
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Kibble M, Khan SA, Ammad-
ud-din M, Bollepalli S, Palviainen T, Kaprio J,

Pietiläinen KH, Ollikainen M. 2020 An integrative

machine learning approach to discovering multi-

level molecular mechanisms of obesity using

data from monozygotic twin pairs. R. Soc. Open

Sci. 7: 200872.
http://dx.doi.org/10.1098/rsos.200872
Received: 10 June 2020

Accepted: 29 September 2020
Subject Category:
Genetics and genomics

Subject Areas:
bioinformatics/health and disease and

epidemiology/computational biology

Keywords:
machine learning, big data, obesity, monozygotic

twins
Author for correspondence:
Milla Kibble

e-mail: mmk60@cam.ac.uk
© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

5177386.
An integrative machine
learning approach to
discovering multi-level
molecular mechanisms of
obesity using data from
monozygotic twin pairs
Milla Kibble1,3, Suleiman A. Khan1,

Muhammad Ammad-ud-din1, Sailalitha Bollepalli1,

Teemu Palviainen1, Jaakko Kaprio1,2, Kirsi H. Pietiläinen4

and Miina Ollikainen1

1Institute for Molecular Medicine Finland (FIMM), and 2Department of Public Health,
University of Helsinki, Helsinki, Finland
3Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK
4Obesity Research Unit, Helsinki University Central Hospital and University of Helsinki,
Helsinki, Finland

MK, 0000-0003-1130-4010; SAK, 0000-0002-0823-4042;
SB, 0000-0002-8773-7149; TP, 0000-0002-7847-8384;
JK, 0000-0002-3716-2455; KHP, 0000-0002-8522-1288;
MO, 0000-0003-3661-7400

We combined clinical, cytokine, genomic, methylation and
dietary data from 43 young adult monozygotic twin pairs
(aged 22–36 years, 53% female), where 25 of the twin pairs
were substantially weight discordant (delta body mass index
> 3 kg m−2). These measurements were originally taken as
part of the TwinFat study, a substudy of The Finnish Twin
Cohort study. These five large multivariate datasets
(comprising 42, 71, 1587, 1605 and 63 variables, respectively)
were jointly analysed using an integrative machine learning
method called group factor analysis (GFA) to offer new
hypotheses into the multi-molecular-level interactions
associated with the development of obesity. New potential
links between cytokines and weight gain are identified, as
well as associations between dietary, inflammatory and
epigenetic factors. This encouraging case study aims to
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1. Introduction
Worldwide, obesity has nearly tripled since 1975, according to the World Health Organisation. In 2016,
more than 1.9 billion adults were overweight, of whom over 650 million were obese [1]. A raised body
mass index (BMI), which is a common measure used to define obesity, is a major risk factor for non-
communicable diseases such as cardiovascular diseases, type 2 diabetes mellitus (T2DM), chronic
kidney disease, musculoskeletal disorders (especially osteoarthritis) and certain cancers [2–4]. There is
evidence that high BMI is really driving the unfavourable changes in disease-associated biomarkers
[5]. Recently, Romieu et al. [6] reviewed the evidence of the associations between energy balance and
obesity and concluded that the main driver of weight gain is energy intake that exceeds its
expenditure. So excessive energy intake which is not compensated by energy expenditure leads to
excess weight gain, which over time can lead to a multitude of chronic health problems.

However, theweight gain trajectory is far frombeing this straightforward and the determinants of excess
weight gain are still not well understood. Key players probably include genetics, epigenetics, type and
quality of diet, exercise and lifestyle, microbiome composition and hormonal effects as well as
medications acting on the individual. In addition, there are societal and psychological factors acting on
populations and groups of persons. The person-level and macro-level factors interact in such a complex
manner that often researchers can focus on only one or two of these features at a time [7]. For example,
there are studies highlighting the heritability of obesity [8,9], estimates of which range between 40 and
70%. Indeed monozygotic (MZ) twins are very rarely BMI discordant, i.e. differ significantly in weight.
The first genetic locus to show robust association with BMI and obesity risk, namely FTO, was discovered
via a genome-wide association study (GWAS) in 2007 [10,11] and since then, over 500 genetic loci have
been found, among other things providing strong support for a role of the central nervous system in
obesity susceptibility [8]. It is now clear that most cases of obesity are polygenic and multifactorial and
the full picture of how genetic and other factors jointly influence at a molecular level individual
preferences for and responses to diet and physical activity remains largely beyond our comprehension.

The wealth of data being collected in this field holds great potential to offer some answers, but the
challenge remains how to consider the large and diverse datasets in an integrated manner to infer such
multifactorial molecular mechanisms. In addition, ideally one would want to undertake an unbiased
study by including all the available clinical and genomic features and then using a systematic and data-
driven approach to learn which features are relevant for discovering molecular mechanisms of obesity.

In this paper, we present a machine learning approach that can look at multiple diverse datasets
simultaneously and learn associations between the variables in the multiple different datasets in a data-
driven manner. In particular, we combine genetic, methylation, clinical, cytokine, dietary and lifestyle
data. Rather than simply looking at this data from a set of randomly chosen individuals, we go a step
further in order to elucidate the mechanisms of weight gain and use data from MZ twin pairs, many of
whom are substantially weight discordant—a rare dataset. Thus, we can focus on differences in weight that
cannot be attributable to genetics alone and can discover how these differences are associated with other
factors, such as DNA methylation or diet. The outcome results encouragingly highlight many known
associations as well as suggesting novel links that could offer new hypotheses of molecular mechanisms.

We startwithabrief background to twin studies tohighlight thenoveltyof ourmethod in thisdomain.We
thenaim todescribe themethod inaccessible terms foran interdisciplinaryaudience andonly thenproceed to
the key results on obesity. Finally, we offer our thoughts on future possibilities of such an approach.

1.1. Twin studies
So-called classical twin methods have focused on estimating the heritability of different phenotypes by
comparing occurrences of the phenotype in those MZ and dizygotic (DZ) twin pairs where at least one
twin exhibits the phenotype of interest. The basic premise is that if genetics influences a particular
phenotype, then the occurrence of that phenotype for both twins will be more common within MZ twin
pairs, who share their whole genomic sequence, than DZ twin pairs, who share roughly 50% of their
segregating genes akin to non-twin siblings [12]. Such heritability studies using large twin repositories
cover the whole range of complex phenotypes [13,14] including obesity [8] and many obesity-related
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phenotypes. For example, by looking at 1126 twin pairs, Goodrich et al. [15] identified heritable bacterial taxa

of the gut microbiome. The most heritable taxa were the family Christensenellaceae (phylum Firmicutes)
which is enriched in lean individuals and has been shown to limit adiposity gain when given as faecal
transplants to mice deficient in the taxa, suggesting that heritable microbes could influence adiposity.

Another popular twin design is the so-called co-twin control method whereby within-pair
comparisons of trait discordant MZ twin pairs are used to identify factors associated with the trait,
against a background of equivalent age, sex and genotype (which are perfectly matched for the twins)
and in part also ruling out the influence of environment (which is partially matched, and termed as
shared environment) [16]. The first such studies helped prove the effect of smoking on lung cancer
[17]. Illustrative examples relevant to obesity would be the recent study in BMI-discordant MZ twin
pairs revealing sub-types of obesity based on both clinical traits and gene expression in subcutaneous
adipose tissue [18], as well as that based on DNA methylation in leucocytes [19]. Such studies usually
employ classical machine learning approaches such as linear mixed-effects models.

For a thorough exposition of twin studies, the reader is referred to the review article of van Dongen
et al. [13] and for a discussion of future directions, to the review article of Baird et al. [20]. In the current
article, we also look at MZ twin pairs discordant for BMI, and in particular use machine learning
methods to search for associations in any differences between the heavier and leaner individuals in
such pairs. Such associations including dietary and lifestyle data could give hints as to behavioural
mechanisms for the twins differing in BMI despite sharing the same genotype, whereas associations
involving the other types of data could highlight consequences and/or causes of obesity which are
genotype independent. To our knowledge, machine learning techniques of the form proposed here
have not previously been applied as part of twin studies.

1.2. Machine learning
Machine learning and artificial intelligence (AI) have been applied in the field of medicine for over a
decade and, with the now routine collection of large datasets in all research fields and the
affordability of computing power, the number of application areas is rising sharply. Although to a
lesser extent than in the drug discovery sector, machine learning is also being used in innovative ways
in the area of disease prevention (see the discussion in [21]) and it is here that our current
contribution sits.

Machine learning refers to mathematical algorithms that have been coded into computer programs.
Their function is to look at the dataset of interest and ‘learn’ patterns in that data and possibly also
predict data values not available to the researcher. Most algorithms achieve this by having an
underlying mathematical model to describe the type of data defined by a set of unknown parameters
and then calculating the parameters that best fit the particular dataset. Camacho et al. have recently
written a very clear introduction to machine learning in biological applications [22], including
definitions of the most commonly used terms and examples of recent developments.

In this study, we use an advanced machine learning method called group factor analysis (GFA); see
the Material and Methods section. The objective of our study is to discover multi-level molecular
mechanisms of obesity. Here, we hypothesize that relationships between clinical, genomic and
molecular features provide a proxy to understanding these complex mechanisms and so we model
statistical dependencies between genomic, methylation, clinical, cytokine, dietary and lifestyle datasets
using GFA. Unlike classical methods, like principal component analysis (PCA) and clustering which
are suitable for analysing a single data source only, GFA learns and identifies relationships between
multiple data sources. GFA achieves this, by learning latent variables, also known as components, that
are shared between two or more datasets. The latent variables are the parameters learned by the
model that capture correlated and common patterns between the datasets.

GFA takes as its input multiple datasets (or matrices), where each matrix has samples in its rows and
variables in its columns. In our case, the five datasets are each represented as a matrix, one each for
clinical, cytokine, genomic, methylation and dietary data. Crucially, for the understanding of the
approach used here, our samples correspond to twin pairs and the values in the matrices correspond
to the difference in value of a variable between the twins in the pair (we always subtract the value for
the leaner twin from the value for the heavier twin). So a given row i in the matrices contains our
data for a given twin pair and a given column j contains the data for a given variable, such as low
density lipoprotein (LDL) cholesterol for example. An entry ij in the matrix would then correspond to
the LDL cholesterol value for the heavier twin in the given pair minus the LDL cholesterol value for
the leaner twin in the pair. GFA then learns associations between datasets as well as between
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Figure 1. Pipeline for the GFA analysis on MZ twin pairs. (1) Clinical, cytokine, genomic, methylation and dietary data were collected
from 43 young adult monozygotic twin pairs, where 25 of the twin pairs were substantially weight discordant (delta BMI > 3 kg m–2).
For each twin pair and each variable, the value for the leaner twin was subtracted from the value for the heavier twin. This resulted in
five large data matrices comprising 42, 71, 1587, 1605 and 63 variables, respectively. (2) All five large data matrices were input into the
group factor analysis (GFA) computational tool, giving rise to 38 so-called component diagrams (three of which are shown in this figure).
Each component diagram has up to five small heatmaps picturing the associations discovered within or between the five datasets. The
magnified component is the immunometabolism component, also in figure 3.
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variables within each dataset, finding associations of the form ‘heavier twins who consume a lot more of
nutrient x than their leaner twin, tend to have higher levels of cytokine y than their leaner twin and
greater methylation at cytosine-phosphate-guanine (CpG) sites z and w’.

The output of GFA is distinct components, each representing interpretable relationships across one or
more datasets. The relationships can be visualized and interpreted via so-called component diagrams.
Each component diagram has up to five small heatmaps picturing the associations discovered within
or between the five datasets; figure 1. GFA automatically identifies all the statistical relationships in
the data, representing each as a separate component.
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Such novel approaches that integrate multiple sources of information provide an invaluable way to
discover connections at multiple molecular levels from vast amounts of data [23–25] or to predict
outcomes, as in the landmark study of Zeevi and colleagues where blood parameters, dietary habits,
anthropometrics, physical activity and gut microbiota were used to predict personalized postprandial
glycaemic response to real-life meals [26]. So far, GFA has only been taken up by the computer
science community to develop the methodology further [27,28] and, although in the literature there
have been small case studies, few real applications have been previously published. These have, to
our knowledge, focused on the problem of elucidating the mechanisms of action of small molecules
and so the samples within the matrices have corresponded to experimental and structural information
about small molecules [29].
2. Material and methods
We combined clinical, cytokine, genomic, methylation and dietary data from 43 young adult MZ twin
pairs (aged 22–36 years, 53% female), where 25 of the twin pairs were substantially weight discordant
(delta BMI > 3 kg m−2). A data processing flow-chart is given in figure 2.

2.1. Finnish twin cohort
TwinFat, which is a substudy of The Finnish Twin Cohort study (FTC) [30], is designed to study obesity
using an MZ co-twin control design [31,32]. The twin pairs in TwinFat were selected from two
population-based twin cohorts, FinnTwin16 and FinnTwin12, comprising 10 full birth cohorts of
Finnish twins. Twins were included in the current study based on the availability of data for both
members of a pair. All twins were free of somatic and psychiatric diseases and with a stable weight
for at least three months prior to the current study. Venous blood samples were drawn in the
morning after an overnight fast. Zygosity was confirmed by genotyping. All twins provided written
informed consent. The protocols of the FTC TwinFat data collections were approved by the Ethics
Committee of the Helsinki University Central Hospital.

2.2. Clinical data
Included in the analysis were 42 clinical variables (table 1). Some categorical variables (e.g. gender) are
common to both twins and others (e.g. smoking status) may or may not be. For variables such as gender
which are common to both twins, we include in the matrix the information from either twin (rather than
difference values, which would always be zero).

Gender was labelled as 0 =male, 1 = female. Hence in the component diagrams, red represents the
female twins. Twenty twin pairs were male and 23 were female. Smoking status was recorded as never,
former or current. Hence Smoking.Current is 1 if the twin currently smokes and 0 otherwise.
Smoking.Current.diff is the value of Smoking.Current for the heavier twin minus that for the leaner twin
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(hence if the current smoking status for both twins is the same, Smoking.Current.diff will be zero). Age,

Gender, Year and Liverfat Discordance were common to both twins and are input directly into the data.
We have calculated liver fat scores (LFS), and liver fat percentage prediction [35], and fatty liver index

(FLI) [33], even though we actually have liver fat values measured by magnetic resonance imaging
technique. The idea behind this was to see what these scores are associated with. However, we did
not observe any interesting associations with liver fat or its related scores.

We also include information on physical activity (leisure time, work, sport and total physical activity
indices from the Baecke questionnaire [34]), because higher physical activity level is known to be
associated with lower adiposity and better metabolic health, independent of genetics [37].

Most of the twins in the study were metabolically healthy, and did not differ significantly for LDL,
Homa index or insulin levels within pairs.

2.3. Cytokines
Included in the analysis were 71 cytokines from the Proseek Multiplex Inflammation I panel (Olink
Bioscience, Uppsala, Sweden). For statistical comparison, proteins with missing data frequencies above
25% were excluded, leaving 71 proteins out of the original 92 for analysis. Protein levels are presented
as normalized protein expression values following an inter-plate control normalization procedure.

2.4. Genotype information
Chip genotyping was done using Illumina Human610-Quad v.1.0 B, Human670-QuadCustom v.1.0 A and
IlluminaHumanCoreExome (12 v.1.0 B, 12 v.1.1 A, 24 v.1.0 A, 24 v.1.1A) arrays. The algorithm for genotype
calling was Illumina’s GenCall for all HumanCoreExome chip genotypes and Illuminus for 610 k and 670 k
chip genotypes. Genotype quality control was done in two batches (batch1: 610 k + 670 k chip and batch2:
HumanCoreExome chip genotypes), removing variants with call rate below 97.5% (batch1) or 95% (batch2),
removing samples with call rate below 98% (batch1) or 95% (batch2), removing variants with minor allele
frequency below 1% and Hardy-Weinberg Equilibrium p-value lower than 1×10-06. Also samples from
both batches with heterozygosity test method-of-moments F coefficient estimate value below 0.03 or
higher than 0.05 were removed along with the samples which failed sex check or were among the
multidimensional scaling PCA outliers. The total amount of genotyped autosomal variants after quality
control were 475 637 (batch1) and 221 814 (batch2). We then performed pre-phasing using EAGLE v.2.3
[38] and imputation with MINIMAC3 v.2.0.1 using the University of Michigan Imputation Server [39].
Genotypes of both batches were imputed to the 1000 Genomes Phase III reference panel [40].

Included in the analysis were 1587 single nucleotide polymorphisms (SNPs) and we use the
information from either twin (rather than the difference values), as both twins in a pair have almost
exactly the same genotype. Somatic DNA mutation does occur with age [41] and will lead to minor
variation even between MZ twins. MZ twins with large BMI discordance are extremely rare. When
there is discordance, it usually arises around the age of 16–20 but many BMI discordant pairs do not
continue to be discordant when followed over time [5]. This emphasizes the importance of genetic
influences on weight regulation. Therefore, it is important to find the triggers to obesity and
mechanisms involved for those that have a genetic predisposition.

To focus our analysis on the most important findings, we chose to include in the analyses SNPs
associated with obesity and obesity-related traits. An additional motivation for this choice is that, as
we found in previous work [29], it is difficult to draw meaningful or actionable hypotheses from
genes for which nothing is known. The main article used to choose the SNPs for this analysis was the
GWAS meta-analysis of Locke et al. [8]. We also used SNPs retrieved from searches for BMI, liver
disease, metabolic syndrome and diabetes from the NHGRI-EBI GWAS Catalogue [42] as well as the
SNPs from the paper of Turcot et al. [43] on rare variants associated with BMI (electronic
supplementary material, table S1; the number in between dollar signs refers to the source from which
the SNP was chosen, and is also included in the component diagrams). SNPs that are present in more
than 38 pairs were removed as these are unlikely to be linked with the differences in the pairs and
would only bias the model towards a different ‘locally’ optimal solution. For each SNP, we assigned
the values of no risk allele 0, one risk allele 1 and two risk alleles 2.

2.5. Methylation information
DNA methylation has been shown to be both stable and dynamic. Across the human postnatal lifetime,
stability in methylation is primarily owing to genetic contributions, while environmental exposures
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contribute to methylation dynamics [44]. Twin studies have shown that DNA methylation profiles are

more divergent in older twins than infant twins, and although stochasticity may have a role in this
phenomenon, these findings also add support to the influence of environmental factors to the
epigenome [45].

Several epigenome-wide association studies have now been conducted and have identified a panel of
gene loci where methylation levels significantly differ in obese and lean individuals. We include in our
analysis DNA methylation data measured on Illumina’s Infinium HumanMethylation450 BeadChip.
DNA methylation measured as beta values (ranging from 0 to 1) was preprocessed using the R
package methylumi [46] and normalized by beta-mixture quantile normalization [47]. We did not
adjust for cell-type composition specifically because we wanted to contain all clinical variation that
associates with the obesity phenotype, including very low-grade inflammation, which may result in
differences in the cell type compositions within the BMI discordant twin pairs. The ComBat function
in the R package SVA [48] was used to correct for potential batch effects. Including all CpGs in our
analysis would have resulted in high-dimensional matrices and introduced a large number of noisy
sites in the modelling process. Therefore, to focus the analysis on the most significant findings, DNA
methylation values of a set of pre-selected 1605 CpGs were input into the GFA method. CpG sites
were selected from the recent meta-analysis of Wahl et al. [49]. They show that BMI is associated with
widespread changes in DNA methylation and genetic association analyses demonstrate that the
alterations in DNA methylation are predominantly the consequence of adiposity, rather than the
cause. We also include CpGs associated with elevated liver fat [19], CpGs whose methylation has
been previously shown to differ in the adipose tissue of BMI-discordant MZ twin pairs [50], smoking-
associated CpGs [51], and CpG sites that have been associated with weight loss [52] (electronic
supplementary material, table S2).
2.6. Dietary data
Included in the analysis were 63 dietary variables (electronic supplementary material, table S3). Total
energy and macronutrient intake were assessed with 3-day food records. Subjects were given clear oral
and written instructions by a registered dietician on how to keep the food record (two working days
and one non-working day) and they were encouraged to keep their usual eating patterns and to
estimate the amounts of all foods and drinks using household measures. The conversion of data
from the records into nutrient values was performed by a dietician using the program DIET32,
which incorporates the national Finnish database for food composition (FineliR). The nutritional
composition of new ready-prepared meals that were not included in the DIET32 program was
obtained from the manufacturers. Daily energy intake is expressed in kilocalories (kcal) and
macronutrient intakes are expressed as percentages of total energy intake. Results are presented as
the mean ± s.d. of the 3 days [53]. Information on habitual diet was estimated using a qualitative
food-frequency questionnaire incorporating 52 food and non-alcoholic beverage items that are
common in the Finnish diet [54].
2.7. Group factor analysis
GFA is formulated as a method to identify statistical dependencies between multiple datasets. The
method learns a joint integrated model of the datasets with matched samples (i.e. having a common
set of samples), to extract meaningful and interpretable information [27,55,56]. GFA has been
successfully used for identifying structural properties predictive of drug responses [24], cross-
organism toxicogenomics [57] as well as highly accurate drug response predictions [28].

Specifically, GFA takes a set of matrices X (m), where m = 1…M, and identifies patterns of statistical
dependencies across all of them. The model learns these statistical dependencies in a data-driven fashion,
automatically identifying the type and amount of dependencies. Therefore, GFA learns a low-
dimensional space Z (of K components) that represent the variation patterns across all datasets. A
component can be active in one or more datasets, meaning that it captures the relationships between
those particular datasets. This is achieved by modelling the total variation of all of the datasets while
inducing structured sparsity. This characteristic allows GFA to automatically identify dependency
patterns that are shared across any subset of the datasets, in a truly data-driven fashion.

Formally, GFA is defined in a Bayesian formulation for datasets X(m) [ RN � Dm , where m = 1… M,
having N matched samples and Dm dimensions, as a product of the Gaussian latent variables
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Z [ RN � K and projection weights W(m) [ RDm � K

x(m)
n � N W(m)zn ,

X(m)
� �

,

zn � N (0, I)

w(m)
d,k � hm,k N (0, (a(m)

d,k )
�1

)þ (1� hm,k)d0
hm,k � Bernoulli( pk)
pk � beta(ap,bp)

a(m)
d,k � gamma(aa,ba):

Here,
P(m) is a diagonal noise covariance matrix. GFA induces component-wise sparsity on the

projections w(m)
:,k using a beta-Bernoulli distribution. As a result, the projection weights w(m)

:,k for a
component k are active for the one or more datasets (m), capturing dependencies specific to one
dataset or shared between datasets.

The R package GFA v.1.0.3 [58], is used to model the five datasets, dietary, clinical, genomic,
methylation and cytokine. In the genomic data, SNPs with values in three or less samples and more
than 38 samples were removed as outliers. In the clinical dataset, the categorical variable smoking
(never, former, current) was one-hot encoded to form binary representation. Additionally, all variables
with more than 50% of values missing were left out of the matrices. As a result, for the N = 43 twin
pair samples, the clinical data contained D1 = 42 variables, cytokine D2 = 71, genotype D3 = 1587,
methylation D4 = 1605 and dietary D5 = 63. All datasets except genotype were scaled to unit variance.

The model, implemented using Gibbs sampling, was run with K = 40 components which was deemed
large enough owing to the presence of empty components, as recommended by Virtanen et al. [55]. In
order to model the large amount of noise in the data, we used an informative noise prior with a priori
noise variation set to one-third [27]. Finally, a total of 2000 sampling iterations were run, with the first
90% corresponding to burn-in while the last 10% representing the posterior.

GFA found 38 components to model the five datasets. Components active in two or more datasets,
such as clinical and cytokine, represent variation common to the two datasets. Components specific to
a dataset, for example, genotype, represent variation patterns that are consistent within the genotype
but not correlated with other datasets. Both types of components represent interesting relationships in
our case and are examined in this study.
3. Results
3.1. Group factor analysis applied to data from monozygotic twin pairs
In our analysis, samples refer to twin pairs and the data for each twin pair corresponds to difference values
for each of the variables (i.e. the value of the variable for the heavier twin minus the value for the leaner
twin of each pair). The aim of the analysis is to identify drivers or consequences of increase in weight,
which are difficult to distinguish by this study design. The genetic data suggest (see the end of this
section) that in fact most of the 43 twin pairs in our data have a genetic predisposition to obesity.
Hence the analysis has the potential to elucidate why some individuals are faring better than others,
despite their genetic burden. This could be invaluable knowledge for informing prevention strategies.

The output of GFA applied here is 38 sets of associations between variables within and between the
different datasets. As mentioned above, each such set of associations between variables is called a
component and can be visualized as up to five adjacent heatmaps corresponding to the five datasets,
showing how the relevant variables in each dataset are associated with each other. To ensure accurate
interpretation of the component heatmaps, we point out that positive values are in red and negative
values in blue. Therefore, a red square in the heatmap would indicate that for the given twin pair, the
heavier twin has a higher value of the variable than the leaner twin. Hence the column for BMI, for
example, is red in colour for all twin pairs.

With the analysis producing 38 components, it is not possible here to go through all components in
detail. Instead, we pick six interesting examples, choosing to include some accompanying component
diagrams in the supplementary files rather than in the main body of text. We stress that many
components highlight known associations, thus adding to the credibility of this approach, and we
point these out for those components discussed.
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In what we have called the immunometabolism component (figure 3), the GFA method has picked
up associations between two of the five datasets, namely the clinical data and the cytokine data. These
results are completely data driven and the associations of the clinical variables with obesity are all well-
known [59,60]. For the twins that differ most within pair with respect to adiposity (weight, waist, fat
percentage and intra-abdominal fat) as well as LDL cholesterol (seen at the top of the figure in red),
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the heavier twin tends to have much lower insulin sensitivity (depicted by the Matsuda index [36]), less

physical activity (sport and total indices from the Baecke questionnaire [34]), high density lipoprotein
(HDL) and adiponectin (shown by the blue colour). What may yield novel insights are the links with
the cytokine data. For the twin pairs with the above profile, the heavier twin tends to have elevated
values of the cytokines TRANCE, CCL4, IL18R1, CCL3 and FGF21. It has been known since the early
2000s that many immune mediators are abnormally produced or regulated in obesity, contributing to
altered metabolic status [61].

For example, the method clearly picks up fibroblast growth factor 21 (FGF21), a hormone that is
known to have elevated levels in insulin-resistant morbidities such as obesity and T2DM [62].
Elevated FGF21 levels in these diseases are suspected to be signs of FGF21 resistance [63], similar to
the concept of insulin resistance. FGF21 is a peptide hormone secreted by multiple tissues, most
notably the liver. Indeed, we have previously shown that high values of FGF21 (measured by the
enzyme-linked immunosorbent assay; ELISA) are associated with high liver fat [64]. Elevated levels
also correlate with liver fat content in non-alcoholic fatty liver disease [65]. Significantly increased
FGF21 levels in circulation have been detected in patients with muscle-manifesting mitochondrial
diseases, in which case most of the circulating FGF21 arises from the muscle [66]. Interestingly, an
SNP of FGF21—the rs838133 variant—has been identified as a genetic mechanism responsible for the
sweet tooth behavioural phenotype, a trait associated with cravings for sweets and high sugar
consumption [67,68].

The other four cytokines included in this component also have some previous links to obesity,
highlighting the potential of the method to offer both known and novel hypotheses on the
mechanisms of immunometabolism. TRANCE (RANKL) has been proposed to link Metabolic
Syndrome and osteoporosis [69]. The CC chemokine family members CCL3 and CCL4 have both tens
of publications where obesity is mentioned, but with debate on the mechanisms involved and
function [70]. Finally, although there is not much reference to IL18R1 and obesity, its ligand, IL18, has
in several studies been associated with obesity, insulin resistance, hypertension and dyslipidemia (see
[71] and the references therein).

A second component, the HDL component, has also picked up the clinical and cytokine datasets, but
this time the twin pairs seem to be ordered roughly by HDL discordance rather than weight discordance,
with the twin pairs at the top of the heatmap picture (electronic supplementary material, figure S1) being
those for whom the heavier twin has lower levels of HDL compared to the leaner twin. This associates
with the heavier twin having higher levels of cytokines CCL11, UPA, FGF19, TRANCE and SCF, again
offering some potentially novel associations. Not much is known about these cytokines in relation to
obesity or HDL, apart from for FGF19 which, like its related hormone FGF21 mentioned earlier, is
being investigated as a pharmacological target for obesity [72]. In contrast to FGF21 however,
metabolic diseases exhibit reduced serum FGF19 levels [73]. The simultaneous increase in serum
FGF21 levels is probably a compensatory response to reduced FGF19 levels, and the two proteins
concertedly maintain metabolic homeostasis [74]. It is interesting then that here levels of FGF19 are
increased when weight gain is accompanied by a large reduction in HDL levels. It is also interesting
to note that though fat percentage difference is present in this component, its values are not exactly
correlated with HDL difference.

Next, we consider a component where within twin pair differences in clinical variables have been
associated with methylation differences. In the leisure time physical activity component, leisure time
physical activity [34] seems to be associated with methylation changes independently of BMI
difference (figure 4). When the heavier twin partakes in less leisure activity, they also have higher
levels of methylation at CpG sites on SLC11A1, MAP7, CEBPE and ESR1 and lower levels of
methylation at AHRR, ZAP70, GPR15, ELMSAN1 and GOLIM4. We observe that for most
substantially weight discordant pairs, the twin with greater leisure time activity is leaner, and we
have shown elsewhere that the more active twin, even in MZ pairs, remains leaner [75–77].

It is highly challenging to link nutrient and immune responses, let alone combining this with
epigenetic alterations. Here, we offer a contribution in this area. We highlight the results from three
components, all of which picked up associations with dietary variables.

In the epigenetic component (figure 5), we see associations between the dietary, methylation and
cytokine data. When there is a clear lower consumption in the heavier twin of sucrose, vitamin D,
water, fluoride and riboflavine, then there is a lower methylation of CpGs at AHRR, INPP5D, E2F3,
VMP1 and RARA and higher values of cytokines 4EBP1, CCL19, ENRAGE, GDNF and HGF.
Although crude, this gives a glimpse into the ability of the method to highlight possible connections
between these three data levels, where difference in diet is not influenced by genetics and differences
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in consumption are associated with differences in molecular features. All of the above genes have been
linked to cytokines (mainly interleukins) and inflammation in the literature and also all have associated
studies on miRNAs, but it is difficult to draw any conclusions without further experiments. For the
cytokines, the fit to the literature is difficult to decipher: 4EBP1 has been shown to have a protective
effect in obesity in male mice [78], ENRAGE has been shown to be positively correlated with visceral
fat adiposity [79], and elevated HGF levels induced by a high-fat diet have been shown to have a
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protective role against obesity and insulin resistance [80]. GDNF family members have also been
implicated in obesity [81].

We find further links between diet and methylation in the sucrose component (electronic
supplementary material, figure S2). For the twin pairs at the top of the picture, the heavier twin
consumes more sucrose and has increased methylation in CpGs at CD3E, SDF4, FAM53B and AHRR
(a different AHRR CpG site to that in the epigenetics component) and decreased methylation in CpGs
at LY6G6F, C1orf127, IRX1, PPIAP3 and MARCH11. These individuals also consumed more carotene,
vitamin C, sugar, copper and less vitamin D, molybdenum, selenium, lactose and N3 polyunsaturated
fatty acids than the leaner twin in the pair. There is an apparent contradiction here between high
levels of sugar and, for example, vitamin C, but it is possible that this sugar is being consumed from fruit.

It is particularly interesting that AHRR appears for a third time in our analysis. The methylation of
this gene is commonly associated with smoking [82–84], and we do mildly see this AHRR—smoking
association in one of our components (results not shown; the task of finding associations with
smoking is hindered by the difficulty in coding into the method differences in past and current
smoking status between the twins). However, there are also some previous links between AHRR and
weight, for example, in a study showing that offspring DNA methylation of AHRR is associated with
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maternal BMI and birth weight [85]. Because two of our GFA components associate AHRR methylation

with sucrose intake, we could hypothesize that sugar may also contribute to the methylation seen at
AHRR; nutritional stimuli have been shown to contribute to AHRR expression [86]. There is a well-
established link between AHRR/AHR and inflammation, and dietary flavonoids and indolens,
tryptophan and arachidonic acid [87–89].

In the starch component (electronic supplementary material, figure S3), we have weak links between
diet and clinical variables and cytokines, but do retrieve known links between lower starch consumption
and lower levels of adiponectin [90]. We see clearly that individuals within twin pairs who tend to eat
more starch, also tend to eat more fatty acid 18 : 3-n3, polyunsaturated fatty acids, fluoride and
carbohydrate. This may indicate use of starchy vegetables, and an overall healthier fat consumption as
well. This is the only component including the gender variable, and even here the association looks
quite weak. It would have been interesting to see some associations which only occurred in males or
females, but we did not observe this in the current study.

Finally, the component diagrams can offer insights into the individuals in the analysis which can help
inform the hypotheses drawn. With regards to the varying genetic load of the twin pairs, all appear to be
susceptible to weight gain. Electronic supplementary material, figure S4 shows five genes for which
almost all of the twins have at least one risk allele, as well as interestingly another five genes
associated with obesity for which hardly any of the twins have a risk allele. However, the electronic
supplementary material, figure S5 shows that the twin pairs divide into roughly two sets based on
their genetic burden at five SNPs at three genes, including FTO. Polygenic risk scores (PRS) for
obesity have been available for some time [91], with recent efforts producing a good prediction of
those individuals at a high risk for obesity [92]. In this work, we decided to retain SNP level
information in order to facilitate the elucidation of molecular interactions at the genetic and other
levels. However, in future work, inclusion of a suitably weighted continuous PRS value could
potentially distinguish differing mechanisms at high versus low PRS for obesity.

3.2. Results summary
The method has found many known clinical characteristics of obesity in a data-driven manner. Beyond
this validation of the method, more encouraging are the suggested links between key obesity-related
features and mechanisms of immunometabolism. It is well known that obesity is associated with
changes in the production of hormones, adipokines and cytokines [61,93–95]. A review of the growth
of the field of immunometabolism and latest developments is given in two recent papers by
Hotamisligil [61,93]. The work here also addresses a key question stated by Hotamisligil as to whether
mechanisms can be identified that integrate nutrient and immune responses [93].

Although in the current work we are only observing associations, and so cannot claim anything
regarding causality, the associations can suggest hypotheses to investigate, such as that sucrose or
other dietary factors and inflammation affect methylation at AHRR. This could ultimately also add to
efforts to develop better biomarkers of nutritional intake. We saw in the immunometabolism
component that obesity and known related clinical variables associated with elevated levels of
cytokines TRANCE, CCL4, IL18R1, CCL3 and FGF21, for which known links to obesity were
discussed. In the HDL component, HDL was associated with cytokines CCL11, UPA, FGF19,
TRANCE and SCF. The leisure time physical activity component, we see that when the heavier twin
partakes in less leisure time physical activity, they also have higher levels of methylation at CpG sites
on SLC11A1, MAP7, CEBPE and ESR1 and lower levels of methylation at AHRR, ZAP70, GPR15,
ELMSAN1 and GOLIM4.

Three further components focused on links between nutrient intake, immune response and
methylation. We see in the epigenetic component that when there is a clear lower consumption in the
heavier twin of sucrose, vitamin D, water, fluoride and riboflavine, then there is a lower methylation
of CpGs at AHRR, INPP5D, E2F3, VMP1 and RARA and higher values of cytokines 4EBP1, CCL19,
ENRAGE, GDNF and HGF. In the sucrose component, we see that when the heavier twin consumes
more sucrose, carotene, vitamin C, sugar, copper and less vitamin D, molybdenum, selenium, lactose
and N3 polyunsaturated fatty acids than the leaner twin in the pair, then they have increased
methylation in CpGs at CD3E, SDF4, FAM53B and AHRR and decreased methylation in CpGs at
LY6G6F, C1orf127, IRX1, PPIAP3 and MARCH11. Finally, the starch component highlights the known
association between lower starch consumption and lower levels of adiponectin.

Given the design of our analysis, looking at difference values within MZ twin pairs genetically
predisposed to weight gain but where some individuals are faring better than others, the associations
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found have the potential to give hints as to why some twins of a pair differ in BMI despite their shared

genetic burden. This could be invaluable knowledge for informing prevention strategies.
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4. Discussion
What we have presented here is a relatively small scale example of the application of GFA on data from
43 MZ twin pairs. We acknowledge that this twin data is quite unique and so wish to stress that the
method presented can also offer insights from non-twin data where samples are simply the
measurements from individuals. In this case, the insights would be of a different form, for example
‘individuals of a certain genotype at given SNPs have increased consumption of x, y and z and an
increase in cytokines a, b and c and decreased methylation at CpGs l, m and n’. Of course, beyond
showing which variables tend to co-occur, it is difficult to know whether or how these are obesity-
related without an association to the clinical variables. Hence, in this case, components including
clinical variables are the most useful.

In terms of machine learning methodologies, there are two interesting future directions to explore.
First, it will be interesting to explore multi-tensor factorizations such as [96] to analyse the twin-pair
datasets. Tensor factorizations capture multi-way structures in the data and may reveal previously
unseen patterns. In addition, it would be interesting to explore the possibility of nonlinear
dependencies across the datasets with kernelized matrix factorization-based approaches [97]. As a
further direction, machine learning innovations that allow exploration of new use-cases could be
investigated. For example, innovations that make it easy to handle massively high-dimensional
datasets such as [98] could enhance the applicability of GFA further. In addition, it could be useful to
incorporate prior biological knowledge, for example in the form of pathways or functionally linked
networks, to supplement the model’s learning process.

There is a huge temptation to throw all possible types of data at methods such as GFA to see what novel
associations can be found. We next discuss what other types of data we could include, when available.

It has previously been shown that a wide range of unfavourable alterations in the serum metabolome
are associated with abdominal obesity, insulin resistance and low-grade inflammation [99] and so this
would be very useful to include in future analyses. Also, adding transcriptomics profiles could add
clues to how genotype, DNA methylation and gene expression inter-relate [100].

There is growing evidence that the gut microbiome plays vital roles in health and disease [101,102]
and in particular that gut microbiota contribute to the regulation of adiposity and are a mediator of
dietary impact on the host metabolic status, although some contradictory evidence also exists [103].
Sonnenburg & Bäckhed [104] have recently reviewed evidence of how the gut microbiota can alter
extraction of energy from food, generation of metabolic products, such as short-chain fatty acids, and
storage of calories. Despite the likely complexity of processes involved, the broad picture seems to
suggest that obesity is associated with a reduced diversity of gut microbiota [105], which would
mirror the findings from macroecology, suggesting that biodiversity within an ecosystem can serve as
a measure of stability and robustness [106]. It has also been suggested that host genetics may
influence the presence of certain microbiota [15]. If microbiome data were available, it would be
useful to include in the GFA analysis as an additional variable indicative of the level of microbiome
diversity or even a whole matrix containing microbiome or microbial taxa level data. It may also be
advisable to include all putative genetic determinants of gut microbiota in the analysis. These involve
genes related to diet, metabolism, olfaction and immunity [15]. The number of studies into the effect
of the microbiome on health is steadily increasing [107], with new methods emerging to measure its
composition [108], and so we envisage many opportunities for incorporating such data into the
methods in the future.

With dietary data, it is known that the unreliability of food questionnaires poses a major challenge. In
particular, obese individuals tend to misreport in their food and physical activity diaries, and we have
shown in [109] that the obese twins of MZ discordant pairs over-report their physical activity, and
under-report their food intake. In the current study, this does not pose a major problem because we
take the difference values of variables, and this would in fact result in fewer associations being
discovered with these self-reported variables. Also, the presence of these self-reported variables does
not affect the other associations found by the GFA method. However, it is important to note that there
are many areas in obesity research that rely partially or totally on self-report data, because objective
measures either do not exist or they do not measure all the desired aspects. For example, as reviewed
by Sievänen & Kujala [110], accelerometer data provide seemingly objective measures of physical



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200872
17
activity, but come with limitations. In a similar vein, current and very recent smoking exposure can be

fairly reliably measured with biomarkers such as cotinine (past few days) or methylation data
(perhaps some months), but a lifetime history of smoking cannot be objectively measured. We think it
is highly important to include these self-reported measures in this study as physical activity and
eating habits are central to the etiology of obesity. Also, their inclusion is intended to give a taste of
the sorts of novel associations that can be achieved with ever greater confidence using the GFA
method as the reliability of data improves. For example, there have been recent advances in
measuring dietary intake via a urine test [111] or using biomarkers in the blood [112]. Such metabolic
profiles could be input into the method to offer more reliable links between diet and obesity.

The latest nutrition research should be considered and the breadth and resolution of dietary
information adjusted accordingly in light of promising new associations. Also the role of artificial
sweeteners, probiotics and emulsifiers could be evaluated if estimates of these levels were included in
the data collection [101,113–115]. Finally, as some dietary compounds have been shown to influence
the epigenome, inflammation and microbiota [116–119], it could be enlightening to include estimated
levels of such compounds, e.g. resveratrol and quercetin, and some of their putative molecular targets,
such as HDACs and NFkappaB, into the data [29] to begin to elucidate a more unified picture of the
influence of diet.

There is evidence for an interplay between the stress system and obesity, with increased long-term
cortisol levels, as measured in scalp hair, being strongly related to abdominal obesity [120]. Hence
adding a hair cortisol concentration measure to the variables could potentially discern stress-related
obesity mechanisms. Also, including traditional predictors of obesity, such as parental obesity status
and presence of childhood obesity, or the polygenic risk score for obesity as discussed above, might
also help to distinguish different classes of obesity and their mechanisms.

It is known that genotype has a large effect on methylation and there are resources available to advise
which methylation sites are influenced by the genome and which might be affected by disease-relevant
environmental exposures [121]. In the current analysis, we decided to limit the number of SNPs and
CpGs and so did not incorporate methylation quantitative trait loci (mQTL) information, which
would include the cis and trans effects in the analysis [100]. Instead, had there been genotype-
methylation associations highlighted, we planned to look up mQTL information at a later stage to
help gain functional insights. In future studies, however, the mQTL genes and SNPs could also be
included to see whether known associations appear and what other variables they are associated with.
5. Conclusion
It is now well established that machine learning coupled with good quality data is held as key to future
discoveries and advances in almost every imaginable field, with investments in this area a cornerstone of
the research and innovation strategies of many companies and governmental funding bodies alike. The
current work contributes to efforts to bring machine learning to the field of disease prevention and in
particular to obesity research.

In terms of impact of such research, discovering molecular mechanisms of disease can of course guide
towards drug discovery directly. Also, discovery of individual risk factors can hope to aid in disease
prevention through behavioural change, although it is unclear whether informing people of genotype-
based disease risk changes behaviour [122,123], especially for those who are genetically highly
susceptible to food-rich environments. However, at a societal level there is hope. If researchers can
find incontrovertible evidence that the epidemic of obesity cannot be reversed by individual
willpower alone owing to the nature of the molecular mechanisms involved, then it must turn to the
governments to create the environment necessary to affect the change. The interactions between the
environment and the individual in the development of obesity have been acknowledged and
described via a full obesity system map by the UK government in its landmark Foresight report on
obesity over a decade ago [7] and there have been calls to ‘dust off’ the report and embrace even
further its recommendations to adopt a ‘whole systems approach’ to tackling obesity [124]. The more
understanding there is of the complex molecular mechanisms involved, the greater the evidence to
advocate and inform a societal effort to enable a change at an individual level.
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