
Department of Computer Science
Series of Publications A

Report A-2021-2

Efficient Approximate String Matching
with Synonyms and Taxonomies

Pengfei Xu

Doctoral thesis, to be presented for public examination with the
permission of the Faculty of Science of the University of Helsinki,
in Auditorium CK112, Exactum, on the 19th of February, 2021
at 14 o’clock.

University of Helsinki
Finland

Supervisor
Jiaheng Lu, University of Helsinki, Finland

Pre-examiners
Wei Wang, University of New South Wales, Australia
Xiaochun Yang, Northeastern University, China

Opponent
Jan Holub, Czech Technical University in Prague, Czech Republic

Custos
Jiaheng Lu, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Pietari Kalmin katu 5)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911

Copyright c© 2021 Pengfei Xu
ISSN 1238-8645
ISBN 978-951-51-6987-7 (paperback)
ISBN 978-951-51-6988-4 (PDF)
Helsinki 2021
Unigrafia

Efficient Approximate String Matching with Synonyms and
Taxonomies

Pengfei Xu

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
pengfei.xu@helsinki.fi

PhD Thesis, Series of Publications A, Report A-2021-2
Helsinki, January 2021, 62+64 pages
ISSN 1238-8645
ISBN 978-951-51-6987-7 (paperback)
ISBN 978-951-51-6988-4 (PDF)

Abstract

Strings are ubiquitous. When being collected from various sources, strings are
often inconsistent, which means that they can have the same or similar meaning
expressed in different forms, such as with typographical mistakes. Finding similar
strings given such inconsistent datasets has been researched extensively during
past years under an umbrella problem called approximate string matching.

This thesis aims to enhance the quality of the approximate string matching
by detecting similar strings using their meanings besides typographical errors.
Specifically, this thesis focuses on utilising synonyms and taxonomies, since both
are commonly available knowledge sources. This research is to use each type of
knowledge to address either a selection or join tasks, where the first task aims
to find strings similar to a given string, and the second task is to find pairs of
strings that are similar. The desired output is either all strings similar to a given
extent (i.e., all-match) or the top-k most similar strings.

The first contribution of this thesis is to address the top-k selection problem
considering synonyms. Here, we propose algorithms with different optimisation
goals: to minimise the space cost, to maximise the selection speed, or to maximise
the selection speed under a space constraint. We model the last goal as a variant
of an 0/1 knapsack problem and propose an efficient solution based on the branch
and bound paradigm.

iii

iv

Next, this thesis solves the top-k join problem considering taxonomy relations.
Three algorithms, two based on sorted lists and one based on tries, are proposed,
in which we use pre-computations to accelerate list scan or use predictions
to eliminate unnecessary trie accesses. Experiments show that the trie-based
algorithm has a very fast response time on a vast dataset.

The third contribution of this thesis is to deal with the all-match join problem
considering taxonomy relations. To this end, we identify the shortcoming of a
standard prefix filtering principle and propose an adaptive filtering algorithm that
is tuneable towards the minimised join time. We also design a sampling-based
estimation procedure to suggest the best parameter in a short time with high
accuracy.

Lastly, this thesis researches the all-match join task by integrating typographical
errors, synonyms, and taxonomies simultaneously. Key contributions here include
a new unified similarity measure that employs multiple measures, as well as
a non-trivial approximation algorithm with a tight theoretical guarantee. We
furthermore propose two prefix filtering principles: a fast heuristic and accurate
dynamic programming, to strive for the minimised join time.

Computing Reviews (2012) Categories and Subject
Descriptors:

Information systems → Data management systems → Information
integration → Data cleaning
Information systems → Data management systems → Database
management system engines → Database query processing
Information systems → Data management systems → Database design
and models → Data model extensions → Inconsistent data

General Terms:
string algorithm, data cleansing, query optimisation, similarity join and selection

Additional Key Words and Phrases:
sampling, estimation, approximate string matching, filtering and verification

Acknowledgements

I would like to express my gratitude and appreciation to my supervisor, Professor
Jiaheng Lu, for all the support and guidance through my PhD studies. His
conscientious attitude and deep insight into the field has been a vital driving force
for me to go towards the PhD degree.

I express my appreciation to the pre-examiners, Professor Wang and Professor
Yang, for taking the time to read this manuscript and provide valuable comments
to ensure the high quality of this manuscript. I would also like to express my
thanks to Professor Holub for becoming the opponent for my PhD defence.

I want to thank all members of the Unified DBMS research group for the
valuable discussions that help me develop new ideas and solutions.

The Department of Computer Science, with its friendly staff and cosy atmos-
phere, has been a joy for me to visit every day. I would like to mention specifically
Research Coordinator Pirjo Moen for answering my questions and guiding me
through various processes. I also want to thank the Kumpula HR team for the
professional support, as well as the IT team for maintaining the (now retired)
high-performance cluster Ukko, on which I conducted almost all experiments
presented in this manuscript.

I also would like to thank the Department of Computer Science and the
Doctoral Programme in Computer Science (DoCS) for providing financial support
for the past years. The generous support allows me to concentrate full-time on
my research.

Finally, I want to thank my parents, Hengyu Xu and Juan Liu, for all the
love that supports me to go through this long journey.

In rainy Amsterdam, January 2021
Pengfei Xu

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 4

1.3 Outline . 6

2 Preliminaries 7

2.1 Problem Definition . 7

2.2 Similarity measures . 8

2.2.1 Gram-based similarity . 8

2.2.2 Synonym similarity . 9

2.2.3 Taxonomy similarity . 10

2.3 Index structures and filtering techniques 10

2.3.1 Trie . 10

2.3.2 Filtering and verification framework 11

3 Top-k similarity selection with synonyms 13

3.1 Problem formalisation . 13

3.2 Methods . 13

3.2.1 Twin Tries . 14

3.2.2 Expansion Trie . 15

3.2.3 Hybrid Trie . 17

3.3 Comparison of methods . 19

3.4 Chapter summary . 21

4 Top-k similarity join with taxonomies 23

4.1 Problem formalisation . 23

4.2 Methods . 23

4.2.1 List-based algorithms . 24

vii

viii Contents

4.2.2 Trie-based algorithm . 26
4.3 Experimental results . 27
4.4 Chapter summary . 29

5 All-match similarity join with taxonomies 31
5.1 Problem formalisation . 31
5.2 Adaptive prefix filtering . 32
5.3 Parameter selection . 33
5.4 Experimental results . 34
5.5 Chapter summary . 35

6 All-match similarity join with a unified similarity 37
6.1 Problem formalisation . 37

6.1.1 The unified similarity measure 37
6.1.2 Approximation algorithm 38
6.1.3 Problem formalisation . 40

6.2 Prefix filtering . 40
6.2.1 Adaptive prefix filtering . 42

6.3 Join algorithm and parameter suggestion 44
6.4 Experimental results . 44
6.5 Chapter summary . 48

7 Conclusions and future work 51
7.1 Conclusions . 51
7.2 Future work . 52

References 55

List of Publications

This thesis is based on the following original publications, none of which have
been included in any other theses. The publications are referred to in texts as
Papers I–IV, and have been attached to the end of this thesis.

I. Pengfei Xu and Jiaheng Lu. Top-k string auto-completion with synonyms.
In Database Systems for Advanced Applications - Proceedings of the 22nd
International Conference, DASFAA 2017, Suzhou, China, March 27-30,
2017, Part II, pages 202–218, 2017

The author of this thesis participated in designing the solution, implemented
proposed algorithms, conducted experiments, and wrote the paper.

II. Pengfei Xu and Jiaheng Lu. Efficient string similarity join with taxonomy
knowledge. Submitted to Knowledge and Information Systems, 2019

The author of this thesis participated in designing the solution, implemented
proposed algorithms, conducted experiments, and wrote the paper.

III. Pengfei Xu and Jiaheng Lu. Efficient taxonomic similarity joins with adaptive
overlap constraint. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, pages 1563–1566, 2018

The author of this thesis designed the parameter recommendation algorithm.
He implemented proposed methods, conducted experiments, and wrote the
paper.

IV. Pengfei Xu and Jiaheng Lu. Towards a unified framework for string similarity
joins. Proceedings of the Very Large Databases Endowment, 12(11):1289–1302,
2019

ix

x Contents

The author of this thesis designed the approximation algorithm and the
unified filtering framework. He implemented proposed methods, conducted
experiments, and participated in writing the paper.

Besides the above papers which contributed to this thesis, the author of this
thesis also participated in the following paper:

V. Francesco Concas, Pengfei Xu, Mohammad A Hoque, Jiaheng Lu, and Sasu
Tarkoma. Multiple set matching with bloom matrix and bloom vector. ACM
Transactions on Knowledge Discovery from Data, 14(2):1–21, 2020

The author of this thesis participated in designing the Bloom multifilters and
gave theoretical analyses. He conducted experiments, analysed the results,
as well as wrote a significant part of the paper.

Chapter 1

Introduction

String, as one of the most common forms of data, has always played a key role in
numerous applications. Since being collected from different sources, it is often
unpreventable for them to be inconsistent, such as containing typographical errors,
synonyms, and related terms. The inconsistencies call for the discovery of similar
strings, which becomes a crucial step in many scenarios known as approximate
string matching. This topic has been attracting researchers’ attention for years.
Many outcomes have already been applied to many tasks, such as to name a
few: auto-completion [12,21], spell checking [65], duplicate detection [1, 57], and
clustering [52]. Increasing use cases illustrate the importance of gaining a deeper
insight into the approximate string matching field.

1.1 Motivation

Over the last decades, a variety of contributions are made to solve the approximate
string matching problem, mostly focusing on detecting typographical errors.
Various similarity measures are proposed, such as edit similarity [48], Jaccard
similarity [11, 24], and Dice coefficient [6]. There are also different algorithms
that utilise those measures, some of which calculate results directly (e.g., using
prefix/suffix tree [47]), while others (e.g., [38, 44,48,64]) follow the filtering and
verification procedure which first find potential pairs as candidates and then verify
the real similarity of each candidate.

Recently, as the big data era calls for uses of various data collected from
abundant sources, string matching considering only typographical errors becomes
insufficient forthwith. For example, an entity can have different names in British

1

2 1 Introduction

and American English or can be described using either specific or general terms.
These semantically related terms can also have different spellings, and hence
are, unfortunately, ignored by traditional string matching approaches. To enable
approximate string matching on these data, recent works [27, 44, 48, 61] are to
categorise inconsistencies into three types of similarities:

1. Gram-based similarity [12,25,48,63,64] measures two strings’ literal likeness
by splitting each into a set of fixed-length grams and then counts the
intersected items between both sets. This type of measure can be used to
detect typographic mistakes. As an example, “Helsinki” and “Helsingki”
are considered similar by a gram-based measure.

2. Synonym similarity [26,27,58] measures the similarity of strings by leveraging
a set of predefined synonym (including synonym, acronym, abbreviation,
variation, etc.) rules between strings. For example, “Bill” is a nickname
of “William” and “DBMS” is an abbreviation of “Database Management
System”.

3. Taxonomy similarity [38, 41, 51, 59] measures the similarity of strings by
using a knowledge hierarchy, an abundant source of IS-A relations. For
example, “kitten” is a type of “pet”, and “iPhone” is a type of “smartphone”.
Thanks to the public knowledge bases, e.g., Freebase [43], DBpedia [4],
Wikipedia [17], and Yago [42], one can use these available taxonomies to
enhance the effectiveness of approximate string matching.

Approximate string matching tasks can be split into two categories: join and
selection. In the first category, the task is to identify all similar string pairs
from two lists, where each similar string has a similarity (i) above a predefined
threshold (i.e., all-match) or (ii) higher than pairs that are not in the result (i.e.,
top-k). As the second category, a “selection” task provides a single query string
and one string list, while the output strings can be either all-match or top-k
strings similar to the query.

Approximate string matching with semantic knowledge is a new research topic,
and has not been researched extensively – for example, there is no solution for
top-k selection tasks with either synonyms or taxonomies. This situation poses a
challenge of filling the remaining vacancies of string matching tasks.

Furthermore, since strings can involve various inconsistencies in real-world
applications, considering only one type of similarity can be insufficient to reveal
the true similarity between strings. As an example, in Figure 1.1, strings S and

1.1 Motivation 3

Taxonomy Synonym

Jaccard(Helsingki, Helsinki) = 0.875
Jaccard(coffee, café) = 0.143

...

coffee shop latte Helsingki

espresso café Helsinki

1

0.8
0.875

String S
cake → gateau

coffee shop → café
...

Typography
String T

food

coffee

coffee
drinks

espressolatte

Wikipedia

cake

apple
cake

Figure 1.1: Example of strings having synonym, misspelling, and taxonomical
relevant terms, simultaneously.

T can be considered to be similar since “coffee shop” is a synonym of “café”,
both “latte” and “espresso” are coffee drinks, and “Helsingki” is obviously a
misspelt “Helsinki”. Established methods, in this case, can only surface a portion
of all three relations and hence return values much lower than reality. Therefore,
this situation calls another challenge of performing string matching tasks by
considering multiple similarities altogether.

This thesis aims to address the aforementioned challenges by proposing several
string matching algorithms. Specifically, it focuses on answering the following
research questions:

RQ1. Given one query string and a string list containing synonymical relevant
words, how do we find k string pairs that are the most similar?

RQ2. Given two string lists containing taxonomical relevant words, how do we
find k string pairs that are the most similar?

RQ3. Given two string lists containing taxonomical relevant words, how do we
find all strings pairs that have similarities greater than a threshold?

RQ4. Given two string lists containing a mixture of typographical, synonymical,
and taxonomical relevant words, how do we find all strings pairs that have
similarities greater than a threshold?

This thesis contributes several efficient algorithms to solve the above research
questions, which are briefly explained in the next section.

4 1 Introduction

Join: RQ4

SemanticTypographic

Selection:
RQ2

Join:
K-Join
RQ2
RQ3

Taxonomy

Selection:
RQ1

Join:
JaccT
SExpand
pkduck

Synonym

Selection:
VGRAM, Q-Gram, Trie, IncNGTrie,
MergeSkip, DivideSkip, AdaptSelect,
...

Join:
TrieJoin, Ed-Join, topk-join,
SETJoin, LS-Join, ppjoin+,
GroupJoin, MPJoin, AdaptJoin, ...

Edit, Jaccard, Cosine, Dice, ...

Figure 1.2: Overview of approximate string matching problems and research
questions addressed in this thesis.

1.2 Overview

Figure 1.2 shows the established algorithms for solving the approximate string
matching problem. For approximate string selection with typographic similarity,
numerous pieces of research are established. To name a few: VGRAM [25],
which chooses q-grams of variable lengths (based on gram frequencies [25] or
cost models [63]) to reduce false positives; Q-Gram and Trie [12], which extend
the idea of q-grams and tries to tolerate edit distances for auto-completion
tasks. IncNGTrie [53] then improves the performance of the previous method
by magnitudes. On the other hand, MergeSkip and DivideSkip [24] utilise lists
to allow Jaccard, Cosine, and Dice-based similarities; AdaptSelect [48] uses a
time complexity-based cost model to build a proper index. Speaking of the join
problem, TrieJoin [47] uses trie as an index to compute similar strings directly;
Ed-Join [54] discusses a method of using gram locations to find dissimilar pairs;
topk-join [55] and SETJoin [46] aggressively use multiple filtering methods to
remove unfeasible pairs; and LS-Join [49] employs a novel local filter [50, 64]
that discards string pairs with too many differences. Some other algorithms are
also based on the filtering and verification framework, such as ppjoin+ [56,57],
GroupJoin [8], and MPJoin [35]. AdaptJoin [48] stands out from the rest by
proposing a variable-length prefix filtering principle to increase the filtering power.

1.2 Overview 5

On the semantic side, however, only a little research is conducted. We list some
of it here. For synonym-based join tasks: JaccT [1] which enumerate all derived
strings to find the maximal similarity, SExpand [26] which appends synonyms
to the original string, and pkduck [44] which derives only one string of a pair of
strings at a time. For taxonomy-based joins, K-Join [38], which employs the prefix
filtering principle, is the only algorithm available to the best of our knowledge.

Figure 1.2 also includes our research problems RQ1–RQ4, which are the main
contributions of Papers I–IV. Paper I answers RQ1 by providing several top-k
selection algorithms using synonym knowledge. Paper II proposes top-k join
algorithms using taxonomies (i.e., RQ2), which are also useful for selection tasks
by assuming one input list in the join task contains only the query string. Paper
III answers RQ3 by improving the efficiency of all-match join tasks over the state
of the art K-Join. Finally, Paper IV is for solving all-match joins by considering
multiple similarities simultaneously, defined as RQ4.

The contents of Papers I–IV are summarised as follows.

Paper I: Top-k string auto-completion with synonyms

This paper addresses the problem of finding the top-k strings similar to a
given query string. Motivated by a use case of auto-completion, it proposes
three methods based on the trie structure to enable the use of synonyms and
to reach different aims: fastest response time, least space usage, or as fast
as possible given a constrained space. Chapter 3 of this thesis summarises
proposed techniques.

Paper II: Efficient string similarity join with taxonomy knowledge

This paper solves the problem of performing top-k join from taxonomy
knowledge and can be used for top-k selection tasks. It proposes three new
algorithms – two based on sorted lists and one based on tries – to find the
top-k similar string pairs efficiently, among which the trie-based algorithm
achieves a time complexity linearithmic to the input size. We introduce these
techniques in Chapter 4.

Paper III: Efficient taxonomic similarity joins with adaptive overlap constraint

This paper discusses the question of integrating hierarchical taxonomy into the
string similarity join process. This paper begins by pointing out a problem of
the prefix filtering technique used in the filtering and verification framework,
where the lower bound can be tightened up to reduce the number of false
positives in candidates dramatically. Based on a tightened bound, this paper
adopts the filtering and verification framework to perform joins and confirms

6 1 Introduction

that the efficiency is significantly higher than state of the art. The technical
improvements are presented in Chapter 5.

Paper IV: Towards a unified framework for string similarity joins

The last paper proposes a framework for performing typography, synonym, and
taxonomy similarities simultaneously in one pass. Furthermore, it introduces a
middleware that can be adopted easily for taking in more similarity measures.
Experiments on real-world datasets show that the unified framework can
find far more similar strings than any single-similarity algorithm. We further
discuss the details in Chapter 6.

1.3 Outline

The rest of this thesis is organised as follows. Chapter 2 defines the research
problems and introduces some preliminaries. Next, Chapter 3 presents the top-
k selection algorithm with synonym similarity, and Chapter 4 for the top-k
join/selection algorithm with taxonomy similarity. As for join tasks, Chapter 5
proposes an adaptive algorithm to perform string joins with taxonomy knowledge
and furthermore addresses the limitation of a standard prefix filtering strategy.
Chapter 6 introduces a unified framework that performs string joins by considering
multiple types of similarities, which, as a result, discovers far more similar pairs
than any similarity alone. Last, Chapter 7 concludes this thesis and elucidates
future work.

Chapter 2

Preliminaries

This chapter gives the formal definition of the research problems solved in this
thesis. It also establishes preliminary similarity measures and data structures
used in the upcoming chapters.

2.1 Problem Definition

The field of research of this thesis is approximate string matching, which can
be differentiated into several tasks. First, when the inputs are two string lists
and one number as the threshold, we define it as an all-match join problem in
Problem 2.1.

Problem 2.1 (All-match Approximate String Join) Given two string lists
S and T , a similarity measure sim(S, T), and a real number θ ∈ [0, 1]. Find a set
of string pairs R consisting of all string pairs (S, T) ∈ S ×T where sim(S, T) ≥ θ
holds.

It is possible to replace the threshold in the input by a positive integer k indicating
the maximal result size, thus the problem becomes a top-k join problem as defined
in Problem 2.2.

Problem 2.2 (Top-k Approximate String Join) Given two string lists S
and T , a similarity measure sim(S, T), and a positive integer k. Find a set
of string pairs R of at most k items, such that every (S, T) ∈ R satisfies
sim(S, T) ≥ sim(P,Q), where (P,Q) can be any string pair from S × T \ R.

7

8 2 Preliminaries

By setting the input list S to contain only one query string S, i.e., S = {S},
Problems 2.1 and 2.2 then define the Approximate String Selection problems,
which are to find either all or top-k strings from T similar to the query S.

In traditional solutions for both join and selection problems, the similarity
measure sim(·) is often a typographical measure, e.g. edit or Jaccard similarity,
and therefore does not handle semantic relations. To this end, the critical challenge
is to properly integrate semantic measures into the solution while maintaining
the join performance.

2.2 Similarity measures

Let Σ be a universe of characters, let c ∈ Σ denote a character, and q be a
positive integer. A string can be defined as a finite sequence of characters, in
the form of S = {c1, c2, · · · , cn}. A string can be split into words, i.e., sub-
sequences of characters, by continuously splitting each sequence by delimiters
such as ‘ ’ (space). The resulting string is in the form of S = {s1, s2, s3, · · · } ={
{c1, c2, c3}, {c5, c6}, {c8}, · · ·

}
where c4, c7, and c9 (and more) are delimiters.

Given two strings split into words, one can utilise a few similarity measures
to evaluate their similarity. One straightforward measure is overlap similarity,
defined as the number of common words between two strings over the number of
distinct words in two strings. For example, “a bc d” and “b bc e” have an overlap
similarity 1

5 because they have one word “bc” in common among all five distinct
words.

The overlap similarity is known to be mutable to inconsistencies [19]. There
are several extensions to the measure to tolerate inconsistency, as mentioned below.
Note that in the definitions, the term “string” (or S and T) is interchangeable
with “word” (or s and t) because a word is also a string.

2.2.1 Gram-based similarity

Gram-based similarity measures quantify the extent that two strings are similar.
For example, “Helsingki” spells similar to “Helsinki”, whereas “pizza” is not
similar to “kitty” at all. To measure such similarity, the gram-based measures
work by splitting strings into small chunks called grams, so that similar strings
must have some grams in common.

Given a string S, its q-grams, denoted by gramsq(S), is a sequence of words or
characters obtained by applying a q-sized sliding window over S. As an example,

2.2 Similarity measures 9

the word grams of S when q = 3 are {s1, s2, s3}, {s2, s3, s4}, · · · , {sn−2, sn−1, sn}.
Replace S by s and s by c to obtain character grams.

Obtained gramsq(S) and that of another string T as gramsq(T), one popular
way to measure the similarity between S and T is Jaccard similarity, defined as

simj(S, T) =
|gramsq(S) ∩ gramsq(T)|
|gramsq(S) ∪ gramsq(T)|

, (2.1)

where |X| returns the number of items in the set X.

Example 2.1 (Word Gram) Given q = 1, the Jaccard similarity between “cof-
fee latte” and “coffee house” is 1

3 , because grams1(coffee latte) = {coffee, latte}
and grams1(coffee house) = {coffee, house} share one word gram “coffee”, whereas
there are three distinct word grams.

Example 2.2 (Character Gram) Given q = 2, the Jaccard similarity between
“mutt” and “putty” is 2

5 , because grams2(mutt) = {mu, ut, tt} and grams2(putty) =
{pu, ut, tt, ty} share two character grams “ut” and “tt”, whereas there are five
distinct character grams.

2.2.2 Synonym similarity

A synonym rule R is a one-to-one mapping of two strings in the form of lhs(R) →
rhs(R), C(R) ∈ (0, 1], which states that its left-hand side lhs(R) and right-hand
side rhs(R) has a similarity C(R). Formally, let R be a collection of synonym
rules, the similarity between two strings S and T is defined as

sims(S, T) =

{
C(R), if ∃R ∈ R s.t. lhs(R) = S and rhs(R) = T ;

0, otherwise.
(2.2)

Example 2.3 Given a synonym rule R1 : café → coffee house, C(R1) = 1, then
two strings “café” and “coffee house” becomes equivalent. Furthermore, strings
“café in Helsinki” and “coffee house in Helsinki” can been treated as equivalent.

It is worth mentioning that synonym relations may not be transitive, especially
when abbreviations are involved. For example, “DB” can be considered to be
synonyms of both “DataBase” and “Deutsche Bahn”, which obviously represent
different things.

10 2 Preliminaries

2.2.3 Taxonomy similarity

Given a hierarchical taxonomy, the similarity between two strings can be identified
by the positions of matched taxonomy nodes. Let nS (nT) be the nodes that
matches S (T) and let |n| be the height of node n, the taxonomy similarity
between strings S and T is

simt(S, T) =
|LCA(nS , nT)|
max(|nS |, |nT |)

, (2.3)

where LCA(nS , nT) returns the lowest common ancestor1 of nS and nT .

Example 2.4 Given two nodes from a geographical taxonomy: n1 : Europe →
Finland → Helsinki; n2 : Europe → Finland → Espoo. Then, the taxonomy
similarity between “Helsinki” and “Espoo” is 2

3 because the LCA node of n1 and
n2 is “Finland” with height 2, while max(|n1|, |n2|) = 3.

2.3 Index structures and filtering techniques

This section introduces a few popular structures and techniques used for solving
string matching problems. They are also used in multiple chapters of this thesis.

2.3.1 Trie

Trie (prefix tree) is a rooted tree structure used for representing multiple strings.
The first level of the trie consists of only one “dummy” root; the second level of
the trie consists of all of the first characters of strings in the set; the third level
of the trie consists of all of the second characters of strings in the set; and so
forth. Any non-root node in the trie represents a sequence of characters formed
by all its non-root ancestors, starting from the root. To distinguish sequences are
strings from the original string list, a common practice is to attach flags to all
such nodes. Figure 2.1 depicts a small trie representing four strings.

Trie supports efficient string searches. Take Figure 2.1 as example. String
“Vantaa” is not in the list because of no node with the label ‘V’ in the second
level of the trie. Similarly, “Esbo” is also not in the list since there is no node
‘b’ among the children of root → E → s. In contrast, “Hel” does exist in the list
since all three nodes are in the trie while the last node is flagged.

1https://en.wikipedia.org/wiki/Lowest_common_ancestor

2.3 Index structures and filtering techniques 11

H

E

e l s i n

k i

s p o o

g f o r s

Figure 2.1: A trie representing four strings: “Espoo”, “Hel”, “Helsinki”, and
“Helsingfors”. The dashed node is the root, green nodes are flagged, indicating
their sequences are from the original string list.

This thesis extends the standard trie structure in two ways: one to support
string search with the consideration of synonym rules (see Chapter 3), and another
to enable efficient retrieval of taxonomical relevant strings (Chapter 4).

2.3.2 Filtering and verification framework

The filtering and verification framework is a common technique used for solving
the approximate string matching problems. Its intuition is that, rather than
examining the Cartesian product of all strings, one can identify that some string
pairs are “definitely not the answer” thus no need to be examined. Such an
identification process is usually fast enough so that the overall time cost becomes
lower.

A filtering and verification framework consists of two stages:

1. Filtering: the task of this stage is to identify infeasible pairs that cannot
contribute to the answer. Many filtering techniques are available here,
to name a few: prefix filtering [11], which states that two similar strings
must have some common prefix (explained later in this section); positional
filtering [57], which states that there exists a bond between the difference of
positions of the same word in two similar strings; length filtering [18], which
is based on the fact that the difference of lengths of two similar strings must
be within a threshold; and local filtering [50, 64], which claims that string
with substantial dissimilarities must be dissimilar. This thesis focuses on
the prefix filtering since it is proved to be the most effective method for
identifying infeasible pairs.

2. Verification: this stage receives string pairs from the filtering stage and
calculates the real similarity of each pair. If a pair has a similarity higher
than a given threshold, it will be added to the output set.

12 2 Preliminaries

� � � � ��� �� �� ��

� � � ��� �� ��

� � � ��� �� ��

� � ��� ��

� � � ��� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� � � � � � ��� �� �� �� �� ��

� � � � ��� �� �� ��

� � � � ��� �� �� ��

� � ��� ��

� � � ��� �� ��

(a) Input strings in which words
are sorted

(b) “Prefix” of each string (c) Inverted list constructed
from prefixes

Figure 2.2: Illustration of the prefix filtering principle where θ = 0.6. Candidates
of similar pairs are (S1, S2), (S1, S3), (S2, S3), and (S4, S5).

Prefix filtering is one of the most popular techniques used in the filtering stage.
It is based on a necessary but not sufficient condition that, after sorting words in
strings according to a predefined global ordering, any string similar to a specific
string S must share at least one word within the first (1− θ)|S|+ 1 words of S,
where θ is the predefined similarity threshold. The following example illustrates
the intuition behind this condition.

Example 2.5 Take five strings in Figure 2.2a as example. Assume that S2 and
another arbitrary Sx have an overlap similarity 0.6. Therefore, according to the
prefix filtering principle, S2 and Sx must have at least one common word: s2
and/or s5. This is because otherwise, even when they both have s6, the similarity
is still at most 1

3 where 3 is the minimal number of distinct words in that case.

To find those pairs sharing at least one word, one efficient method is by using
inverted lists, a key-value data structure in which each key is a word, attached by
a list of strings containing this word. As an example, after generating prefixes of
all strings in Figure 2.2a as Figure 2.2b, it is possible to build one inverted list as
in Figure 2.2c. After that, all strings within the same list must have at least one
word in common, and hence, according to the prefix filtering principle, can form
candidates for further verification.

In Chapters 5 and 6, we extend the prefix filtering technique to handle various
similarity measures to solve similarity join problems. Furthermore, we show that
prefix filtering can be modified to reduce the number of pairs in the verification
stage whilst not damaging the correctness of the output.

Chapter 3

Top-k similarity selection with
synonyms

This chapter gives an overview of the results of Paper I that solves RQ1. Following
a formal definition of RQ1, it introduces three data structures that solve the
problem in different ways with specific optimisation focuses. Finally, this chapter
presents empirical experimentation results to highlight the tradeoffs of proposed
algorithms.

3.1 Problem formalisation

Paper I formally defines RQ1 as follows: given (i) a set of dictionary strings S in
which each string is assigned a number (“rank”) indicating its priority of being
selected; (ii) a set of synonym rules R; (iii) a query string S; and (iv) a positive
integer k, the task is to output at most k strings from S satisfying two properties:
each string in the output can be obtained from S by applying some synonym
rules in R (see Subsection 2.2.2); and output strings have the top-k highest rank
among all possible strings transformable from S.

3.2 Methods

Paper I introduces three trie-based structures to support top-k similarity selection
with synonyms. Each structure has a focus: on minimising the running time, on
minimising the space cost, or on finding a balance between time and space. We
introduce each in turn.

13

14 3 Top-k similarity selection with synonyms

0

-1

-1

-
5

a
5

c
2

b
5

d
2

c
5

e
2

m

n p

Dictionary strings:
(abc, 5)
(cde, 2)

Synonym rules:
bc → mn
c → mp

Dictionary trie Rule trie

Figure 3.1: A toy Twin Tries (TT) structure representing two dictionary strings,
“abc” (rank 5) and “cde” (rank 2); and two synonym rules, “bc → mn” and “c →
mp”. The number in each node is the rank, dashed arrows are synonym links.

3.2.1 Twin Tries

The Twin Tries (TT) structure aims to minimise the space cost. It consists of
two tries: a dictionary trie and a rule trie, storing all dictionary strings in S and
all right-hand sides (rhs) of synonym rules in R, respectively. On each node in
the dictionary trie that represents the last character of a dictionary string, there
is a number equal to the rank of that string. From each node in the rule trie
that represents the last character of an rhs, there is a synonym link pointing to
nodes in the dictionary trie that represent the left-hand side (lhs) of the same
rule. Each synonym link is attributed to a number called delta which is the length
of lhs minus that of rhs. Figure 3.1 shows a toy TT structure.

Section algorithm. The selection procedure presented as Algorithm 2 of Paper
I. In short, it continuously looks up the rule trie to find appropriate synonyms,
and when an rhs is found, jumps to the corresponding position in the dictionary
trie following the synonym link. Its procedure can be summarised as follows:

1. Initialise a heap P : {(n, i)}, where n is a trie node and i is an integer.
Items in the heap are sorted by rank(n) in descending order;

2. Add (n0, 0) to P, where n0 is the root node of the dictionary trie;

3. Pop the head item of P as (np, i). For each j ∈ [i, |S|], where |S| is the
number of characters in the query string S, do the following:

3.2 Methods 15

(a) Let nd be the deepest node below np that matches {si, · · · , sj}, i.e.,
from i-th to j-th characters of S;

(b) If nd is the last character of a dictionary string, add that dictionary
string to the result;

(c) If i = |S|, i.e., there are no more characters to process in the query
string, add each child of nd to P as (nc, i);

(d) Let Nr be all nodes in the rule trie that in the path of matching the
last |S| − j characters of S;

(e) For each nr ∈ Nr, and for each synonym link l starting from nr to
a node nl: if nd is the same as the node located depth(nr) + delta(l)
levels above nl, add (nl, j) to P.

4. Go to Step 3 until k results are collected or P becomes empty.

It can be seen that the final result consists of “exact matches” found in Step 3b
as well as “guesses” from Step 3c. All results are arranged by rank in descending
order guaranteed by the heap.

3.2.2 Expansion Trie

In the previous TT structure, the rule will be accessed multiple times for finding
potential synonym rules. This strategy brings space-saving at the cost of increased
running time. In contrast, the Expansion Trie (ET) structure employs a different
approach by merging two tries to speed up the selection process: attaching
synonym rules to corresponding positions of the dictionary trie. As a result, ET
consumes more space but the running time is reduced – as later confirmed by the
experimental results in Section 3.3.

Other than TT which uses separate tries for dictionary strings and taxonomy
rules, ET mixes them into a single trie, as illustrated in Figure 3.2. The trie is
constructed in two passes. In the first pass, all dictionary strings are added to the
trie. In the second pass, for each synonym rule and for each dictionary string such
a rule can be applied to, it attaches new synonym nodes to the corresponding
positions of the trie. For example, given “bc → mn” and a string “abc”, two new
synonym nodes ‘m’ and ‘n’ should be attached to ‘a’, which is the parent node
of the first character of rhs. The synonym node ‘n’ has a synonym link pointing
back to ‘c’, which is the last character of rhs. All synonym nodes have 0 ranks.

16 3 Top-k similarity selection with synonyms

-
5

a
5

m
0

p
0

c
2

m
0

p
0

b
5

d
2

c
5

e
2

Dictionary strings:
(abc, 5)
(cde, 2)

Synonym rules:
bc → mn
c → mp

m
0

n
0

Figure 3.2: A toy Expansion Trie (ET) structure. Nodes with 0 rank come from
synonyms.

Search algorithm. The search algorithm on ET is presented as Algorithm 4 of
Paper I. The procedure is simpler than that of TT, since ET only has one trie.
We present a summarisation of the search algorithm as follows:

1. Initialise a heap P : {n}, where n is a trie node. Items in the heap are
sorted by rank(n) in descending order;

2. Find n0 as the deepest node in the trie that matches a prefix of the query
string S. Note that this “match” includes synonym nodes but does not
follow any synonym link.

3. If n0 is not a synonym node, add n0 into P . Otherwise, add to P the target
of synonym links starting from n0.

4. Pop the head item of P as np.

(a) If np is the last character of a dictionary string, add that dictionary
string to the result;

(b) If np is a synonym node, check if depth(np) ≤ |S|, i.e., np matches
a prefix of the query string. If yes, add all targets of synonym links
starting from np to P;

(c) If np is a dictionary node and depth(np) < |S| (i.e., np is not the last
character in the query string), search for the next character among the

3.2 Methods 17

children of np, and (if found) add it to P . If the next character is not
found, add all children of np to P.

5. Go to Step 4 until k results are collected or P becomes empty.

The search algorithm of ET also considers both “exact matches” found in
Step 4a and “guesses” from the second case of Step 4c.

3.2.3 Hybrid Trie

While TT and ET focus on either space-saving or fast lookup, Paper I proposes
the third structure to strike for a balance in between. The idea is to expand some
of the synonym rules in the ET favour (to accelerate lookup) while leaving others
in a separate rule trie (to save space). The key is to expand rules that appear
frequently in dictionary strings to expect more speed benefits.

A Hybrid Trie (HT) asks the user to give a constraint P as the additional
space for storing synonym nodes. Then, the rule selection procedure can be
modelled as a 0/1 knapsack problem where (i) P is the capacity of the knapsack;
(ii) each synonym rule is an item to be packed; (iii) the frequency of a rule is the
item value; and (iv) the space required for expanding a rule is the item weight.
However, measuring the weight is not straightforward because some rules are
“interfering” with others [9], such as in the case described in Example 3.1.

Example 3.1 Given a dictionary trie of string “abc” and two rules R1 : bc → mn,
R2 : bc → mnp. Expand either R1 or R2 requires 4 or 5 units of space, respectively.
On the other hand, expanding both R1 and R2 require only 5 units of space, instead
of 4 + 5 = 9, because R1 and R2 attach to the same position in the dictionary trie
and hence share taxonomy nodes ‘b’, ‘c’, ‘m’, and ‘n’.

To calculate item weights correctly regardless of inferences, the rule selection
procedure has to be modelled as a variant of the 0/1 knapsack problem, where
item weights are determined by a function:

max

|R|∑
i=1

vixi subject to

|R|∑
i=1

wi(xi|xj , where j ∈ Ii) ≤ P

where Ri is the i-th synonym rule in R, xi is a binary indicator for whether
Ri is expanded (xi = 1) or not (xi = 0), vi is the frequency (“value”) of Ri

in all dictionary strings, and wi(·) is a function that returns the actual space
cost (“weight”) to expand Ri given Ii consisting of indices of all rules which are

18 3 Top-k similarity selection with synonyms

interfering with Ri. The optimal solution is a series of indicators {x1, · · · , x|R|}
that maximises the sum of frequencies of all expanded rules within the space
limitation P .

Branch and bound algorithm. Paper I proposes a heuristic based on the
branch and bound paradigm [23]. Intuitively, given a brute-force full decision
tree where each node stands for a rule Ri and has two children indicating xi = 0
and xi = 1, the heuristic traverses the tree and, each time when visiting a node
ni, calculates the value lower and upper bound for each of xi = 0 and xi = 1:
(LBi,UBi)|xi = 0 and (LBi,UBi)|xi = 1. In either decision regarding xi, all
subsequent decisions can be skipped if UBi < LBj where j ∈ [1, |R|] holds,
indicating that the current decision will not lead to the maximal value.

Bound calculation. The value bound is calculated by employing multiple
estimation algorithms for knapsack problems. As a prerequisite, let R′

min (R′
max)

be a list of {Ri, · · · , R|R|} sorted in ascending order by weight and assume that
all (none) of the interfering rules for each of them are already expanded. Then:

• The value upper bound UBi at stage Ri is obtained by adapting the solution
for the fractional knapsack problem [15]. Specifically, UBi equals the sum
of (i) values of rules in the knapsack from the previous decisions and (ii)
the sum of values by greedy taking rules in R′

min as a whole or as a fraction
into the knapsack until the capacity is exhausted.

• To calculate the lower bound LBi, we adopt the greedy solution of the 0/1
knapsack problem. In this case, LBi is the sum of (i) values of rules in the
knapsack from the previous decisions and (ii) the sum of values by greedily
taking rules in R′

max as a whole into the knapsack until the capacity is
exhausted.

Example 3.2 Figure 3.3 shows the HT structure representing two dictionary
strings “abc” (rank 5) and “cde” (rank 2) and two synonym rules “bc → mn” and
“c → mp”.

Section algorithm. The selection procedure for HT is very similar to that for
TT, with a additional logic that after Step 3b, the algorithm should add the
targets nd of synonym links starting from np into the heap as (nd, i).

3.3 Comparison of methods 19

-1

-1

-
5

a
5

m
0

n
0

c
2

b
5

d
2

c
5

e
2

m

p

Dictionary strings:
(abc, 5)
(cde, 2)

Synonym rules:
bc → mn
c → mp

Dictionary trie Rule trie

Figure 3.3: A toy Hybrid Trie (HT) structure. Nodes with 0 rank come from
synonyms.

3.3 Comparison of methods

This section presents some important experimental results of Paper I to highlight
the differences between TT, ET, and HT. We compare three algorithms by
structure build time, structure space cost, as well as top-k selection time.

Dataset and setup. The experiments employ three datasets, namely (i) DBLP:
24,810 dictionary strings of book titles and conference names, with 214 synonym
rules of common abbreviations; (ii) USPS: 1M artificial addresses consist of person,
street, city, and state names, along with 341 synonym rules, e.g. “TX → Texas”;
and (iii) SPROT: dataset of 1M gene/protein records, each formed by an entry
name, a protein name, a gene name, and an organism name. 1,000 synonyms
are used for this dataset. We ran experiments on a Ubuntu machine with Intel
i7-4770 3.4GHz processor and 8GB RAM. We set the space threshold of TT to
0.5× (SET − STT), i.e., half of the space differences between TT and ET.

Trie build time. The first difference of proposed methods is the speed for
constructing the trie structure. As shown in Figure 3.4, all of TT, ET, and HT are
faster to build than using BL, a baseline which applies all permutations of rules to
each dictionary string and collects transformed strings to form an ET structure.
Apart from that, TT is the fastest because it does not do any expansion, but
instead builds two tries and adds synonym links. HT, on the other hand, has
spent some time to run the branch and bound algorithm to decide which rules
are to be expended. All three structures are constructed within one minute given
large 1M datasets.

20 3 Top-k similarity selection with synonyms

BL TT ET HT
0

0.2

0.4

0.6

0.8

1
13.9

T
im

e
(s
)

BL TT ET HT
0

10

20

30

40
Timeout

BL TT ET HT
0

20

40

60
Timeout

(a) DBLP (b) USPS (c) SPROT

Figure 3.4: Time required for constructing each structure. “BL” is a baseline
that generates all possible strings by permutation.

0 20 40 60 80 100 120 140 160 180 200 220 240

ET

TT

HT

Size (MB)

Dictionary nodes Synonym nodes (expanded) Synonym nodes (not expanded)

Figure 3.5: Space breakdown of proposed structures given SPROT dataset. DBLP
and USPS have similar trends.

Space cost. The size of the constructed structure is depicted in Figure 3.5. TT
is the obvious winner in this case since every dictionary string or synonym rule
appears only one time in the structure. In contrast, ET uses nearly two times
the space as TT, because, in ET, there are many synonym nodes attached to
dictionary nodes. Finally, HT uses a moderate space: some frequent synonym
rules are being expanded while others are left in a separate trie.

Section time. The final difference between the three methods is the speed of
performing the top-k selection. We pick 50,000 random-length prefixes of random
dictionary strings from each dataset as query strings, run our selection algorithms
and summarise results in Figure 3.6. We can see that, although TT is fast to
build and uses the least space, it has the longest selection time. This is because
TT has to access the rule trie many times during the top-k process. On the other
hand, ET performs the selection in a very short time since all synonym rules

3.4 Chapter summary 21

0 50 100 150

0

0.5

1

query string length

T
im

e
(m

s)

0 20 40

0

5

10

15

query string length

0 10 20 30

0

5

10

query string length

TT ET HT

(a) DBLP (b) USPS (c) SPROT

Figure 3.6: Time required for performing top-10 selections.

are already expanded, while HT has moderate performance because the most
frequent synonym rules are already expanded hence less time for accessing the
rule trie. Together with the aforementioned space cost, it is clear that HT is the
best structure that strikes a balance between selection time and space cost.

Another finding is about the behaviour of HT: its speed is on a par with ET
for DBLP and USPS but not SPROT. We found that the reason is the selected HT
space threshold. Figure 8 in Paper I shows that, by increasing the space threshold
to 0.75× (SET − STT), HT can be 100% faster than the current setting.

3.4 Chapter summary

This chapter introduced Paper I, in which we proposed three methods to answer
RQ1: use synonymical relevant words to enrich the quality of top-k selection
tasks. Each proposed structure has a different optimisation goal: to minimise
space cost (TT) or to accelerate top-k selections (ET). Furthermore, we propose
HT that has a balanced space cost and selection speed, which makes it suitable
for most application scenarios.

22 3 Top-k similarity selection with synonyms

Chapter 4

Top-k similarity join with taxonomies

This chapter introduces Paper II that solves RQ2 and is organised as follows.
First, it defines the research problem. Then, a basic list-based algorithm is
introduced, followed by an optimised list-based and novel trie-based algorithms.
Experimental results show that the latter two algorithms outperform the basic
one to a significant extent.

4.1 Problem formalisation

Paper II defines RQ2 formally by using the taxonomy similarity measure SIMt.
Given a positive integer k and two sets of strings S, T in which each string maps
to one taxonomy node in a given taxonomy hierarchy, find all pairs of strings
in the form of (S, T) ∈ S × T , such that SIMt(S, T) is among the top k highest
similarities of all pairs in S × T .

As stated in Section 1.2, the above problem definition has a special case when
one of S and T contains only one string, which is the query. In such a case, the
above definition defines a top-k similarity selection problem.

4.2 Methods

Paper II contributes three algorithms, in which two are based on sorted lists, and
one is based on the trie. We introduce them in Subsections 4.2.1 and 4.2.2.

Dewey labelling. To simplify the data representation, we use an existing scheme
called Dewey decimal system [30] that assigns every tree node a label, henceforth
every node can be represented by a Dewey label which is a series of node labels

23

24 4 Top-k similarity join with taxonomies

1.1
1.4.2.1
1.4.2.2
1.4.2.3
1.5.5

1.2
1.3
1.5.5.1
1.5.5.2
1.5.5.3
1.5.5.4

(a) Sorted List (b) Sorted List with LP (c) Trie

-
ml=2

1
ml=2

5
ml=3

LP=1

3
ml=4

LP=3

4
ml=4

2
ml=4

1
ml=2

LP=0

2
ml=4

LP=3

5
ml=3

1
ml=4

LP=1

-
ml=2

1
ml=2

5
ml=4

3
ml=4

LP=3

3
ml=2

LP=1

2
ml=2

LP=0

2
ml=4

LP=3

5
ml=4

4
ml=4

LP=3

1
ml=4

LP=1

1.1, 0
1.4.2.1, 1
1.4.2.2, 3
1.4.2.3, 3
1.5.5, 1

1.2, 0
1.3, 1
1.5.5.1, 1
1.5.5.2, 3
1.5.5.3, 3
1.5.5.4, 3

Figure 4.1: Illustration of proposed data structures. minLen is shortened to ml

due to space limitation.

starting from the root to the node itself. Two Dewey labels can be compared
in a lexicographical manner, e.g., 1.2 is less than 1.3 while 1.3 is greater than
1.2.3. The length of a Dewey label n, denoted by |n|, is the number of decimals
separated by periods (if any), e.g., |1| = 1 and |1.3.5| = 3.

4.2.1 List-based algorithms

Basic algorithm (SortedTopK). Pre-sorting is one of the most common opti-
misations for join tasks. Given two sorted string lists (represented by matching
taxonomy nodes, as in Figure 4.1a), the basic join algorithm is to use cursors to
go through the list while maintaining the top-k highest-similarity results. The
procedure can be summarised as follows:

1. Initialise a heap P : (S, T), where S and T are two strings, one from each
input dataset. Items in the heap are sorted by SIMt(S, T) in ascending
order. Initialise a dynamic threshold θ = SIMt (peek (P)), i.e., equals the
lowest similarity among pairs in the heap;

2. Initialise one cursor on S as C1
1 ; and another cursor on T as C1

2 , pointing
to the first Dewey string of each list;

3. Compare two Dewey strings at C1
1 and C1

2 , assign the subscripts (1 or 2) to
two variables min and max;

4.2 Methods 25

4. Initialise a forward cursor on the max list: C2
max ← C1

max;

5. While the first �θ|C1
min|� Dewey digits is the prefix of C2

max, do the following:

(a) Verify the similarity of (C1
min, C

2
max). If it is greater than or equal to θ,

add (C1
min, C

2
max) to P;

(b) If P contains more than k pairs, remove the head of P and update θ;

(c) Advance C2
max.

6. Advance C1
min;

7. If none of C1
1 and C1

2 reaches the end of the corresponding list, go to Step 3;

8. Return all pairs in P and terminate.

Example 4.1 We illustrate the basic algorithm with the example in Figure 4.1a.
Let k be 2. Two pointers C1

1 and C1
2 are initially pointing to the first label of S

and T , respectively. By comparing C1
1 and C1

2 we get min = 1 and max = 2. At
Step 5, since the first �0× 2� = 0 Dewey digits of C1

min (1.1) is a prefix of C2
max

(1.2), the pair (1.1, 1.2) is being added to P and θ becomes 0.5. The algorithm
then advances C2

max (Step 5c) to read the next label 1.3, and thereafter (1.1, 1.3)
is also added to P. The algorithm moves on until C1

1 and C1
2 are at 1.5.5 and

1.5.5.1. Adding (1.5.5, 1.5.5.1) to P removes (1.1, 1.2) since the former has 0.75
similarity. Finally, only two of (1.5.5, 1.5.5.1), (1.5.5, 1.5.5.2), (1.5.5, 1.5.5.3),
and (1.5.5, 1.5.5.4) remain in P.

The problem of the basic algorithm is the the number of LCA comparisons
in Step 5a, where each comparison costs O(min{|C1

min|, |C2
max|}) time. In the

following optimised algorithm, we aim to reduce the number of such verifications.

Optimised algorithm (LP-SortedTopK). In the optimised algorithm, every
Dewey string n is attached by an integer LP(n), which is the length of the LCA
between n and the string before n. As an example, given a sorted list as in
Figure 4.1b, LP(1.5.5.2) = 3 since LCA(1.5.5.1, 1.5.5.2) = 3.

The optimised algorithm makes uses of LP values to reduce the number of
LCA comparisons. Specifically, it maintains two variables for the LCA length:
global (x as in Algorithm 2 of Paper II) and local (y), where the global length
equals LCA(C1

1 , C
1
2) and the local length equals LCA(C1

min, C
2
max). It is obvious

that y can be used as LCA length when verifying the similarity. Besides, both
lengths, as well as min and max, are updated by the following rules:

26 4 Top-k similarity join with taxonomies

• If the local length y is greater than LP(C2
max), decrease y to LP(C2

max);

• If the global length x is greater than LP(C1
min), decrease x to LP(C1

min) and
swap the values of min and max;

• If x is equal to LP(C1
min), then recompute x, min, and max.

The above rules are proved in Lemma 3 of Paper II, and can be plugged into the
basic algorithm to replace the Dewey comparison in Step 3 and the similarity
calculation in Step 5a. After that, only in one of three cases the LCA length
needs to be recomputed.

4.2.2 Trie-based algorithm

The previous list-based algorithms will always access every string, regardless
of whether the access is only to get its LP value. To further improve the join
performance, Paper II designs a trie-based algorithm, named TrieTopK, that
avoids accessing unfeasible items entirely.

Data structure. We build two tries for S and T as QS and QT . In addition
to the properties of a standard trie stated in Subsection 2.3.1, we add two more
properties to each node:

• Each node holds an integer, minLen(n), which indicates the smallest depth
among all its flagged descendants. The minLen of a flagged node is equal
to the depth of the node itself.

• Each flagged node holds an LP value, which is the same as in the previous
list-based algorithms.

Figure 4.1c illustrates an example of the trie structure.

Maximal sub-trie similarity. Given one trie node n that appears in both QS

and QT . Let Q′
S and Q′

T be two sub-tries with root n, and let NS and NT be
two collections of flagged nodes in Q′

S and Q′
T . Paper II formulates a maximal

sub-trie similarity (MSS) as the highest similarity one can obtain by pairing up
nodes from NS and NT . The MSS has two properties:

• MSS(n,NS , NT) is at its maximum when NS = Q′
S and NT = Q′

T , and is
monotonically decreasing when removing nodes from NS and/or NT ;

4.3 Experimental results 27

• The maximum of MSS(n,NS , NT) can be calculated by using the value of
minLen of n in two tries:

MSSinit(n) =
|n|

max
(
minLen

(
n,Q′

S

)
,minLen

(
n,Q′

T

)) ,
where minLen(n,Q) returns the minLen of a node from Q that holds a
Dewey label same as that of n.

The algorithm. The trie-based algorithm, as in Algorithm 4 of Paper II, utilises
these properties to eliminate unnecessary node accesses. Specifically, for every
common node n between QS and QT , we calculate its MSSinit and add n to a
max heap sorted by MSS. Then, the algorithm continuously polls the head node
nc from the heap and traverses two sub-tries Q′

S and Q′
T in breadth-first (BFS)

manner, and pairing up all flagged nodes it encountered. Such a process continues
until the next encountered pair has a similarity less than the MSS of the new
heap head (since the previous head has been polled out). When this happens, the
algorithm decreases the MSS of nc to the similarity of the next pair, and adds nc

back to the heap. Note that nc will not be the head item anymore since its MSS
is now decreased, and thus will not be accessed again until no other node in the
heap has a higher MSS.

The correctness of the trie-based algorithm depends on two observations: (i)
if the current heap head is n, then no pair from NS × NT can have a higher
similarity than MSS(n,NS , NT); and (ii) when traversing Q′

S and Q′
T using BFS,

the similarity of any visited node pair is higher than that of any unvisited pair.
Paper II proves both observations in Theorem 6.

4.3 Experimental results

This section presents some important experimental results of Paper II. We use
join time and scalability metrics to compare the basic against proposed list- and
trie-based algorithms.

Dataset and setup. For experiments, we employ two real taxonomy trees: Med-
ical Subject Headings1 (MeSH) and Wikipedia categories2 (WIKI), each contains
hierarchical IS-A relations such as “Nature → Energy → Energy conversion →
Hydro-power” (with Dewey label “12945.7.10.18”). The sizes of these datasets are

1https://www.nlm.nih.gov/mesh
2https://wiki.dbpedia.org/develop/datasets

28 4 Top-k similarity join with taxonomies

102 103 104 105 106
0

0.5

1

pairs wanted (k)

T
im

e
(s
)

102 103 104 105 106
0

2

4

pairs wanted (k)

102 103 104 105 106
0

10

20

pairs wanted (k)

SortedTopK LP-SortedTopK TrieTopK

(a) MeSH (b) WIKI (c) RAND

Figure 4.2: Running time of top-k algorithms w.r.t. k.

57,840 and 1,212,943, respectively. Apart from real data, we also generated a large
synthetic dataset (RAND) which consists of 10,000,000 records. All algorithms
are implemented in Java 8 run on a high-performance computing node which
has two quad-core Intel Xeon 2.53GHz CPU, 32GB RAM, and Ubuntu as the
operating system.

Join time. The first test is about the response time for returning the top-k
similar pairs. To simulate different usage scenarios, we employs fives k’s: 102, 103,
104, 105, and 106. The result plotted in Figure 4.2 shows that all three algorithms
have their response times increased as k becomes larger, but with different starting
points and rates. As an example, the response times for returning the top-100,000
pairs given the large WIKI dataset are 2.52, 1.58, and 0.11 seconds for SortedTopK,
LP-SortedTopK, and TrieTopK, respectively, indicating a large performance gap.
TrieTopK is the best algorithm for all use scenarios by having 5 seconds of running
time, even on the huge RAND dataset.

Scalability. Finally, we draw Figure 4.3 to visualise the scalability of top-k algo-
rithms by asking for the top-20,000 most similar record pairs. We have observed
that data-size is a key factor influencing the top-k performance. For example,
all three algorithms finish within 0.2 seconds on a small dataset (MeSH), and
require 10 seconds on huge datasets such as RAND. Among the three algorithms,
SortedTopK runs the slowest, followed by LP-SortedTopK and TrieTopK, which
is due to the number of LCA comparisons. Specifically, TrieTopK can maintain
very high performance on all three datasets, as it does not access unfeasible nodes
at all.

4.4 Chapter summary 29

10 20 30 40 50
0

0.1

0.2

items in Dataset (×103)

T
im

e
(s
)

0.2 0.4 0.6 0.8 1
0

0.5

1

items in Dataset (×106)

2 4 6 8 10
0

5

10

items in Dataset (×106)

SortedTopK LP-SortedTopK TrieTopK

(a) MeSH (b) WIKI (c) RAND

Figure 4.3: Scalability of top-k algorithms when k = 20, 000.

4.4 Chapter summary

This chapter introduced Paper II, in which we proposed three algorithms to solve
RQ2: select the top-k similar string pairs w.r.t. taxonomy knowledge. Main
contributions in this paper include (i) a list-based algorithm which pre-computes
LCA to avoid slow similarity computation and (ii) a trie-based algorithm that
eliminates unnecessary node accesses to speed up the join process.

30 4 Top-k similarity join with taxonomies

Chapter 5

All-match similarity join with
taxonomies

In this chapter, we give an overview of the results of Paper III aiming to solve
RQ3. First, we present the similarity measure and problem formalisation, then
describe a novel prefix filtering algorithm that finds similar string pairs efficiently.
Next, we introduce a suggestion mechanism which automatically finds the opti-
mal parameter value, followed by presenting experimental results depicting the
improvements over the state of the art.

5.1 Problem formalisation

Similarity measure. Paper III assumes that each input string in the join
problem can be split into one or more “segments”, each of which maps to a
node in a given taxonomy hierarchy. Formally, two strings now form two node
collections: S = {s1, s2, · · · , si} ⊆ Q and T = {t1, t2, · · · , tj} ⊆ Q, where Q is
a taxonomy. The similarity between two arbitrary nodes (s, t) an be obtained
from Equation 2.3 as simt(s, t). Subsequently, we calculate the overall similarity
between S and T from a bipartite matching model as the maximal similarity sum:

SIMt(S, T) =
W (S, T)

max(|S|, |T |) =
max

∑
p

∑
q xpqsimt(sp, tq)

max(|S|, |T |) (5.1)

where p ∈ [1, i], q ∈ [1, j], an indicator xpq ∈ {0, 1}, ∑p xpq ≤ 1, and
∑

q xpq ≤ 1.
W in the above equation is the bipartite matching model, which is solvable in
O(n3) time by using the Hungarian algorithm [31].

31

32 5 All-match similarity join with taxonomies

Problem formalisation. The research problem of Paper III is defined based on
the similarity measure SIMt. Given a value θ ∈ (0, 1] and two sets of strings S, T ,
in which each string maps to one or more taxonomy nodes in a given taxonomy
hierarchy, find all pairs of strings in the form of (S, T), S ∈ S, T ∈ T , such that
SIMt(S, T) ≥ θ.

5.2 Adaptive prefix filtering

To avoid calculating SIMt for all possible strings pairs (i.e., a nested loop join),
Paper III proposed a new prefix filtering framework to exclude some unfeasible
pairs from the similarity calculation. The highlight here is that, instead of
searching for pairs with at least one overlapped prefix, the new method allows
finding more than one of them to reduce further the number of false positives
(i.e., to have less potentially-similar pairs). Lemma 5.1 guarantees the correctness
of this method.

Lemma 5.1 Given S and T as two strings mapped to taxonomy nodes, and
without loss of generality by assuming |S| < |T |. If SIMt(S, T) ≥ θ, then there are
at least τ distinct node pairs in the form of (s, t) such that each of them satisfies

simt(s, t) ≥ φ, where φ = θ|T |−τ+1
|S|−τ+1 .

Lemma 5.1 states a necessary but not sufficient condition for S and T being
similar. In the context of taxonomy similarity, the task of finding “τ distinct node
pairs” can be achieved by finding pairs of nodes with common ancestors. One
efficient way to do this is by using inverted lists.

Two optimisations are available when constructing inverted lists. First, for
each input string list, one can relax Lemma 5.1 by replacing “|T |” by “|S|”. Next,
for an arbitrary node s in a string S, it is only needed to add ancestors with
depth at least φ|s| into the inverted list, as shallower ancestors are insufficient to
contribute φ similarity to the string. Such optimisations reduce the index size
thus accelerating the filtering.

Join algorithm (AP-Join). The join procedure becomes straightforward after
two inverted lists are constructed. The pseudocode is in Algorithm 1 of Paper III,
while we list each step in the following:

1. Join two inverted lists to find all strings indexed by the same key;

2. Go through all string pairs, and for each string pair, count the number of
their common keys. Mark the pair as a candidate if the number reaches τ ;

5.3 Parameter selection 33

3. Calculate (verify) the similarity SIMt for each candidate pair. If the simi-
larity reaches θ, then add such a candidate to the output.

5.3 Parameter selection

In Lemma 5.1, the most important parameter that affects the performance is
τ . Intuitively, a small τ leads to smaller inverted lists thus faster filtering, but
increases the verification time due to more candidates caused by the loosened
overlap constraint. On the other hand, a large τ inflates the inverted list but
deflates the candidate set. Hence, finding the balance between filtering and
verification times becomes critical towards the minimised join time.

In Paper III, we designed an estimation procedure to predict the join time of
a given τ using small samples. The procedure begins by building a cost model as

Cτ = CFτ + CVτ = tFFτ + tV Vτ (5.2)

where Cτ is the total join cost (i.e., running time) consisting of filtering (CFτ)
and verification (CVτ), each of which is obtained by multiplying the time for
processing one pair (tF for filtering and tV for verification) by the number of pairs
to be processed (Fτ and Vτ).

To estimate Fτ and Vτ for huge datasets, we employ the independent Bernoulli
sampling [45] method which picks each string in S and T by probabilities ps and
pt. Then, a candidate or result pair (S, T) will be in the sample iff both S and T
are picked. We hence obtained two unbiased estimators:

F̂τ =
F ′
τ

pspt
, V̂τ =

V ′
τ

pspt

where F ′
τ and V ′

τ is obtained by running the join algorithm on two samples. An
estimator for the total join cost, Ĉτ , is obtained subsequently by plugging F̂τ and
V̂τ into Equation 5.2.

Iterative suggestion refinement. In the above method, the sample size should
be sufficiently large to ensure accurate estimations. However, considering the
nature of join operations, the maximal number of operations is bounded by the
sample size |S′|× |T ′|, which will increase significantly as the sample size increases.
To reduce the number of calculations, Paper III introduces an “iterative” method
which improves the estimation accuracy not by increasing the sample size, but by
using small samples and more estimation iterations. Such a refinement process

34 5 All-match similarity join with taxonomies

0 10 20 30 40 50 60 70

10

20

30

Number of iterations

E
st
im

a
te
d
co

st
(u

n
it
)

τ = 2 τ = 3 τ = 4

Figure 5.1: Illustration of the refinement process. Solid lines are estimated means,
shaded areas are confidence intervals, dashed lines are empirical real costs.

goes on until the estimation is “accurate enough”, determined by its confidence
interval (CI) [28].

The refinement process is backed by the observation that each estimation, F̂τ

or V̂τ , on a small sample is an independent estimation of the real value Fτ or Vτ .
Therefore, according to the central limit theorem (CLT), by having a series of

estimations {F̂ (1)
τ , F̂

(2)
τ , · · · } and {V̂ (1)

τ , V̂
(2)
τ , · · · }, it is possible to use their means

μF̂τ
and μV̂τ

as the estimations of Fτ and Vτ . The total cost Cτ can be estimated
subsequently. Figure 5.1 illustrates the refinement process on a real dataset.

The refinement process stops when the τ leading to the minimal total cost is
identified with high confidence. Specifically, given a universe T, the stop criterion
is when the overlap between CIs of (i) the smallest Cτ1 and (ii) all other Cτ2 ’s,
τ2 ∈ T \ {τ1}, are small enough, as stated in Lemma 4.1 of Paper III.

5.4 Experimental results

This section highlights the performance of our proposed AP-Join algorithm. As
for the baseline, we choose the state-of-the-art K-Join algorithm [38], which is a
prefix filtering principle with one overlapped prefix. We obtained the source code
from its authors.

Dataset and setup. The experimental section of Paper III employs two taxon-
omy datasets as knowledge: Wikipedia categories1 and MeSH medical terms2,
consisting of 1,212,943 and 57,840 nodes, respectively. For the join task, it uses

1https://en.wikipedia.org/wiki/Help:Category
2https://www.nlm.nih.gov/mesh/

5.5 Chapter summary 35

WIKI page titles3 (3,512,954 records) and OHSUMED paper headings4 (293,294
records). We ran our algorithms on a Ubuntu computer with a Xeon 2.53GHz
CPU and 32GB RAM.

Join time. The first important result is about the join time. As shown in
Table 5.1, our algorithm AP-Join can significantly reduce the number of candidates
and therefore shortened the total join time. It is also worth noticing that K-
Join generates smaller inverted lists for the OHSUMED dataset, which confirms
the analysis regarding different τ ’s in Section 5.3, since the K-Join’s strategy is
equivalent to our algorithm with τ = 1.

Suggestion time and accuracy. Another important result is regarding the
parameter suggestion process. To form Table 5.2, we run the suggestion algorithm
128 times for each θ and count the number of correct suggestions (according to
the empirical knowledge). The result shows that the suggestion algorithm has
a high 90% accuracy on two datasets. The right half of Table 5.2 also shows
that the estimation procedure occupies only a tiny amount of time from the join
process, which is less than three seconds on the WIKI and five seconds on the
OHSUMED datasets.

5.5 Chapter summary

This chapter introduced Paper III, in which we proposed a filtering and verification
framework to solve RQ3: taxonomy-based string similarity joins. Contributions
include a new prefix filtering principle that allows the uses of multiple overlaps
to reduce candidate size, as well as an estimation algorithm to suggest the best
number of overlaps which leads to the shortest join time.

3https://wiki.dbpedia.org/
4https://trec.nist.gov/data/t9_filtering.html

36 5 All-match similarity join with taxonomies

Table 5.1: Join performance of the proposed algorithm (AP-Join) vs the state of
the art (K-Join). “OOT” stands for “out of time”.

Dataset Algorithm
of Pairs (108) # of Candidates (106) Running time (min)

θ: 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

WIKI
(50K×50K)

AP-Join 0.42 0.08 0.01 11.52 3.04 0.27 10.03 2.64 0.55
K-Join 0.87 0.25 0.07 28.42 8.35 1.98 22.28 6.65 1.74

OHSUMED
(50K×50K)

AP-Join 1.08 4.97 1.72 63.43 0.64 0.26 41.81 4.44 1.67
K-Join OOT 2.13 0.86 OOT 115.58 38.42 OOT 80.01 25.33

Table 5.2: Performance of the parameter suggestion procedure. Sample size is
100, confidence level is set to 70% on both sides.

Dataset
Accuracy from 128 runs Estimation time (s)

θ: 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

WIKI 92.03% 100% 100% 100% 2.58 1.69 1.74 1.51
OHSUMED 96.09% 99.22% 90.63% 100% 4.63 1.10 2.04 1.42

Chapter 6

All-match similarity join with a
unified similarity

This chapter overviews the contributions of Paper IV for solving RQ4: measuring
string similarity concerning multiple types of similarities and performing join
operations. It starts by introducing a unified measure that is capable to take
multiple types of similarities, followed by a transformation showing the hardness of
finding the optimal solution. Two approximate filtering algorithms are proposed,
aiming for a low false-positive rate and a high filtering speed, respectively.

6.1 Problem formalisation

Paper IV employs multiple similarity measures, namely Jaccard (for typographic
errors), synonym, and taxonomy similarities, to find the highest similarity for
two strings. As a high level overview, it breaks strings into small segments
(i.e., substrings containing one or more words, recall Section 5.1), choose the
best similarity measure for each two segments, and then aggregate all segments’
similarity to obtain the overall string similarity.

6.1.1 The unified similarity measure

We now define the new similarity measure. First, given two strings S and T
divided into segments, let PS (PT) denote an arbitrary segment from S (T). By
applying Jaccard, synonym, and taxonomy similarities onto (PS , PT), one can
obtain the maximum, denoted by msim:

msim(PS , PT) = max{simj(PS , PT), sims(PS , PT), simt(PS , PT)}. (6.1)

37

38 6 All-match similarity join with a unified similarity

coffee shop latte Helsingki

espresso café Helsinki

1

0.8
0.875

coffee latte Helsingki

espresso café Helsinki

0.14

0.8
0.875

shop

(a) Separated “coffee” and “shop”. Similarity is
(0.14+0.8+0.875)/4 = 0.454 by assuming ‘e’=‘é’

(b) Combined “coffee” and “shop”. Similarity is
(1+0.8+0.875)/3 = 0.892

Figure 6.1: Illustration of how partitions affect the similarity, using the same
knowledge as in Figure 1.1.

Next, let PS = {P1, P2, · · · , Pi} (PT) be a collection of segments of S (T), such
that each segment in PS (PT) maps to a taxonomy node, synonym rule, or a
single word (for Jaccard measure). Given a pair of partitions (PS ,PT), their
similarity can be defined as follows, similar to SIMt from Section 5.1:

SIMu(PS ,PT) =
max

∑|PS |
i=1

∑|PT |
j=1 xij ·msim

(
PSi , PTj

)
max {|PS |, |PT |}

,

where xij ∈ {0, 1},
∑
i

xij ≤ 1, and
∑
j

xij ≤ 1.
(6.2)

Since there is more than one way to partition strings (see Figure 6.1 for an
example), the unified similarity between two strings (S, T) becomes the maximal
similarity among all pairs of possible partitions (PS ,PT):

USIM(S, T) = max
∀(PS ,PT)

{SIMu(PS ,PT)}. (6.3)

Paper IV proved the NP-hardness of calculating USIM by presenting a re-
duction from USIM to a well-known NP-hard problem: weighted maximum inde-
pendent set (w-MIS) [2, 5, 22]. To this end, Paper IV designed an approximation
algorithm with a non-trivial bound and runs in a polynomial time.

6.1.2 Approximation algorithm

The proposed approximation algorithm works by transforming the calculation
of USIM into a problem that selects vertices of a weighted graph towards the
highest weight sum. The transformation process is: (i) corresponding to each

6.1 Problem formalisation 39

possible segment pairs (PS , PT), add one vertex to the graph and set its weight to
msim(PS , PT); and (ii) for each pair of segment pairs that contain the same word,
draw an edge between corresponding vertices in the graph. The goal is to find a
set of independent vertices with the maximised weight sum, which is proven (in
Paper IV) equivalent to finding the maximum of the numerator of SIMu.

Let a d-claw be a induced sub-graph that consists of d independent vertices,
called talons, and one centre vertex that connects to all d talons. Let k be the
maximal number of words in any segment pair, and then, we claim that the
graph obtained from the aforementioned transformation procedure is “k+1-claw
free”, meaning that any claw in the graph can have at most k talons. This
observation enables us to approximate the w-MIS of such a graph in a polynomial
time [7, 20]. Many approximation algorithms have been proposed in the past
decades [3, 5, 7, 10, 20], among which we adapt the state of the art, SquareImp [7],
to find the w-MIS of the graph and, in turn, solve our USIM problem with an
approximation ratio t

t−1 · k2−1
2 , where t > 1. Our procedure is to combine the

SquareImp algorithm (Steps 1.1 and 1.2) with an additional heuristic (Steps 2.1
and 2.2):

1.1. Continuously finding a claw that can improve at least 1
t the sum of squared

weights of selected vertices;

1.2. For each such claw, select all its talons and un-select all vertices connected
to the talons;

2.1. Continuously finding a claw that can improve at least 1
t the similarity SIMu

of selected vertices;

2.2. For each such claw, select all its talons and un-select all vertices connected
to the talons.

The approximation ratio consists of two parts: (i) the original bound of SquareImp,
which is t

t−1 · k+1
2 , and (ii) the bound of the denominator of SIMu, which is proved

k − 1 in the worst case.

Example 6.1 Given two strings and synonym rules in Figure 6.2a. We construct
a 5-claw-free graph in Figure 6.2b. SquareImp selects R2 and R5, and hence two
partitions PS =

{
{a}, {b, c}, {d}, {e}

}
, PT =

{
{f, g}, {h}

}
leading to a similarity

0.13+0.27
4 = 0.1. Then, the heuristic in Steps 2.1 and 2.2 finds another claw with

centre R2 and talons R1, R4 can improve the similarity by partitioning two strings
as PS =

{
{a}, {b, c, d}, {e}

}
, PT =

{
{f}, {h}, {g}

}
which results in a similarity

0.3+0.09
3 = 0.13. The final result is 0.13.

40 6 All-match similarity join with a unified similarity

b, c, f

d

R1

R5

c, f, g

R2

R3

R4

d

c, d, f
g

g

0.3

0.27

0.13

0.22

0.09

(a) Strings and rules (b) 5-claw free graph

Strings:
S = {a, b, c, d, e}, T = {f, g, h}

Rules:
R1: {b, c, d} → {f}
R2: {b, c} → {f, g}
R3: {c, d} → {f, g}
R4: {a} → {g}
R5: {d} → {h}
R6: {z, e, f} → {g}

Figure 6.2: Illustration of Example 6.1. Numbers beside each vertex is its weight,
letters beside each edge are words that appear in both rules. SquareImp first
selects R2 and R5; the final answer is R1 and R4.

6.1.3 Problem formalisation

The research problem RQ4 can be formalised as follows. Given a value θ ∈ (0, 1]
and two lists of strings S, T in which words in each string map to either taxonomy
nodes, synonym rules, or contain typos. The task is to find all pairs of strings in
the form of (S, T) ∈ S × T , such that USIM(S, T) ≥ θ.

6.2 Prefix filtering

Paper IV introduces a prefix filtering mechanism to select string pairs that
are potentially similar. As a high-level view, by representing various types of
similarities using a unified structure (called pebbles), the prefix filtering can select
some of them to become the “prefix” of the corresponding string. Strings with
enough common prefixes are potentially similar and are verified.

Pebble. Pebble, denoted by B, is a structure that holds a portion of a segment
and a number as weight, denoted by w(B). Given a segment P mapping to a
similarity measure, its pebbles are generated in different ways:

• Jaccard coefficient: pebbles are all q-grams of P . The weight of each B
equals 1

|gramsq(P)| ;

• Synonym similarity: assume that the applicable synonym rule of P is R,
then the pebble B of P is lhs(R), with a weight w(B) = C(R);

6.2 Prefix filtering 41

• Taxonomy similarity: let n be the matching taxonomy entity of P . Pebbles
of P are n and all its ancestors, each has a weight w(B) = 1

depth(n) .

Example 6.2 Given two strings “coffee” and “cafe”, as well as three types of
knowledge as in Figure 1.1. Pebbles of “coffee” are (i) five 2-grams w.r.t. Jaccard
coefficient: {co, of, ff, fe, ee}, each weights 1

5 ; and (ii) three taxonomy entities
w.r.t. taxonomy similarity: {Wikipedia, food, coffee}, each weights 1

3 . Pebbles of
“cafe” are (i) three 2-grams: {ca, af, fe}, each weights 1

3 ; and (ii) one synonym
entity: {coffee shop}, weights 1.

Prefix filtering. After obtaining pebbles of all segments of a given string, one can
apply a weighted prefix filtering principle to select some pebbles as the signature
used for the actual filtering stage. Briefly speaking, the procedure consists of the
following steps:

1. For each input string S, calculate the lower bound, LB(S), of the weight
sum of pebbles in its signature. This is done by multiplying the similarity
threshold θ and the minimum of the number of segments among any possible
partition of S, which is estimated by solving a minimum exact cover problem
[22];

2. Sort all pebbles by global frequency in ascending order (i.e., IDF [37,38]);

3. The algorithm removes the last pebble from the sorted list. It meanwhile
tracks, for each segment and each similarity measure, the sum of weights of
all removed pebbles. Then:

(a) For each segment, identify the maximum among all weight sums. If
the maximums of all segments add up to LB(S), it puts the current
pebble back on the list and goes to Step 4;

(b) Otherwise, go to Step 3 to process the next pebble.

4. Return the remaining pebbles in the sorted list as the signature of S.

After obtaining the signatures of all strings, a filtering procedure starts to find all
string pairs with at least one common pebble (as described in Subsection 2.3.2)
and after that send them out for verification, as described in Subsection 6.1.1.

Example 6.3 Given three types of knowledge and measure as in Figure 1.1, θ =
0.8 and the string T of 3 segments P1=“espresso”, P2=“cafe”, and P3=“Helsinki”.

42 6 All-match similarity join with a unified similarity

Table 6.1: Illustration to Example 6.3. Columns J, T, and S are the sum of weights
of removed pebbles w.r.t. to different similarity measures: Jaccard, Taxonomy,
and Synonym. Underlined numbers are those changed in each step, numbers in
bold are being accumulated into the removed weight sum.

i Pebble
P1: “espresso” P2: “cafe” P3: “Helsinki” Removed

weight sum
Remaining
τ − 1 sum

J T S J T S J T S

23 es 1/7 0.143 1.667
22 ss 2/7 0.286 1.667
21 fe 2/7 1/3 0.619 1.667
20 Wikipedia 2/7 1/5 1/3 0.675 1.667
19 food 2/7 2/5 1/3 0.733 1.667
...
8 ca 4/7 1 2/3 5/8 2.292 1.476
7 ki 4/7 1 2/3 6/8 2.417 1.476

The lower bound LB(T) = θ × � 3
ln 1+1� = 0.8× 3 = 2.4, where 3 is the number of

selected segments by the greedy algorithm and ln 1 + 1 is the approximation bound.
T generates 23 pebbles. Next, as illustrated in Table 6.1, the algorithm removes
the 23rd pebble from the list and accumulate 1

7 to the value of removed Jaccard
weight. The procedure continues to calculate the removed weight by summing up
the highest weight corresponding to each segment (numbers in bold in the table)
until it reaches 2.4. The algorithm finally stops at the 7th pebble, puts it back on
the list, and returns the remaining 7 pebbles as the signature of T .

6.2.1 Adaptive prefix filtering

The performance of the above prefix filtering algorithm is sensitive to the value
of overlap threshold, which is the same as for the taxonomical join in Section 5.2.
To allow users to tweak the algorithm, Paper IV proposes two signature selection
scheme to support finding > 1 common prefixes: one fast heuristic and one precise
dynamic programming scheme.

The heuristic is based on an idea that one can only remove pebbles such that
there must be at least τ ≥ 1 more pebbles to make the total weight reach the lower
bound LB(S). The procedure is a modification of the previous prefix filtering
algorithm, by replacing Step 3a by the following:

If the sum of (i) the current “removed weight sum of all segments” and (ii)
the sum of weights of the top τ − 1 heaviest remaining pebbles reaches LB(S),
put the current pebble back on the list and go to Step 4.

6.2 Prefix filtering 43

Example 6.4 Recall Example 6.3 but this time with the heuristic approach as-
suming τ = 4. When i = 19, the top τ − 1 = 3 heaviest remaining pebbles are
“coffee shop” (the lhs of synonym rule of P2, weights 1) and two grams “ca”, “af”
(each weights 2

3). The 19th pebble cannot be removed because 0.733 + 1 + 2
3 = 2.4,

no less than LB(T) = 2.4. The algorithm returns the remaining 19 pebbles as the
signature of T .

Dynamic programming (DP). The heuristic, as mentioned earlier, runs in
a linearithmic time but does not always return the shortest signature because
the weight sum of the remaining τ − 1 heaviest pebbles is not tight. To get an
accurate sum and thereby shorter signature, Paper IV proposes a second prefix
selection algorithm which utilises dynamic programming.

Given an integer τ , a string S which contains t segments, and an integer
i indicates that we are testing whether the i-th pebble can be removed. The
subproblem of the dynamic programming algorithm is defined as follows:

For each p ∈ [0, t] and d ∈ [0, τ − 1], solve Wi[p, d] which is the maximal
increment of weight sum of removed pebbles, by removing d more remaining
pebbles (i.e., from the 1st to the (n− 1)-th pebbles), where all such pebbles
are from the first p segments of S.

When it arrived p = t and d = τ − 1, the value of Wi[t, τ − 1] becomes the
maximal weight increment by removing τ−1 remaining pebbles of all segments. If
the sum of Wi[t, τ−1] and the “removed weight sum of all segments” (accumulated
the by same method from the previous section) reaches LB(S), then the i-th
pebbles can not be removed from S’s signature.

The detailed algorithm can be found in Algorithm 5 in Paper IV, in which we
use an accessory table Vi[p, c], c ≤ d, to store the maximal weight increment by
adding c new pebbles from only the p-th segment. When calculating Wi[p, d], the
algorithm finds the maximum among all d options, i.e.,Wi[p, d] = maxc∈[0,d]Wi[p−
1, d− c] + Vi[p, c].

Example 6.5 Recall the setting in Example 6.4, where θ = 0.8, τ = 4, and
i = 19. Table 6.2 illustrates the DP table W19 and the accessory table V19. For
example, V19[1, 3] is the maximal similarity increment of removing three remaining
taxonomy pebbles of P1, i.e.,

5
5 − 2

5 ; W19[2, 3] is obtained as W19[1, 2] + V19[2, 1],
i.e., removing two pebbles from P1 and one from P2. In the end, the sum of
W19[3, 3] and the removed weight sum is 1.067 + 0.733 = 1.800 < LB(T). This
concludes that the 19th pebble can be safely removed from T ’s signature.

44 6 All-match similarity join with a unified similarity

Table 6.2: Illustrating Example 6.5, the DP prefix selection method. i = 19.
Settings are the same as in Example 6.4.

p Segment
DP table W19 Accessory table V19

d: 0 1 2 3 c: 0 1 2 3

0 - 0 0 0 0 - - - -
1 P1: “espresso” 0 0.2 0.4 0.6 0 3/5-2/5 4/5-2/5 5/5-2/5
2 P2: “cafe” 0 0.667 0.867 1.067 0 1-1/3 1-1/3 1-1/3
3 P3: “Helsinki” 0 0.667 0.867 1.067 0 1/8-0 2/8-0 3/8-0

6.3 Join algorithm and parameter suggestion

The join procedure is presented in Algorithm 6 of Paper IV. The procedure
consists of four steps:

1. Generate signatures of all strings using either the heuristic or the DP. Build
one inverted list for each input list;

2. Join two inverted lists to find all strings indexed by the same key;

3. Go through all string pairs, count the total number of common keys of
each pair. If the number of common keys is at least τ , mark the pair as a
candidate;

4. Go through all candidates, calculate the similarity USIM(·) of each candidate
pair by using the approximation algorithm presented in Subsection 6.1.1. If
it reaches the given threshold θ, add this candidate to the output.

The critical decision in the join algorithm is to decide the value of τ . Never-
theless, Paper IV proves that the value of τ affects the length of signatures and
number of candidates, and subsequently influence the filtering and verification
speed. To this end, Paper IV designed a recommendation algorithm similar to
that in Section 5.3. Specifically, the algorithm is based on a cost model and
multiple stages of independent Bernoulli sampling. The final recommendation
becomes ready when overlaps of CIs of different τ ’s are small enough.

6.4 Experimental results

This section presents some important experimental results of Paper IV. Specifically,
we show the join time, filtering power, scalability of all proposed algorithms, and

6.4 Experimental results 45

Table 6.3: Characteristics of used taxonomies and synonyms.

Taxonomy (Height in min/avg/max) Synonym

Source # of nodes Height Average fanout Source # of rules

MeSH tree 57,840 1 / 5.1 / 12 157 Aliases 180,259
Wiki categories 1,212,943 1 / 6.2 / 26 32,300 Synonyms 680,625

Table 6.4: Characteristics of used string datasets.

Source
of
strings

. . . per string (min/avg/max)

Characters Words Taxonomies Synonyms

MED 293,294 2 / 110.5 / 452 1 / 8.4 / 26 0 / 3.2 / 18 0 / 4.3 / 15
WIKI 3,512,954 2 / 161.5 / 8,588 1 / 8.2 / 277 0 / 6.2 / 185 0 / 2.0 / 98

compare our algorithm to three state-of-the-art algorithms combined. The results
show the superiority of AU-Filter in finding similar strings considering multiple
types of similarities.

Dataset and setup. Tables 6.3 and 6.4 summarise the datasets used for the
experiments. For knowledge, there are (i) two taxonomies: MeSH tree1 and
Wikipedia categories, containing hierarchical IS-A relations such as “Nature →
Energy → Energy conversion → Hydro-power”; and (ii) two synonym sources:
MeSH alternative names and Wikipedia Synonyms2 holding equivalent terms like
“myocardial infarction” to “heart attack”. For join tasks, (i) MED dataset3 maps
293,294 research paper keywords to MeSH taxonomy node; and (ii) WIKI dataset4

maps each of 1,212,943 Wikipedia articles to some categories. All algorithms were
executed by JVM 8 on a Ubuntu computer with a Xeon 2.53GHz CPU and 32GB
RAM.

Join time. Figure 6.3 illustrates the time cost of joining two datasets. U-Filter
is the normal prefix filtering presented in Section 6.2, AU-Filter (heuristic) and
AU-Filter (DP) are multi-overlap filtering principles discussed in Subsection 6.2.1.
From the figure, it is clear that both AU-Filter (heuristic) and AU-Filter (DP)
outperform the baseline U-Filter, thanks to the adaptive algorithm which deter-
mine τ to enhance the filtering power. Furthermore, AU-Filter (DP) is the clear
winner among all methods – five times faster than the AU-Filter (heuristic). This

1https://www.nlm.nih.gov/mesh/
2https://en.wikipedia.org/wiki/Wikipedia:LCM
3https://trec.nist.gov/data/t9_filtering.html
4https://wiki.dbpedia.org/

46 6 All-match similarity join with a unified similarity

0.75 0.8 0.85 0.9 0.95

0

1

2

Similarity threshold (θ)

T
im

e
(1
0
4
s)

0.75 0.8 0.85 0.9 0.95

0

0.5

1

1.5

Similarity threshold (θ)

T
im

e
(1
0
5
s)

U-Filter AU-Filter (heuristic) AU-Filter (DP)

(a) MED (b) WIKI

Figure 6.3: Join time of proposed algorithms.

improvement owes to the dynamic programming that ensures short prefixes such
that the number of false positives is reduced.

Filtering power. To further investigate the filtering power of each algorithm with
various overlap constraints, we depicted the average length of pebble signatures
and the number of candidates for different algorithms in Figure 6.4. It shows that
AU-Filter (heuristic) can filter out 50% to 60% candidate pairs, while AU-Filter
(DP) can prune away 70% to 90% pairs on both datasets. The dramatic reduction
brought by AU-Filter can undoubtedly accelerate the verification process.

Scalability. To precisely evaluate the scalability of proposed filters, Figure 6.5
broke the join time into (i) the time to suggest the best parameter τ , (ii) filtering
time, and (iii) verification time. It is clear that, by using our filtering algorithms,
both filtering and verification times grow linearly instead of quadratically. Mean-
while, the cost of suggestion remains stable regardless of how the dataset changes,
to about 15s for MED and 20s for WIKI datasets.

Parameter suggestion. To study the effect of the parameter τ on the overall
join time, we implemented experiments to compare three different settings: (i)
our suggested parameter, (ii) a random parameter, and (iii) the worst parameter.
Table 6.5 compares the running time with various parameter settings for two
datasets. As shown in the figure, our suggested parameter can achieve the best
running time, which is far better than choosing the parameter randomly.

Comparison with existing algorithms. We finally compared our algorithm
with four alternatives: pkduck5 [44] for synonym similarity, K-Join [38] for taxon-
omy similarity, AdaptJoin6 [48] for gram-based similarity, and their combination.

5https://github.com/tracyhenry/xClean
6https://www.cs.sfu.ca/~jnwang/projects/adapt/

6.4 Experimental results 47

1 2 4 6 8

20

30

40

50

Overlap constraint τ

#
o
f
p
eb

b
le
s

1 2 4 6 8

0

5

10

Overlap constraint τ

#
o
f
p
a
ir
s
(1
0
7
)

U-Filter AU-Filter (heuristic) AU-Filter (DP)

1 2 4 6 8

20

40

60

80

Overlap constraint τ

#
o
f
p
eb

b
le
s

1 2 4 6 8

0

1

2

3

Overlap constraint τ

#
o
f
p
a
ir
s
(1
0
8
)

(a) Avg. signature length (MED) (b) Candidates (MED)

(c) Avg. signature length (WIKI) (d) Candidates (WIKI)

Figure 6.4: Filtering power of various filters, θ = 0.85.

100 140 180 220 260 300

0

50

100

150

Dataset size (×103)

T
im

e
(s
)

1 1.4 1.8 2.2 2.6 3

0

100

200

300

Dataset size (×106)

T
im

e
(s
)

Suggestion Filtering Verification

(a) MED (θ = 0.9) (b) WIKI (θ = 0.95)

Figure 6.5: Scalability of AU-Filter (DP).

48 6 All-match similarity join with a unified similarity

Table 6.5: Running time of AU-Filter (heuristic) w.r.t. different parameter
selection methods.

Similarity threshold (θ) 0.75 0.80 0.85 0.90 0.95

MED
(103s)

Using suggested τ 17.30 6.47 1.88 0.64 0.09
Mean of random τ 24.81 9.47 2.70 0.92 0.27

Using worst τ 45.04 17.94 4.39 1.36 0.72

WIKI
(104s)

Using suggested τ 12.66 6.13 2.12 0.51 0.51
Mean of random τ 22.55 8.30 2.85 0.70 0.69

Using worst τ 34.41 13.01 3.91 1.18 0.89

Table 6.6: Effectiveness of our measure vs existing algorithms. P, R, and F stands
for precision, recall, and F-measure, respectively.

Measure
MED, θ: 0.7 MED, 0.75 WIKI, 0.7 WIKI, 0.75

P R F P R F P R F P R F

K-Join 0.89 0.12 0.20 0.86 0.09 0.17 0.83 0.08 0.15 0.83 0.05 0.10
AdaptJoin 0.81 0.19 0.30 0.79 0.15 0.25 0.71 0.28 0.40 0.64 0.15 0.24
pkduck 0.78 0.19 0.31 0.80 0.17 0.28 0.64 0.10 0.18 0.67 0.06 0.10

Combination 0.82 0.48 0.61 0.80 0.41 0.54 0.75 0.37 0.50 0.75 0.22 0.34
Ours 0.86 0.96 0.91 0.88 0.75 0.81 0.83 0.98 0.90 0.82 0.58 0.68

As shown in Table 6.6, our unified similarity measure achieved higher F-measures
than each individual alternative as well as all of them together. Meanwhile,
according to the join time summarised in Table 6.7, our algorithm consumed less
time but found more similar strings than three alternatives combined, illustrating
the superiority of our unified similarity measure as well as the adaptive filtering
algorithm.

6.5 Chapter summary

This chapter introduced Paper IV, in which we proposed a unified filtering and
verification framework to solve RQ4: finding similar strings from a mixture of
typographical, synonymical, and taxonomical relevant words. Key contributions
in this paper include: a new unified similarity measure as well as its approximation
algorithm; “pebble”, a structure that unifies various similarities; and two adaptive
filtering principles, one heuristic and one dynamic programming, focusing on
either speed or optimality.

6.5 Chapter summary 49

Table 6.7: Join time (seconds) of our algorithm vs existing methods.

Method
MED (100K) WIKI (100K)

θ: 0.75 0.8 0.85 0.9 0.95 0.75 0.8 0.85 0.9 0.95

K-Join 2.8 2.7 2.2 2.1 1.8 5.4 5.0 3.1 3.0 2.7
Ours (only taxonomy) 2.6 2.6 2.2 2.1 1.8 4.5 4.3 2.9 2.9 2.7

AdaptJoin 1045.8 675.4 270.6 48.3 10.5 1360.2 1044.6 480.6 120.0 16.9
Ours (only Jaccard) 597.9 217.0 85.5 20.9 10.3 1301.3 644.5 274.2 62.6 11.3

pkduck 51.6 30.6 15.1 8.3 7.4 39.5 17.3 8.6 3.5 1.4
Ours (only synonym) 20.8 18.0 14.7 7.0 6.8 15.8 11.1 8.0 4.3 3.2

Combination 1100.2 708.7 287.9 58.7 19.1 1405.1 1066.9 492.3 126.5 21.0
Ours (all measures) 842.1 413.8 253.7 54.7 18.9 1418.1 694.7 308.9 113.5 22.4

50 6 All-match similarity join with a unified similarity

Chapter 7

Conclusions and future work

In this chapter, we conclude this thesis by revisiting Chapters 3 to 6. Furthermore,
we present some interesting research directions that might be worth investigating
further.

7.1 Conclusions

Strings are one of the most common forms of data which play a crucial role
in numerous applications. Since a string can contain inconsistencies, such as
typographical errors and representational variations, many pieces of research are
conducted on finding similar strings in an approximate way.

In this thesis, we solved a group of semantic approximate string matching prob-
lems, which is to find relevant strings considering synonyms and taxonomies. We
formalised four research problems and proposed algorithms to solve each problem
efficiently, as well as performed theoretical analysis to prove their correctness.

We first studied the top-k selection problem by considering synonyms. Three
algorithms are proposed here, two of which use sorted lists and one uses tries,
each has a specific optimisation goal: Twin Tries aims to minimise space cost by
using two tries, Expansion Trie is to improve the lookup performance by attaching
synonyms to the string itself, and Hybrid Trie to strike a balance between space
cost and selection time. We showed the NP-hardness of constructing a Hybrid Trie,
for which we proposed a new branch and bound-based solution. Experimental
results showed that the selection speed of the Hybrid Trie is on a par with that
of Expansion Trie while it consumes far less space than Twin Tries.

51

52 7 Conclusions and future work

We then investigated the problem of finding the top-k similar strings w.r.t.
taxonomy knowledge. To this end, we proposed (i) two list-based algorithms, in
which we developed pre-computed LP values to avoid LCA computations thus
accelerating the join process; and (ii) one trie-based algorithm, which makes
use of the trie structure to eliminate unnecessary accesses to unfeasible strings.
Experimental results showed that our optimisations significantly improved the
top-k join performances, and particularly, the trie-based algorithm was able to
maintain high performance on a huge dataset.

Next, we considered the problem of performing all-match joins given taxonomy
knowledge. Here, we identified the problem of the standard prefix filtering, where
the number of false positives is significant due to the loose condition for two strings
being potentially similar. Notable contributions include a new multi-overlap prefix
filtering principle which significantly reduced the number of false positives after
the filtering stage, as well as an estimation algorithm that makes use of multiple
samples to find the best overlap parameter in a short time.

We finally researched an all-match join problem by integrating multiple in-
consistencies, namely typographical errors, synonyms, and taxonomically-related
words. We proposed a new unified similarity measure that incorporates multiple
measures to find the overall similarity of two strings. We proved that finding the
maximal string similarity is NP-hard, and subsequently designed a non-trivial
approximation algorithm that runs in polynomial time and has a tight error
bound. As for actual join tasks, we proposed two prefix filtering principles, backed
by a fast heuristic and an accurate dynamic programming protocol, respectively.
Extensive experiments showed the superiority of our algorithm over the state of
the art, which motives for its use in practice.

7.2 Future work

As the first direction, it would be interesting to investigate a way to integrate
stemming [39,40], a process in the information retrieval (IR) field that deals with
grammatical variations, into the approximate string search/join process. Such
integration is expected to increase the effectiveness of proposed algorithms since
when the input dataset is not stemmed beforehand, our proposed algorithms
would be insufficient to obtain high similarities. For example, the 2-gram Jaccard
similarity of “ox” and “oxen” is only 1

3 , but they, in most cases, should be treated
as the same word. One straightforward solution to this problem is to use synonyms,
e.g. “ox → oxen”, but a more elegant solution is undoubtedly desirable.

7.2 Future work 53

The second direction is to consider context when evaluating strings’ similarities.
As an example, since “renting” and “leasing” are synonyms, the similarity between
the two strings “renting an apartment” and “leasing an apartment” is high
according to our algorithms – which is correct. However, if the strings are
“renting a car” and “leasing a car”, the high similarity returned by our algorithms
leads to a false positive, because their meanings are different1. It would be nice if
our proposed algorithms could choose whether to apply synonyms/taxonomies
depending on the context.

Another research direction would be about extending the unified similarity
measure discussed in Subsection 6.1.1. To this end, one interesting extension is
word vector [29,33]. It works by mapping words into numerical vectors of high
dimensions so that the similarity of two words is equivalent to the distance of
corresponding vectors. The biggest challenge here is that, since vector distance
does not satisfy the triangle inequality [32,34], we are currently not able to use
word vector models directly as a string similarity metric.

Finally, since the string dataset is often huge and requires hours – even days –
to process on a single machine, one practical and useful extension is to adapt the
proposed algorithms for use in distributed environments. This idea is not new
and has been researched over the last decade [13, 16, 36, 37, 62], but most of them
focus on typographical similarity measures. When extending them to synonyms,
taxonomies, or even the unified measures, it would be a challenge to design new
algorithms for generating string signatures to avoid losing any true positive, as
well as appropriate partition schemes to minimise the amount of data shuffling
between workers.

1“car renting”: https://en.wikipedia.org/wiki/Car_rental vs “car leasing”: https://

en.wikipedia.org/wiki/Vehicle_leasing

54 7 Conclusions and future work

References

[1] Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik. Transformation-
based framework for record matching. In Gustavo Alonso, José A. Blakeley,
and Arbee L. P. Chen, editors, Proceedings of the 24th International Confer-
ence on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico,
pages 40–49. IEEE Computer Society, 2008.

[2] Esther M. Arkin and Refael Hassin. On local search for weighted k-set
packing. In Rainer E. Burkard and Gerhard J. Woeginger, editors, Proceed-
ings of the Algorithms - ESA ’97, 5th Annual European Symposium, Graz,
Austria, September 15-17, 1997, Proceedings, volume 1284 of Lecture Notes
in Computer Science, pages 13–22. Springer, 1997.

[3] Esther M. Arkin and Refael Hassin. On local search for weighted k -set
packing. Mathematics of Operations Research, 23(3):640–648, 1998.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open data.
In The Semantic Web, 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007., pages 722–735, 2007.

[5] Vineet Bafna, Babu O. Narayanan, and R. Ravi. Nonoverlapping local
alignments (weighted independent sets of axis-parallel rectangles). Discrete
Applied Mathematics, 71(1-3):41–53, 1996.

[6] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all
pairs similarity search. In Carey L. Williamson, Mary Ellen Zurko, Peter F.
Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings of the 16th
International Conference on World Wide Web, WWW 2007, Banff, Alberta,
Canada, May 8-12, 2007, pages 131–140. ACM, 2007.

55

56 References

[7] Piotr Berman. A d/2 approximation for maximum weight independent set
in d -claw free graphs. In Algorithm Theory - SWAT 2000, Proceedings of the
7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 5-7,
2000, pages 214–219, 2000.

[8] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual similarity
joins. Proceedings of the Very Large Databases Endowment, 6(1):1–12, 2012.

[9] Jennifer J. Burg, John D. Ainsworth, Brian Casto, and Sheau-Dong Lang.
Experiments with the “oregon trail knapsack problem”. Electronic Notes in
Discrete Mathematics, 1:26–35, 1999.

[10] Barun Chandra and Magnús M. Halldórsson. Greedy local improvement and
weighted set packing approximation. Journal of Algorithms, 39(2):223–240,
2001.

[11] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. A primitive
operator for similarity joins in data cleaning. In Ling Liu, Andreas Reuter,
Kyu-Young Whang, and Jianjun Zhang, editors, Proceedings of the 22nd
International Conference on Data Engineering, ICDE 2006, 3-8 April 2006,
Atlanta, GA, USA, page 5. IEEE Computer Society, 2006.

[12] Surajit Chaudhuri and Raghav Kaushik. Extending autocompletion to
tolerate errors. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann,
and Nesime Tatbul, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2009, Providence, Rhode
Island, USA, June 29 - July 2, 2009, pages 707–718. ACM, 2009.

[13] Zhimin Chen, Yue Wang, Vivek R. Narasayya, and Surajit Chaudhuri.
Customizable and scalable fuzzy join for big data. Proceedings of the Very
Large Databases Endowment, 12(12):2106–2117, 2019.

[14] Francesco Concas, Pengfei Xu, Mohammad A Hoque, Jiaheng Lu, and Sasu
Tarkoma. Multiple set matching with bloom matrix and bloom vector. ACM
Transactions on Knowledge Discovery from Data, 14(2):1–21, 2020.

[15] George B Dantzig. Discrete-variable extremum problems. Operations research,
5(2):266–288, 1957.

[16] Dong Deng, Guoliang Li, Shuang Hao, Jiannan Wang, and Jianhua Feng.
Massjoin: A mapreduce-based method for scalable string similarity joins. In

References 57

Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski,
editors, Proceedings of the 30th IEEE International Conference on Data
Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages
340–351. IEEE Computer Society, 2014.

[17] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
Linked data quality of dbpedia, freebase, opencyc, wikidata, and YAGO.
Semantic Web, 9(1):77–129, 2018.

[18] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas,
S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in
a database (almost) for free. In Peter M. G. Apers, Paolo Atzeni, Stefano
Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T. Snod-
grass, editors, VLDB 2001, Proceedings of 27th International Conference on
Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 491–500.
Morgan Kaufmann, 2001.

[19] Marios Hadjieleftheriou and Divesh Srivastava. Approximate string matching.
Foundations and Trends in Databases, 2(4):267–402, 2011.

[20] Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets
every t of which have an sdr, with an application to the worst-case ratio of
heuristics for packing problems. SIAM Journal on Discrete Mathematics,
2(1):68–72, 1989.

[21] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive
fuzzy keyword search. In Juan Quemada, Gonzalo León, Yoëlle S. Maarek,
and Wolfgang Nejdl, editors, Proceedings of the 18th International Conference
on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages
371–380. ACM, 2009.

[22] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, 1974.

[23] Peter J Kolesar. A branch and bound algorithm for the knapsack problem.
Management science, 13(9):723–735, 1967.

[24] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient merging and filtering algo-
rithms for approximate string searches. In Gustavo Alonso, José A. Blakeley,
and Arbee L. P. Chen, editors, Proceedings of the 24th International Confer-
ence on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico,
pages 257–266. IEEE Computer Society, 2008.

58 References

[25] Chen Li, Bin Wang, and Xiaochun Yang. VGRAM: improving performance
of approximate queries on string collections using variable-length grams. In
Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivas-
tava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold,
editors, Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007, pages 303–314.
ACM, 2007.

[26] Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Haiyong Wang. String
similarity measures and joins with synonyms. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2013,
New York, NY, USA, June 22-27, 2013, pages 373–384, 2013.

[27] Jiaheng Lu, Chunbin Lin, Wei Wang, Chen Li, and Xiaokui Xiao. Boosting
the quality of approximate string matching by synonyms. ACM Transactions
on Database Systems, 40(3):15:1–15:42, 2015.

[28] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic
Stability. Communications and Control Engineering Series. Springer, 1993.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio and
Yann LeCun, editors, Workshop Track Proceedings of the 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, 2013.

[30] Prasenjit Mitra. Dewey decimal system. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, pages 808–809. Springer US, 2009.

[31] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, 5(1):32–38,
1957.

[32] Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths. Evaluating
vector-space models of word representation, or, the unreasonable effectiveness
of counting words near other words. In Glenn Gunzelmann, Andrew Howes,
Thora Tenbrink, and Eddy J. Davelaar, editors, Proceedings of the 39th
Annual Meeting of the Cognitive Science Society, CogSci 2017, London, UK,
16-29 July 2017. cognitivesciencesociety.org, 2017.

References 59

[33] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1532–1543. ACL, 2014.

[34] Joseph Reisinger and Raymond J. Mooney. Multi-prototype vector-space
models of word meaning. In Human Language Technologies: Proceedings
of the Conference of the North American Chapter of the Association of
Computational Linguistics, June 2-4, 2010, Los Angeles, California, USA,
pages 109–117. The Association for Computational Linguistics, 2010.

[35] Leonardo Andrade Ribeiro and Theo Härder. Generalizing prefix filtering to
improve set similarity joins. Information Systems, 36(1):62–78, 2011.

[36] Chuitian Rong, Chunbin Lin, Yasin N. Silva, Jianguo Wang, Wei Lu, and
Xiaoyong Du. Fast and scalable distributed set similarity joins for big data
analytics. In Proceedings of the 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages
1059–1070. IEEE Computer Society, 2017.

[37] Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du, Yueguo Chen, and
Anthony K. H. Tung. Efficient and scalable processing of string similarity
join. IEEE Transactions on Knowledge and Data Engineering, 25(10):2217–
2230, 2013.

[38] Zeyuan Shang, Yaxiao Liu, Guoliang Li, and Jianhua Feng. K-join:
Knowledge-aware similarity join. IEEE Transactions on Knowledge and
Data Engineering, 28(12):3293–3308, 2016.

[39] Jasmeet Singh and Vishal Gupta. Text stemming: Approaches, applications,
and challenges. ACM Computing Surveys, 49(3):45:1–45:46, 2016.

[40] Jasmeet Singh and Vishal Gupta. A systematic review of text stemming
techniques. Artificial Intelligence Review, 48(2):157–217, 2017.

[41] Kristian Slabbekoorn, Laura Hollink, and Geert-Jan Houben. Domain-aware
ontology matching. In The Semantic Web - ISWC 2012 - Proceedings of the
11th International Semantic Web Conference, Boston, MA, USA, November
11-15, 2012, Part I, pages 542–558, 2012.

60 References

[42] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In Proceedings of the 16th International Conference
on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
pages 697–706, 2007.

[43] Thomas Pellissier Tanon, Denny Vrandecic, Sebastian Schaffert, Thomas
Steiner, and Lydia Pintscher. From freebase to wikidata: The great migration.
In Proceedings of the 25th International Conference on World Wide Web,
WWW 2016, Montreal, Canada, April 11 - 15, 2016, pages 1419–1428, 2016.

[44] Wenbo Tao, Dong Deng, and Michael Stonebraker. Approximate string joins
with abbreviations. Proceedings of the Very Large Databases Endowment,
11(1):53–65, 2017.

[45] David Vengerov, Andre Cavalheiro Menck, Mohamed Zäıt, and Sunil
Chakkappen. Join size estimation subject to filter conditions. Proceedings of
the Very Large Databases Endowment, 8(12):1530–1541, 2015.

[46] Hongya Wang, Lihong Yang, and Yingyuan Xiao. Setjoin: a novel top-k
similarity join algorithm. Soft Computing, pages 1–16, 2020.

[47] Jiannan Wang, Guoliang Li, and Jianhua Feng. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. Proceedings of the Very
Large Databases Endowment, 3(1):1219–1230, 2010.

[48] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix
filtering?: an adaptive framework for similarity join and search. In K. Selçuk
Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012, pages 85–96. ACM, 2012.

[49] Jiaying Wang, Xiaochun Yang, Bin Wang, and Chengfei Liu. Ls-join: Local
similarity join on string collections. IEEE Transactions on Knowledge and
Data Engineering, 29(9):1928–1942, 2017.

[50] Pei Wang, Chuan Xiao, Jianbin Qin, Wei Wang, Xiaoyang Zhang, and
Yoshiharu Ishikawa. Local similarity search for unstructured text. In Fatma
Özcan, Georgia Koutrika, and Sam Madden, editors, Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference

References 61

2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1991–2005.
ACM, 2016.

[51] Zhibiao Wu and Martha Stone Palmer. Verb semantics and lexical selection. In
Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics, 27-30 June 1994, New Mexico State University, Las Cruces, New
Mexico, USA, pages 133–138, 1994.

[52] Cao Xiao, David Mandell Freeman, and Theodore Hwa. Detecting clusters
of fake accounts in online social networks. In Indrajit Ray, Xiaofeng Wang,
Kui Ren, Christos Dimitrakakis, Aikaterini Mitrokotsa, and Arunesh Sinha,
editors, Proceedings of the 8th ACM Workshop on Artificial Intelligence
and Security, AISec 2015, Denver, Colorado, USA, October 16, 2015, pages
91–101. ACM, 2015.

[53] Chuan Xiao, Jianbin Qin, Wei Wang, Yoshiharu Ishikawa, Koji Tsuda, and
Kunihiko Sadakane. Efficient error-tolerant query autocompletion. Proceed-
ings of the Very Large Databases Endowment, 6(6):373–384, 2013.

[54] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient algorithm for
similarity joins with edit distance constraints. Proceedings of the Very Large
Databases Endowment, 1(1):933–944, 2008.

[55] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. Top-k set similar-
ity joins. In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors,
Proceedings of the 25th International Conference on Data Engineering, ICDE
2009, March 29 2009 - April 2 2009, Shanghai, China, pages 916–927. IEEE
Computer Society, 2009.

[56] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. Efficient similarity
joins for near duplicate detection. In Jinpeng Huai, Robin Chen, Hsiao-Wuen
Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang,
editors, Proceedings of the 17th International Conference on World Wide
Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 131–140. ACM,
2008.

[57] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang.
Efficient similarity joins for near-duplicate detection. ACM Transactions on
Database Systems, 36(3):15:1–15:41, 2011.

62 References

[58] Pengfei Xu and Jiaheng Lu. Top-k string auto-completion with synonyms.
In Database Systems for Advanced Applications - Proceedings of the 22nd
International Conference, DASFAA 2017, Suzhou, China, March 27-30, 2017,
Part II, pages 202–218, 2017.

[59] Pengfei Xu and Jiaheng Lu. Efficient taxonomic similarity joins with adaptive
overlap constraint. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM 2018, Torino, Italy,
October 22-26, 2018, pages 1563–1566, 2018.

[60] Pengfei Xu and Jiaheng Lu. Efficient string similarity join with taxonomy
knowledge. Submitted to Knowledge and Information Systems, 2019.

[61] Pengfei Xu and Jiaheng Lu. Towards a unified framework for string similarity
joins. Proceedings of the Very Large Databases Endowment, 12(11):1289–1302,
2019.

[62] Cairong Yan, Xue Zhao, Qinglong Zhang, and Yongfeng Huang. Efficient
string similarity join in multi-core and distributed systems. PloS one, 12(3),
2017.

[63] Xiaochun Yang, Bin Wang, and Chen Li. Cost-based variable-length-gram
selection for string collections to support approximate queries efficiently. In
Jason Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10-12, 2008, pages 353–364. ACM, 2008.

[64] Xiaochun Yang, Yaoshu Wang, Bin Wang, and Wei Wang. Local filtering:
Improving the performance of approximate queries on string collections. In
Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives, editors, Proceedings
of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 377–392.
ACM, 2015.

[65] Minghe Yu, Jin Wang, Guoliang Li, Yong Zhang, Dong Deng, and Jianhua
Feng. A unified framework for string similarity search with edit-distance
constraint. The VLDB Journal, 26(2):249–274, 2017.

	Abstract
	Acknowledgements
	Contents
	List of Publications
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: Top-k similarity selection with synonyms
	Chapter 4: Top-k similarity join with taxonomies
	Chapter 5: All-match similarity join with taxonomies
	Chapter 6: All-match similarity join with a unified similarity
	Chapter 7: Conclusions and future work
	References

