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—— Abstract

We describe SMS, our submission to the exact treedepth track of PACE 2020. SMS computes the
treedepth of a graph by branching on the Small Minimal Separators of the graph.
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1 Overview

SMS is an exact algorithm implementation for computing treedepth. SMS was developed for
the 5th Parameterized Algorithms and Computational Experiments challenge (PACE 2020).
The main algorithm implemented in SMS is a recursive procedure that branches on minimal
separators [4]. Two variants of the branching algorithm are implemented, one with a heuristic
algorithm for enumerating minimal separators and one with an exact algorithm [9]. Several
lower bound techniques are implemented within the branching algorithm. Before applying
the branching algorithm, preprocessing techniques are applied and a heuristic upper bound
for treedepth is computed.

2 Notation

Let G be a graph with vertex set V(G) and edge set E(G). The graph G[X] is the induced
subgraph of G with vertex set X. The set N(v) is the neighborhood of a vertex v and N(X)
is the neighborhood of a vertex set X. The treedepth of G is denoted by td(G). A minimal
a, b-separator of GG is a subset-minimal vertex set S such that the vertices a and b are in
different connected components of G[V(G) \ S]. The set of minimal separators of G for all
pairs a,b € V(G) is denoted by A(G) and the set of minimal separators with size at most k
by Ax(G). The set of vertex sets of connected components of G is denoted by C(G).

3 The Algorithm

3.1 Branching

SMS is based on the following characterization of treedepth.
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» Proposition 1 ([4]). Let G be a graph. If G is complete then td(G) = |V (G)|. Otherwise

td(G)= min (|S|+  max  td(G[C])).
SeEA(G) CeC(GIV(G)\S])

Proposition 1 is implemented as a recursive algorithm that takes a vertex set X as
input and computes td(G[X]) by first enumerating the minimal separators of G[X] and
then branching from each minimal separator S to smaller induced subgraphs G[C] for each
component C' € C(G[X \ S]). We make use of upper bounds by implementing Proposition 1
as a decision procedure which, given a vertex set X and a number &, decides if td(G[X]) < k.
Clearly, in this case we may consider only the minimal separators in Ay_;(G[X]). Moreover,
we handle the minimal separators with sizes k — 1 and k — 2 as special cases and thus consider
only the minimal separators in A,_3(G[X]) in the main recursion. A minimal separator S
with |S| = k—1 such that td(G[X \ S]) = 1 must be a vertex cover of G[X] and therefore is a
neighborhood of a vertex. A minimal separator S with |S| = k —2 such that td(G[X \S]) < 2
has also a somewhat special structure, and we handle them with a modification of Berry’s
algorithm [1] for enumerating minimal separators.

3.2 Enumerating Small Minimal Separators

SMS spends most of its runtime in a subroutine which given a number k£ and a graph G
enumerates Ay (G). To make use of the fact that heuristic enumeration of small minimal
separators is more efficient than exact enumeration, two variants of the main branching
algorithm are ran: first a variant using a heuristic minimal separator enumeration algorithm
and then a variant using an exact minimal separator enumeration algorithm.

The heuristic enumeration algorithm is a simple modification of Berry’s algorithm [1].
The modification prunes all minimal separators with more than k vertices immediately during
the execution, outputting a set A} C Ax(G) in O(]AL|n?) time. As observed in [9], there
are cases in which A}, # A,(G). However, in practice the algorithm seems to often find all
small minimal separators on the values of k that are relevant.

As an exact small minimal separator enumeration algorithm we implement the algorithm
of Tamaki [9], including also the optimizations discussed in the paper. To the best of our
knowledge there are no better bounds than nF+°(M) for the runtime of this algorithm. In
practice it appears to usually have only a factor of 2-10 runtime overhead compared to the
heuristic algorithm.

In cases when G[C] is a child of G in the recursion, obtained by branching on a minimal
separator N(C) € A(G), and |C| > |V(G)|/2 we make use of the small minimal separators
of G to enumerate the small minimal separators of G[C]. In particular, for all minimal
separators S € Ay (G[C]), there exists a minimal separator S’ € Ay |y () (G) such that
S = CnNYS'. Note that in this case |[N(C)| is exactly the difference in the values of k in
recursive calls on G[C] and G, and therefore Ay n(c)(G) is already enumerated.

3.3 Lower Bounds

To avoid unnecessary re-computation, the known upper and lower bounds for td(G[X]) are
stored for each handled induced subgraph G[X]. To this end, an open addressing hashtable
with linear probing is implemented. Also, we implement an ad-hoc data structure so that
given a vertex set X, a vertex set X’ C X with the highest known lower bound for td(G[X’])
can be found. This data structure uses the idea of computing subset-preserving hashes by
using the intersection X NV’ where V' is a subset of vertices with size O(logn), where n is
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the number of elements in the data structure. Other implemented algorithms for computing
lower bounds on td(G[X]) are the MMD+ algorithm [3] which finds large clique minors, a
depth-first search algorithm which finds long paths and cycles, and a graph isomorphism
hashtable which finds already processed induced subgraphs G[X’] that are isomorphic to
G[X] and applies the lower bounds of G[X'] to G[X].

3.4 Preprocessing Techniques

The preprocessing techniques implemented in SMS are tree elimination and the kernelization
procedures described in [6]. Tree elimination finds a subgraph G[T] such that G[T] is a tree
and [N(V(G)\ T)| = 1, i.e., the subgraph is attached to the rest of the graph only on a
single vertex. Then it uses an exact algorithm to compute a list of length td(G[T]) that
characterizes the behavior of G[T] with respect to treedepth of G [8], and replaces G[T'] with
a construction of O(td(G[T])?) vertices whose behavior is the same. The simplicial vertex
kernelization rule from [6] is implemented as it is described there, but the shared neighborhood
rule is generalized. In particular, if there are two non-adjacent vertices u,v € V(G), and the
minimum u, v-vertex cut is at least k, where k is an upper bound for treedepth, then an edge
can be added between u and v.

3.5 Upper Bounds

To compute upper bounds on treedepth we implement a novel heuristic algorithm. The
algorithm first finds a triangulation (chordal completion) H of G using the LB-Triang
algorithm [2] with a heuristic aiming to minimize the number of fill-edges in each step. Then
it uses the branching algorithm, with some additional heuristics making it non-exact, to
compute a treedepth decomposition of H. Any treedepth decomposition of H is also a
treedepth decomposition of G. The properties of chordal graphs interplay nicely with the
branching algorithm: chordal graphs have a linear number of minimal separators and the
treewidth of a chordal graph can be computed in linear time [5]. Moreover, there exists
a triangulation H of G with td(H) = td(G), because treedepth can be formulated as a
completion problem to a graph class that is a subset of chordal graphs [4].
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