniques. In particular, we will consider the

SAT preprocessing techniques of bounded variable elimination
(BVE) [21], blocked clause elimination (BCE) [26], subsumption
elimination (SE) and self-subsuming resolution (SSR).

In practice, the application of SAT preprocessing in the context of
MaxSAT is implemented as follows. Let F = (Fh, Fs, w) be the
MaxSAT instance to be preprocessed.

1. Each soft clause C ∈ Fs is replaced with the clause C∨xC where
xC /∈ VAR(F), i.e., each soft clause is extended with a unique
fresh “soft” variable2 to obtain the set of clauses F ′

s = {C ∨ xC |
C ∈ Fs}. Let S(F) denote the set of soft variables added.

2. Apply preprocessing on the clauses in Fh∪F ′
s with the restriction

that the soft variables are not resolved upon, resulting in a set of
clauses FP .

3. The preprocessed MaxSAT instance P(F) is then (FP , {(¬xC) |
xC ∈ S(F)}, wP ), i.e., has FP as its hard clauses, and a unit
soft clause (¬xC) with weight wP ((¬xC)) = w(C) for each
soft variable xC added to F in the first step.

Note that the weight of each original soft clause C ∈ Fs is main-
tained in the corresponding soft clause (¬xC) in P(F). However,
while there is a one-to-one correspondence between C and its soft
variable xC before preprocessing, after preprocessing this is lost: a
hard clause in P(F) may contain multiple soft variables, and a soft
variable may occur in multiple hard clauses in P(F).

Example 2 Consider the instance F = (Fh, Fs, w) from Exam-
ple 1. Extending each soft clause C ∈ Fs with a soft variable
gives F ′

s = {(x ∨ l1), (¬x ∨ l2), (¬y ∨ l3)}. Applying bounded
variable elimination preprocessing to eliminate x from Fh ∪ F ′

s =
{(y ∨ x), (x ∨ l1), (¬x ∨ l2), (¬y ∨ l3)} results in the clause
set F p = {(y ∨ l2), (l1 ∨ l2), (¬y ∨ l3)}. The preprocessed in-
stance P(F) is then P(F) = (F p, {(¬li) | i = 1..3}, wP ) with
wP ((¬l1)) = wP ((¬l2)) = 1 and wP ((¬l3)) = 2.

2.3 Literal-Centric View on MaxSAT

As we have just seen, the way SAT preprocessing can be applied
on MaxSAT yields MaxSAT instances with a specific structure: all
soft clauses are unit clauses (representing the weights of the origi-
nal soft clauses), and the hard clauses arbitrarily contain these “soft”
variables, to which weights are associated, together with other “non-
soft” variables without weights (or, equivalently, with weight 0).
By this observation, in analogy with e.g. how integer programs are
standardly defined, a preprocessed MaxSAT instance P(F) can be
viewed as the problem of minimizing

∑

C∈Fs
w(C) · τ(xC) subject

to the clauses in FP viewed as constraints.
This motivates the following alternative definition for MaxSAT

which we will refer to as “literal-centric MaxSAT” (in contrast to
the “standard MaxSAT” definition of Section 2.1). A literal-centric
MaxSAT instance F consists of a set of clauses CLAUSES(F) and
a function wF : VAR(CLAUSES(F)) → N ∪ {0} assigning a non-
negative weight to each variable in CLAUSES(F). We will useF and
CLAUSES(F) interchangeably and drop the superscript from w when
clear from context. A variable x ∈ VAR(F) is soft if w(x) > 0. The
set S(F) contains the soft variables of F . We will use x /∈ S(F)
as shorthand for x ∈ VAR(F) \ S(F). An MCS of F is a subset
S ⊆ S(F) for which F∣

∣
¬(S(F)\S)

is satisfiable and F∣
∣
¬(S(F)\S′)

is unsatisfiable for all S′ ⊂ S. A truth assignment τ is a solution to
F if τ(F) = 1. Overloading notation, we denote by S(τ) the set of

2 These may also be called blocking, assumption or label variables.
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soft variables of F assigned to true in τ . A solution τ is minimal if
S(τ) ∈ MCS(F).

Example 3 Consider the instance F from Example 1. The literal-
centric view FE of F has CLAUSES(F) = {(y∨x), (x∨ l1), (¬x∨
l2), (¬y∨l3)}, S(F) = {l1, l2, l3} with wF (l1) = wF (l2) = 1 and
wF (l3) = 2. The set M = {l2} is an MCS of F as F∣

∣
¬(S(F)\M)

=

{(y ∨ x), (x), (¬x ∨ l2), (¬y)} is satisfied by τ = {¬y, x, l2} and
F∣
∣
¬(S(F)\∅) = {(y ∨ x), (x), (¬x), (¬y)} is unsatisfiable. The so-

lution τ has S(τ) = {l2} ∈ MCS(F), so it is minimal.

2.4 MaxSAT Preprocessing Techniques

We will next overview the preprocessing techniques we focus on.
For this, let F be a (literal-centric) MaxSAT instance. The resolvent
C ��x D of two clauses C = (C1 ∨ x) ∈ F and D = (D1 ∨¬x) ∈
F is C1∨D1. Resolution is lifted to sets of clauses Sx ⊂ F (S¬x ⊂
F ) all containing the literal x (¬x) by Sx ��x S¬x = {C ��x D |
C ∈ Sx, D ∈ S¬x}. We will focus on the following preprocessing
techniques [6, 10, 13, 28].

Bounded variable elimination (BVE) eliminates a variable x /∈
S(F) from F by substituting all clauses containing the variable
x with the pairwise resolvents of those clauses. More specifically,
BVE(F) = (F \ (CL(F , x) ∪ CL(F ,¬x))) ∪ (CL(F , x) ��x
CL(F ,¬x)).3

Blocked clause elimination (BCE) A clause C is blocked on a lit-
eral l if C ��l D is a tautology for all D ∈ CL(F ,¬l). BCE
eliminates a clause C ∈ F that is blocked on a literal l /∈ S(F),
i.e., BCE(F) = F \ {C}.

Subsumption elimination (SE) A clause C ∈ F is subsumed if
there is another clause D ∈ F for which D ⊆ C. SE eliminates
subsumed clauses from F , i.e., SE(F) = F \ {C}.

Self-subsuming resolution (SSR) removes literals from clauses
subsumed by resolvents. More precisely, let l /∈ S(F) and as-
sume F contains two clauses C = C′ ∨ l and D = D′ ∨ ¬l for
which (C ��l D) ⊆ D. Then SSR(F) = F \ {D}∪ {C ��l D}.

Group-subsumed label elimination (GSLE) is a MaxSAT-specific
technique. A soft variable x ∈ S(F) is subsumed by a group
S ⊆ (S(F) \ {x}) if i) CL(F , x) ⊆ CL(F , S) and ii) wF (x) ≥
∑

y∈S wF (y). GSLE removes soft variables that are subsumed.
More precisely, GSLE(F) = F∣

∣
{¬x}.

2.5 Solution Reconstruction

An important detail in applying preprocessing is that some of the
most central preprocessing techniques require applying solution re-
construction for obtaining a solution to the original instance from
a solution to the preprocessed instance. This is due to the fact that
preprocessing techniques such as BVE and BCE preserve (on the
level of SAT) only equisatisfiability, not logical equivalence; in par-
ticular, the preprocessed instances may have solutions which are not
solutions of the original instance. However, there is a general linear-
time solution reconstruction technique [27, 25] that can be applied in
conjunction with essentially any preprocessing technique. Solution
reconstruction will be important for some of the main observations
made in this work. Hence we shortly define the solution reconstruc-
tion steps for each of the preprocessing techniques considered.

3 In practice, BVE is not allowed to increase the number of clauses. This
detail does not affect the theoretical analysis of this work.

Assume that we have a solution τ to a preprocessed instance
P(F). Solution reconstruction works by modifying τ iteratively in
the inverse order of the preprocessing steps made to obtain to ob-
tain a solution to the original instance F . We will denote the thereby
reconstructed solution by REC(τ). The reconstruction works as fol-
lows for each step of the individual preprocessing techniques.

BVE: Let x /∈ S(F) be the eliminated variable. REC(τ) is τ ∪{x}
if τ(CL(F , x)) = 0, and τ ∪ {¬x} otherwise.

BCE: Let C be blocked on l /∈ S(F). REC(τ) is (τ \ {¬l})∪ {l}
if τ(C) = 0 and τ otherwise.

SE and SSR: REC(τ) is τ .
GSLE: Let l ∈ S(F) be subsumed. REC(τ) is τ ∪ {¬l}.

Example 4 Consider the instance FE from Example 3. BVE can
be applied to eliminate the variable x /∈ S(F) in order to ob-
tain the (literal-centric) instance BVE(FE) = {(y ∨ l2), (l1 ∨
l2), (¬y ∨ l3)} with S(BVE(FE)) = {l1, l2, l3}. The solution τ =
{¬y, l1, l2,¬l3} to BVE(F) does not satisfy (x ∨ y) ∈ CL(FE , x)
so REC(τ) = {¬y, l1, l2,¬l3, x}.

3 PREPROCESSING AND SOLUTION COST

We aim to better understand how applying preprocessing before
MaxSAT search influences the interpretation of the costs of solutions
seen during search.

To date, correctness arguments for different preprocessing tech-
niques for MaxSAT [6, 10] have focused on establishing a well-
defined connection between the costs of optimal solutions before and
after preprocessing. However, both complete and incomplete solvers
use information from non-optimal solutions seen during search to ex-
pedite the search process, using the costs of the non-optimal solutions
e.g. for bounding (as in the case of complete solving in the style of
the implicit hitting set approach to MaxSAT [41, 4, 18, 19, 17]) and
the so-called hardening rule [1] applied with stratification in core-
guided MaxSAT solvers [40, 37, 38], heuristic guidance (as in the
case of stochastic local search for MaxSAT [14, 33, 15]) and linear-
search (model improving) algorithms whose search is guided by the
cost of solutions found [20, 36, 29].

In this section, we will show that, both in theory and in prac-
tice, applying preprocessing before MaxSAT search can in fact have
a drastic effect on the perceived cost of non-optimal solutions seen
during search. In particular, we will show that subtleties in how pre-
processing alters MaxSAT instances result in MaxSAT algorithms
making overestimations the costs of non-optimal solutions, thereby
potentially weakening the overall performance unnecessarily when
preprocessing is applied. After the analysis, we will in Section 4 pro-
pose a solution for dealing with this issue in practice in the context
of stochastic local search for MaxSAT.

3.1 Apparent vs Actual Cost

Central to our analysis is the notion of apparent cost of (non-
optimal) solutions, reflecting how the cost of solutions is perceived—
potentially incorrectly—by MaxSAT algorithms after preprocessing.

Definition 1 Let F be a (standard) MaxSAT instance. The ap-
parent cost APPAR-COST(P(F), τ) of a solution τ to a pre-
processed MaxSAT instance P(F) is APPAR-COST(P(F), τ) =
∑

x∈S(F) τ(x)w(x).
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Figure 1. Difference between actual and apparent costs of solutions: Loandra (left) and SATLike (right) on instance ram k3 n12.ra1.wcnf.

First, recall that minimal solutions correspond to minimal correc-
tions sets. In earlier work [6, 13], establishing the correctness of pre-
processing in terms of optimal solutions, it has been shown that the
apparent cost of any minimal solution τ to a preprocessed MaxSAT
equals the actual cost of the solution REC(τ) obtained via solution
reconstruction to the original instance.

Proposition 1 ([6, 13]) Let F be a (standard) MaxSAT instance,
P(F) a preprocessed instance and τ a minimal solution to P(F).
Then APPAR-COST(P(F), τ) = COST(F , REC(τ)).

However, this does not hold for solutions to preprocessed in-
stances in general. In particular, the following example demonstrates
that Proposition 1 does not hold for non-minimal solutions.

Example 5 Consider the instances F , FE and BVE(FE) as
well as the solutions τ and REC(τ) discussed in Exam-
ples 1, 3 and 4. For these APPAR-COST(BVE(FE), τ) =
APPAR-COST(FE , REC(τ)) = 2 �= 1 = COST(F , REC(τ)).

In other words, preprocessing does not preserve the costs of the
non-optimal solutions of MaxSAT instances in general. In order to
understand why this is an issue in MaxSAT solving in practice, note
that solvers in general straightforwardly use the notion of apparent
cost for interpreting the costs of solutions of the preprocessed in-
stance encountered during search, either explicitly or implicitly via
unit soft clauses containing the negations of soft variables. This im-
plies that they may incorrectly evaluate the costs of solutions encoun-
tered when preprocessing is applied prior to search.

This observation holds not only in theory, but is also witnessed in
practice. We demonstrate this using two recent incomplete MaxSAT
solvers, the SAT-based solver Loandra [7] based on combining core-
guided and linear-search algorithms, and the stochastic local search
solver SATLike [30]. These solvers were the two best-performing
incomplete solvers in the 2019 MaxSAT evaluation [5]. Figure 1
shows the apparent costs of solutions as perceived during search
by Loandra and SATLike on a MaxSAT instance from MaxSAT
Evaluation 2019 after first preprocessing the instance with the Max-
Pre preprocessor [28], as well as the actual cost of the same so-
lutions. Specifically, for each solution τn that improved the cur-
rently best found solution, we computed REC(τn) and recorded
both the apparent cost APPAR-COST(P(F), τn) and the actual

cost COST(F , REC(τn)). Furthermore, the gap between the ap-
parent and actual costs as shown in the upper plots of Figure 1 is
(APPAR-COST(P(F), τ)/COST(F , REC(τ)))− 1.

We can observe that preprocessing results in the solvers mak-
ing drastic overapproximations of the costs of solutions seen during
search, thereby potentially significantly slowing down the search by
being misled into attempting to improve the apparent cost instead of
the actual cost. For example, the 10th solution τ10 found by Loandra
had COST(F , REC(τ10)) = 919 and APPAR-COST(P(F), τ10) =
3982. The following 10 solutions found, i.e., all τn for n = 11..20
had COST(F , REC(τn)) = 919. However, Loandra, operating with
APPAR-COST(P(F), τn), still considered them improvements as
APPAR-COST(P(F), τn) > APPAR-COST(P(F), τn+1) holds for
all n = 10..20. Even worse, we also found examples of both Loandra
and SATLike improving the apparent cost of a solution while worsen-
ing the actual cost. For example, the 8th solution τ8 found by Loandra
had APPAR-COST(P(F), τ8) = 4572 and COST(F , REC(τ8)) =
1953. The next solution τ9 considered an improvement by Loandra
had APPAR-COST(P(F), τ9) = 4324 < APPAR-COST(P(F), τ8)
but COST(F , REC(τ9)) = 2073 > COST(F , REC(τ8)).

Notice that, as shown in Figure 1, the apparent and actual costs
differ both within the core-guided and linear-search phases of Loan-
dra, which suggests that similar observations can be made for other
solvers implementing core-guided or linear-search types of algo-
rithms, including complete solvers. Furthermore, as another central
MaxSAT solving paradigm, this observation also extends to implicit
hitting set solvers which make use of the costs of optimal solutions
encountered during search for e.g. termination and bounds-based fix-
ing of variables [4, 18, 41].

We hypothesize that this issue at least partially explains the re-
ported modest impact of preprocessing in the context of MaxSAT
solving [8, 6, 11] (in particular when compared to the impact of pre-
processing in the context of SAT solving).

Evidently, to fully take advantage of preprocessing for speeding up
MaxSAT solving, the issue of misinterpreting the costs of solutions
during search needs to be rectified. By Proposition 1, the apparent
cost of a minimal solution equals its actual cost. Hence a hypotheti-
cal solver that only computes minimal solutions will always evaluate
the costs of solutions it sees correctly; however, ensuring that a solu-
tion is minimal is computationally hard, as this requires proving that
the solution corresponds to an MCS, which in itself is NP-hard [24]
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(although the underlying hitting set problem may be of small size
in practice). Alternatively, one may rectify the issue by applying
solution reconstruction at each iteration of search. However, while
solution reconstruction is linear-time in the number of preprocess-
ing steps performed, this can cause a significant overhead as modern
MaxSAT solvers, especially stochastic local search solvers, typically
find a significant number of solutions during search.

A natural question to ask is if there are other properties of solu-
tions, more relaxed than minimal solutions, for which apparent cost
equals actual cost in general. In the following we will show that what
we refer to as locally minimal solutions characterize such a larger set
of solutions for various central preprocessing techniques.

3.2 Locally Minimal Solutions

Example 5 provides simplistic intuition on locally minimal solu-
tions. The solution τ satisfies the clause (l1 ∨ l2) due to both of
the soft variables l1 and l2 being set to true, thus unnecessarily in-
curring apparent cost on both. Similarly, the solution REC(τ) sat-
isfies the clause (x ∨ l1) ∈ FE both on x and l1, incurring appar-
ent cost on l1 unnecessarily. In other words, the difference between
APPAR-COST(FE , REC(τ)) = APPAR-COST(P(FE), τ) = 2 and
COST(F , REC(τ)) = 1 is due to soft variables being set to true
unnecessarily. Locally minimal solutions are those in which no soft
variables are assigned unnecessarily to true, i.e., under which no soft
variable can be flipped from true to false while keeping the assigned
values to other soft variables and maintaining satisfiability.

Definition 2 Let F be a (literal-centric) MaxSAT instance. A solu-
tion τ to F is locally minimal if (τ \ S) ∪ (¬S) falsifies F for all
non empty S ⊂ S(τ).

In particular, consider a (standard) MaxSAT instance F and let
FE be the (literal-centric) instance obtained by adding soft vari-
ables to the soft clauses as described in Section 2.2. We have that
APPAR-COST(FE , τ) = COST(F , τ) holds for any locally mini-
mal solution τ to FE . Importantly, this also holds for applications
of preprocessing techniques for which REC(τ) is a locally minimal
solution to FE whenever τ is a locally minimal solution to P(F).

Definition 3 A preprocessing techniqueP preserves locally minimal
solutions if the following holds for any (standard) MaxSAT instance
F : If τ is a locally minimal solution to P(F), then REC(τ) is a
locally minimal solution to FE , the literal-centric instance obtained
by adding soft variables to the soft clauses of F .

In particular, applying a preprocessing technique that preserves lo-
cally minimal solutions in conjunction with a MaxSAT solver guar-
anteed to only compute locally minimal solutions during search, the
solver will perceive correctly the costs of all solutions encountered
during search.

Proposition 2 The following holds for any preprocessing technique
P that preserves locally minimal solutions. Given a (standard)
MaxSAT instance F and a locally minimal solution τ to P(F), we
have that COST(F , REC(τ)) = APPAR-COST(P(F), τ).

This gives rise to two questions: (i) Which preprocessing tech-
niques preserve locally minimal solutions? (ii) How to guarantee that
a MaxSAT solver computes only locally minimal solutions during
search? As an answer to (i), we will next show that all of the consid-
ered preprocessing techniques—except for BCE—in fact preserve

locally minimal solutions. Towards a solution to (ii) in the context
of stochastic local search for MaxSAT, we will in Section 4 describe
an SLS approach to MaxSAT which is guaranteed to consider only
locally minimal solutions.

Lemma 1 Let τ be a locally minimal solution to an instance F . For
each l ∈ S(τ) there is a clause (C ∨ l) ∈ F such that τ(C) = 0.

Proof. If not, then (τ \ {l}) is also a solution to F . �

Proposition 3 P preserves locally minimal solutions for each P ∈
{BVE, SE, SSR, GSLE}.

Proof. Let F be a (literal centric) MaxSAT instance and τ a lo-
cally minimal solution to P(F). The statement follows trivially if
S(τ) = ∅. Consider hence any l ∈ S(τ) and apply Lemma 1 to
obtain a clause (C ∨ l) ∈ P(F) for which τ(C) = 0. We prove
that REC(τ) is a locally minimal solution to F by showing that
REC(τ) \ {l} is not a solution to F . If (C ∨ l) ∈ F , the state-
ment follows from τ ⊆ REC(τ). Otherwise, i.e., if (C ∨ l) /∈ F , the
specific argument depends on P .

• For BVE, (C∨l) = D∨E for some (D∨x) ∈ F and (E∨¬x) ∈
F . Assume REC(τ) = τ ∪ {x} (the other case is symmetric).
Then REC(τ)(D ∨ x) = 1. However, as E is satisfied by τ at
most on l, it is not satisfied by τ \{l} and thus not by REC(τ)\{l}
either.

• For SSR, (C ∨ l) = (D ��x E) for two clauses (D ∨ x) and
(E∨¬x) ofF , where (D ��x E) ⊂ D. As REC(τ) = τ satisfies
(D ��x E) only on l, it follows that REC(τ) \ {l} falsifies either
(E ∨ ¬x) or (D ∨ x).

• For GSLE, (C ∨ l2 ∨ l) ∈ F for a subsumed soft variable l2 ∈
S(F). Now REC(τ) = τ ∪{¬l2} and as such REC(τ)\{l} does
not satisfy (C ∨ l2 ∨ l) as τ(C) = 0.

• For SE, the assumption (C ∨ l) /∈ F does not apply. �

Proposition 3 implies that, used in conjunction with a MaxSAT
solver that is guaranteed to encounter only locally minimal solutions
during search, all of the preprocessing techniques BVE, SE, SSR,
GSLE can be applied without fear of overapproximating the costs of
solutions.

Theorem 1 For any (standard) MaxSAT instance F and combina-
tion P of preprocessing techniques among BVE, SE, SSR, and
GSLE, we have APPAR-COST(P(F), τ) = COST(F , REC(τ)) for
any locally minimal solution τ to P(F).

Finally, we show that, in contrast to the other preprocessing tech-
niques, BCE does not preserve locally minimal solutions; that is,
BCE is more problematic in terms of misleading MaxSAT solvers in
terms of the perceived costs of solutions during search.

Theorem 2 BCE does not preserve locally minimal solutions.

Proof. Consider the MaxSAT instance F = {(¬x ∨ y), (x ∨
¬y), (¬x∨ l)} with S(F) = {l} and wF (l) = 1. The clause (¬x∨
y) is blocked on ¬x /∈ S(F) so BCE can be applied to obtain the
instance BCE(F) = {(x∨¬y), (¬x∨ l)} with S(BCE(F)) = {l}
and wP(F)(l) = 1. The solution τ = {l, x,¬y} is locally minimal
to BCE(F). However, the solution REC(τ) = {l,¬x,¬y} is not
locally minimal to F since {¬x,¬y} also satisfies F . �

Finally, we note that the underlying reason for misinterpreting so-
lutions costs is not the literal-centric view; using BCE on standard
MaxSAT instances (which is possible also without the use of soft
variables [6]) misleads solvers.
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Example 6 Consider the standard MaxSAT instance F =
(Fh, Fs, w) with Fh = {(¬x ∨ y), (x ∨ ¬y)}, Fs = {(¬x)}
and w((¬x)) = 1. The clause (¬x ∨ y) is blocked on ¬x so BCE
can be applied in order to obtain the (standard) instance P(F) =
(Fh \ {(¬x ∨ y)}, Fs, w). The solution τ = {x,¬y} to P(F) has
COST(P(F), τ) = 1. Since τ((¬x ∨ y)) = 0 the reconstruction
REC(τ) is (τ \ {x}) ∪ {¬x} and has COST(F , REC(τ)) = 0.

4 LOCAL SEARCH OVER LOCALLY
MINIMAL SOLUTIONS

We describe a MaxSAT stochastic local search algorithm that is guar-
anteed to search over locally minimal solutions, thereby avoiding the
misinterpretation of solution costs seen during search (recall Fig-
ure 1). While in principle one could apply solution reconstruction
at each solution, this is in practice too time-consuming especially in
the context of SLS; we propose a more practically suited approach.
Though based on similar ideas as recent SLS methods [30], a key
difference in our approach is to ensure locally minimal solutions via
grouping clauses of soft variables according to the soft variables they
contain, and using this structural information to obtain locally mini-
mal solutions. In particular, starting from a (standard) MaxSAT in-
stance F as input, we partition the clauses of the instance P(F)
(obtained by applying preprocessing methods that preserve locally
minimal solutions) into sets H and S, where H = {C ∈ P(F) |
C ∩ S(F) = ∅} and S = {C ∈ P(F) | C ∩ S(F) �= ∅}. Further,
the clauses of S are partitioned into disjoint groups Sg = {Gxc |
xc ∈ S(F)}. A clause C ∈ S is included in group Gxc if xc is a
soft variable in C with the lowest weight over all the soft variables in
C (ties broken randomly).4 We identify each clause C ∈ H with the
group {C} and denote their collection by Hg . We say that a group G
is satisfied by an assignment τ if (τ \ S(F)) (G) = 1, and otherwise
unsatisfied.

Our approach ignores soft variables during search, and instead
tries to find assignments τ which satisfy the groups in Hg . Note
that if the group Gxc contains only one soft variable—namely the
variable xc—then any solution τ that leaves at least one C ∈ Gxc

unsatisfied must have τ(xc) = 1. Thus to not incur cost from xc,
each clause in Gxc needs to be satisfied (a la Group MaxSAT [23]).
Moreover, if each group contains at most one soft variable, any so-
lution τ for which the invariant “τ(xc) = 1 iff Gxc is unsatisfied”
holds is locally minimal as no solution can set τ(xc) = 0 when Gxc

is unsatisfied. Each assigment τ can be modified to make the invari-
ant hold by setting τ(xc) = 0 if Gxc is satisfied and τ(xc) = 1
otherwise. For groups containing clauses with more than one soft
variable, a solution τ for which the invariant holds is not necessarily
locally minimal. To remedy this issue, we generate a locally minimal
assignment τ ′ ⊆ τ by first setting τ ′ := τ and then iteratively set-
ting τ ′(xc) = 0 if τ ′ \ {xc} is a solution, considering the variables
xc ∈ S(τ) in decreasing order of wF (xc).

We refer to the proposed SLS method as LMS-SLS. The pseu-
docode of LMS-SLS is outlined in Algorithm 1. Given a standard
instance F , LMS-SLS begins by preprocessing the instance to obtain
the literal-centric instance P(F) (line 1), which is then partitioned
into groups (line 2).

After grouping, an initial assignment is constructed (lines 3–8).
For groups the clauses of which contain at most one soft variable,

4 We note that over 68% of the weighted instances in the MaxSAT Evalua-
tion 2019 incomplete track consist solely of clauses with at most one soft
variable after preprocessing.

Algorithm 1: LMS-SLS

Input : MaxSAT instance F
Output: A solution τ along with its cost if a solution is found,

otherwise “no solution found”.

1 Preprocess F to obtain P(F)
2 Form the groups Hg and Sg

3 τ := a random initial assignment for P(F)
4 for xc ∈ S(F) do

5 if Gxc is satisfied then τ(xc) = 0
6 else τ(xc) := 1

7 τ := decimation on τ and P(F) without soft variables
8 τ∗ := τ
9 while no termination criteria is met do

10 if τ is a solution then

11 τ ′ := greedily computed locally minimal solution for
which τ ′ ⊆ τ

12 if APPAR-COST(P(F), τ ′) < APPAR-COST(P(F), τ∗)
then τ∗ := τ ′

13 if D := {v �∈ S(F) | SCORE(v) > 0} �= ∅ then

14 v := a variable in D chosen by the BMS strategy
15 τ := τ with v flipped
16 else

17 update group weights
18 if ∃G ∈ Hg that is unsatisfied then

19 G := an unsatisfied group from Hg

20 else G := an unsatisfied group from Sg

21 τ := SATISFY(τ,G)

22 update τ(xc) for all xc ∈ S(F)

23 if τ∗ is a solution then

24 return REC(τ∗), COST(F , REC(τ∗))
25 else return no solution found

locally minimal solutions are already guaranteed by lines 4–6, which
is followed by unit propagation based decimation [16].

In the main search loop (lines 9–22), if the current assign-
ment τ is a solution, a locally minimal τ ′ ⊆ τ is computed
(line 11) greedily as described above. The current incumbent so-
lution τ∗ is updated to τ ′ if APPAR-COST(P(F), τ ′) is lower than
APPAR-COST(P(F), τ∗). A greedy step (lines 13–15) is performed
whenever possible. That is, when the set D of variables with a pos-
itive score is non-empty, one such variable is chosen to be flipped
by the best from multiple selection (BMS) strategy of [33, 30]. The
BMS strategy samples t variables with replacement from D and re-
turns the variable v with the highest score, breaking ties randomly.
In particular, we adapt a dynamic weighting scheme proposed ear-
lier in the context of MaxSAT SLS [34, 14, 33, 16, 30] to the level
of groups, assigning scores to non-soft variables. Specifically, the
weights of all groups in Hg are initialized to 1 and the weight of
each Gxc ∈ Sg to wF (xc). During search the weight of each unsat-
isfied group G ∈ Hg is increased by a user-defined parameter h inc.
The score of a variable x �∈ S(F) with respect to an assignment τ is
then the increase in the sum of the weights of the groups that would
be satisfied by flipping x.

In case a greedy step is not possible, we update group weights
(line 17) and select uniformly at random a currently unsatisfied group
G to be satisfied by the SATISFY subroutine, preferring hard groups
over soft groups (lines 18– 20). If G ∈ Hg , SATISFY flips a variable
in G with the highest (least negative) score in it, breaking ties ran-
domly (line 21). Otherwise, to satisfy G ∈ Sg , SATISFY employs a
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Table 1. Pairwise comparison of different variants of LMS-SLS

-G-pre -G -G-pre default +BCE default
Domain # #wins (score) #wins (score) #wins (score) #wins (score) #wins (score) #wins (score)
abstraction-refinement 10 8 (0.981) 2 (0.884) 4 (0.808) 6 (0.847) 8 (1.000) 3 (0.924)
af-synthesis 16 9 (0.967) 9 (0.987) 0 (0.779) 16 (1.000) 15 (0.997) 16 (1.000)
BTBNSL 14 9 (0.993) 5 (0.982) 8 (0.978) 6 (0.928) 7 (0.990) 7 (0.991)
causal-discovery 16 10 (0.738) 6 (0.705) 1 (0.394) 15 (0.980) 10 (0.852) 11 (0.899)
correlation-clustering 23 11 (0.691) 12 (0.640) 11 (0.909) 12 (0.837) 10 (0.895) 13 (0.974)
drmx-cryptogen 1 0 (0.223) 1 (1.000) 0 (0.223) 1 (1.000) 1 (1.000) 1 (1.000)
hs-timetabling 10 1 (0.520) 10 (1.000) 1 (0.411) 10 (1.000) 5 (0.948) 6 (0.940)
lisbon-wedding 14 12 (0.991) 8 (0.901) 11 (0.960) 8 (0.887) 9 (0.897) 11 (0.986)
max-realizability 13 13 (1.000) 8 (0.707) 10 (0.998) 13 (1.000) 13 (1.000) 13 (1.000)
maxcut 16 16 (1.000) 16 (1.000) 0 (0.955) 16 (1.000) 16 (1.000) 16 (1.000)
InterpretableClassifiers 15 10 (0.946) 5 (0.769) 0 (0.559) 15 (1.000) 11 (0.994) 9 (0.984)
metro 2 2 (1.000) 0 (0.691) 0 (0.860) 2 (1.000) 2 (1.000) 1 (0.988)
min-width 17 16 (0.985) 1 (0.961) 0 (0.907) 17 (1.000) 1 (0.978) 16 (1.000)
MinWeightDominatingSet 7 6 (1.000) 7 (1.000) 4 (1.000) 3 (1.000) 5 (1.000) 6 (1.000)
mpe 15 13 (0.998) 2 (0.911) 0 (0.699) 15 (1.000) 15 (1.000) 15 (1.000)
RBAC maintenance 15 15 (1.000) 1 (0.753) 5 (0.818) 10 (0.917) 8 (0.962) 7 (0.987)
pseudoBoolean 7 7 (1.000) 6 (0.857) 7 (1.000) 6 (0.857) 7 (1.000) 7 (1.000)
railway-transport 4 2 (0.764) 3 (0.999) 2 (0.758) 3 (0.750) 2 (0.973) 3 (0.750)
ramsey 12 12 (1.000) 12 (1.000) 0 (0.438) 12 (1.000) 12 (1.000) 12 (1.000)
relational-inference 2 1 (0.545) 1 (0.825) 1 (0.517) 1 (0.500) 1 (0.691) 1 (0.500)
set-covering 12 12 (1.000) 12 (1.000) 8 (0.994) 10 (0.994) 11 (0.999) 11 (0.999)
shiftdesign 11 11 (1.000) 11 (1.000) 11 (1.000) 11 (1.000) 11 (1.000) 11 (1.000)
spot5 5 5 (1.000) 0 (0.973) 0 (0.921) 5 (1.000) 2 (0.999) 3 (1.000)
staff-scheduling 11 7 (0.962) 4 (0.961) 4 (0.937) 7 (0.978) 6 (0.985) 6 (0.940)
tcp 13 10 (0.997) 7 (0.996) 1 (0.967) 13 (1.000) 9 (0.996) 8 (0.994)
timetabling 16 10 (0.925) 10 (0.873) 4 (0.697) 16 (1.000) 12 (0.988) 8 (0.964)
total 297 228 (0.925) 159 (0.887) 93 (0.810) 249 (0.957) 209 (0.969) 221 (0.974)

simple local search algorithm which either flips a variable in G ran-
domly with probability 1 − gp or a variable with the highest make
with probability gp. Here the make of a variable is defined as the
number of unsatisfied clauses in G that would become satisfied by
flipping the value of x in the current assignment. This process is iter-
ated until G is satisfied. Finally, on line 22 we modify τ to guarantee
that the invariant “τ(xc) = 1 iff Gxc is unsatisfied” holds. At ter-
mination (line 24) we reconstruct the current incumbent solution for
reporting the best solution found and its cost.

Experiments. We evaluate the impact of ensuring that solutions con-
sidered during search are locally minimal on the practical perfor-
mance of the proposed SLS approach. We consider the following
variants.

default: the LMS-SLS approach in its full, with all of the prepro-
cessing techniques that preserve locally minimal solutions applied
before search.

+BCE: LMS-SLS with additionally BCE applied before search (re-
call that BCE does not preserve locally minimal solutions).

-G: LMS-SLS without clause grouping, i.e., treating each soft clause
as a group of size 1 and thus not guaranteeing locally minimal
solutions.

-G-pre: -G without preprocessing.

We implemented the approach in C++ on top of SATLike [30]. Fol-
lowing [30], we set h inc = 300 if the average weight of the soft
clauses in the instance was higher than 10000, and 3 otherwise. We
also set t = 15 and gp = 0.8 based on preliminary experiments. We
used MaxPre [28] as the preprocessor. As benchmarks, we used the
weighted instances used in the incomplete track of MaxSAT Evalu-
ation 2019. The experiments were run on 2.4-GHz Intel Xeon E5-
2680-v4, 256-GB computers with a per-instance time limit of 300
s, preprocessing time included, and a memory limit of 32 GB. We

used a per-instance time limit of 10 s for preprocessing to ensure that
preprocessing times do not dominate, while also generally achieving
simplifications via MaxPre’s internal technique scheduling.

A pairwise comparison of the relative performance of the four
variants is shown in Table 1, grouped into comparisons (-G-pre vs
-G), (-G vs default), and (default vs +BCE) wrt both the number
of wins (best solution found) and the score metric used in MaxSAT
Evaluations (a larger value is better). This allows us to make the fol-
lowing observations. First, we observe that without grouping, -G-pre

performs overall better than -G, i.e., preprocessing in fact degrades
performance when not only locally minimal solutions are considered
during search. However, default improves considerably over -G-pre.
This witnesses the practical potential of Theorem 1: by ensuring that
only locally minimal solutions are considered during search in con-
junction with applying preprocessing techniques that preserve locally
minimal solutions, search performance can be improved. Note that
default also outperforms +BCE overall. This would seem to suggest
that BCE (that does not preserve locally minimal solutions by Theo-
rem 2) indeed degrades search performance, which may be the result
of applying BCE leading to misinterpreting costs of (even locally
minimal) solutions during search. Finally, we note that the current
prototype implementation of LMS-SLS is overall on par with SAT-
Like. Interestingly, however, SATLike (with preprocessing) and de-

fault exhibit complementary performance; e.g. on lisbon-wedding
SATLike wins 10 times against default’s 0 wins, while e.g. on min-
width default wins 16 times against SATLike’s 1 win.

5 CONCLUSIONS

We showed that central preprocessing techniques lead to MaxSAT
solvers misinterpreting the costs of solutions during search both in
theory and in practice. This may at least in part explain why the
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performance gains obtained through preprocessing have appeared
to be more modest in MaxSAT solving compared to SAT solving.
Towards resolving this intricate issue in applying preprocessing as
part of the MaxSAT solving workflow, we showed that, by assum-
ing that MaxSAT solvers focus on so-called locally minimal solu-
tions, the issue is fixed for most (but not all) preprocessing tech-
niques. As the first steps towards designing MaxSAT solving tech-
niques which focus on locally minimal solutions, we presented a
stochastic local search approach with this sought-after property and
empirically showed that search over locally minimal solutions indeed
yields practical performance improvements. Adapting other types
of MaxSAT algorithms, including SAT-based and branch-and-bound
solvers [31, 32], to focus on locally minimal solutions is a promis-
ing direction of improving the practical impact of preprocessing for
MaxSAT. Combinations of SAT-based preprocessing with MaxSAT
preprocessing techniques based on MaxSAT resolution [22] could
also be considered.
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[2] C. Ansótegui and J. Gabàs, ‘Solving (weighted) partial MaxSAT with
ILP’, in Proc. CPAIOR, volume 7874 of LNCS, pp. 403–409. Springer,
(2013).
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