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Abstract 

Question: Peatlands are a globally important carbon storage due to the imbalance between 

plant biomass production and decomposition. Distribution of live standing biomass (BM, dry 

mass g m
-2

) and biomass production (BMP, dry mass g m
-2

 growing season
-1

) are both known 

to be dependent on water table (WT). However, the the relations of BM and BMP to WT 

variation are poorly known. Here we investigated, how the above- and belowground BM and 

BMP of three different plant functional types (PFTs); dwarf-shrubs, sedges and Sphagnum 

mosses relate to natural WT variation within an ombrotrophic boreal bog. In addition, we 

estimated the ecosystem-level BMP and compared that with the ecosystem net primary 

production (NPP) derived from eddy covariance (EC) measurements.  

Location: Siikaneva bog, Ruovesi, Finland 

Methods: We quantified above- and belowground BM and BMP of PFTs along the WT 

gradient, divided into six plant community types. Plant community scale BM and BMP were 

upscaled to the ecosystem level. NPP was derived from EC measurements using a literature-

based ratio of heterotrophic respiration to total ecosystem respiration. 

Results: BM varied from 211 to 979 g/m² among the plant community types, decreasing 

gradually from dry to wet community types. In contrast, BMP was similar between the plant 

community types (162-216 g/m²), except on nearly vegetation-free bare peat surfaces where it 
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was low (38 g/m²). Vascular plant BM turnover rate (BMP:BM, year
-1

) varied from 0.14 to 

0.30 among the plant community types being the highest in sedge-dominated hollows. On 

average 56 % of the vascular BM was produced belowground. Mosses, when present, 

produced on average 31 % of the total BM, ranging from 16 to 53% depending on the 

community type. EC-derived NPP was higher than measured BMP due to underestimation of 

certain components. 

Conclusions: We found out that the diversity of PFTs decreases the spatial variability in 

productivity of a boreal bog ecosystem. The observed even distribution of BMP resulted from 

different WT optima and BMP:BM of dwarf-shrubs, sedges and Sphagnum species. These 

differences in biomass turnover rate and species responses to environmental conditions may 

provide a resiliency mechanism for bog ecosystems in changing conditions. 

 

Keywords: aboveground biomass; biomass turnover; dwarf-shrub; functional diversity; 

peatland; plant functional type; root biomass; sedge; microtopography; Sphagnum. 

Nomenclature: Hämet-Ahti et al. (1998) for vascular plants; Laine et al., (2009) for mosses.  

Abbreviations: BM (live standing biomass), BMP (biomass production), BMP:BM (biomass 

turnover rate), NPP (net primary production), EC (eddy covariance), WT (water table from 

the peat surface) 

Introduction 

Peatlands produce more organic material than can be decomposed due to subsurface anoxia 

resulting from prevailing waterlogged conditions. For this reason, these ecosystems are an 

important carbon sink storing up to one third of the soil carbon globally as partly decomposed 

plant matter, peat (Gorham 1991; Yu et al. 2012). Ombrotrophic boreal bogs typically have 
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high spatial variation in water table (WT) depth, which has a strong positive correlation with 

live standing biomass (BM, dry mass g m
-2

) (Laine et al. 2012). Future changes in climate 

may lower the WT of boreal peatlands resulting in a possible shift towards predominance of 

woody vegetation (Laine et al. 1995; Laiho et al. 2003; Strack et al. 2006). Such a shift is 

likely to affect also the temporal and spatial patterns of BM and biomass production (BMP 

dry mass g m
-2

 a
-1

), which is the input component of the peatland carbon sink.  

Vegetation changes induced by WT drawdown emerge as altered dominance of 

existing plant communities (Laiho et al. 2003; Strack et al. 2006), which in bogs range 

compositionally from solely low sedge -dominated to predominantly dwarf-shrubs (Rydin 

and Jeglum 2013). These components of the plant community, as well as the Sphagnum 

mosses typical of bogs, show varying WT optima where their aboveground BM or BMP is 

the largest (e.g. Laine et al. 2012). Thorough understanding of variation in BM and BMP 

over natural WT gradients found in bogs could thus help predict the response of boreal bogs 

to climate change. Notwithstanding the numerous studies concerning the distribution of 

peatland BM and BMP, we found only one that included all BM components of different 

plant communities along the WT gradient of one bog site (Vasander et al. 1982). Therefore, 

there is clearly need for additional, direct field measurements of BM and BMP that include 

both above- and belowground components of vascular plants as well as mosses.  

Dwarf-shrubs can form up to 70 % of the total aboveground BM of 

ombrotrophic bogs (Bubier et al. 2006), and both their BM and BMP decrease monotonically 

with rising WT (Wallén 1987; Laine et al. 2012). In comparison to dwarf-shrubs, sedges have 

generally higher WT optima for aboveground BM and BMP (Vasander et al. 1982; Wallén et 

al. 1987), are more efficient photosynthesizers relative to their photosynthetic area (Leppälä 

et al. 2008) and have higher BM turnover rate (BMP:BM ratio, y
-1

) (Forrest, 1971; Shaver 

and Chapin, 1991). Belowground, root BMP has been found to increase with decreasing WT, 
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as the oxic peat layer becomes deeper (Murphy & Moore 2010; Weltzin et al. 2000). Dwarf-

shrubs produce most of their root BM in the uppermost 20 cm and sedges and herbs in the 

deeper peat layers (Murphy et al. 2009b). Up to 90 % of vascular plant BMP may occur 

belowground (Saarinen 1996) in peatlands, but the relation of BM with WT is known mainly 

for aboveground components. Although the BMP:BM ratio is likely to vary within a bog site, 

as the abundances of sedges and dwarf-shrubs vary over the WT gradient, many former 

studies are limited to standing BM only, and data on BMP are much more limited (e.g. 

Bubier et al. 2006; Murphy et al. 2009a; Laine et al. 2012).  

Sphagnum mosses, covering up to 100 % of the surface of ombrotrophic bogs, 

are the most important peat-forming group in boreal bog ecosystems (Gunnarsson 2005) with 

BMP of 132-278 g m
-2

 a
-1

 (Tint 1982; Vasander 1982; Moore et al. 2002; Kosykh et al. 

2008). Sphagna can be seen to seasonally balance out the productivity of vascular plants; 

they are especially important for the ecosystem-level carbon sink strength in early spring and 

late autumn when the vascular leaf area is low (Moore et al. 2006). Contrary to vascular 

plants, Sphagnum BM and BMP are the highest at WTs close to peat surface (Vasander 1982; 

Wallén 1987, Welzin et al. 2001; Gunnarsson 2005; Bubier et al. 2006), because the species 

typical of wet habitats are more efficient BM producers than the hummock species 

(Gunnarsson 2005). The role of Sphagna in total BMP may thus vary along the WT gradient; 

however, this has received little specific attention so far. 

Our aim was to quantify the variation in BM and BMP in relation to WT 

gradient in an ombrotrophic boreal bog with heterogeneous surface topography formed by the 

varying plant communities. We aimed to quantify all BM components, i.e., BM and BMP of 

above- and belowground parts of vascular plants as well as Sphagnum mosses, in six plant 

community types. To validate our measurements, we estimated the BM and BMP also at the 

ecosystem level and compared them with earlier studies. The ecosystem-level BMP estimate 
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was also compared with the net primary production (NPP) estimate derived from eddy 

covariance (EC) measurements using a literature-based ratio of autotrophic and heterotrophic 

respiration. 

We hypothesize that i) BM and BMP decrease with WT closer to the peat 

surface and ii) the BMP:BM ratios differ among plant community types along the WT 

gradient. 

Materials and methods 

Study site and sampling design 

The study site is an ombrotrophic bog (61°50' N, 24°12' E), a part of the Siikaneva peatland 

complex in Ruovesi, Western Finland in the Southern Boreal vegetation zone (Ahti et al. 

1968). The average annual temperature sum in the area (base temperature 5 °C) is 1318 

degree-days, average annual rainfall is 707 mm, and the average annual, January and July 

temperatures are 4.2, -7.2 and 17.1 °C, respectively (averages of the 30-year-period 1982-

2011 from Juupajoki-Hyytiälä weather station). Except for a few stunted individual Scots 

pines (Pinus sylvestris), the site is treeless and the ground vegetation consists of a mosaic of 

plant communities where species composition varies with WT (Table 1). An EC flux tower is 

located in the center of the site, and the study area is defined as a 30 meter radius circle 

around the tower.  

After exploring the variation in vegetation along the WT gradient we divided 

the site into seven plant community types ranging from dry high hummocks to ponds (Table 

1). The open water surfaces without vegetation were excluded from the BM study. We 

established 18 sample plots, sized 56 x 56 cm around the EC tower in three groups of six 

plots, visually selected to represent the six different plant community types. To record the 
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WT variation throughout the growing season for each community type, we measured weekly 

the WT depth from perforated plastic tubes installed next to each sample plot. 

To quantify the nutrient concentrations of surface peat along the WT gradient, 

we took 18 surface peat samples of 3 x 3 x 20 cm close to the sample plots, three from each 

of the six community types. The three samples were pooled together, dried at 40 °C and 

milled. The mass-based concentration (% of peat dry mass) of P was measured using plasma 

mass spectrometer (ICP-OES, IRIS Intrepid ll XSP), and those of C and N using elemental 

analyzer (Vario Max Cube, Elementar, Germany). The nutrient concentrations of the surface 

peat in each plant community are reported in Table 1. 

Measuring aboveground vascular live standing biomass and biomass production 

The seasonal development of leaf area index (LAI, m
2
 m

-2
) (Wilson et al. 2007) was used to 

estimate the BM and BMP of the vascular plants. For this, we set up five 8 x 8 cm subplots 

inside each of the 18 sample plots. We counted the number of green leaves from the subplots 

11 times over the growing season 2014 (April 4 – Sept 9 of 2014). Average green area per 

leaf or per stem-cm was measured with a scanner on each LAI measurement day. The LAI of 

each species was then calculated for each sample plot and measurement day, based on the 

number of leaves inside the subplots and the average leaf size.  

Aboveground BM of the vascular plants was estimated by converting the 

growing season LAI maxima of each species at each of the 18 sample plots into BM (g m
-2

). 

For this, linear regressions were established for each species between LAI and BM, including 

green leaves, stems and branches (linear parameters and a more detailed description of the 

method are provided in Appendix 1). Aboveground vascular BMP was estimated by 

converting the change in LAI between the spring minimum and mid-summer maximum to 

dry mass (g m
-2

) (Appendix 1); this was done for each species at each of the 18 sample plots.  
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Measuring belowground live standing biomass and biomass production 

Belowground BM was measured in August 2015 from 18 peat cores of 3 x 3 x 50 cm taken 

close to the sample plots from similar plant communities. The cores were cut into 10 cm 

layers. Peat was washed out of roots with water and dead roots (based on visual estimation) 

were removed. Living roots, including rhizomes and coarse roots, were divided into dwarf-

shrub and sedge roots, which were then dried at 40 °C for 48 h before weighing. 

Belowground BMP was estimated with the root ingrowth core method 

described in Laiho et al. 2014. Cylinder-shaped mesh bags filled with live-root-free 

Sphagnum peat were installed into each of the 18 sample plots in October 2012 and removed 

in October 2014. In the laboratory, the cores were cut into 10 cm layers and washed, 

classified, dried and weighed similarly to the belowground BM samples. The sum of live and 

dead roots in the cores was divided by two to obtain an annual BMP estimate (see Bhuiyan et 

al. 2016), as the bags were in place for two years. 

Measuring Sphagnum moss live standing biomass and biomass production 

BM of Sphagnum mosses at each of the 18 sample plots was defined for each species by 

converting their visually estimated projection cover (m
2
 m

-2
) to dry mass of capitula (g m

-2
) 

using the conversion factors in Appendix 1. 

To define the biomass increment of each Sphagnum species we used the 

cranked wire method (Clymo 1970). We installed 66 wires into as homogenous as possible 

patches of each of the eight species to be measured. The length growth, the shoot density and 

the weight of one centimeter of stem were defined in each of the 66 patches between May 19 

and September 7 of 2014. Using these values, the BMP in dry mass g m
-2

 growing season
-1

 

was calculated for each of the cranked wire patches (Appendix 2). For each species, we 

calculated the species-wise average length growth and BMP estimates by averaging results of 
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species-specific patches (Appendix 2). BM production of each Sphagnum species in each 

sample plot was calculated using these species-wise averages multiplied by the relative cover 

of each species inside the plots (m
-2 

m
2
) by the BMP (g m

-2
 growing season

-1
) of the species. 

Statistical analysis 

We tested the differences between the six plant community types of 22 standing biomass and 

biomass production components using linear mixed-effects models. More detailed 

information about the statistical tests and pairwise comparisons between the community types 

is given in Appendix 3. The differences in root BM and BMP among peat layers were tested 

with a one-way ANOVA test for each community type separately.  Statistical analysis were 

done using R-software (version 3.2.0, www.r-project.org). Linear mixed effects models were 

fitted using the lme function from the nlme package in R. 

Upscaling to the ecosystem level 

To define the cover of both the six plant community types and each plant species within the 

study site, we conducted a systematic vegetation inventory in June 2013 within 30 m from the 

EC tower. This was identified as an area where 60% of the EC flux is coming from in 

unstable conditions based on footprint calculations with the Kormann and Meixner (2001) 

model. We estimated the projection cover of each species and defined the community types 

in 121 circular plots, sized 0.071 m
2
, which were arranged as a regular grid around the EC 

tower. Community cover (% of total area) from this inventory was multiplied by BM and 

BMP averages of the permanent sample plots for each of the seven plant community types 

(six with BM estimates).  The weighted values of each community type were then summed to 

give ecosystem-level values of standing BM and BMP. We also calculated error estimates for 

the ecosystem-level BM and BMP estimates by weighting the standard errors of the 

community-type means by the areal covers of each community type. 
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Ecosystem level net primary production (NPP) estimate 

To have an independent comparison for our ecosystem-level BMP estimate, we derived an 

NPP estimate from NEE measured by the EC tower at the site. The raw EC data was recorded 

at a 2.4 m high mast with a METEK-USA1 anemometer and a LI-7200 CO2/H2O gas 

analyzer. NEE was calculated from the raw EC data following standard routines of 

processing (EddyUH software, Mammarella et al. 2016) and quality control.  

Ecosystem respiration (Re) model values were calculated from a Q10-type 

relationship between peat temperature at 5 cm depth and nocturnal CO2 flux:  

 
10

10R

p refT T

e refR Q

 
  
   (Eq. 1) 

where Tp is the peat temperature at a 5cm depth (˚C), Tref the reference temperature (12˚C), 

Rref the reference respiration (123 mg(CO2) m
-2

 h
-1

), and the temperature sensitivity Q10 is 

3.49.  

Heterotrophic respiration (Rh) was estimated using the proportion of Rh from Re derived from 

literature, falling within the range of 43-65% (Crow and Wieder, 2005). Using the lower and 

upper limit of this range, the range of ecosystem-level NPP was estimated as NPP = NEE – 

Rh.  

Results 

Total live standing biomass and biomass production 

In agreement with our first hypothesis, total BM (Sphagna and above- and belowground 

components of vascular plants summed up) was highest in dry vegetation communities and 

decreased steadily towards communities with higher WT (Fig. 1a). As a result, BM was the 

largest (979.3 ± 52.5 g m
-2

, mean ± S.E. from here on) in high hummocks and the lowest 

(211.2 ± 81.8 g m
-2

) in bare peat surfaces (Fig. 1a, Appendix 4). However, against the 
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hypothesis, total BMP was rather even among the plant community types along the WT 

gradient (Fig. 2a). The modest decrease in total BMP with increasing WT was not statistically 

significant. Only the sparsely vegetated bare peat surfaces had lower BMP than the other 

community types (Fig. 2a, Appendix 5e). This balanced pattern was a result of offsetting 

responses of the studied PFTs to WT (Appendix 6a-b). 

Standing biomass and biomass production of different plant functional types 

Both BM and BMP of dwarf-shrubs, above- as well as belowground, were greatest at high 

hummocks and decreased sharply towards the wet end of the WT gradient (Figs. 1e and 2e, 

Appendix 4c and 5c).  The response of total BM to WT was largely shaped by this negative 

WT response of above- and belowground dwarf-shrub BM (Appendix 6a-c). This was due to 

dwarf-shrubs having a larger BM than the other PFTs combined in four out of six community 

types (Appendix 4c). Dwarf-shrub belowground BMP was the largest in the top 0-10 cm 

layer and declined towards the deeper layers in the three dwarf-shrub-dominated community 

types (Appendix 7d). 

Unlike the distribution of overall standing BM and shrub BM, sedge BM was 

concentrated on the wet end of the WT gradient both above- and belowground (Fig. 1e, 

Appendix 4c). However, the effect of WT on total sedge BM was much weaker in 

comparison to dwarf-shrubs (Fig. 1e and 1f). Belowground sedge BM did not significantly 

differ between the plant community types (Fig. 1f) or peat layers (Appendix 7b). 

Aboveground, the only difference was that sedge BM in high hummocks and hummocks was 

lower than in high lawns and hollows (Fig. 1f). Similarly to sedge BM, sedge BMP tended to 

increase with WT (Appendix 6d and 6e) being highest (81.1 ± 5.7 g m
-
² growing season

-1
)

 
in 

hollows and lowest in high hummocks (18.5 ± 5.8 g m
-
² growing season

-1
) (Fig. 2f, Appendix 

5c). Sedge belowground production only showed a relation to peat depth in hollows, where 
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the highest amount of root production was found in the topmost 0-10 cm, because shallow-

rooted R. alba was dominant (Appendix 7e). 

Sphagnum mosses had the highest capitulum BM in hummocks (141.2 ± 5.1 g 

m
-2

) and high lawns (146.2 ± 4.4 g m
-2

) (Appendix 4d, Figs. 1c), i.e. at intermediate WTs 

(Appendix 6c). Sphagnum BMP optimum seemed to occur at higher WTs than their BM 

optimum (Appendix 6c and 6f). Sphagnum BMP was highest in lawns at WT of -4 cm below 

the moss surface (Fig. 2c, Table 1,). Here, BMP of Sphagna was 91.2 ± 8.0 g m
-
² growing 

season
-1

 and the greatest number of species was found (Appendix 5d). 

Biomass turnover rate 

Both above- and belowground, dwarf-shrubs had lower BMP to BM ratio (BMP:BM) than 

sedges (Fig. 3a). Sphagnum BMP:BM increased with habitat wetness; hummock species had 

the lowest BMP:BM and hollow species the highest (Fig. 3b). The BMP:BM of vascular 

plants was higher above- than belowground (Fig. 3a). The differences between dwarf-shrubs 

and sedges in this sense remained masked by the very high variation in belowground sedge 

BM (Appendix 5b). 

Ecosystem level standing BM, BM production and NPP 

Total BM within 30 m radius from the EC tower, calculated as a weighted average of the 

community types, was 587 ± 119 g m
-2

, the majority of which, 446 ± 118 g m
-2

,
 
was root BM. 

Vascular aboveground BM was 59 ± 10 g m
-2

 and Sphagnum capitulum BM 82 ± 4 g m
-2 

(Table 2).  

Total BMP for the same area was 132 ± 15 g m
2
 growing season

-1
, which was 

more evenly distributed between BM components than standing BM. During the growing 

season, the BMP of aboveground of vascular plant components was 44 ± 7 g m
-2

, roots 47 ± 8 

g m
-2

, and Sphagna 41 ± 6 g m
-2

 (Table 2).  
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The growing season (May 1 – Sept 30, 2014) NPP estimate derived from EC 

measurements at the study site ranged from 166 to 202 g CO2-C m
-2

. Since carbon content of 

the organic material in the almost undecomposed surface peat was found to be between 44 

and 72 % (Table 1), our BMP estimate converted to carbon falls between 58-95 g C m
2
 

growing season
-1

, which is considerably lower than the NPP estimate. 

Discussion 

Both above- and belowground BM decreased towards the wet end of the WT gradient, which 

supported our hypothesis and was in line with earlier studies (e.g. Vasander 1982; Moore et 

al. 2002; Murphy & Moore 2010; Laine et al. 2012). The dwarf-shrub BM concentrated in the 

driest plant community types could not be offset by sedges having their largest BM at high 

and Sphagna at intermediate WTs. BMP of these PFTs showed similar responses to WT 

variation as BM, again in agreement with earlier studies (Vasander 1982, Gunnarsson 2005). 

However, contrary to our hypothesis and some earlier research (Kosykh et al. 2008), the total 

BMP of the studied bog did not show a decrease in relation to WT. A similar even pattern has 

been observed in some earlier studies considering only aboveground BMP (Tint 1982; Moore 

et al. 2002). Only bare peat surfaces had lower BMP than other plant community types, 

which all were similar in terms of BMP. Thus, unlike BM, the increase in the BMP of the 

other PFTs compensated for the decrease in BMP of the shrubs.  

The different patterns of BM and BMP reflect the higher BMP:BM of sedges 

and hollow Sphagna in relation to dwarf-shrubs and hummock Sphagna (Fig. 3). Sphagnum 

species growing in wet habitats are known to have a higher photosynthesis rate than 

hummock species (Gunnarsson 2005; Korrensalo et al. 2016). In our study, this was 

demonstrated well by the shift in WT optimum between BM (-13 cm) and BMP (-5 cm) of 

Sphagna (Fig. 1). Also, sedges are known to have a higher photosynthesis rate in relation to 
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their BM than dwarf-shrubs (Leppälä et al. 2008). The difference in BM turnover rate 

between the hummock and hollow species reflects their different ecological strategies in 

relation to resources, mainly water and nutrients, which were earlier described as fast and 

slow strategies (Reich 2014). In wet hollows, where water availability rarely limits the 

growth, sedges have a shorter leaf life span, higher specific leaf area and higher BM turnover 

rate than shrubs dominating the dry hummocks, where low water availability favors slow-

growing plants that use the same leaf tissue for a longer time. Unlike vascular plants, 

Sphagna do not have roots to access water, so the difference in resource use strategy may be 

even more pronounced among them. Also, in large forest datasets, the species with short leaf 

life spans have been found to have lower BM and higher BMP:BM; interestingly, total BMP 

does not seem to be correlated with leaf life span, a trend also seen in our study (Reich et al. 

1992). However, more studies are needed to reveal the role of nutrients in addition to water in 

the even BMP along the WT gradient. 

The large diversity of vegetation at our site is linked to the large 

microtopographical variation present, which is characteristic of some bogs (Sottocornola et 

al. 2009). In addition to the WT variation itself, this diversity is suggested to be partly a result 

of resource contrast between the plant communities at the opposite ends of the WT gradient 

(Belyea 2007). Resource contrast is the result of nutrients being washed from hummocks to 

wetter surfaces in areas of high precipitation, and conversely, nutrients accumulating on 

hummocks when evapotranspiration is high (Eppinga et al. 2010). If the ratio between 

evapotranspiration and precipitation is to change in the future, the processes driving the bog 

patterning may also change with yet unknown consequences for the binding of carbon into 

plant biomass.  

Both BM and BMP estimates obtained in this study were mostly lower than 

previously reported for peatlands, even for similar, treeless, nutrient poor ombrotrophic bogs 
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(aboveground BMP in Tint 1982). However, many of the earlier estimates have been 

measured at drier bog sites with a higher cover of arboreal vegetation (Vasander 1982; Moore 

et al. 2002) or with higher nutrient status (Kosykh et al. 2008) than in this study. In hollows, 

at WTs similar to high hummocks of our study, Moore et al. (2002) found an aboveground 

BM estimate of 308 g m
-2

, which is reasonably close to the 247.3 ± 24.8 g m
-2

 estimate at our 

high hummocks. Moreover, we only measured BM of Sphagnum capitula because of the 

large uncertainty related to separating dead and live sections of Sphagnum stems (Clymo 

1970).  

However, it seems that our BMP estimate is somewhat underestimated, as it 

was notably smaller than the NPP estimate derived from EC measurements. Also the NPP 

estimate contains some error sources, e.g. the possibility of a systematic overestimation in 

EC-derived Re (Phillips et al. 2016). However, both the NPP estimate and the mean annual 

NEE fell within the range of previously studied boreal and temperate bogs (Vasander 1982; 

Tint 1982; Petrescu et al. 2015; Wilson et al. 2016; Pavel Alekseychik, unpublished data). 

The explanation for the gap between the NPP and BMP estimates is presumably threefold. 

First, some components of BMP may have been underestimated in this study. The vertically 

installed root ingrowth cores may not have been able to capture all of the vertically growing 

sedge fine roots, and the installation of the cores may have caused disturbance, possibly 

leading to underestimation of root BMP. Sphagnum BMP may have been underestimated by 

not measuring their growth in early spring and late autumn. Second, there are some 

components of BMP that the methods used in this study were not able to capture. These 

include e.g. root production in >50 cm of depth, vascular plant reproductive tissues, coarse 

roots, rhizomes and the few sporadic trees at our site. Third, the discrepancy between our 

BMP and NPP estimates may not only be due to BMP underestimation, as it is known that a 

part of annual NPP does not accumulate as plant BM. Instead, it is lost via e.g. leached root 
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exudates, volatile organic compounds (VOCs), litterfall during the growing season and 

herbivory (Clark et al. 2001; Roxburgh et al. 2005).  A possible explanation beyond these 

three points is that Sphagna are known to uptake a large part of their C as CO2 and CH4 

coming from peat decomposition below (Smolders et al. 2001; Limpens et al. 2008; Larmola 

et al. 2010), but how this affects the ecosystem-level C fluxes is not yet known. The 

contribution of most of the components underestimated or missing in this study remain 

poorly known for peatlands. Therefore, the discrepancy between the two estimates highlights 

the difficulties in empirically estimating BMP and NPP. Based on these results, it seems 

essential to continue empirical work in quantifying the missing components of NPP to fully 

understand the carbon sink of peatland ecosystems.   

The effect of changing climatic conditions on the carbon binding function of 

peatlands has been studied both empirically (Weltzin et al. 2000; Breeuwer et al. 2009) and 

using process-based models (Frolking et al. 2010; Heijmans et al. 2013; Gong et al. 2013). 

Due to the previously observed increase in standing BM and BMP with decreasing WT, 

many studies predict an increase of bog BM production both above- and belowground and a 

shift towards larger dominance of woody vegetation resulting from water level drawdown 

(Laine et al. 1995; Breeuwer et al. 2009; Holmgren et al. 2015). The lower decomposability 

of shrubs and Sphagna associated with drier habitats is significant for the carbon binding 

function of bogs (Turetsky et al. 2008; Straková et al. 2011). In the bog site studied here, 

paleoecological data has revealed that past shifts towards a drier climate have increased the 

abundance of drier habitats (Mathijssen et al. 2016). However, current climate scenarios for 

the boreal vegetation zone (IPCC 2013) do not seem to predict a drop in WT sufficient to 

induce a shift from current vegetation of Siikaneva to that of previously studied sites, e.g. 

dwarf-shrub dominance in Moore et al. (2002) or higher tree cover as in Vasander (1982). 

Instead, temperature and precipitation fluctuations have been predicted to increase in the near 
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future (IPCC 2013). In model simulations, the bog vegetation of temperate climate zone was 

observed to be rather resilient towards changes in WT, but changes in temperature were more 

likely to shift the vegetation towards dominance of trees (Heijmans et al. 2013). 

The even BMP across the WT gradient observed in this study may be a 

mechanism for resiliency towards climate-induced WT fluctuations, because of the different 

WT optima of the species present. In a previous study by Breeuwer et al. (2009), decreased 

and fluctuating WT did not result in a significant decrease of aboveground vegetation cover 

and BM of a bog, exactly due to the diversified responses of dwarf-shrubs, sedges and 

Sphagnum species to changed WT. Our results suggest that in a bog with diverse PFTs 

having differing WT optima, the BMP may not change dramatically after a small and 

fluctuating WT drawdown. This, again, could provide stability for the ecosystem carbon sink 

under changing moisture regimes. In addition to WT, the abundances of bog plants are known 

to have differential responses to changing temperatures among species, or even within one 

species depending on its habitat (Buttler et al. 2015). In addition to long-term changes in 

climate, also the annual weather conditions are likely to change the contributions of different 

plant communities and plant species to ecosystem-scale BMP reported here during one 

growing season. In order to reveal how the net primary productivity of bog ecosystems 

responds to moisture and temperature variations and what the role of PFTs is in this process, 

more long-term studies are needed - either experimental studies or comparisons of sites with 

different PFT composition over several years. In addition, paleoecological studies may offer 

insight to the longer-term changes in peatland vegetation patterning in response to larger 

shifts in climatic conditions. 
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Appendix 6. The relation of live standing biomass and biomass production to water table at 
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production in differents depths below the moss capitula. 
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Tables and figures 

Table 1. Plant community types listed from driest to wettest with their mean water table (WT) (9.4.-24.9.2014), areal cover at the study site, the 

gravimetric content of P, N and C and the C:N ratio of surface peat (0-20 cm). 

Community type Vegetation composition Mean WT (cm) Areal cover (%) P (%) N (%) C (%) C:N 

High hummock 

(HHU) 

High cover of Sphagnum fuscum and dwarf-shrubs 

(Empetrum nigrum, Calluna vulgaris, Betula nana). 

-25 14.0 0.019 0.87 47.56 57 

Hummock (HU) Sphagnum fuscum coverage of >10 %, Eriophorum 

vaginatum present, no dwarf-shrubs except Andromeda 

polifolia.  

-13 7.4 0.008 1.51 71.91 76 

High lawn (HL) Sphagnum rubellum is the dominant moss species, 

S. fuscum coverage of <10 %. 

-12 16.5 0.030 1.40 61.50 61 

Lawn (L) Moss layer dominated by Sphagnum papillosum, S. 

magellanicum and S. balticum. 

-4 21.5 0.017 0.80 43.66 53 

Hollow (HO) Moss layer dominated by Sphagnum majus and S. 

cuspidatum. Field layer dominated by Rhynchospora alba 

and Scheuchzeria palustris. 

-3 13.6 0.023 1.39 63.34 62 

Bare peat (BP) Ground layer consists mainly of bare peat without 

Sphagna. Rhynchospora alba is the dominant in field 

layer. 

-1 15.3 0.026 1.68 47.95 29 

Water (W) Open water. The proportion of Sphagna or bare peat of the - 11.6 - - - - 
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ground layer is <10 %. 

Weighted average for the site  

(weighted by the cover of the community types) 

-8  0.019 1.08 47.46 47.93 
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Table 2. Ecosystem level standing BM and BMP based on the areal cover of the plant 

community types at the study site. Other vascular plant species than sedges and dwarf-shrubs 

are included in the total vascular BM estimates. Error estimates are calculated as an average 

of community type standard errors weighted by the cover of each community type within the 

site. 

 

Standing BM  BM production 

  

 (g m
-2

) % of total 

aboveground 

(g m
-2 

growing 

season
-1

) 

% of total 

aboveground 

Total aboveground 140.9 ± 9.9   84.6 ± 8.0   

Sphagnum mosses 82.1 ± 3.5 58 41.1 ± 5.8 49 

Vascular total 58.8 ± 9.8 42 43.5 ± 7.1 51 

Dwarf-shrubs 32.9 ± 6.8 23 17.3 ± 3.7 20 

Sedges 20.7 ± 5.2 15 20.7 ± 4.8 24 

Other vasculars 5.2 ± 3.0 4 5.5 ± 3.0 7 

  % of total 

belowground 

 % of total 

belowground 

Total belowground 445.7 ± 118.3   47.0 ± 7.6   

Dwarf-shrubs 337.2 ± 111.2 76 25.4 ± 4.4 54 

Sedges 108.6 ± 40.9 24 21.6 ± 6.2 46 

  % of total  % of total 

Total 586.6 ± 119.3   131.6 ± 14.5   

Sphagnum mosses 82.1 ± 3.5 14 41.1 ± 5.8 31 

Vascular total 504.5 ± 119.9 86 90.5 ± 13.9 69 

Dwarf-shrubs 370.1 ± 110.3 63 42.7 ± 7.5 32 

Sedges 129.3 ± 41.5 22 42.3 ± 9.5 32 

Other vasculars 5.1 ± 3.0 1 5.5 ± 3.0 4 
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Figure 1. Average live standing biomass (BM) in different plant communities. BM of a) 

summed above- and belowground compartments, b) Sphagna, c) total aboveground 

vegetation, d) vascular plants above- and belowground, e) dwarf-shrubs above- and 

belowground and f) sedges above- and belowground. Negative values (1d-1e) represent 

belowground biomass and bars represent standard error. Lettering (a to d) indicates 

significantly different subsets (p<0.05) where letters in common represent homogeneous 

groups based on linear mixed effects models. One very high belowground biomass value is 

removed from the graph for visual reasons, but it is included in all of the analysis. 
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Figure 2. Average biomass production (BMP) in different vegetation communities. BMP of 

a) summed above- and belowground compartments, b) Sphagna, c) total aboveground 

vegetation, d) vascular plants above- and belowground, e) dwarf-shrubs above- and 

belowground and f) sedges above- and belowground. Bars represent standard error. Lettering 

(a to d) indicates significantly different subsets (p<0.05) where letters in common represent 

homogeneous groups according to the linear mixed-effects models. 
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Figure 3. Average ratio (BMP:BM) of biomass production (BMP) to live standing biomass 

(BM) of (a) vascular plants above- and belowground and (b) Sphagnum species growing in 

different plant communities. Error bars represent standard error. Please note that the ratio in 

(b) describes Sphagnum production in relation to standing capitulum biomass. 

 




