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Abstract 

In the light of a dire need to reduce greenhouse gas emissions (GHG) from food value 

chains, this paper analyses GHG emissions from wine production based on primary 

data from 5 wineries, one wine cellar and 9 grape producers in Germany and explores 

main emission sources based on their contributions to variance. Considering system 

boundaries from cradle to gate we found a 90% confidence interval for results between 

0.753 and 1.069 kg CO2e per bottle of wine. Main contributors to variance were bottle 

weight (31%), electricity usage (18%), heat (11%), yield (-9%), and diesel use in 

vineyards (9%). Looking at production process phases, 19% of emissions resulted 

from the production of wine grapes, while 81% were attributable to the winery phase, 

mainly to the packaging materials (57%). Exploring the mitigation potential of a 

reduction in bottle weight, reuse of glass bottles, increase in packaging volume and 

renewable energies, we found that the reuse of glass bottles deserves close attention 

from wine producers, consumers, and policy makers who strive for an effective 

decarbonization of the wine value chain. The mitigation potential of the reuse of an 

average bottle exceeds the mitigation potential from a reduction in bottle weight by 

more than threefold. A combination of the replacement of grid electricity by renewable 

energies, bottle weight reduction and reuse can curb GHG emissions per bottle of wine 

by 47%. 
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1 Introduction 

Germany´s long history of wine production dates back to the Roman era. As the world´s 

tenth largest wine producer, with an annual volume of 8.9 million hectolitres from 

approximately 102,000 hectares of planted vineyards in 2016, Germany is amongst 

the most important markets in terms of wine consumption. Its consumption volume of 

20.5 million hectoliters (hl) the country is exceeded only by Italy (22.5 million hl), France 

(27.0 million hl) and the USA (31.8 million hl) (OIV, 2017). With a market volume of 

€8.9 billion, wine plays an important economic role (Deutsches Weininstitut, 2017). 

A lot of attention has been paid to the environmental impacts of the wine value chain 

(Christ and Burrit, 2013). A focus on greenhouse gas emissions (GHG) can be 

observed in the literature, referred to as a proxy for environmental impacts (Rugani et 

al., 2013). An estimate of the contributions of wine to global anthropogenic greenhouse 

gas emissions revealed that this value chain cannot be overlooked, contributing 

approximately 0.3% of annual global GHG emissions (Rugani et al., 2013). Amienyo 

et al., 2014 demonstrated the significance of the wine sector on the national level for a 

country with a high wine consumption per capita, estimating that the annual wine 

consumption in the UK caused 0.6% of the national GHG emissions. This 

demonstrates that while the wine industry is highly affected by climate change (Hannah 

et al., 2012, Galbreath 2012), it also is a relevant driver of global warming.  

Internationally, wine producers regard the inventory of the greenhouse gas emissions 

related to their activities, commonly referred to as carbon footprint (CF), as an 

incremental element of environmental sustainability (Szolnoki, 2013), and a driver for 

eco-innovation (Navarro et al., 2017a). The communication of low GHG emissions to 

customers provided a competitive edge for food items in Germany, as the consumer´s 

willingness to pay was positively associated with lower carbon emissions (Grebitus et 

al., 2017). This tendency was confirmed for wine by Schäufele and Hamm (2017), who 

found a higher willingness to pay for wine with sustainability characteristics. 

Consequently, the assessment, communication and effective reduction of the carbon 

footprint directly benefits the market position of a winery while contributing to the much-

needed mitigation of climate change. 
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CF studies on wine typically refer to a production area or country, with several studies 

focussing on Spain (e.g. Navarro et al., 2017a; Gazulla et al., 2010; Vázquez-Rowe et 

al., 2012a; Vázquez-Rowe et al., 2012b; Villanueva-Rey et al., 2014) and Italy (e.g. 

Ardente et al., 2006; Pizzigallo et al., 2008; Benedetto, 2013; Cichelli et al., 2016). 

Further, wine production in France (Jradi et al., 2018), Portugal (Neto et al., 2013), 

Canada (Point et al., 2012), and California in the USA (Steenwerth et al., 2015) was 

assessed. Wine producers from several countries such as France and Spain (Navarro 

et al., 2017) and Italy, Luxembourg and Spain (Vázquez-Rowe et al., 2013) were 

analysed based on the same methodological assumptions. Villanueva-Rey et al. 

(2014) compared conventional and biodynamic wine grape production systems, 

attributing lower GHG emissions to biodynamic wine grapes. Several authors often 

refer to only one winery or vineyard (e.g. Neto et al., 2013; Fusi et al., 2014; Benedetto, 

2013; Vázquez-Rowe et al., 2012b, Marras et al., 2015; Penela et al., 2009). Despite 

high variations in annual yield and the subsequent effects on a carbon footprint 

calculation, the assessment of more than one harvest year is rare (Villanueva-Rey et 

al., 2014, Vázquez-Rowe et al., 2013, 2012b).  

The inherently high degree of variability of agricultural systems compared to other 

economic sectors is embedded in a farmer´s preferences and know how, soil types, or 

climates (Notarnicola et al., 2017), and is particularly pronounced for the wine value 

chain. In their extensive review on GHG emission from wine production, Rugani et al. 

(2013) reported an average of 2.2 (+- 1.34) kg CO2e per 0.75 L bottle of wine from 

‘cradle to grave’, considering the full life cycle from vineyard establishment to waste 

disposal. If limiting the focus to the production of one bottle of wine from cradle to gate, 

the reported average results were 0.79 (+- 0.30) kg CO2e for organic wine, and 1.06 

(+-0.73) kg CO2e for conventional wine. The high standard deviations were explained 

by substantial differences in production methods and material use at vineyard or winery 

level (Vazquez-Rowe et al., 2013) but also by methodological differences between 

studies, such as the choice of system boundaries, allocation, and source of emission 

factors (Rugani et al., 2013). Yield fluctuations were pointed out as a main influencing 

factor by Vázquez-Rowe et al. (2012b) and Bosco et al. (2011). Combined, these 

influencing factors limit the comparability between study results and the transferability 

thereof to other wine-growing areas. 
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Because of the consistently dominating impact of the production of glass bottles, 

reducing the GHG emissions of the glass bottle via a reduction of bottle weight is widely 

recognized as the key mitigation option for the wine value chain (Navarro et al., 2017a, 

Point et al., 2012, Amienyo et al., 2014). A particularity of the German beverage market 

is the reuse of glass bottles, common for mineral water, juice and beer distributed in 

PET and glass bottles, and for wine sold by wineries and cellars for local consumption. 

We argue that in light of the dire need for GHG emission reductions in our food 

systems, the mitigation potential from the reuse of glass bottles deserves closer 

attention. 

This study seeks to contribute to a better understanding of GHG emissions from wine 

production in Germany through assessing the range and variability of GHG emissions 

based on primary data from 5 wineries and one wine cellar with 9 grape producing 

members. To support wine producers, wine consumers, and policy makers in their 

aspirations for low carbon production and consumption strategies, based on primary 

data we explore the mitigation potential of (1) the reduction in bottle weight, (2) the 

reuse (washing) of wine bottles, (3) an increased bottle volume, and (4) the 

replacement of grid electricity by renewable energy. 

2 Material and methods 

2.1 Methods 

This article is based on the standardized life cycle assessment (LCA) methodology 

(ISO 14040, 2006) while the focus is on GHG emissions. Following the GHG Protocol 

(WRI, WBCSD 2004, 2011) data were gathered on company level and allocated to the 

final product. This top-down approach is feasible for wine CF studies, but does not 

display a product carbon footprint (Navarro et al., 2017b).  

Following the GHG protocol (WRI, WBCSD 2004, 2011), the emission sources were 

structured into three spheres of influence (Table 1): direct emissions that occur directly 

in the vineyard or on premises of the winery (‘scope 1’), indirect emissions from 

electricity production (‘scope 2’), and other indirect emissions (‘scope 3’) that occur 

upstream or downstream of the core activities. Scope 1-emissions include the 

combustion of diesel by tractors, and direct field emissions such as N2O from the 

application of Nitrogen and CO2 from liming. At the winery stage, direct emissions 

include the use of diesel and petrol by the company car fleet, the use of fossil fuels to 
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produce heat and steam and leakages of cooling agents. Indirect emissions (scope 2) 

cover purchased electricity. Other indirect emissions (scope 3) at the viticulture stage 

include the material of the trellis systems for the establishment of the vineyards, the 

production of fertilizer and phytosanitary products. At the winery stage, emission 

sources encompass additives and cleaning chemicals, as well as packaging material 

(glass bottles, closures, labels and secondary packaging material such as cardboard 

boxes and plastic foil), and the provision of fossil fuels. The contribution of Human 

Labour (HL) is an integral part of all process stages of wine production, and related 

GHG emissions from the commuting of staff to the vineyard and the winery were 

included. 

The calculation of GHG emissions was performed with MS Excel, while the statistical 

modelling was carried out using the @risk 5.5 software (Palisade Corp., Ithaca, NY). 

Table 1: Information retrieved by questionnaires per scope 

Viticulture stage Winery stage 

                                           Scope 1 – direct emission sources 

Diesel use by tractor (L) Diesel and gasoline used in vehicles (L) 
N2O from fertilizer applications (kg N-fertilizer) Heat production, natural gas and heating oil 

(kWh) 
CO2 from liming (kg CaCO3) Fugitive emissions from losses of cooling agents 

(kg) 
                                           Scope 2 – indirect emission sources 

n.a. Electricity (kWh) 
                                           Scope 3 – other indirect emission sources 

Trellis system material1 (kg) and lifespan 
(years) 

Additives and cleaning agents (kg) 

Production of fertilizer (kg synthetic N, P2O5, 
K2O) 

Reusable and single use glass bottles (0.75 L, 1.0 
L) (kg) 

Production of phytosanitory products (kg) Labels and stoppers (kg) 
Commuting of staff (pkm2) Secondary packaging (boxes, foil) (kg) 
 Provision of fossil fuels (kWh, L) 
 Commuting of staff (pkm) 

1 The vine training system typical for the assessed wine-growing areas consisted of wood poles, metal 
poles, and wire. 
2 Passenger kilometre 

2.2 System description 

The wine production system can be subdivided into A) establishment of the vineyard 

B) grape production, C) vinification, D) bottling and packaging, E) transport to the point 

of sale, F) purchase and consumption. The system boundaries of this study 

encompass phases A+B and C+D (Figure 1), referred to as ‘viticulture’ and ‘winery’.  



   

 
6 

 

Figure 1: System boundaries 

Emission sources from subsequent process steps, and the transportation and 

treatment of non-organic waste were excluded. The vast majority of vineyards in this 

study were not irrigated. There was no data on irrigation water and the energy 

requirements for the pumps for vineyards under irrigation, therefore these emission 

sources were neglected. Cooling agents can have a powerful global warming potential 

and leakages have to be reported as direct emissions in scope 1 under the GHG 

Protocol (2004, 2011). There were no leakages of cooling agents reported by the 

wineries, which mainly used water and dried ice for cooling. 

The functional unit was 0.75 L wine. GHG emission sources were reported separately 

for the viticulture and the winery stage. For viticulture, GHG emissions were reported 

per hectare of vineyard and FU, following Navarro et al. (2017a), Steenwerth et al. 

(2015), Vázquez-Rowe et al. (2013), and Bosco et al. (2011). 

The allocation of inventory data and results per hectare of vineyard to FU was done 

based on grape yield and wine yield (kg grapes to L wine), which was assumed to be 

0.75. The range found in literature varied from 0.65 (Bonamente et al., 2016) to 0.78 

(Weinverordnung, 2009). 

The inventory was based on primary data of material and energy fluxes from 5 

wineries, one wine cellar and 9 wine grape producers located in the wine-growing 

areas Baden (1), Wuerttemberg (2), Palatinate (11), and Rhinehessen (1), surveyed 

between 2010 and 2016. Quality wine (“Qualitätswein bestimmter Anbaugebiete, 

Q.b.A.”) was produced from red and white wine grapes. The production systems 

encompass 5 wineries with a certified sustainable farming approach (FairChoice®), of 

which one produced organic wine grapes, and 9 grape producers with conventional 

production. The data cover 220 hectares of vineyard and a yield of 2,206 tons of 
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grapes. The inventory was compiled by a questionnaire, which was checked and 

clarified where necessary. It covers one calendar year (1st of January until 31st of 

December). 

2.3 Data modeling and assumptions 

Emission factors were retrieved from the ecoinvent database V.3.4 (ecoinvent, 2017). 

Here, the characterization factor employed was the GWP 100 based on IPCC 2013, 

with allocation at the point of substitution (ecoinvent, 2017) (Table 2). Emission factors 

for fossil fuels were retrieved from defra (2016). For the production of packaging glass, 

we relied on the Bundesverband Glas (BV Glas 2013), the association of glass 

manufacturers in Germany, because this emission factor was based on a recent 

carbon footprint of several glass producers, considering the actual energy 

consumption, transport distances and the current recycling rate (0.743 kg CO2e/kg 

glass). This emission factor exceeds the one supplied by ecoinvent by 0.237 kg 

CO2e/kg glass. 

Pre-chains of fossil fuels were included. Emissions from grid electricity were based on 

Icha and Kuhns (2018). GHG emissions related to the use of synthetic N fertilizers 

occur during the production and transportation, and in the form of N2O emissions from 

application. N2O-N emissions from the application of N to soil were estimated based 

on IPCC methodology (IPCC 2006), using the default emission factor of 1% of N2O-N 

per kg N applied. Indirect emissions from N losses in temperate zones were included 

following Cherubini et al. (2009), therefore a factor of 1.35% of N2O-N was assumed, 

which were converted into N2O based on molecular mass (44/28). Based on the global 

warming potential of N2O of 265 (Myhre et al., 2013) GHG emissions from the 

application of fertilizer were assumed to be 5.62 kg CO2e per kg N. Regarding the 

production and transportation of N-fertilizer, we assumed the lower range of Lal (2004) 

who reported a range of 3.3 to 6.6 kg CO2e/kg N fertilizer. 

Organic fertilizers such as grape marc and yeasts were categorized as waste streams 

from processes within the wine cellar, and no GHG emissions were allocated to their 

production. Direct and indirect GHG emissions from the application were calculated 

based on the N content (KTBL, 2013). Following the methodology of IPCC (2006) and 

Cherubini et al. (2009), 1.35% of N2O per kg N was assumed. 

The emission factors for the production of sulphur and copper compounds and canola 

oil were used, while GHG emissions from other fungicides were approximated with a 



   

 
8 

generic emission factor for pesticides. For herbicides we assumed the emission factor 

of glyphosate. Emissions from the production of pheromones were neglected due to 

the lack of an emission factor. 

The contribution of Human Labour (HL) is an integral part of all process stages of wine 

production. As Rugani et al. (2012) highlighted, the recognition of HL in life cycle 

inventories is relevant as no product would exist without HL, and contributes to a more 

accurate result. Related GHG emissions of HL in wine production were approximated 

based on the commuting of staff (pkm, passenger kilometre) per means of 

transportation. Data were available for the wineries only.  

The type and amount of wine additives, including wood barrels, and cleaning agents 

was considered. In absence of emission data from barrel production we estimated the 

emissions based on weight, life-span transport distance, and mode of transport from 

the production site to the wine cellar. 

The materials for the poles encompassed wood and coated iron or steel, with life spans 

ranging from 20 to 50 years. An average lifespan of 30 years was assumed. 

Table 2: Inventories of main emission sources retrieved from the ecoinvent database 

Input into pro-
duction system 

Inventories retrieved from ecoinvent V.3.4 

Viticulture 

P2O5 fertilizer market for phosphate fertilizer, as P2O5, GLO 

K2O fertilizer market for potassium fertilizer, as K2O, GLO 

CaO market for quick lime, GLO  

CaCo³ limestone, milled, packed, RoW  

Copper 
compounds 

copper sulfate production, GLO 

Potassium 
hydroxide 

market for potassium hydroxide, GLO 

Sulfur market for sulfur, GLO 
 

Pesticide, other pesticide production, unspecified, RER 

Herbicide glyphosate production, RER 
 

Wood pole beam, softwood, raw, air drying to u=20%, RoW; assuming a wood density of 
510kg/m³ 

 

Metal pole market for steel, low alloyed, GLO & market for zinc coating, pieces, GLO & 
market for impact extrusion of steel, GLO 

Metal wires, zinc 
coated 

market for steel, low alloyed, GLO & zinc coating, coils, RER & market for wire 
drawing, steel, GLO 

Plastic cover for 
young vines 

HDPE granular, RER & extrusion, plastic pipes, RER 

Bottling / packaging 
Aluminium 
closure 

aluminium production, primary, ingot, IAI Area, EU27 & EFTA & market for sheet 
rolling, aluminium, GLO 

Packaging film market for packaging film, low density polyethylene, GLO 

Cardboard box corrugated board box production, RER 
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Label market for printed paper, offset, GLO 

2.4 Sensitivity analysis 

To illustrate the effect of the range provided by the LCI on the final result, we carried 

out a sensitivity analysis based on a Monte Carlo simulation (Meneses et al., 2016, 

Wei et al., 2015). The simulation considers the variability in the inventory data only, 

thereby exploring the natural variability (Björklund, 2002) of the wine value chain. 

We determined a confidence interval of results of 90% based on 10,000 simulations, 

assuming a uniform distribution based on the range of GHG emissions displayed in the 

result section. Parameters for viticulture encompass trellis system material, diesel, 

fertilizer, phytosanitory products, and commuting of staff to vineyards. For the winery 

phase the parameters include electricity, heat, fuel used in company cars, commuting 

of staff to the winery, additives and cleaning agents, and packaging material. For the 

viticulture phase those correlations with statistical significance were included, which 

was limited to the correlation between trellis system and phytosanitory products 

(r=0.660) and the production of fertilizer and direct field emissions (r=0.822). 

2.5 Scenario modelling 

The reduction of bottle weight is a key mitigation option identified by many previous 

authors (e.g. Navarro et al., 2017a, Amienyo et al., 2014, Point et al., 2012). In addition 

to weight reduction, we explore mitigation potentials related to the reuse of glass 

bottles, which is common for wine distributed by wineries and cellars for local 

consumption within the wine-growing areas. However, this bottle type is not common 

for wine distributed nationwide, exported, and for wine sold in supermarkets. While 

single-use glass bottles were recycled after their disposal in glass containers, reusable 

bottles had to be returned to a winery that takes back reusable bottles, or another 

collection point from which the used bottles can be transported to a washing facility. In 

these facilities, the bottles were cleaned, disinfected, and returned to the wineries. It 

was assumed that the distance (return) between winery and washing facility was 50 

km, covered by an average van. Process flows are illustrated in Figure 2. While glass 

bottles for water or beer are reused up to 50 times (Schonert et al., 2002), the optical 

requirement for a wine glass bottle is an unscathed appearance, which severely limits 

the use cycles. In the absence of data, we assumed a reuse rate of 5 and the recycling 

thereafter in the same way as single use glass bottles once disposed of in a glass 

container. The reuse rate served as an allocation factor for the production of a new 
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glass bottle to the production phase of a reusable glass bottle, with reference to the 

respective bottle weight. GHG emissions attributed to the transport and washing were 

calculated based on primary data of a bottle washing facility (Table 3). The scenario 

considers the mean and the range of the bottle weight reported by the wineries and 

the cellar, which was considered when computing the GHG emissions from glass 

production for reusable glass bottles. 

 

Figure 2: Process flow diagram of single use and reusable glass bottles 

Table 3: Primary data from the bottle washing facility 

Process inputs for one 
bottle 

Unit Value 

Glass bottle1 kg 0.527 

Heating oil kWh 0.032 

Electricty kWh 0.008 

Water L 0.650 

Transport 50 km tkm 0.025 
1 Mean weight of a 0.75 L bottle based on inventory data 

As an alternative to the 0.75 L glass bottle, the 1 L glass bottle is a packaging type 

mainly used for entry-level wines, available for single use or reuse. We considered the 

empirical mean bottle weight of 0.510 kg. 

Electricity from renewable energies is a recognized mitigation option. Wine producers 

could produce electricity from renewable energy sources on own premises or purchase 

it from a power provider. While direct emissions from the production of renewable 

energy are zero (WRI, WBCSD 2004), this is not the case when following a life cycle 

approach due to upstream (scope 3) processes. We assumed renewable energy 
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generation with photovoltaic and applied a regional emission factor (0.068 kg 

CO2eq/kWh, Memmler et al. 2017). 

Following the goal of the study we quantified the mitigation potential from weight 

reduction, comparing it to the reuse of bottle and the use of a larger bottle volume. 

Therefore, we developed six scenarios: (1) the reduction of weight of an average 0.527 

kg bottle, (2) the reuse of an average bottle, (3) the combination of a reduction of weight 

from average to light weight and reuse. Regarding the increase in bottle volume we 

assumed the use of a (4) 1.0 L disposable and (5) 1.0 L reusable glass bottle. In 

addition, we modelled (6) the replacement of grid electricity by renewable energy.  

2.6 Inventory 

2.6.1 Viticulture 

The inventory is presented in detail in Table 4. The range of weight displayed for trellis 

can be explained by deviations in slope of the vineyards, row spacing and number of 

vines per hectare (KTBL, 2013), and the differences in the weight of wood and metal 

poles. 

Diesel use was subject to several factors such as the distances between vineyards 

and the winery, the tractor type, as well as type and amount of viticultural activities. 

The establishment of new vineyards can also be a cause for high diesel usage. The 

comparatively high diesel consumption of grape producer 3 can be explained by the 

prevalence of steep slopes and relatively high demands for phytosanitation due to a 

particularly moist microclimate.  

The types and amounts of herbicides and pesticides were highly farm-specific. The 

application of a herbicide band underneath the vines and the establishment of a cover 

crop was common for the assessed conventional vineyards, which results in lower 

amounts of herbicides used compared to vineyards with a broad herbicide band or full-

surface treatments. The organic vineyard did not use herbicides. Insect pests were 

controlled with pheromone traps, insecticides were not used. 

The amount and type of fertilizer supply varied substantially between the producers, 

which reflects the recommended range of N of 0 to 80 kg N/ha (DLR RLP, 2018). One 

grape producer did not add fertilizer, 4 relied entirely on organic sources of N, and 4 

supplied 30 to 60% of N with organic fertilizer (Table 4). The amount and type of 

fertilizer typically depends on the soil type, humus content, management, vigour of 
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vines, and the outtake of nutrients by the harvest of grapes and the type of cover crop, 

which may supply the N required by a vineyard partially or even totally (DLR RLP, 

2018). 

Grape yield per hectare varied but was not explained explicitly. Influencing factors 

include grape variety, quality management regime, age of vineyard, climate, and 

seasonal weather events. The average wine grape yield was 10.75 tons per hectare 

(t/ha) (min 7.22, max 13.90), which is below the national average (12.4 t/ha) reported 

by Anderson and Nelgen (2017), but at the upper end of the range referred to by other 

studies, such as 10 t/ha (Amienyo et al., 2014), 6 to 12 t/ha (Notarnicola et al., 2003), 

5 to 11 t/ha (Bosco et al., 2011), and 3.7 to 11.4 t/ha (Navarro et al., 2017a). 
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Table 4: Inventory data per hectare for wine grape production (viticulture phase) 

Inputs from the  unit winery / grape producer 

technosphere 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 mean min max 

Trellis system1 kg n.a. 183.2 304.0 228.8 190.4 173.8 111.8 147.2 152.5 143.7 145.2 112.5 90.1 136.8 163.1 90.1 304.0 

Diesel L 246.4 293.2 369.2 89.4 43.5 156.6 193.1 139.8 173.7 159.5 193.3 156.7 127.7 159.1 178.6 43.5 369.2 

Fertilizer 
               

   

Synthetic N kg 0.1 35.7 37.2 - 67.0 27.3 - - 30.6 27.9 - 14.7 42.6 31.2 22.4 - 67.0 

 Organic N  kg 39.5 11.6 24.9 22.6 11.2 15.3 - 14.0 5.6 19.1 25.5 22.1 - 7.3 15.6 - 39.5 

 % Organic N  % 100% 25% 40% 100% 14% 36% n.a. 100% 15% 41% 100% 60% 0% 19% 50% 0% 100% 

 P2O5  kg 11.6 4.6 - - 24.0 - - - 8.3 20.7 - 26.7 12.8 8.5 8.4 - 26.7 

 K2O  kg 7.4 18.1 12.3 - 34.0 58.0 - - 41.7 43.1 - 36.9 63.9 42.6 25.6 - 63.9 

 MgO  kg 3.6 4.6 - 57.4 4.0 29.0 - - 16.7 16.6 - 8.3 25.5 17.0 13.1 - 57.4 

CaO kg - - 62.0 - - - - - - - - - - - 4.4 - 62.0 

CaCO³ kg - - - - - - - - - 79.7 - 46.1 - - 9.0 - 79.7 

Phytosanitory 
products 

               
   

Copper 
compounds 

kg 
- 22.0 3.9 1.1 6.4 - - - - - - - - - 2.4 - 22.0 

Potassium 
hydroxide 

kg 
5.0 - - - - - - - - - - - - - 0.4 - 5.0 

Canola oil kg - 15.4 - - - - - - - - - - - - 1.1 - 15.4 
Sulfur kg 9.6 2.9 14.5 13.1 - 4.6 6.2 3.7 6.1 3.8 2.7 4.4 6.8 2.7 5.8 - 14.5 
Pesticides, other kg 2.4 6.4 10.5 11.6 2.7 5.2 6.4 4.4 5.9 4.8 5.9 4.6 5.3 4.5 5.8 2.4 11.6 
Herbicide kg 1.0 0.4 1.4 - 2.2 1.4 0.9 1.7 1.3 1.5 2.4 1.8 0.8 1.1 1.3 - 2.4 
Commuting of 
staff 

pkm 560.6 340.4 1.393.8 555.8 582.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 686.7 340.4 1.393.8 

Outputs 
               

   

Wine grapes t  10.1 9.9 9.1 9.8 9.2 12.3 7.7 13.9 13.9 10.4 11.1 9.1 13.6 10.3 10.7 7.7 13.9 
1 Per ha and year assuming a lifespan of 30 years. 
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2.6.2 Winery phase 

The electricity use covered the operation of machinery, electronic equipment in the 

winery and attached office spaces, and lighting (Table 5). It was impossible to allocate 

the electricity use to single processes, therefore we assumed that the main share was 

required for the wine making process and allocated the electricity use to this process 

step only (Bosco et al., 2011, Vázquez-Rowe et al., 2012b). 

Heat was generated by various energy carriers, mainly natural gas (winery 1,3,5,6), 

heating oil (winery 4,6), diesel (winery 4) and electricity-powered heaters (winery 2). 

For winery 5 it was not possible to allocate the use of natural gas to the wine cellar, 

therefore the mean use of natural gas from wineries 1, 3 and 6 was assumed. The fuel 

use (diesel and petrol) for vehicles was provided and covered trips made by company 

vehicles (Table 5). 

Table 5: Summary of inventory data per FU (0.75L wine), winery phase 

Inputs 
from the 

unit winery / cellar     mean min max 

technosph
ere 

 
1 2 3 4 5 6    

Electricity kWh 0.069 0.189 0.126 0.158 0.334 0.086 0.160 0.069 0.334 

Heat kWh 0.132 0.207 0.489 0.017 0.144 0.123 0.179 0.017 0.489 

Diesel L 0.006 0.012 0.014 0.003 0.018 0.020 0.012 0.003 0.020 

Petrol L 0.005 0.025 - 0.001 - - 0.005 - 0.025 

Wine 
additives 

kg 0.018 0.048 0.015 0.012 0.008 0.018  0.020 0.008 0.048 

Cleaning 
agents 

g 0.066 0.789 0.784 2.177 1.000 0.709 0.066 0.789 0.784  

Commutin
g 

pkm - 0.118 0.026 0.076 0.017 0.024 0.043 - 0.118 

Wine 
grapes 

kg 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Outputs           

Bottled 
wine 

L 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 

 

Table 6 presents the values found for packaging materials. The average weight of a 

0.75 L glass bottle used by the sample of this study was 0.527 kg, ranging from 0.400 

to 0.650 kg, which represents a wide range of bottle types. Ten percent of the bottles 

could be categorized as light weight (0.450 kg and less), the weight of 32% was 

between 0.460 and 0.500 kg, 38% were between 0.510 and 0.550 kg, 14% were 

between 0.560 and 0.600 kg while the remaining 6% had a weight of 0.610 to 0.650 

kg. 
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Four types of closures were used by the wineries, namely long-cap aluminium closure 

(82%) natural cork (7%), synthetic cork (6%), and a glass closure (5%). Both corks and 

the glass closure are covered with a PE film, which we considered in our model. For 

natural cork we assumed emissions based on Rives et al. (2013), for synthetic cork 

the only available information source was a producer Normacorc (2017). The GHG 

emissions for the aluminium closure were modelled based on the manufacturing and 

processing of aluminium (ecoinvent 3.4). The emissions for the glass closure were 

approximated based on the emission factor for glass (BV Glas, 2013). 

The observed range of the weight of labels per bottle of wine can be explained by 

differences in packaging design, such as front and back labels and the size and 

thickness of labels. The range in packaging film can be explained by distribution 

channels of the wine producers, with direct sales requiring less packaging film than 

distribution via other parties. 

Table 6: Inventory of packaging materials 

Packaging Unit mean min max 

Glass bottles g 526.88 400.00 650.00 

Closures g 4.89 4.73 6.30 

Labels g 2.08 0.94 3.50 

Boxes g 34.72 31.67 36.67 

Packaging film g 3.90 0.08 18.25 
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3 Results 

3.1 General results 

The production of one bottle of wine from cradle to winery gate caused 0.829 kg CO2e 

on average, based on the empirical data. Employing a Monte Carlo simulation, we 

derived a 90% confidence interval of 0.753 to 1.069 (Figure 3). This is within the range 

of results reported by previous studies (e.g. Navarro et al., 2017a, Vázquez-Rowe et 

al., 2013).  

 

Figure 3: Monte Carlo simulation of GHG emissions per FU 

Looking at the two process phases, emissions from viticulture activities accounted for 

19%, mainly caused by diesel used by tractors, trellis, fertilizer application and 

production, and to a minor extent by the production of phytosanitory products and the 

commuting of staff to vineyards (Table 7). GHG emissions from the application of 

fertilizer exceeded those from pre-chains, also because of the prevalent use of organic 

sources of N, as explained in the inventory. 

Table 7: GHG emission from wine grape production 

Emission source kg CO2e per hectare kg CO2e per FU 
 

% per ha mean min max % FU mean min max 

Trellising system 32% 545.02 237.49 767.48 6% 0.051 0.022 0.071 

Diesel 33% 565.59 137.65 1,168.85 6% 0.053 0.013 0.109 
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Fertilizer production 9% 155.86 - 350.95 2% 0.014 - 0.031 

Direct field emissions 13% 220.9 - 439.20 2% 0.021 - 0.041 

Phytosanitory products 5% 84.53 57.07 184.09 1% 0.008 0.005 0.017 

Commuting of staff 8% 128.37 63.64 260.57 1% 0.012 0.006 0.024 

Sum 100% 1,700.27 495.86 3,171.14 19% 0.158 0.046 0.295 

 

At the winery stage 81% of the emissions occurred, the main share being attributable 

to packaging materials (57% of total emissions, including secondary packaging), with 

glass bottles being the dominant source (47%). Another main contributor was the 

electricity used in the winery (10%). Fuel use by the car park of the winery, closures, 

and boxes amounted to 4% respectively, commuting of staff to the cellar, labels, 

packaging film, wine additives and cleaning agents each caused 3% or less of the 

emission budget (Table 8). 

Table 8: GHG emissions from vinification and bottling 

Materials and fuels   kg CO2e per FU 

   % FU mean min max 

Electricity 10% 0.085 0.036 0.176 
Heat 6% 0.051 0.005 0.120 
Fuel (company cars) 4% 0.033 0.002 0.094 
Commuting of staff to winery 1% 0.008 - 0.022 

Additives + cleaning 3% 0.022 0.013 0.035 
Glass bottles 47% 0.390 0.296 0.481 
Closures 4% 0.031 0.008 0.046 
Labels 1% 0.007 0.003 0.012 
Boxes 4% 0.032 0.029 0.034 
Packaging film 1% 0.012 0.000 0.055 

Sum 81% 0.671 0.393 1.075 

 

The contribution to variance was used as a predictor for the expected effectiveness of 

a mitigation option, assuming that a high contribution to variance correlates with a high 

potential impact of efforts to mitigate GHG emissions. The main contributors to 

variance were the bottle weight (31%), electricity usage (18%), heat used in the winery 

(11%), and diesel use in vineyards (9%). Yield was negatively associated with the 

result (-9%), meaning that an increase in yield reduced the GHG emissions per FU 

(Figure 4). Based on this indicator, mitigation options can be assumed to be most 

effective when optimizing the parameters listed above. Fuel used by winery vehicles 

contributed 8%, and direct field emissions 4% to variance, while all other emission 

sources contributed less than 3%. Consequently, efforts to reduce GHG emissions that 

focus on secondary packaging, fertilizer use, trellis, additives, cleaning agents, 
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commuting of staff, and phytosanitory products will have a limited effect on the carbon 

footprint per bottle of wine. 

 

Figure 4: Contribution to variance of GHG emission sources 

3.2 Scenario results 

A weight reduction of the glass bottle by 24 % (Scenario 1) could avoid 11% of the 

average GHG emissions per bottle of wine (Table 9). Both reuse scenarios clearly 

outperformed the weight-reduction scenario, with a reuse of an average bottle 

(Scenario 2) mitigating 36% and in combination with the reduction in weight (Scenario 

3) mitigating 38% of the average GHG emissions. The limited increase in mitigation 

potential of weight reduction in combination with reuse (Scenario 3) can be explained 

by the GHG emissions attributable to the energy requirements from washing process 

and transportation associated with the reuse of the wine bottles, as explained in section 

2.3. The use of a larger bottle volume (Scenario 4) could avoid 13% of GHG emissions, 

only slightly exceeding the mitigation potential of the “Weight reduction“ scenario 

(Scenario 1). The reusable larger bottle (1.0 L) provided the highest abatement 

potential (39%, Scenario 5). Yet, this hardly differs from that of the light-weight reusable 

0.75 L bottle (38%, Scenario 3). 

With a mitigation potential of 9% the use of electricity from renewable energy presents 

itself as a valuable stand-alone option (Scenario 6), or as an addition to the other 

mitigation options discussed above. In combination with a weight reduction and reuse 

of the bottle (Scenario 3), the abatement of 47% of the GHG emissions per standard 



   

 
19 

bottle of wine would be possible. More detailed scenario assumptions and respective 

mitigation potentials are presented in Table 9. 

Table 9: Mitigation potential of selected scenarios 

# Scenario Description kg CO2e sce-
nario, per FU 

Mitigation 
(kg CO2e) 

Mitigation 
(% result) 

1 Weight 
reduction, 
average weight 

Reduction of glass bottle weight 
from 0.527 kg to 0.400 kg (0.75 
L) 

0.297 0.094 11% 

2 Reuse, average 
weight 

Reuse of average 0.527 kg 
bottle (0.75 L) 

0.093 0.298 36% 

3 Reuse light-
weight 

Weight reduction to 0.400 kg 
and reuse (0.75 L) 

0.074 0.317 38% 

4 1.0 L bottle 
volume 

FU in average disposable 1.0 L 
glass bottle, 0.510 kg 

 0.285 0.107 13% 

5 1.0 L bottle 
volume reuse 

FU in average reusable 1.0 L 
glass bottle, 0.510 kg 

0.068 0.323 39% 

6 Renewable 
energy 

Electricity consumption: 
replacement of grid electricity 
with renewable energy (PV) 

0.011 0.074 9% 

4 Discussion 

Mitigation strategies focused on energy management and water use in the vineyard 

and the cellar, fertilization of vines and, most importantly, packaging material (Navarro 

et al., 2017a, Aranda et al., 2005, Benedetto, 2013, Ardente et al., 2006, Point et al., 

2012, Amienyo et al., 2014). 

Based on the results from the Monte Carlo simulation and the analysis of the 

contribution of the single emission sources to the variance of the result showed that 

the top 5 management options with the highest potential impact on GHG reductions 

are related to glass bottles, electricity consumption in the winery, diesel use in 

vineyards, heat used in the winery, and an increase in yield. Management options 

related to other inputs such as fertilizer and pesticides use, labels, closures and boxes, 

or commuting had minor effects on overall GHG emissions from wine production. 

Previous wine CF studies also claim the reduction of glass weight to be the key strategy 

to reduce GHG emissions from the wine value chain (e.g. Navarro et al., 2017a, Point 

et al., 2012). This is undoubted for bottles with a weight clearly exceeding 0.400 kg, 

and the potential reduction in GHG emissions is the more pronounced the heavier the 

bottle. However, there are two limitations. First, for bottles that are already light the 

potential to reduce the weight further is very limited or not existent for technical reasons 

as the stability of the glass bottle can be reduced (Hartley, 2008). Second, if consumers 

do not perceive wine in light-weight bottles as equally valuable to wine in heavy bottles, 
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this has to be acknowledged as an important implementation barrier resulting from 

consumer behaviour. In this respect, in their extensive review on consumer behaviour 

for wine Lokshin and Corsi (2012) point towards a small segment of the population that 

values wine with sustainability characteristics.  

We found a GHG emission abatement of 11% for the reduction in weight of an average 

bottle to 0.400 kg (-24%). This finding is in line with Amienyo et al. (2014) who found a 

reduction in GHG emissions of 11% following a reduction in bottle weight by 30%. 

However, these authors based their assumed bottle weight reduction on a light-weight 

0.465 kg glass bottle, not acknowledging practical limitations highlighted by Hartley 

(2008). Point et al. (2012), reported a reduction in GHG emissions of only 5.3% for a 

bottle weight decreased by 30% to 0.380 kg. This lower relative reduction can be 

explained by the larger system boundaries (cradle to grave) of their study, which lead 

to a lower share of GHG emissions from the glass bottle production compared to the 

total result (11.5%). The authors include the mitigative effects in process stages 

subsequent to bottling, such as transportation to retail, consumer shopping trip, and 

recycling. This exemplifies the importance of a reduced bottle weight as it not only 

mitigates GHG emissions attributable to packaging but also to downstream processes 

such as transportation.  

Exploring various scenarios for a reduction of GHG emissions from glass bottles we 

found that the reuse of an average 0.527 kg glass bottle exceeded the mitigation 

potential of a weight reduction to a light weight 0.400 kg bottle by more than threefold, 

avoiding 36% as opposed to 11%. Further, our scenario analysis points towards the 

mitigative effect of a combination of bottle weight reduction and reuse (-38%) and the 

increase in bottle volume to 1.0 l and reuse (-39%). In light of these new findings, we 

argue that the reuse of glass bottles has to be at the core of any strategy that aims at 

an effective decarbonization of the wine value chain. The reuse of bottles can be 

complemented with a reduction in bottle weight. Moreover, this option can overcome 

undesired environmental effects related to consumer behaviour related to the 

acceptance of light-weight bottles for premium wines. Given the large reduction in GHG 

emissions, the reuse of glass bottles is a viable mitigation option where longer transport 

distances between wine producer, consumer, and washing facility are required. 

Practical limitations of the reuse of wine glass bottles cannot be ignored and include a 

lack of infrastructure if the access to a washing facility is difficult or prohibitive due to 
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high transport cost and associated carbon emissions for long distances, and possible 

additional cost for reusable bottles. Further, aside from wine producers, specialised 

retailers, supermarkets, discounters which distribute approximately 87% of the wine 

consumed (Deutsches Weininstitut, 2017) would need to limit themselves to a variety 

of bottle types that can be circulated amongst them, which in turn limits the individuality 

of packaging design. Last but not least, wine consumers would need to make the effort 

to return glass bottles to a collection point instead of disposing of them into a glass 

container. 

While the increase of recycling content may be a relevant option in Spain, France 

(Navarro et al., 2017a), or England (Amienyo et al., 2014), this is not feasible in 

Germany as the recycling share for wine glass bottles is already very high (87%). 

Therefore, GHG emissions from glass production could only be reduced by increasing 

the share of renewable energy and natural gas (BV Glas, 2013). 

The scenario analysis presented the use of renewable energies as a viable mitigation 

strategy, avoiding 9% of GHG emissions. We argue that this is an attractive strategy 

as implementation barriers are low, merely requiring a change in the electricity supply, 

unless renewable energy was generated on own premises. The implementation barrier 

to a decarbonization of the heating system would be significantly higher, requiring 

investments into a change of existing infrastructure. 

Considering the categorization of emission sources based on the GHG Protocol (Table 

1) the most important mitigation options occur in scope 3 – other indirect emissions, 

meaning they arise from processes external to the wine producer and are within the 

scope of influence of stakeholders. Consequently, wine producers and stakeholders 

share the responsibility for the decarbonisation of the wine value chain. 

Yield was named as a main driver of variability by other authors (e.g. Vázquez-Rowe 

et al., 2013, 2012b, Villanueva-Rey et al., 2014), which we confirm based on the high 

negative contribution to variance (-9%). Being the allocation factor of GHG emissions 

from viticulture to the final product, yield has a high impact on the GHG emissions per 

FU because an increase in yield leads to a reduction in GHG emissions per hectare of 

FU, if the agri-inputs are kept stable or increase at a lower rate. However, limits to 

increase yield can arise from legal (Weingesetz, 1994), geological and climatological 

factors, while an induced increase in yield can counteract the quality regime, and 

therefore the market positioning, of a wine producer. Considering international yield 
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patterns, there are clear differences between wine-growing nations. While Germany 

had an average wine grape yield of 12.4 tons, other “Old World” wine-growing nations 

report lower levels (France 8.1, Italy 9.9, Portugal 4.6, Spain 6.7 tons), and “New 

World” wine destinations may have higher average levels of yield (e.g. USA 17.1, Chile 

17.9, China 15.8 tons of grape per hectare) (Anderson and Nelgen, 2017). While single 

vineyards may deviate greatly from these averages, these general differences should 

be acknowledged when comparing wine CF studies. 

5 Conclusions 

GHG emissions due to wine production can vary substantially according to 

management and selection of inputs and materials. We found a 90% confidence 

interval for 0.753 to 1.069 kg CO2e per bottle of wine. The main contributors to the 

variance of GHG emissions were glass bottle weight (31%), electricity use at the winery 

stage (18%), heat used in the winery phase (11%), yield (-9%), and diesel used in 

vineyards (9%). The trellis system, production and use of fertilizer, and secondary 

packaging were minor contributors to the final result, but it should be acknowledged 

that out of 14 grape production entities one did not add any fertilizer, 4 relied entirely 

on organic sources of N, and another 4 covered 30 to 60% of added N with organic 

fertilizer. The production of phytosanitory products, commuting of staff, and wine 

additives and cleaning agents were negligible sources of GHG emissions. 

We found that the reuse of glass bottles deserves close attention from wine producers, 

consumers, and policy makers who strive for an effective decarbonization of the wine 

value chain. The mitigation potential of the reuse of an average bottle exceeds the 

mitigation potential from a reduction in bottle weight by more than threefold. A 

combination of the replacement of grid electricity by renewable energies, the reduction 

in weight and reuse of a light-weight glass bottle can curb GHG emissions per bottle 

of wine by 47%. 

While recommendations on emission reduction in the winery phase are straight forward 

and transferrable to other wine producers, this is not the case for the viticulture stage. 

Here, main options for GHG reductions were the reduction in fuel use, the increase in 

the life span of the trellis system, and the increase in yield. Factors such as differences 

in the topography, microclimate, the age and layout of existing vineyards, as well as 
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quality aspirations, impose limits to the validity of generalized recommendations on 

vineyard level. 
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Figure captions 

Figure 1: System boundaries  

Figure 2: Process flow diagram of single use and reusable glass bottles 

Figure 3: Monte Carlo simulation of GHG emissions per FU 

Figure 4: Contribution to variance of GHG emission sources 
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