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Abstract
We conduct a manual error analysis of the
CoNLL–SIGMORPHON 2017 Shared Task
on Morphological Reinflection. In this task,
systems are given a word in citation form (e.g.,
hug) and asked to produce the corresponding
inflected form (e.g., the simple past hugged).
This design lets us analyze errors much like
we might analyze children’s production errors.
We propose an error taxonomy and use it to
annotate errors made by the top two systems
across twelve languages. Many of the ob-
served errors are related to inflectional patterns
sensitive to inherent linguistic properties such
as animacy or affect; many others are failures
to predict truly unpredictable inflectional be-
haviors. We also find nearly one quarter of the
residual “errors” reflect errors in the gold data.

1 Introduction
A huge amount of work in natural language pro-
cessing treats words as indivisible units, but the
vast majority of the world’s languages have rich
word-internal structure. For instance, 80% of the
languages analyzed in the World Atlas of Linguis-
tic Structure (Dryer and Haspelmath 2013) inflect
verbs for tense and 65% inflect nouns for case.
Generating and processing complex words is thus
crucial for multilingual speech and language tech-
nologies.
Recent work on large-scale, multilingual com-

putational modeling of morphology (e.g., Durrett
and DeNero 2013, Cotterell et al. 2016) targets
supervised inflection generation. Such tasks re-
quire variable-length outputs, so they are less
constrained than earlier segmentation-based tasks
(e.g., Kurimo et al. 2010), but appear to be tractable
with existing neural network–based models. For
example, in the CoNLL–SIGMORPHON 2017
Shared Task (sub-task 1 and the “high-data condi-
tion”), the focus of this study, the best-ranked sys-

tem generates novel inflectional forms with 90%
accuracy or better for 46 out of the 52 target lan-
guages, It achieves perfect accuracy for four lan-
guages (Cotterell et al. 2017).
In light of these apparent success, we examine

the failure modes of existing models for morpho-
logical generation. We first propose and motivate
an error taxonomy for this task, inspired by sim-
ilar proposals for other natural language genera-
tion and processing technologies such as grammat-
ical error correction (e.g., Rozovskaya and Roth
2016) and machine translation (e.g., Popović and
Ney 2011, Fishel et al. 2012, Irvine et al. 2013).
We then use this taxonomy to perform a manual er-
ror analysis of the CoNLL–SIGMORPHON 2017
Shared Task. Such analyses can help to identify
strengths and weaknesses of existing systems, sug-
gest future improvements, and guide development
of strong ensemble models, but are often neglected
or treated as an afterthought. This annotation also
allows us to measure the quality of the gold data.
Generating morphologically complex forms is a

skill typically-developing children effortlessly ac-
quire, so this task, and systems’ error patterns, may
have implications for the theory of language acqui-
sition. While the shared task training paradigm
is quite unlike human language learning, infer-
ence and evaluation resemble the classic wug-test
(Berko 1958), inwhich speakers are presentedwith
a word—either real or nonce—in citation form and
prompted to provide a particular inflectional form
of that word. Therefore, one can analyze inflec-
tion generation errors much like how one might
analyze errors made by a child acquiring their first
language. And, one can ask whether humans’ and
artificial learners’ errors are in any way alike.
To answer these questions, we examine errors

made by the two top-performing systems in the
CoNLL–SIGMORPHON 2017 Shared Task for
twelve languages.
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2 Materials and methods

Here, we describe the shared task, data sources,
and the targeted systems.

2.1 The task
The CoNLL–SIGMORPHON 2017 Shared Task
(Cotterell et al. 2017) consists of two supervised
morphological generation sub-tasks across 52 lan-
guages. In sub-task 1, the training data consists of
triples of lemma, inflectional bundle, and inflected
form, as in Table 1. At inference time, the sys-
tem is given lemmata and inflectional bundles and
asked to produce the appropriate inflected forms.
In sub-task 2, training data consists of complete
inflectional paradigms, and at inference time, the
system is asked to produce full paradigms for un-
seen lemmata. We focus on the results from sub-
task 1, primarily because only two of the twelve
teams chose to compete in sub-task 2. However,
the proposed error taxonomy could easily be ap-
plied to sub-task 2, or to later morphological gener-
ation challenges such as sub-task 2 of the CoNLL–
SIGMORPHON 2018 shared task (Cotterell et al.
2018) or sub-task 1 of the SIGMORPHON 2019
shared task (McCarthy et al. 2019).

2.1.1 Data
The data in both sub-tasks is primarily sampled
from UniMorph (Kirov et al. 2016, 2018), a
free morphological database. In turn, UniMorph
data for our twelve languages is automatically ex-
tracted from Wiktionary, a collaborative multilin-
gual online dictionary. UniMorph pairs the cells
of Wiktionary morphological paradigms, which
bear prose labels like “genitive plural”, to fea-
ture bundles in a language-independent morpho-
logical schema (Sylak-Glassman et al. 2015; also
see Sylak-Glassman 2016). The data consist of
the aforementioned triples of lemma, inflectional
bundle, and inflected form. For sub-task 1, these
triples were sampled from UniMorph paradigms
according to frequencies of inflected forms as es-
timated from Wikipedia. Because of this sam-
pling procedure, the data is sparse in the sense
that there are rarely more than a few inflected
forms per lemma. As such, this roughly mim-
ics the statistical properties of the primary linguis-
tic data encountered by child language learners
(e.g., Chan 2008:71–100). Systems were evalu-
ated under three training data conditions: low (100
triples), medium (1,000 triples) and high (10,000

triples). We focus on the high-data condition be-
cause nearly all systems performed poorly in the
low- and medium-data conditions.

2.2 Systems
In sub-task 1, systems were ranked using the
macro-averaged “per form” (i.e., full-token match)
accuracy across all 52 target languages.1 We ana-
lyze errors made by the two top-ranked systems,
briefly described below.

ue-lmu-1 (Bergmanis et al. 2017) This system
uses a recurrent neural network (RNN) with a bidi-
rectional gated recurrent unit (GRU) encoder, a
unidirectional GRU decoder, and a standard atten-
tionmechanism. It enhances a closely-related com-
petitor system (Kann and Schütze 2017) by aug-
menting the provided training data with identical
input-output pairs so as to create a bias toward
copying the input stem. It is ranked as the best-
performing system on sub-task 1 (macro-average
accuracy 95.32%).

cluzh-7 (Makarov et al. 2017) This system
also uses a neural encoder-decoder but replaces the
“soft” attention mechanism with hard monotonic
attention (Aharoni and Goldberg 2017) and special
edit operations. It is ranked second-best overall
on sub-task 2 (macro-average accuracy 95.12%)
and also achieves the highest per form accuracy on
eight languages including Hungarian and Spanish.

3 Error taxonomy
One major distinction in the proposed taxon-
omy of inflection generation errors is between
those errors which can be given a linguistic
characterization—i.e., in terms of misapplication
of inflectional patterns independently attested in
the target language—from those which cannot.
As such we are inspired by a long and con-
tentious debate in computational morphology re-
search. Rumelhart andMcClelland (1986) propose
an early neural network model trained to generate
the phonological form of English simple past tense
verbs given the present tense. They claim that
under in certain conditions, their model produces
errors that are similar to those made by children
acquiring English, such as *catched for caught.2

1 The other metric used in sub-task 1, average Levenshtein
distance between word and target averaged over languages,
ranks systems nearly identically (Cotterell et al. 2017:11).

2 Such errors are known as overregularizations in the lan-
guage acquisition literature (e.g., Marcus et al. 1992).
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Language Lemma Inflection Inflected form
English hug V;PST hugged

spark V;V.PTCP;PRS sparking
German aufbauen V;IND;PRS;2;SG baust auf

Ärtzin N;DAT;PL Ärtzinnen
Spanish descomponer V;NEG;IMP;2;PL no descompagáis

liberar V;IND;FUT;2;SG liberarás

Table 1: Sample training data for sub-task of the CoNLL–SIGMORPHON 2017 Shared Task. Each training exam-
ple maps a lemma (a citation form) and inflection (a bundle of UniMorph morphosyntactic features) to an inflected
form. At inference time, the inflected form is predicted given a lemma and inflection.

SILLYTARGET ALLOMORPHY SPELLING

Free variation

Extraction

Wiktionary

Figure 1: Overview of our annotation scheme, includ-
ing subcategories. Annotators are instructed to proceed
through the taxonomy from left to right.

Pinker and Prince (1988) and Sproat (1992:216f.)
dispute this characterization, pointing out bizarre
errors like *membled for mailed. More recently,
Kirov and Cotterell (2018) claim that modern neu-
ral network architectures—such as those used in
the CoNLL–SIGMORPHON 2017 Shared Task—
generalize reasonably well while largely eliminat-
ing these bizarre errors. However, Corkery et al.
(2019) argue that the Kirov and Cotterell model
predictions align poorly with human productions,
and suggest that the reported results may be unchar-
acteristic due to fortuitous random seeding.
We desired a somewhat richer set of errors

than this prior work. The final taxonomy—
incorporating feedback from a ten-language pi-
lot study—consists of four major error categories,
with several additional sub-categories. The cate-
gories are applied sequentially, as in Figure 1. We
now describe these categories.

Target errors This category consists of cases
where the gold data is incorrect or incomplete.3
We discern three sub-categories of target errors.

3 This label is applied regardless of whether the predicted
inflected form is correct or not, and therefore is independent
of system predictions. Furthermore, it is possible that both
the gold data and prediction have the same incorrect inflected
form, but detecting such cases is challenging.

Free variation errors occur when more than one
acceptable inflected form exists, but only one is
present in the UniMorph data. Extraction er-
rors indicate flaws in UniMorph’s parsing of Wik-
tionary inflectional paradigms. Wiktionary er-
rors represent errors in the Wiktionary data itself.

Silly errors This category consists of those
“bizarre” errors which defy any purely linguistic
characterization. In addition to the aforementioned
case of *membled, such errors have also been re-
ported for other language generation tasks such as
machine translation (Arthur et al. 2016) and text
normalization (Gorman and Sproat 2016, Sproat
and Jaitly 2017, Zhang et al. 2019).

Allomorphy errors This category consists of
those errors which are characterized by misappli-
cation of existing (i.e., independently attested) al-
lomorphic patterns in the target language. Our an-
notation scheme recognizes four sub-categories of
allomorphy error, but we set aside their their de-
scription for reasons of space.

Spelling errors This category includes inflected
forms that do not follow language-specific ortho-
graphic conventions but are otherwise correct.

4 Results
We performed full error annotation on twelve
of the 52 languages. Several other languages
were initially targeted for annotation but pro-
duced too few errors to draw meaningful con-
clusions. Annotations were performed by the
authors, all specialists in computational linguis-
tics.4 Of these, four languages—English, Finnish,
Polish, and Russian—were annotated by native

4 We do not claim that this level of expertise is strictly
necessary; it might be the case that linguistically naïve native
speakers could be trained to produce reliable annotations.
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speakers; the remaining eight were annotated by
second-language speakers. In addition to the
annotation guidelines, annotators were encour-
aged to consult authoritative dictionaries and refer-
ence grammars—such as the Iso suomen kielioppi
(Hakulinen et al. 2008) for Finnish, the Duden
for German, the Oxford Latin Dictionary (Lee
1968), or the Diccionario de la lengua española
for Spanish—and native speakers. Table 2 reports
summary statistics for fully-annotated languages.

4.1 Inter-annotator agreement
Table 3 provides raw agreement and Krippendorf’s
α (Artstein and Poesio 2008) for those languages
known to two annotators. As mentioned above,
each annotator is a specialist in computational lin-
guistics, and annotated at least one other language
as well. Raw agreement is high, and while chance-
corrected agreement statistics like α are notori-
ously difficult to interpret, α ≥ 0.8, a threshold
obtained for all three double-coded languages, is
generally considered to indicate substantial relia-
bility (Krippendorff 2004:241f.).

4.2 Errors
Table 4 provides the counts of the four major cat-
egories of error for all twelve languages and for
both systems. We now proceed to describe some
patterns observed within these categories.

4.2.1 Target errors
Table 5 gives counts for the three sub-categories of
target errors.5

Free variation errors Finnish has several free
variation errors, many involving vowel harmony.
For example, the abessive suffix has two allo-
morphs, namely the the back-harmonic -tta and the
front-harmonic -ttä. The lemma progestiini ‘pro-
gestin’ can take the back allomorph, giving pro-
gestiinitta, but, vowel harmony often fails to ap-
ply when there are many intervening neutral vow-
els (i and e) between the harmonic trigger and the
suffix (Hakulinen et al. 2008:§17), as is the case
here. Therefore, the form progestiinittä, predicted
by both systems, is grammatical, though not the
form given by UniMorph. Another type of free
variation error affects allomorphs of the Finnish
genitive plural (gen.pl.). For instance, omenoiden,
omenoitten, omenojen, omenien and omenain are

5 Some analyses conducted by Richard Sproat (p.c.) sug-
gest that sub-task 2 was also highly affected by target errors.

all possible gen.pl. forms of omena ‘apple’, but
only one is present in UniMorph.

Extraction errors The comparatively low accu-
racy on Hungarian—cluzh-7, the best perform-
ing system on this language, achieves 89.80% per
form accuracy—appears to be due to large num-
ber of extraction errors. In most cases, the error
comes from pairing one paradigm cell with another
cell’s inflectional bundle. For instance, UniMorph
incorrectly labels *lagúnák as the accusative plural
(acc.pl.) for lagúna ’lagoon’; it is in fact the nomi-
native plural (nom.pl.). In Romanian, a header for
the Wiktionary paradigms reading “definite artic-
ulation” is incorrectly taken as an inflected form
itself! Latin also suffers from pervasive extraction
errors. This language has a robust phonemic con-
trast between short and long monophthongs (e.g.,
malus ‘unpleasant’ vs. mālus ‘apple tree’). Long
monophthongs are—at least in modern editions—
indicated by the macron, a horizontal line above
the vowel. UniMorph extraction has somehow re-
moved macrons from all lemmata, though they are
still present in the inflected forms. Thus, systems
must attempt to predict an unpredictable phonemic
contrast while mapping from lemma to inflected
form. As a result, the vast majority of Latin errors
concern vowel length.

Wiktionary errors Errors in the Wiktionary
data itself are relatively rare and largely non-
systematic. For example, in Spanish, *demarce is
given as the first person singular (1sg.) present sub-
junctive of demarcar ‘to demarcate’ instead of the
correct form demarque.

4.2.2 Silly errors
Silly errors were found for all languages except
English; they also appear to be somewhat more
common for ue-lmu-1 (59) than for cluzh-7 (37).
ue-lmu-1 predicts praesōs as the acc.pl. of the
Latin noun praesul (a title used by Roman reli-
gious leaders); there is no obvious analogue for
the ul-ōs stem change. In German, cluzh-7 un-
expectedly truncates the gen.pl. form of the com-
pound noun Schädlingsbekämpfungsmittel ‘pesti-
cide’ to produce *Schädlingsbekämpfungsmit. For
the dative plural (dat.pl.) of the Russian compound
noun meaning ‘forced labor’, ue-lmu-1 inexpli-
cably deletes the r of rabóty ‘labor’, giving the
bizarre *prinudítel’nym abótam.6 And, in Spanish,

6 In the shared task, Russian data is given in the standard
Cyrillic orthography; we have taken the liberty of romanizing
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Language Noun Verb Adjective ue-lmu-1 errors cluzh-7 errors Overlap
Dutch 7 3 3 31 32 84%
English 7 3 7 28 32 24%
Finnish 3 3 3 49 65 44%
German 3 3 7 70 88 48%
Hungarian 3 3 7 136 132 65%
Italian 7 3 7 21 24 50%
Latin 3 3 3 187 190 56%
Polish 3 3 3 72 79 74%
Portuguese 7 3 7 9 10 73%
Romanian 3 3 3 109 122 59%
Russian 3 3 3 84 79 60%
Spanish 7 3 7 27 25 44%

Table 2: Raw error counts out of 1,000 test examples for the target languages. Checkmarks indicate whether
UniMorph data was available for a given major category in that language. Error overlap is the percentage of errors
made by both systems. There were 1,701 errors in total (823 from ue-lmu-1 and 878 from cluzh-7).

Language RA α
Dutch 0.949 0.907
English 0.861 0.855
Spanish 0.861 0.875

Table 3: Inter-annotator agreement statistics for three
double-coded languages. RA: raw agreement.

ue-lmu-1 gives *atuengáis as the second person
plural present subjunctive of atener ‘to maintain’.
There is no analogue for this e-ue stem change.

4.2.3 Allomorphy errors
With the exception of Hungarian and Latin—
which suffer from systematic extraction errors—
allomorphy errors are the largest category of error
in all languages.

Stem-final vowels in Finnish In Finnish nouns
and adjectives, stem-final vowels commonly dis-
appear or alternate with e or o when the plural
marker i is added to the stem (Hakulinen et al.
2008:§45). For instance, the inessive plural of
lasi ‘glass’ is laseissa. In principle, such alterna-
tions are predictable given the syllable count of
the nominal stem, the stem-final consonants and
the penultimate vowel, though the exact conditions
are rather complex (Hakulinen et al. 2008:§46–50).
For the compound noun pohjanpystykorva ‘nor-
rbottenspets’ (a breed of dog), cluzh-7 predicts an
incorrect gen.pl. form *pohjanpystykorvojen for in-
it here so as to make the data accessible to a wider audience.

tended pohjanpystykorvien; it has transformed the-
stem final a to o and then selected the wrong plural
marker (*-jen instead of -ien) as a result.

Ablaut inDutch andGerman Stem vowel alter-
nations in the Germanic strong verbs are known as
ablaut. Ablaut is robust in Dutch and German, and
in both languages, is occasionally misapplied. In
Dutch, for example, both systems overapply ablaut
to the 1sg. preterite indicative forms of printen ‘to
print’, producing *pront instead of printte. Sim-
ilar errors are found in German. Both systems
underapply ablaut to the 1sg. preterite indicative
form of saufen ‘to drink’, producing *saufte in-
stead of the expected soff, and ue-lmu-1 overap-
plies ablaut to the third person preterite subjunc-
tive of the weak verb versenken ‘to sink’, giving
*versächten in place of the expected versenkten.

Umlaut in German Another stem change seen
in German inflection is umlaut, which converts a
u, o, or a in the final syllable of a stem changes
to the corresponding front vowel ü, ö, or ä, re-
spectively. Umlaut applies in many different
morphological contexts (Hieble 1957), but most
saliently in many plural nouns. One or both sys-
tems underapply umlaut in otherwise-correct plu-
ral forms of Aasvogel ‘carrion bird’, Augenarzt
‘eye doctor’, Brunst ‘arousal’, Chalkogenidglas
‘chalcogenide glass’,Dachschaden ‘mental issues’
(lit. ‘roof damage’), Energiezustand ‘energy level’,
Hang ‘slope’, Stiefvater ‘stepfather’, Tibetfuchs
‘Tibetan fox’, andVertrag ‘treaty’. But the systems
also overapply umlaut in *Einwohnerzähle (from
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Target Silly Allomorphy Spelling
Language ue-lmu-1 cluzh-7 ue-lmu-1 cluzh-7 ue-lmu-1 cluzh-7
Dutch 8 1 1 19 16 5 7
English 3 0 0 18 18 7 11
Finnish 11 7 7 33 48 0 0
German 3 4 10 54 67 9 9
Hungarian 83 21 9 37 44 1 0
Italian 5 5 1 11 16 0 2
Latin 119 2 0 76 93 0 0
Polish 5 6 3 60 67 2 4
Portuguese 1 1 0 6 7 1 2
Romanian 54 3 5 61 69 1 2
Russian 7 7 0 48 45 23 28
Spanish 7 2 1 12 12 6 6
Total 306 59 37 435 502 55 71

Table 4: Error type counts by language and system; target error counts are combined across the two systems.

Language FV Extraction Wiktionary
Dutch 0 3 5
English 0 2 1
Finnish 7 2 2
German 0 0 3
Hungarian 0 83 0
Italian 0 0 5
Latin 0 118 1
Polish 0 4 1
Portuguese 0 1 0
Romanian 1 51 2
Russian 1 5 1
Spanish 2 3 2
Total 11 272 23

Table 5: A breakdown of target errors by sub-category;
counts are combined across the two systems. FV: free
variation errors; Extraction: extraction errors; Wik-
tionary: Wiktionary errors.

Einwohnerzahl ‘population’, *Förmer (fromForm
‘shape’), *Neuwähle (from Neuwahl ‘re-vote’),
and *Sprösse (from Spross ‘bud’).

Consonant gradation in Finnish Many Finnish
words undergo a set of unpredictable stem changes
known as consonant gradation. Here, a “strong
grade” of a consonant–normally a voiceless stop
like t—alternates with the weak grade—a voiced
stop like d—but the stop may also delete in the
weak grade (Hakulinen et al. 2008:§41). Gradation

leads to inflection errors because not all lexemes
participate in gradation, and because the weak
grade of the stem consonant is not predictable from
the lemma. For instance, cluzh-7 incorrectly ap-
plies the weak grade to the negated third person
singular *ei kiemurda (from kiemurtaa ‘to crawl’);
the proper gradation is t-r instead of the predicted
t-d. cluzh-7 also incorrectly produces the strong
grade where the weak grade is required, failing to
delete the k in the comitative *rikoslakein (from
rikoslaki ’criminal law’).
Linking vowels in Hungarian The Hungarian
noun plural suffix is -k, usually preceded by a
a, o, e, or ö linking vowel. For example, the
nom.pl. form of vér ’blood’ is vérek. The choice
of linking vowel is partly determined by vowel har-
mony: back vowel stems select a or o whereas
front vowel stems select e or ö. However, for back
vowel stems, it is largely unpredictable whether
a or o is used (Siptár and Törkenczy 2000:224f.,
Vago 1980:110f.), and there are several cases
where one or both systems predict an incorrect link-
ing vowel. For example, ue-lmu-1 predicts an in-
correct elative plural *masszázsakból formasszázs
‘massage’; the correct form is masszázsokból.
Yers in Polish Another sub-category of allomor-
phy error in Polish concerns the yers, the “fleet-
ing vowels” of Slavic. Oblique forms of the Pol-
ish nouns klęsek ‘defeat’ and żagiel ‘sail’, for ex-
ample lack a stem e or ie, respectively, in cer-
tain case forms, as seen in the gen.pl. klęsk and
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żagli. Because fleeting vowels’ position and qual-
ity are unpredictable, they cannot be analyzed as
epenthetic. Instead, they are assumed to be present
in the underlying form of certain roots and af-
fixes, but somehow represented distinctly from
the non-fleeting vowels (Lightner 1965, Rubach
1986). According to the analysis, a yer is deleted
except when the following syllable also contains
an yer, and the fleeting e and ie surface in
the nom.sg. forms above because the masculine
nom.sg. suffix is itself a yer (Gussman 1980:36f.,
Rubach 1984:41). It is impossible to predict the
position or quality of a yer without referring to
the rest of the inflectional paradigm,7 and this in-
determinacy contributes to several inflectional er-
rors. For instance, cluzh-7 predicts *żagieli in-
stead of the expected żagli, and both systems pre-
dict *klęsek for of the expected klęsk. Similar er-
rors are also found in Russian.

Spanish diphthongization Many Spanish verbs
exhibit a stem change in which mid vowels e and
o in the final syllable of the stem diphthongize
to ie [je] and ue [we], respectively, when they
bear primary stress. Whether or not a mid vowel
participates in diphthongization is largely unpre-
dictable (Brame and Bordelois 1974:132f., Harris
1969:74f.).8 For example, negar ‘to deny’ under-
goes diphthongization (e.g., 1sg. present indicative
niego), but pegar ‘to stick’ does not (1sg. present
indicative pego). Both models underapply diph-
thongization in *desplegue (from desplegar ‘to un-
fold’) and *recola (from recolar ‘to strain again’).
Interestingly, these are 1st conjugation (i.e., -ar)
verbs, and children acquiring Spanish tend to un-
derapply diphthongization in this class (Mayol
2007). But cluzh-7 also overapplies diphthon-
gization in *atañieres (from atañer ‘to concern’)
and *gañieseis (from gañir ‘to yelp’). Similar er-
rors occur in Portuguese, which also exhibits a
stress-conditioned stem vowel alternation.

Noun plural suffixes in German German has
five major noun plural suffixes, and many errors
involve the use of the wrong plural. The most
frequent pattern is the overapplication of the -(e)n
plural—traditionally regarded as the most produc-

7 Gouskova and Becker (2013) and Becker and Gouskova
(2016) develop formal models of yer-deletion in Russian, but
do not evaluate performance on actual held-out words.

8 Albright et al. (2001) and Albright (2003) develop a com-
putational model to predict Spanish diphthongization, but do
not report its performance on actual held-out verb forms.

tive plural suffix (Bech 1963, Wunderlich 1999)—
as in Eosin ‘eosin’, Fußballweltmeisterschaft-
squalifikationsspiel ‘football world championship
qualification game’, Hartung, a poetic term for
‘January’, Karbonatit ‘carbonatite’, Metallatom
‘metal atom’, and Vorjahr ‘last year’. Overapplica-
tion of -e is also common, as in Abonnement ‘sub-
scription’, Etat ‘budget’, Funke ‘spark’, Katholic
‘Catholic’, Königsgelb ‘yellow pigment’, Reak-
torbau ‘reactor construction’, Prinzess ‘princess’,
Toupet ‘toupee’. Interestingly, both types of error
are produced by children acquiring German (e.g.,
Clahsen 1999, Marcus et al. 1995, Szagun 2001).

Genitive singular suffixes in Polish Polish has
two gen.sg. suffixes, -a and -u. It is generally
impossible to predict which gen.sg. allomorph a
given stemwill select, and there is no evidence that
one is more productive than the other (Dąbrowska
2001, 2005, Kottum 1981, Maunsch 2003). This
unpredictable allomorphy causes many gen.sg. er-
rors to both systems, such as *ateuszu for ateusza
‘atheist’, *izotopa for izotopu ‘isotope’, *krzyka
for krzyku ‘scream’, and *legaru for legara ‘joist’.

Verbal prefixes in German Some verbal pre-
fixes in German are known as “separable” because
they separate (i.e., are postposed) from their host
verb when tensed. Others, the “inseparable” pre-
fixes, are always attached to their host verb with-
out exception. Finally, some prefixes, such as um-,
are separable or inseparable depending on the verb,
and this leads to several errors. For example, both
systems predict *umkehre for the 1sg. present in-
dicative of umkehren ‘to turn around’; the correct
form is the separable kehre um.

Animacy in Polish and Russian Case syn-
cretisms in inanimate (i.e., non-personal) nouns
are found in many Slavic languages. However, an-
imacy is an inherent feature of nouns and cannot
be predicted from the form of the lemma alone.
In Russian, for example, cluzh-7 wrongly pre-
dicts a syncretic acc.pl. for the animate sadist ‘id.’
and both systems incorrectly predict a distinct (i.e.,
non-syncretic) acc.sg. for the inanimate magazin
‘shop’. Similarly in Polish, both systems predict
incorrect syncretic accusatives for animates such
as śpiewak ‘singer’ and Żyd ‘Jew’, and incorrect
non-syncretic accusatives for inanimates such as
szampan ‘champagne’. Some Polish stem changes
are also conditioned by animacy. For example, for
the inanimate noun katalizator ‘catalyst’, both sys-
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tems incorrectly predict a nom.pl. *katalizatorzy
instead of katalizatory; the mutation of r to rz be-
fore the nom.pl. -y is restricted to masculine ani-
mates (Feldstein 2001:27).

Aspect in Russian Russian verbal inflection is
conditioned by an inherent feature known as as-
pect. For instance, the perfective verb sorvat’ ‘to
pick’ forms a synthetic future whereas the closely-
related imperfective sryvat’ forms a periphrastic
(i.e., multi-word) future formed using future-tense
forms of byt’ ‘to be’. Several errors involve the
wrong future form for a verb’s aspect. For exam-
ple, for the perfective sorvat’, cluzh-7 incorrectly
predicts a periphrastic second person singular fu-
ture *budeš’ sorvat’ instead of the expected syn-
thetic sorvëš’.

Vowel harmony in Finnish compounds In
Finnish, the first stem in a noun compound does
not participate in suffix harmony (Hakulinen et al.
2008:§14). For example, the partitive singular
of the compound lapinsirri ‘Temminck’s stint’ (a
type of bird) is the lapinsirriä. Because this lemma
is a compound of Lapin ‘of Lapland’ and sirri
‘stint’, and because all vowels in the second second
stem of the compound are neutral, front harmony—
the default—applies. However, cluzh-7 gener-
ates *lapinsirria, a form which would be correct
were the lemma not a compound.

Internal inflection in Russian compounds
Many Russian nouns in the shared task are
adjective-noun or noun-noun compounds, and
systems fail to appropriately inflect both com-
ponents of the compound. The acc.pl. of
lëgkaja promyšlennost’ ‘light industry’ is lëgkie
promyšlennosti, but ue-lmu-1 predicts *lëgkix
promyšlennosti, incorrectly placing the adjective
in the genitive case. Other adjective-noun com-
pounds for which one or both of the systems fail
to produce proper agreement morphology include
vizitnaja kartočka ‘business card’ and bulevo
množestvo ‘boolean domain’. Both stems of most
noun-noun compounds, particularly hyphenated
compounds, are inflected. For example, the prepo-
sitional plural of gosudarstvo-donor ‘donor state’
is gosudarstvax-donorax, but both systems predict
*gosudarstvo-donorax, in which only the second
stem is inflected. However, there are some cases
in which one stem of a compound is not declined.
For instance, in sindrom Aspergera ‘Asperger’s
syndrome’, only the head noun sindrom should be

inflected because Aspergera is a nominal modifier
and already in genitive case, but both systems
incorrectly inflect the second stem producing the
gen.pl. *sindromov Asperger.

4.2.4 Spelling errors
Spelling errors are relatively rare overall. In Dutch,
diaeresis is used to mark hiatus—adjacent vow-
els in consecutive syllables—and thus the past
participle of upgraden ‘to upgrade’ should be
geüpgraded, not the predicted *geupgraded. Sev-
eral English errors concern an orthographic dou-
bling of certain final consonants; for example, both
systems predict a past participle *disentered in-
stead of the expected disenterred. There are many
German spelling errors, including several concern-
ing the spelling of the gen.sg. suffix—written as
-es or -s depending on context—or s, ss, and ß,
all pronounced [s]. In Spanish, a g followed by
i or e is read as [x], not as [g], so the verb fungir
‘to service as’ has a 1sg. future indicative spelled
funjo rather than the predicted *fungo. Several Por-
tuguese and Spanish predictions omit the acute ac-
cent used to indicate exceptional primary stress;
e.g., Portuguese *influisse for the 1sg. imperfect
subjunctive influísse (from influir ‘to influence’).

5 Discussion
5.1 Target errors
Target errors heavily impact performance for Hun-
garian, Latin, and Romanian. Overall, nearly one
fourth of our sample’s errors were target errors,
and we suspect such errors also lurk in the train-
ing and development data. Clearly, the UniMorph
data used in this task requires further vetting.

5.2 Allomorphy errors
Overall, silly errors were far less common than
allomorphy errors. Many of the allomorphy er-
rors appear to result from unpredictable linguis-
tic behaviors rather than failures to extract reliable
generalizations. In some cases, errors reflect sys-
tems’ inability to predict inherent features such
as animacy and aspect in Slavic. Such features
are not encoded in UniMorph, although this in-
formation is often present on Wiktionary. Gener-
ally speaking, these features cannot be predicted
from the orthographic form of lemmata,9 but we

9 Certain prefixes and stress patterns are cues to aspect in
Russian verbs (Wade 2010:268), but this is not true of inherent
features in general.
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suspect that the relevant information could be in-
duced using either contextual or type-level word
embeddings. We leave this for future work.10
Systems also appear to struggle with lemmata
which are themselves internally complex due to
word-formation processes like prefixation or com-
pounding, including prefix verbs in German and
compounds in Finnish and Russian. Lemma-
internal structure, once again, is not currently en-
coded in UniMorph, though it could in princi-
ple be extracted from Wiktionary entries. Fi-
nally, we see that systems struggle with certain
lexically-specific morphophonological patterns—
Germanic ablaut and umlaut, Finnish consonant
gradation, Hungarian linking vowels, Slavic yers,
and Spanish diphthongization—and with lexically-
conditioned affix selection in German and Pol-
ish. We have seemingly rediscovered what lin-
guists have long known: certain allomorphic pat-
terns cannot be predicted from the form of lemmata
alone; they must be memorized. It is unreasonable
to expect any neural network, no matter how pow-
erful, to predict what is truly unpredictable.
Our analysis is limited to languages included the

shared task, those for which the top systems have
a non-trivial number of errors, and those for which
we have sufficient linguistic expertise. As a result,
our final sample of twelve languages only includes
two major language families, Indo-European and
Uralic, the latter represented by Finnish and Hun-
garian. However, this sample has some degree of
grammatical diversity. Linguists traditionally dis-
tinguish between two types of morphological ex-
ponence. In agglutination, each morphological
feature corresponds roughly to a single affix. For
instance, in the Hungarian form cinkosoknak, the
dat.pl. of cinkos ‘accomplice’, the -ok suffix marks
plurality and the -nak suffix indicates the dative
case. In fusion, on the other hand, single affixes
may realize many morphological features at once.
For instance, in the Russian form čabrecov, the
gen.pl. of čabrec ‘thyme’, the -ov suffix is both
genitive and plural (and its form also indirectly in-
dicates that the stem is masculine). Agglutination
is characteristic of the Uralic languages, whereas
Indo-European languages makes heavy use of fu-
sion. Furthermore, vowel harmony is limited to
the two Uralic languages.

10 Sub-task two of the SIGMORPHON 2019 Shared Task
(McCarthy et al. 2019) involves lemmatization and morpho-
logical analysis in sentential context, but the applicability of
this to the inflection task has not yet received much attention.

6 Conclusion
We propose an error taxonomy for morphologi-
cal inflection generation and apply it to the pre-
dictions of the two best systems in the CoNLL–
SIGMORPHON 2017 Shared Task. We estimate
a lower bound for the percentage of “target” er-
rors in the gold data. Over 80% of the remain-
ing (non-target) errors can be understood as mis-
application of language-specific morphological or
spelling principles. One potential remedy is to en-
rich the input linguistic representations with, e.g.,
compound structure and inherent grammatical fea-
tures; however, this is unlikely to avoid all errors;
some morphological patterns cannot be general-
ized but only memorized.
The above analysis depends on manual annota-

tion, but one might prefer to automate error classi-
fication. An automated system, for example, could
be integrated into a rapid development process, or
used as an additional objective during training and
tuning, so long as it has reasonably high agree-
ment with human experts. Ideally, such a sys-
tem would scale to arbitrary languages, not just
those for which linguistic expertise is readily avail-
able. A powerful ensemble model could help iden-
tify candidate target errors, and for certain high-
resource languages, it might be possible to lever-
age finite-state morphological analyzers and lexi-
cons to distinguish between silly, spelling, and al-
lomorphy errors. We leave these and many other
open questions for future work.
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