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ABSTRACT 22	

 23	

Ecometrics is a trait-based approach to study ecosystem variability through time. 24	

An ecometric value is derived from describing the distribution of functional traits at the 25	

community level, which may arise by environmental filtering, extinction, or convergence. 26	

An ecometric relationship describes the correspondence between spatially explicit 27	

ecometric values and corresponding environmental variation. Transfer functions and 28	

maximum likelihood approaches have been developed with modern trait-environment 29	

relationships to reconstruct paleotemperature, paleoprecipitation, and paleovegetation 30	

cover given the distribution of functional traits within a community. Because the focus 31	

for this approach is on the traits and not on species, it is transferable through space and 32	

time and can be used to compare no-analog communities. In this paper we review the 33	

concepts and history of ecometric analysis and then describe practical methods for 34	

implementing an ecometric study.   35	
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I. SUMMARY 36	

 One of the factors that sort species geographically into communities is the 37	

filtering of species by their functional morphologies along climate and environmental 38	

gradients (e.g., mammalian herbivores with higher molars eat more gritty and abrasive 39	

vegetation and therefore more species with higher molars live in places with more gritty 40	

and abrasive vegetation), thus, the morphology has a direct relationship with its 41	

environmental condition. In this sorting process, the distribution of functional traits 42	

within a community moves toward an optimal environmental condition. These functional 43	

traits may be described in terms of their distributions within a community and descriptors 44	

of the distribution of community level functional traits have been defined as ecometrics 45	

(Eronen et al. 2010a; Polly et al. 2011). Thus, ecometrics are traits described at the 46	

community level that have a relationship with environmental condition. Ecometrics are 47	

spatially variable, because the composition of species and traits in communities vary 48	

through geography. If species are perfectly sorted, the trait distributions in communities 49	

will parallel variation in the environmental condition to which the traits are functionally 50	

linked (i.e. the ecometric correlation equals one). If the ecometric correlation is strong, 51	

one can estimate the most likely environmental condition given a specific ecometric 52	

value using a transfer function or likelihood estimation. If the ecometric correlation is not 53	

strong, one may still be able to estimate the most likely environmental condition, but the 54	

likelihood surface would be more flat, which would produce a more ambiguous 55	

reconstruction. The power of this approach is that functional trait measurements are 56	

transferable through space and through time, regardless of the specific species that make 57	

up the community. For this reason, ecometrics is a useful approach to reconstruct 58	
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paleoclimate and paleoenvironment (Damuth et al. 1992). 59	

II. TERMS 60	

Functional trait – a behavioral, biochemical, morphological, phenological, 61	

physiological, or structural characteristic that has a physical or chemical interaction with 62	

a specific environmental factor. This characteristic is expressed as a phenotype of 63	

individual organisms and it is considered relevant to the response of organisms to the 64	

surrounding abiotic conditions. A functional trait is something that can be observed and 65	

measured. 66	

Geographic sorting – the process by which trait distributions are arranged in geographic 67	

space along gradients of environmental conditions. 68	

Taxon free – not depending on taxonomic identity (i.e. it is a descriptor based on trait 69	

values rather than on presence or absence of particular taxa). For example, using palms as 70	

indicators of frost-free conditions is a taxon-based approach, whereas using counts of 71	

stomatal density as indicators of carbon dioxide concentration is a taxon-free approach 72	

(Beerling	et	al.	,	2011). 73	

Ecometric value – a statistic summarizing the distribution of a functional trait within a 74	

community at a single geographic location. Means, variances, proportions, and extremes 75	

have been used as descriptors in previous studies; however, any parameter that describes 76	

a distribution of functional traits may be used.  77	

Ecometric patterning – geography, or spatial variation, of ecometric values across 78	

communities. Perfect patterning represents optimal distributions of populations and 79	

species. The lack of patterning could represent a lack of useable covariation, a mismatch 80	

between the trait and the environment, or it could result from the inappropriate choice of 81	
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environmental correlates. 82	

Ecometric correlation – product-moment correlation between ecometric variation and 83	

variation in the environmental condition. High correlations evince a close match between 84	

the functional requirements of local communities and their abiotic condition. 85	

Ecometric likelihood – the probability of finding a particular environmental condition 86	

given the ecometric value of a community at any single geographic location.  87	

Ecometric load – the amount of mismatch between the distribution of functional traits 88	

and the selective optimum for the local environment. High loads may indicate risk to 89	

changing environmental conditions. Note that high ecometric loads can be present even 90	

with high ecometric correlations if traits are weakly but consistently sorted. 91	

Ecometric optimum – the optimal distribution of an ecometric trait in a particular 92	

environment. The optimum is more likely to be a distribution rather than a single trait 93	

value, especially in locally heterogeneous environments (e.g., a savannah habitat favors 94	

both large and small body sizes). 95	

Transfer function – a function that represents the relationship between the ecometric trait 96	

values and a relevant environmental variable. 97	

 98	

III. THEORETICAL AND HISTORICAL BACKGROUND 99	

 100	

 Functional traits are features that organisms use to interact with their environment 101	

and with other organisms (Diaz and Cabido 2001; Violle et al. 2007). Functional traits of 102	

species within a community ultimately mediate the relationship between organisms’ 103	

morphology and their ecology and link organisms to biotic and abiotic conditions present 104	
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at particular geographic locations at a particular point in time (Ricklefs and Travis 1980; 105	

Chapin 1993; Poff 1997). A certain combination of biotic and abiotic conditions will thus 106	

favor traits that maximize an organism’s performance, either through natural selection or 107	

geographic sorting. Natural selection is an evolutionary process that acts on the variation 108	

in a population, where individuals that thrive in their environment produce the most 109	

offspring and disproportionately share their traits with the next generation (Darwin and 110	

Wallace 1858). Species that move geographically in response to environmental change 111	

may follow an environment for which they are already adapted and form new 112	

assemblages as a result (Jackson and Overpeck 2000). We are not concerned with the 113	

trait values of particular species, but with the distribution of traits within communities 114	

(e.g., mean, standard deviation, and range; Damuth et al. 1992). Even weak sorting 115	

processes can produce trait gradients at the community level, as has been demonstrated in 116	

climate gradients in plant leaf traits (Wolfe 1979; Reich et al. 1997; Wilf 1997; Wright et 117	

al. 2004; Royer et al. 2005; Wing et al. 2005; Cornwell and Ackerly 2009; Peppe et al. 118	

2011), large mammalian herbivores dental traits (Janis and Fortelius 1988; Damuth et al. 119	

1992; Fortelius et al. 2002; Mendoza et al. 2005; Damuth and Janis 2011; Eronen et al. 120	

2010b, 2012), carnivoran locomotor traits (Polly 2010), snake locomotor traits (Lawing et 121	

al. 2012), and mammal life history, physiological, and range traits (Lawing et al. 2016). 122	

The study of functional traits that have a relationship with climate or environmental 123	

gradients at the community level has been termed ecometrics to distinguish it from 124	

ecomorphology of particular species or clades (Eronen et al. 2010a; Polly et al. 2011). 125	

Figure 1 shows a few examples of the morphology of ecometric traits. 126	

 127	
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 [insert Figure 1 near here] 128	

 129	

 The relationship between the distribution of functional traits in a community and 130	

the corresponding environmental factors in the local environment is likely to be complex. 131	

Some trait-environment relationships favor a single ecometric optimum in each local 132	

environment such that all species tend to have the same trait value. Stomatal density on 133	

plant leaves might be expected to have a single optimal value across all members of a 134	

community because carbon dioxide concentrations and evapotranspiration conditions are 135	

the same for all. However, locally heterogeneous environments are likely to favor a 136	

heterogeneous ecometric optimum. For example, savannah environments tend to favor a 137	

combination of large body masses (for animals that can travel long distances to procure 138	

food in a comparatively resource poor habitat and defend themselves in the open) and 139	

small body masses (for species that can subsist on the resources found in a limited area 140	

and can find cover in grasses or tree tops). The nature of the ecometric optimum will 141	

dictate how it should be measured. An optimum that favors a single trait value can always 142	

be adequately represented with the community mean, but an optimum that favors a 143	

complex distribution may be better characterized by variance, skewness, or other 144	

measure. Temporal variation in environmental conditions may also shape the distribution 145	

of the ecometric optimum. For example, Žliobaitė et al. (2016) recently showed that 146	

recurring extreme conditions (like drought) were better predictors of dental traits than 147	

average conditions, indicating that recurring limiting conditions may be important drivers 148	

of community functional trait distributions.  149	

Historical Background 150	
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 Bailey and Sinnott (1915) conducted the first study of community-level functional 151	

traits. They showed plant communities that have more leaves with ridges, or non-entire 152	

margins, occur in moist temperate climates that experience warm summers and cold 153	

winters. Conversely, plant communities that have leaves with no ridges, or entire leaf 154	

margins, occur in dry climates including tropic, alpine and arctic regions, moors, steppes, 155	

deserts, saline situations, and other physiologically dry climates. They used the 156	

proportion of species within a community with a specified phenotype as their metric to 157	

describe the community, what we refer to as an ecometric trait value. 158	

Since Bailey and Sinnott (1915) demonstrated the variation in community leaf 159	

shape across a temperature gradient, researchers have used leaf shape and other traits to 160	

reconstruct paleotemperature. Most notably, Wolfe (1979, 1993) quantified the 161	

relationship between leaf margins and temperature, which led to many quantitative 162	

paleoclimate reconstructions from leaf assemblages, called leaf-margin analysis. 163	

Contemporary to and since Wolfe's work, researchers have been interested in identifying 164	

the function of leaf teeth (see Royer and Wilf (2006) for a history and discussion). 165	

The ecometric approach has grown out of the formalization by Damuth et al. 166	

(1992) of “taxon-free” characterizations of animal communities. These authors were 167	

interested in understanding long-term evolutionary and ecological processes. They argued 168	

that distributions of traits such as body size, dietary type, locomotor specialization, and 169	

predator-to-prey ratios serve as descriptive indices that can be used to compare important 170	

aspects of community function in the Paleozoic, Mesozoic, and Cenozoic or between 171	

faunal and floral realms in a single time period, because they capture information about 172	

productivity, resource availability, community physiognomy, and resource partitioning, 173	
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comparisons that cannot be made if community function is characterized by the species 174	

that dominate it (such as grassland communities). They noted that what makes an 175	

approach “taxon-free” is the focus on distributions of traits for inferring 176	

paleoenvironment (i.e., the ecometric distributions), not the inferential pathways that lead 177	

to the understanding of the trait-environment relationship, which may be founded on 178	

taxon-based observations. The fact that many traits have a limited phylogenetic 179	

distribution (e.g., teeth are limited to vertebrates, leaf stomata are limited to plants) 180	

means that taxon-free approaches, including ecometrics, are not completely free of time, 181	

place, and taxon, but comparisons between communities that have no species in common 182	

are nevertheless possible. Andrews and Hixson (2014) recently reviewed and critiqued 183	

taxon-free approaches. 184	

Ecometric Examples 185	

One of the best-understood ecometrics is the molar crown height of herbivorous 186	

large mammals. Different diets vary in the amount of wear they produce: species that eat 187	

abrasive or tough foods, or foods of poor nutritive quality, usually have hypsodont teeth, 188	

which have a high crown relative to the root. Hypsodonty is a morphology adaptated to 189	

high rates of tooth wear (Janis and Fortelius 1988). Proximal factors including 190	

abrasiveness of plant material, such as phytolith content and ambient grit and dust, are 191	

therefore likely to play a role in selection for tooth crown height (Janis and Fortelius, 192	

1988; Strömberg et al. , 2013; Fortelius et al. , 2014). Tooth crown height correlates with 193	

precipitation in the modern world and geologic past (Fortelius et al. 2002; Eronen et al. 194	

2010a,b; Fortelius et al. 2014). Eronen et al. (2010b) used regression trees to show that 195	

there is a strong correlation (65.8%) between crown tooth height and regional 196	
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precipitation, between diet and precipitation (66.5%), and when diet and tooth crown 197	

height are combined (74.2%). Community hypsodonty levels, therefore, have a strong 198	

correlation with annual precipitation, which affects both plant tissue properties and the 199	

amount of local grit (Fortelius et al. 2014) and may be used as a paleoprecipitation proxy 200	

that constrain regional details about vegetation patterns and climate models (Fortelius et 201	

al. 2002).  202	

Together with other dental traits, hyposodonty can additionally be used to 203	

estimate more indirect properties like net primary productivity (Liu et al. , 2012) or more 204	

proximate ones like production of volcanic ash (Strömberg et al. , 2013). Such complex 205	

combinations of proximal and distal environmental factors are likely to be associated 206	

with all ecometric traits (Polly and Head 2015). Žliobaitė et al. (2016) showed that dental 207	

traits are closely linked to vegetation greenness (NDVI) in addition to precipitation and 208	

temperature. This is reassuring as NPP estimates used in Liu et al. (2012) are computed 209	

using precipitation as an input and highly dependent on NPP. NDVI is a direct 210	

observation of vegetation greenness and is independent of precipitation and temperature 211	

measurements. The NDVI depends on climatic conditions and reflects NPP and thus the 212	

availability and quality of herbivores’ food. Using data from present-day seasonal 213	

environments in Africa, Žliobaitė et al. (2016) demonstrate that the dental traits show 214	

strong correlations to non-availability of preferred plant foods (e.g., during dry seasons or 215	

longer dry periods), rather than the properties of average foods consumed. This is the 216	

main functional link between climate and herbivore teeth and closely follows the 217	

suggestion by Owen-Smith (2002) (see also discussion in Liu et al. 2012 and Fortelius et 218	

al. 2014). 219	
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Other dental characteristics (such as dental wear patterns, dental structure, and 220	

tooth crown complexity) have also been used as estimates of diet in mammals (Fortelius 221	

and Solounias 2000; Evans et al. 2007; Eronen et al. 2010a; Wilson et al. 2012; Evans 222	

2013; Saarinen 2014; Saarinen and Karme 2017). Wilson et al. (2012) used the dental 223	

shape descriptor of orientation patch count (OPC), which is a measure of dental 224	

complexity that correlates well with feeding ecology in extant mammals, to determine the 225	

paleodiet of the extinct mammalian clade Multituberculata. They were able to identify a 226	

shift from a more carnivorous or omnivorous diet among early multituberculates into a 227	

more herbivorous diet around 85 million years ago. This shift coincided with the rise of 228	

angiosperms. Since vegetation patterns are driven by climatic conditions, these other 229	

dental characteristics could potentially be used as climatic proxies. Evans (2013) 230	

reviewed dental shape descriptors, which can be used in ecometric studies and will be 231	

useful for describing environmental conditions in the past. 232	

Another well-studied trait in both endothermic and ectothermic vertebrates is 233	

body size, initiated by the work of Bergmann (1947). Mean body size in non-flying 234	

mammals has been shown to increase as temperature decreases, and therefore mean body 235	

size increases geographically toward the poles (Rodriquez et al. 2008; Eronen et al. 236	

2010a). It has also been documented in ectothermic animals that body size is positively 237	

correlated with mean ambient temperature (Makarieva et al. 2005). This has allowed for 238	

the use of ectothermic animals, to be used to estimate paleotemperatures (Head et al. 239	

2009; Polly et al. 2011; Head et al.  2013). Examples of ecometrics in plants, birds, 240	

mammals, and snakes are detailed in Table 1, showing the functional trait and the 241	

environmental condition for which it is related. 242	
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 243	

Table 1. Examples of ecometrics in plants, birds, mammals, and snakes. 244	

Environmental conditions are mean annual temperature (MAT), annual 245	

precipitation (AP), atmospheric carbon dioxide (pCO2), net primary productivity 246	

(NPP), trophic position (TP), dietary classification (DC), and vegetation cover (VC). 247	

Group Functional Trait Environmental 

Condition 

Citation 

Plants Leaf margin MAT Wolf 1979 

Plants Leaf shape MAT Wolf 1990; Royer et al. 

2005; Peppe et al. 2011 

Plants Stomata counts pCO2 Beerling et al. 2002 

Birds Body mass MAT Meiri and Dayan 2003 

Mammals Body mass MAT Damuth et al. 1992 

Mammals Tooth morphology AP; TP; DC; NPP Evans 2013 

Ungulates Hypsodonty AP Fortelius et al. 2002 

Carnivorans Limb proportion VC; MAT; AP Polly 2010 

Snakes Body length MAT Head et al. 2009 

Snakes Tail proportion VC Lawing et al. 2012 

 248	

Ecometric patterning 249	

 Geographic sorting of traits along environmental gradients is one of three 250	

processes by which ecometric patterning can emerge, along with evolutionary adaptation 251	

and extinction (Polly et al. 2015). Environmental gradients are shown to filter species 252	



	 13	

geographically (Belmaker and Jetz 2012). The filtering effects of environmental gradients 253	

may sort species geographically by their traits, resulting in local communities with 254	

similar trait values that are correlated with local environmental conditions. The ecometric 255	

approach was formalized as a way of synthesizing data from the ecological present and 256	

geological past to measure responses of ecosystems to climate change in order to better 257	

predict the risks posed by global change over the next millennia (Eronen et al. 2010a; 258	

Polly et al. 2011). It has been used to investigate the impacts and risk of extinction 259	

(Wilson et al. 2012; Polly and Sarwar 2014; Polly and Head 2015) and to understand 260	

non-ecological processes (Lawing et al. 2016). The relative roles of geographic sorting, 261	

local adaptation, and extinction have been investigated by process-based simulation 262	

(Polly et al. 2015). Ecometrics and its paleontological precursors have been used to 263	

estimate paleobiotic conditions using traits (Damuth et al. 1992). For example, ecotherm 264	

body size (Head et al. 2009; Head et al.  2013) and leaf shape (Wolfe 1993; Little et al. 265	

2010) have been used as paleothermometers and tooth crown height, hyposodonty, has 266	

been used to estimate paleoaridity (Fortelius et al. 2002). 267	

The ecometric approach may be used to forecast community responses to 268	

anthropogenic climate change (Barnosky et al. , 2017). The concept of ecometric load, 269	

which is the mismatch between community-level functional trait values and optimal 270	

performance, potentially allows us to estimate the vulnerability of a community to 271	

climate or environmental change when the optimal performance of the traits along an 272	

environmental gradient is known (Polly et al. 2015). If changing conditions increase the 273	

ecometric load, communities are more likely to become vulnerable. 274	



	 14	

Methods for using ecometrics to characterize paleoclimate and paleoenvironments 275	

have been expanded extensively. For example, Head et al. (2009) made a significant push 276	

forward on the construction of ecometric models and the application of the transfer 277	

function. Instead of solely using correlative models for inference, they used a mechanistic 278	

model from the physiology of poikilothermic metabolism along with modern 279	

observations of boid snakes and the temperatures they live in to predict paleotemperature 280	

at 58-60 Ma (Paleocene) in the neotropics. They found a minimum mean annual 281	

temperature of 30-34°C was needed in the Cerrejon Formation in Colombia during this 282	

time in order for the large boid, Titanoboa, to survive. This is several degrees warmer 283	

than the mean annual temperature of 26-27°C found in that area of the world. 284	

 The effects of faunal sampling, extinction, and extirpation on ecometric patterns 285	

was investigated by Polly and Sarwar (2014) using resampling and rarefaction methods 286	

with calcaneum gear ratios. Gear ratios are related to the locomotor style of an animal 287	

and, in turn, related to the animal's habitat. Polly and Sarwar (2014) showed that 288	

extinction, extirpation, and range change have minimal effects on ecometric correlations 289	

when they affect less than a quarter of the species in North American carnivoran 290	

communities. If the correlation between gear ratio and an environmental variable, such as 291	

vegetation cover, is either high or low, then extinction of more than 25% of species will 292	

alter the correlations, but the strongly and weakly correlated environmental variables will 293	

still be distinguished. Local extinctions, extirpation, caused a decline in ecometric 294	

correlations; however, up to 75% of species could be lost this way before ecometric 295	

patterns were completely lost. This result suggested that even in fossil faunal 296	

assemblages with a small proportion of the total fauna, the ecometric patterns may still be 297	
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recoverable if enough independent assemblages are considered. These authors also 298	

showed that global extinction and large-scale extirpation have a less predictable effect on 299	

ecometric correlations than do local extinctions. How the ecomtetric pattern is affected 300	

by global extinciton depends on which organisms go extinct and what their ecometric 301	

correlation was. So, if a species, such as a polar bear, is a large contributor to local 302	

ecometric means, and if its range is correlated to an extreme of the environmental 303	

variable, such as zero vegetation cover, then its extinction could drive correlation up or 304	

down dependent on the circumstance. 305	

Ecometric Modeling 306	

Polly et al. (2016a) used stochastic modeling to assess the role of population level 307	

processes in the formation of ecometric patterns. They systematically varied parameters 308	

like local selection intensity, probability of dispersal, probability of extirpation, gene 309	

flow, and ancestral trait value to understand the interaction between geographic sorting 310	

processes, trait selection, and clade dynamics in producing ecometric patterns. These 311	

authors introduced the concept of ecometric load, an analogy with genetic or mutational 312	

load, as the mismatch between the distribution of functional traits in a community (or a 313	

group of communities) and the selective optimum for those traits in the local environment 314	

(Polly et al. 2016a). In cases where ecometric load can be measured, it may help predict 315	

whether environmental change is likely to make a community more vulnerable to 316	

reorganization or extinction. Interestingly, their models frequently produced parallel trait 317	

evolution in different clades, rather than the kinds of phylogenetically correlated trait 318	

distributions that are observed in many clades. For example, calcaneum gear ratio, which 319	

has strong ecometric sorting in the real world, also has a strong phylogenetic correlation 320	



	 16	

with about 60% of its variance being explained by phylogeny (Polly et al. , 2017). The 321	

lack of phylogenetic correlation in the models suggested that empirically observed 322	

examples of trait-based phylogenetic sorting of species into communities in the modern 323	

world results from large-scale turnover in environments.  324	

Ecometrics and ecogeographical rules 325	

Ecogeographical rules often describe patterns that we would classify as ecometric. 326	

Ecogeographic rules are hypotheses about how morphological variation changes along 327	

environmental or geographic gradients. They may be rules regarding within-species 328	

variation or between-species variation. Across species variation has been the most 329	

important component of variation to consider for the ecometric approach. 330	

 The most notable ecogeographic rule is Bergmann’s Rule (Bergmann 1847; 331	

Blackburn et al. 1999). It states that body mass correlates with temperature and this has 332	

been demonstrated both intraspecifically (Ashton 2002; Freckleton et al. 2003) and 333	

interspecifically (Blackburn and Hawkins 2004; Diniz-Filho et al. 2007). Other 334	

ecogeographical rules include Allen’s rule (length of appendages in endotherms 335	

positively correlate with temperature; Allen 1877), Gloger’s rule (pigmentation is 336	

correlated with humidity within endothermic species; Gloger 1833), Fox's rule (among 337	

small Australian mammals during community assembly, it is more likely that species 338	

entering a community will represent different functional groups; Fox 1987) and Jordan’s 339	

rule (there is an inverse relationship between meristic characters and water temperature; 340	

Lincoln et al. 1982). See Gaston et al. (2008) for a review of ecogeographic rules. 341	

 342	

IV. IMPLEMENTING AND ECOMETRIC ANALYSIS 343	
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 344	

In order to document the existence of an ecometric pattern, three types of data are 345	

required: geographic ranges of species, abiotic conditions, and functional trait 346	

measurement of species. The spatial resolution of the data and the density of sampling of 347	

traits and environmental variables within local communities will depend on the scale of 348	

the functional relationship and on the question being addressed. Here we focus on 349	

ecometric patterns that emerge at regional, continental, or global scales, but the same 350	

principles could be applied to patterns that emerge on landscape scales. To simplify 351	

large-scale analysis, we recommend measuring trait distributions by sampling the trait 352	

once for each species making up the local community and making the assumption that 353	

each species has the same trait value everywhere it occurs. Finer scale analyses might 354	

benefit from sampling the frequencies of traits among the individuals in a local 355	

community to account for variation in abundance of the species making up the 356	

community, or from measuring the local values of traits within each community. Because 357	

of our choice of scale, our analysis requires information about the geographic range 358	

where species are known to live or where they have the potential to live. For our 359	

purposes, local community composition includes all the species whose ranges overlap at 360	

a sampling point, an assumption that is reasonable for coarse scale analysis, but which 361	

might be unreasonable for a finer-scale landscape analysis.  362	

Geographic Range 363	

Geographic range data are often available from field guides and are becoming 364	

more readily available online as spatial shapefiles. For example, NatureServe 365	

(www.natureserve.org) and International Union for Conservation of Nature host a 366	
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website that has an option to download spatial data that depict the ranges of species as 367	

polygons (www.iucnredlist.org). The ranges are typically drawn by experts and represent 368	

the general areas of occupation of a species. Species occurrences may be used to draw 369	

range maps, if no range maps are available, so long as the occurrence data are relatively 370	

randomly distributed across the entire environmental range of the species. Once the 371	

geographic ranges are obtained, a sampling scheme for measuring the trait-environment 372	

relationship needs to be determined. Sampling sites may be systematically or randomly 373	

scattered across the extent of the study area. A list of species that occur at each sample 374	

site should then be compiled. Some sources of data for geographic ranges include the 375	

NatureServe and IUCN for mammals, birds, amphibians, coral and some fishes 376	

(www.iucnredlist.org). Plant distribution data for North America and Europe are 377	

available from USDA PLANTS database (plants.usda.gov) and from the European 378	

Environmental Agency (eea.europa.eu). The Global Biodiversity Information Facility 379	

contains species occurrences (longitude and latitude) of both plants and animals 380	

(www.gbif.org). A geographic information system (GIS) is useful to work with 381	

geographic ranges and other geographic information. Open source systems are available, 382	

such as QGIS, DIVA, or even R. Proprietary software is also available; the most popular 383	

products are developed through ESRI. Researchers should check with their institutions 384	

for GIS services and licensing. 385	

Environmental Data 386	

Environmental factors can be measured directly in the field at sample sites or 387	

collected from maps representing the geographic variability of the environmental 388	

condition. For every sample site, the environmental variables that are functionally linked 389	
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to the trait of interest should be sampled. PRISM Climate Group and WorldClim 390	

databases provide relatively high-resolution datasets of climate for the globe 391	

(www.prism.oregonstate.edu and www.worldclim.org, respectively). Global potential 392	

vegetation is available from UW SAGE (www.washington.edu/research/tools/sage/); 393	

global historical vegetation coverage is available from Oak Ridge National Laboratories 394	

(dx.doi.org/10.3334/ORNLDAAC/419); global digital elevation models and annual 395	

productivity are available from NASA (earthobservatory.nasa.gov/) and USGS 396	

(nationalmap.gov/elevation.html); global soil distributions are available from 397	

International Institute for Applied Systems Analysis (www.iiasa.ac.at/); global land cover 398	

is available from the European Space Agency (www.esa.int/); global nitrogen deposition 399	

is available from Oak Ridge National Laboratory (www.ornl.gov); global freeze and thaw 400	

status is available from the National Snow and Ice Data Center (nsidc.org/); global 401	

terrestrial ecosystems are available from World Wildlife Fund (www.worldwildlife.org). 402	

In addition to all of these data sources, there are numerous others to find online and in the 403	

published literature. One may use any reliable map as a reference for the environmental 404	

condition at sample localities. 405	

Functional Traits 406	

Functional traits should be measured or categorized for each species that has the 407	

functional trait of interest within each community. Ideally, one would measure the traits 408	

from all the species that occur at each sampling location; however, a species value may 409	

be used for all of the locations in which that species occurs. Species values for traits may 410	

be collected from measuring specimens directly or from obtaining measures from the 411	

published literature. Typically only one value for each species is necessary; however, if 412	
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there is strong geographic variation, the analysis can include species values that are 413	

geographically explicit. If the functional trait is variable within species to the extent that 414	

it causes performance differences, then individuals should be sorted along the 415	

environmental gradient, but if that variation does not cause performance differences with 416	

respect to the environmental gradient, then it is reasonable to ignore the within species 417	

variation. The functional traits may be continuous or categorical in nature. 418	

The equipment necessary for collecting the measurements of functional traits 419	

greatly varies depending on the trait of interest. One may collect trait data from published 420	

literature, and thus, no equipment is necessary. If measurements are taken directly from 421	

specimens, the researcher might want to photograph specimens or use calipers to take 422	

direct measurements from specimens. If photographs are taken to investigate specimens, 423	

the orientation of the camera and the orientation of the specimen should be consistent for 424	

all photographs and photos should include a scale. For classifications or counts, no 425	

equipment is necessary, unless the researcher requires magnification. For geometric 426	

morphometrics, a camera and scale bar, a 3D scanner, or other digitizing equipment is 427	

necessary.  428	

Data Analysis 429	

For each sample site, a list of the relevant species that co-occur there must be 430	

assembled. The distribution of functional traits in the community members can then be 431	

measured. For the remaining examples, we will use the trait mean to summarize that 432	

distribution, but other distributional statistics such as variation, standard deviation, range, 433	

or median may be appropriate depending on the expected relationship between the trait 434	

and its associated environmental parameter. It is useful to assemble data from all 435	
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sampling sites into a table with the mean trait values and the associated environmental 436	

values in columns and sites in the rows. If there is more than one environmental variable 437	

associated with the trait of interest, then in this table each variable requires its own 438	

column. Ecometric correlation can easily be calculated from this table as the Pearson’s 439	

correlation coefficient (r), or a nonparametric equivalent, of the two columns as a 440	

measure of correspondence between the environmental parameter and the ecometric trait. 441	

If the performance relationship between trait and environment is known, the ecometric 442	

load can be calculated as the mean absolute difference between the observed trait means 443	

and the expected values for all rows in the table (i.e. the residual between the observed 444	

and expected values). Note that ecometric load is largely independent of the ecometric 445	

correlation, except insofar that a weak correlation requires at least some mismatch 446	

between performance optimum and realized trait mean and thus cannot have a load of 447	

zero (Polly et al. 2016a). Ecometric patterns with strong correlations can also have strong 448	

loads. Establish a transfer function to determine the specific relationship between the two 449	

variables (i.e. it estimates function coefficients). If there are fossil localities to estimate 450	

past abiotic conditions, then apply the transfer function to the mean of the functional 451	

traits measured from the fossils at a single fossil site. Calculate confidence limits for the 452	

estimated abiotic condition.  453	

Ecometric estimates of paleoenvironment can be made from a regression-based 454	

transfer function or from a likelihood distribution of environmental values given an 455	

observed ecometric value. If regression-based methods are used, reduced major axis 456	

(RMA) regression may be the most appropriate if there is uncertainty in the independent 457	

variable. Transfer functions are prediction equations derived from regressing the 458	
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environmental variable of interest onto the predictive trait value. Different transfer 459	

functions are used depending on the type of trait variable and the type of environmental 460	

variable. Other considerations include the type of predicted relationship between the trait 461	

and environment and the statistical fitting procedures.  462	

Transfer functions have been typically calibrated with modern distributions of 463	

species and their functional traits. For optimal use of the transfer function, for both 464	

reconstructing abiotic condition and tracking trait distributions through time, the 465	

functional trait should be either directly fossilizable or able to be estimated from fossil 466	

specimens. For example, hypsodonty may be estimated directly from fossil specimens 467	

(Fortelius et al. 2002) and body size may be accurately estimated from fragmentary 468	

skeletal and dental remains (Alexander 1989; MacFadden 1990). 469	

 470	

V. STRENGTHS OF APPROACH 471	

 472	

Ecometrics allows us to quantify the dynamic relationships between organisms 473	

and their environment. Arguably, the primary strength is that ecometric traits are 474	

predictable and transferable through space and time. Since ecometrics uses taxon-free 475	

descriptors of community characteristics, it allows for the comparison of community 476	

changes in the modern world to those in deep time (Eronen et al. 2010a; Polly et al. 477	

2011). The species that make up the community in the modern world do not need to be 478	

the same as those that make up the paleocommunity; the only thing the two communities 479	

need to share is the functional trait under study. Because ecometrics focuses on traits that 480	

are directly related to environmental conditions, it can be applied to questions on many 481	



	 23	

geographic and temporal scales (Wolfe 1994; Wether et al. 1999; Thompson et al. 2001; 482	

Fortelius et al. 2002). This quality allows ecometrics to be applied at local community 483	

levels up to global community levels. It also allows for the comparison of ecometric 484	

patterning across these scales. In addition, many ecometric traits are easily measured on 485	

both animal and plant fossils (Alexander 1989; MacFadden 1990; Fortelius et al. 2002; 486	

Royer et al. 2005; Head et al. 2009). 487	

 488	

VI. BIASES AND SHORTCOMINGS 489	

 490	

The incomplete nature of the fossil record may influence the quality of data in 491	

ecometric studies. However, Polly and Sarwar (2014) showed that even if only 25% of 492	

the species of a community are found in a fossil locality, the ecometric patterns still 493	

appear. Taphonomic issues with the fossil preservation should also be taken into account, 494	

because the functional traits used in ecometric studies need to be measurable or inferred 495	

from the fossil remains. It has often not been the case where this is an issue (Alexander 496	

1989; MacFadden 1990; Fortelius et al. 2002; Royer et al. 2005; Head et al. 2009; Peppe 497	

et al. 2011; Wilson et al. 2012) and there are various ways to remove the taphonomic 498	

influence from the fossil, thus returning it, or a model of it, to its original state (i.e., 499	

retrodeformation methods; Webster and Hughes 1999; Angielczyk and Sheets 2007). 500	

Several important assumptions are made with the ecometric approach, including, 501	

that the ecometric relationship doesn’t change through time and that the full range of 502	

morphologies and environmental conditions are represented (i.e. they are not truncated – 503	

there are no biased extinctions and only analogous climate conditions). If these are 504	
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reasonable assumptions for the ecometric trait in question, one may use an ecometric 505	

relationship to reconstruct paleoclimate and paleoenvironment, given a couple more 506	

assumptions about the fossil localities. The community of fossils within the fossil 507	

localities being studied should represent the actual community of species that co-occurred 508	

with the depositional environment. In addition, the functional traits should be measurable 509	

in the preserved fossils. More work is needed to quantify coefficients describing the 510	

relationship between functional traits and environmental conditions to understand if and 511	

how they change through time and space. 512	

More research needs to be done concerning intraspecific variation. Intraspecific 513	

variation, at least in regards to carnivoran calcaneum gear ratios, is high, and it does not 514	

follow community level ecometric patterning. Models seem to support the idea that this is 515	

possible due to the high level of gene flow within populations, but the overall signal at 516	

the community level overshadows the intraspecific variation of the populations.  517	

 518	

VII. ECOMETRICS EXAMPLE 519	

 520	

 In this section we provide a worked example of how mean annual temperature can 521	

be estimated from the distribution of body masses in North American mammals using a 522	

likelihood approach. In addition to presenting the method, we also discuss the theory for 523	

why ecometric distributions are related to local environment and how our methodology is 524	

related to that theory. 525	

When the relationship between trait performance and environment is known, the 526	

likelihood function can, in theory, be determined a priori (Arnold 1983). Performance-527	
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environment relationships can sometimes be estimated for traits recovered in fossils using 528	

tools such as finite element analysis, hydrodynamic or mechanical principles, or 529	

functional morphological experimentation (e.g., Baumiller et al. 1991; Rayfield 2007; 530	

Wroe 2008; Shino and Suzuki 2011; Stayton 2011; Polly et al. 2016b). However, in 531	

many cases the performance-environment relationship is unknown, even when the trait-532	

function relationship is well understood. For example, the functional role of hind-limb 533	

gear ratio of mammals is understood (it is related through physical lever principles to the 534	

efficiency of hind limb extension, and thus to the mechanics of walking, springing, 535	

climbing, and running), but its distribution in a particular environment is difficult to 536	

predict a priori because it is likely to be influenced by a combination of factors such as 537	

vegetation physiognomy, terrain ruggedness, substrate, snow cover, and predator-prey 538	

interactions (Klein et al. 1987; Polly 2008, 2010; Crête and Larivìere 2003). In such 539	

cases, likelihoods can be estimated directly from empirical data by making the 540	

assumption that the distribution of traits in modern communities is close enough to 541	

equilibrium to be representative. Polly and Sarwar (2014) found this to be a reasonable 542	

assumption for carnivore limb ratios, but care should be taken before generalizing that 543	

result to other traits. 544	

 545	

[insert Figure 2 near here] 546	

 547	

 Likelihoods for paleoenvironmental parameters can be estimated empirically by 548	

projecting environmental variables into an ecometric space, which is a mathematical 549	

space whose axes are statistical descriptors of the distribution of traits in local 550	
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communities (Figure 2A). Ecometric space is in some ways the conceptual opposite of 551	

Hutchinson’s (1957) niche space, in which a species’ niche is the volume it occupies in a 552	

multidimensional space whose axes are environmental variables. Translated into 553	

ecometric terms, the niche of a species is circumscribed by the performance of the 554	

functional traits that relate it to the environmental factors. An ecometric space inverts that 555	

relationship by mapping the distribution of environmental parameters on trait-based axes, 556	

except that those axes describe the distribution of traits in community assemblages rather 557	

than the traits of a single species. Figure 2A shows mean annual temperature mapped 558	

into an ecometric space whose axes are defined by the distribution of log body mass (kg) 559	

of mammals.  560	

 To create this ecometric space we sampled mammal faunas at 50 km intervals 561	

across the entirety of North America. At each sampling point we calculated the mean and 562	

standard deviation of the body masses (kg) of the local mammals from the data compiled 563	

by Smith et al. (2003) and we recorded the local mean annual temperature (MAT) from 564	

Hijmans et al. (2005).  565	

 Estimating the likelihood of MAT from community trait characteristics is then a 566	

three-step process. First, the trait data should be binned so that a frequency distribution of 567	

the environmental variable can be calculated. The number of bins is arbitrary, but it 568	

should be coarse enough to encompass a reasonable number of communities in the 569	

densest areas of the trait space, yet fine enough to be biologically meaningful. The ideal 570	

bin size would be about as wide as the standard errors of the means and standard 571	

deviations in the bin. We divided our ecometric space into 625 bins (25 X 25).  572	
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 Second, the MAT observations in each trait bin were themselves binned to 573	

tabulate their frequency distribution. The number of temperature bins is also arbitrary (we 574	

used a bin size of 1°C). Once binned, a discrete probability density function (PDF) can be 575	

estimated by dividing the bin counts by the total number of observations. A continuous 576	

PDF can also be fit to the frequency data. Figure 2B shows a continuous PDF for 577	

temperature in communities with a mean ln body mass between 3.05 (21.11 kg) and 3.13 578	

(22.87 kg) and a standard deviation between 1.05 and 1.10 (black box in Figure 2A) 579	

based on a Gaussian kernel density estimate with bandwidth of 1°C.  580	

With these pieces in place, a maximum likelihood estimate of the environmental variable 581	

(MAT) can be made by measuring the trait (body mass) mean and standard deviation at a 582	

site of interest and then finding the environmental value that maximizes the PDF. The 583	

maximum likelihood estimates of MAT for all the sampling locations in North America 584	

are shown in Figure 2C, compared with the real MAT values in Figure 2D. This 585	

estimate (MAT at sampling locations) is reasonable, but tends to be too low in high 586	

elevation areas and too warm at lower elevations (see anomaly map in Figure 2E). On 587	

average, the discrepancy between the real MAT and the estimate based on mammal body 588	

masses was 3.9°C, which serves as an approximate standard error (but one that is 589	

probably underestimated because the likelihood functions were estimated from the same 590	

data on which they were tested).  591	

One of the primary advantages of using likelihood and ecometric spaces is that the 592	

likelihoods of alternative reconstructions can be compared. For example, the maximum 593	

likelihood estimate of MAT for the Central American location highlighted by the black 594	

circles in Figure 2C-E is 24.95°C with L(24.95)=0.274 derived from the PDF for that 595	
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location (Figure 2B). The real MAT is 25.3°C, which has L(25.3)=0.265, which is 596	

clearly much more plausible with a likelihood ratio of 0.967 than an MAT of 20°C, 597	

where L(20.0)=0.024 produces a likelihood ratio of only 0.088. This approach can be 598	

developed into a formal likelihood ratio test of alternative hypotheses about 599	

paleoenvironment, and it can be combined with prior probabilities from independent 600	

paleoenvironmental proxies into a Bayesian framework (Polly and Head 2015). 601	

The second advantage of the likelihood approach is that incommensurable traits can be 602	

combined. Mammalian body mass distributions were fairly good predictors of MAT, as 603	

might be expected by extrapolating Bergmann’s rule, which postulates that subspecies in 604	

colder climates will have larger body mass than their conspecifics elsewhere (Bergmann 605	

1947; Scholander 1955; Mayr 1963), to the level of species and communities. However, 606	

homeothermic mammals are well-insulated from climate and their body size may not be 607	

as good predictors of MAT as that of ectotherms (Head et al. 2009). Because large 608	

ectothermic animals require warm ambient temperatures to sustain their growth rate, the 609	

size range of species in hot climates is expected to be greater than in cold climates 610	

(Makarieva et al. 2005). Using a dataset of ventral scale count as a proxy for size 611	

assembled by Lawing et al. (2012), we repeated the likelihood estimation for MAT in 612	

North America using the range of log scale count and its standard deviation as the 613	

dimensions of the ecometric space (Figure 2F). These two parameters are both measures 614	

of dispersion and are therefore correlated, yet pick out different aspects of the distribution 615	

of body size in local communities. These data yield a similar likelihood function for the 616	

site in Central America, but with a narrower peak of predicted MAT (Figure 2G). 617	

Because the likelihood functions are probabilities, they can be combined by multiplying 618	
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them and renormalizing so that the area under them is 1.0. The resulting function gives 619	

the likelihood of MAT given the distribution of body masses in mammals and the 620	

distribution of ventral scale counts in snakes. This combined likelihood function provides 621	

a better estimate of temperature than either trait does alone (Figure 2H-J). The mean 622	

anomaly between estimated and real temperature based on the combined estimate is only 623	

2.4°C, much better than with mammals alone. Sacrificed is the ability to estimate MAT in 624	

the northern part of the continent where the climate is too cold for snakes to live. 625	

A fully worked ecometrics example and R code is documented in Appendix I.  626	

 627	

VIII. FUTURE PROSPECTS 628	

 629	

Several aspects of ecometrics need to be addressed with future research. These 630	

areas include—intraspecific variation, abundance, phylogenetics, combining multiple 631	

ecometrics, conservation, and ecosystem services. Polly et al. (2016a) took first steps to 632	

identify and define a theory of ecogeography- moving from pattern to process with 633	

ecometric modeling. They used modeling to simulate the affects of changing 634	

microevolutionary processes on the ecometric patterning seen at the community level. As 635	

this area of interest progresses, eventually we hope to be able to observe ecometric 636	

patterns and determine which microevolutionary and macroevolutionary processes caused 637	

the patterns we see. One area of ecometric study that deserves further study is the affects 638	

of intraspecific variation in ecometric patterns. Polly et al. (per comm) show that while 639	

intraspecific variation, at least in regards to carnivoran calcaneum gear ratios, is high, it 640	

does not follow community level ecometric patterning. Models seem to support the idea 641	
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that this is possible due to the high level of gene flow within populations, but the overall 642	

signal at the community level overshadows the intraspecific variation of the populations.  643	

Another future development in the field of ecometrics is the prospect of marine 644	

ecometrics (Wallin 1991; Yasuhara et al. 2015). Due to the depositional environments 645	

found in marine systems, marine fossils are the majority of fossils found (Sepkoski 646	

1978). Marine fossils are often used in isotopic studies to reconstruct paleoecology 647	

(Bowen 1964; Anderson and Arthur 1983; Krantz et al. 1987; Wefer and Berger 1991; 648	

Rodrigues et al. 2014; Huyghe et al. 2015; Reich et al. 2015). The changes in isotopic 649	

fractionation may follow geographical gradients similar to an ecometric (Marchais et al. 650	

2013; Lynch-Stieglitz et al. 2015; Mackenzie et al. 2014; Beard et al. 2015). However, 651	

the isotopic fractionation process is not a morophological trait, it is a metabolic functional 652	

trait, and as such, follows different biological, physical, and chemical rules. 653	

New advances in remote sensing capabilities could alter the accuracy of our 654	

estimates of both species geographic ranges and the environmental condition in which 655	

they occur. Remote sensing appears like it will be quite useful when studying changes in 656	

plant community structures over large geographic regions. It allows for a level of detail in 657	

which single plants are recognizable across regional scales (Jones and Vaughan 2010). 658	

Geometric morphometrics will also allow for the study of ecometrics when a 659	

particular functional trait changes size across age, but doesn't change shape (or vice 660	

versa). New advances will also allow for 3D modeling of functional traits. This may 661	

allow for the identification of aspects of the morphology that are better ecometrics than 662	

those being used. It can also allow for better ecometrics since we will no longer be using 663	

linear or volumetric measurements, but instead use the full 3D shape. Recent work by 664	
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Polly (2010) and Wilson et al. (2012) has shown that this is a viable avenue of future 665	

inquiry. 666	

 667	
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Figure 1. A. Example of an entire leaf margin from a live oak leaf modified from an 967	

image by Jeremy Stovall. The leaf margin is entire when its margin is not punctuated. An 968	

easy way to determine if the margin is entire or to quantify the entirety of the margin is to 969	

overlay the image of the leaf with an oval, as is depicted in the figure with the red outline. 970	

Entire leaf margins are characteristic of hotter environments. B. Example of a non-entire 971	

leaf margin from a dwarf birch modified from an image by Fox Valley. Non-entire leaf 972	

margins are characteristic of cooler environments. C. Example of hypsodonty in a rodent 973	

modified by Tapaltsyan et al. 2015. Hypsodonty is measured by the crown to root ratio. 974	

Hypsodonts are grazers and are characteristic of arid environments with more gritty 975	

vegetation. D. Example of brachydonty in a rodent modified from Tapaltsyan et al. 2015. 976	

Brachydonts are browsers and are found in more wet environments with mixed 977	

vegetation. E. Example of a calcaneum from a raccoon modified from an image on 978	

boneid.net. Gear ratio is measured on the calcaneum and is the ratio of the length of the 979	

sustentacular facet to the total length of the calcaneum. The gear ratio for the raccoon is 980	

typical of a plantigrade animal and is characteristic for animals living in high vegetation 981	

cover (e.g., dense woodlands). F. Example of a calcaneum from a panther modified from 982	

an image on boneid.net. The gear ratio in the panther is typical of a digitigrade animal 983	

and is characteristic of animals that are adapted to run through open habitats. 984	

 985	

Figure 2. A. Ecometric space for community-level mammalian body mass showing the 986	

maximum likelihood estimation of mean annual temperature (MAT) for each bin. B. 987	

Likelihood function for MAT based on mammal body mass at the point in Central 988	

America highlighted by the black circles in C-E. C. MAT estimated from mammalian 989	
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body mass. D. Observed MAT. E. anomaly between estimated and observed MAT. F. 990	

Ecometric space for snake body size showing the maximum likelihood estimate for MAT 991	

in each bin. G. Likelihood function for MAT at the same point in Central America based 992	

on snake size. H. MAT estimated from combined mammalian body mass and snake size. 993	

I. Observed MAT. E. Anomaly between combined estimate and observed MAT. 994	

 995	
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Figure 21000	
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APPENDIX I. ECOMETRICS WORKFLOW AND R CODE 1004	

 1005	

 This section demonstrates an ecometric modeling workflow using the R Statistical 1006	

Programing Language. To demonstrate these models in R, we will work with spatial data. 1007	

There are special functions in two packages, raster and sp, that allow for relatively quick 1008	

processing of spatial information (Bivand et al. 2015, Hijmans 2015, Pebesma and 1009	

Bivand 2005). We will use climate data from the worldclim database (Hijmans et al. 1010	

2005) and we will use trait data body mass and hypsodonty, from the PanTHERIA 1011	

database (Jones et al. 2009) and from Eronen et al. (2010b). The code below in the gray 1012	

boxes can be typed directly into an R console or can be entered into an R script file. The 1013	

blue color indicates that the word is a function. The green color indicates that the text is a 1014	

character string and the bright blue indicates that the text is recognized as a number. To 1015	

start the analysis, load the two required libraries. If they are not installed yet on your 1016	

computer, install them with the function install.packages(). 1017	

library(raster) 1018	

## Loading required package: sp 1019	

library(sp) 1020	

 1021	

Load the sampling locations and look at the first six rows of data with the functions 1022	

read.csv() and head(). The first function read.csv() is a wrapper for another function 1023	

called read.table(), which can be used in place of read.csv(), if the data are in tab 1024	

delimited format. Use the help() function to see the documentation associated with each 1025	

function. 1026	



	 50	

points <- read.csv("data/SamplingPoints.csv") 1027	

head(points) 1028	

##   GLOBALID Longitude Latitude 1029	

## 1   103148  -42.1727 83.26264 1030	

## 2   103149  -38.3442 83.26264 1031	

## 3   103150  -34.5156 83.26264 1032	

## 4   103151  -30.6871 83.26264 1033	

## 5   103152  -26.8586 83.26264 1034	

## 6   103235  -79.4690 82.81348 1035	

  1036	

Plot the sampling locations with the function plot() to visualize the geographic 1037	

distribution of the sampling locations. In this example, we use 50 km equidistant points 1038	

sampled across North America. These are the same points used in Polly (2010). 1039	

plot(points[,2:3], col = "gray", pch = 16) 1040	

	1041	

 1042	

−150 −100 −50

20
40

60
80

Longitude

La
tit
ud
e



	 51	

Download raster climate data from the worldclim database using the getData() function 1043	

from the package raster that we loaded with the library() function (Hijmans et al. 2005, 1044	

Hijmans 2015). In this example, we download the 10 minute resolution, but if you would 1045	

like to try a higher resolution data set, then change the argument named res to 2.5 or 0.5. 1046	

Extract the temperature and precipitation for each sampling location using the extract() 1047	

function. 1048	

bioclim <- getData("worldclim", download = T, path = "data", var = "bio", res = 10) 1049	

 1050	

Extract the temperature for each sampling location. 1051	

temperature <- extract(bioclim[[1]], points[,2:3]) 1052	

 1053	

Calculate the temperature range for all the sampling localities to make a plot of the 1054	

temperature. We add one to the range to make the range equal to index values that we can 1055	

use to subset the color function. The R language starts the subset of data at an index value 1056	

of 1. Calculate the color value associated with each temperature value and the 1057	

temperature values associated with even breaks to assign legend values. 1058	

temp_range <- 1 + max(temperature, na.rm = T) - min(temperature, na.rm = T) 1059	

colfunc_temp <- colorRampPalette(c("darkblue", "blue", "gray", "yellow", 1060	

"red"))(temp_range)[1 + temperature - min(temperature, na.rm = T)] 1061	

h <- hist(temperature, main = "", xlab = "Mean Annual Temperature", col = "gray", 1062	

breaks = 5) 1063	
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 1064	

plot(points[,2:3], col = colfunc_temp, pch = 16, main = "Mean Annual Tempeature (C)") 1065	

legend("bottomright", legend = h$breaks/10, pch = 16, col = 1066	

colorRampPalette(c("darkblue", "blue", "gray", "yellow", "red"))(length(h$breaks))) 1067	

 1068	
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Extract the precipitation for each sampling locality. 1070	

precipitation <- extract(bioclim[[12]], points[,2:3]) 1071	

 1072	

Calculate the precipitation range for all the sampling localities to make a plot of the 1073	

precipitation. Also, calculate color value associated with each precipitation value and the 1074	

precipitation values associated with even breaks to assign legend values. 1075	

precip_range <- 1 + max(log(precipitation), na.rm = T) - min(log(precipitation), na.rm = 1076	

T) 1077	

colfunc_pr <- colorRampPalette(c("brown", "green"))(precip_range)[1 + 1078	

log(precipitation) - min(log(precipitation), na.rm = T)] 1079	

h <- hist(log(precipitation), breaks = 5, col = "gray") 1080	

 1081	

	1082	
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plot(points[,2:3], col = colfunc_pr, pch = 16, main = "Precipitation (mm)") 1083	

legend(-36.25, 60.5, legend = round(exp(h$breaks)), pch = 16, col = 1084	

colorRampPalette(c("brown", "green"))(length(h$breaks))) 1085	

 1086	

 1087	

Compile the climate variables into a new data.frame called climate. Remove the variables 1088	

that are taking up memory with the rm() function if your memory is getting sluggish. 1089	

climate <- cbind(points, temperature, precipitation) 1090	

#rm(bioclim, temperature, precipitation, points) 1091	

 1092	

Visually check the climate variables for normality and if they are not mostly normally 1093	

distributed, transform them for normality.  1094	

head(climate) 1095	
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##   GLOBALID Longitude Latitude temperature precipitation 1096	

## 1   103148  -42.1727 83.26264        -169           139 1097	

## 2   103149  -38.3442 83.26264        -170           141 1098	

## 3   103150  -34.5156 83.26264        -175           149 1099	

## 4   103151  -30.6871 83.26264        -185           166 1100	

## 5   103152  -26.8586 83.26264        -180           139 1101	

## 6   103235  -79.4690 82.81348        -207            90 1102	

 1103	

hist(climate[,4], main = "", xlab = "Mean Annual Temperature", col = "gray") 1104	

 1105	

 1106	

 1107	

Temperature appears to be mostly normally distributed, so now we check precipitation.  1108	

 1109	
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hist(climate[,5], main = "", xlab = "Annual Precipitation", col = "gray") 1110	

	1111	
Precipitation appears to be log distributed. We log transform this variable to get it closer 1112	

to normality. 1113	

climate[,5] <- log(climate[,5]) 1114	

hist(climate[,5], main = "", xlab = "Annual Precipitation", col = "gray") 1115	

	1116	
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Next, we read in the trait data from a folder called data. We assign the row names of the 1117	

new data frame to the names of the taxon within the dataset. We look at the first six rows 1118	

of the trait data frame with the head() function. The two traits that we use in this example 1119	

are body mass and hypsodonty index. Body mass is reported in grams and is the mass of 1120	

any adult reported in the PanTHERIA database (Jones et al. 2009) from live or freshly-1121	

killed specimens. These include captive, wild, provisioned, or unspecified populations 1122	

and include male, female, and sex unspecified individuals. The mean for each species is 1123	

reported for each species. The second trait that we use is and index for hypsodonty from 1124	

Eronen et al. (2010b). 1125	

traits <- read.csv("data/NAmammalTraits.csv") 1126	

rownames(traits) <- traits$TaxonName 1127	

head(traits) 1128	

##                                     TaxonName BodyMass hypsodonty_index 1129	

## Didelphis virginiana     Didelphis virginiana 3.387760                1 1130	

## Aplodontia rufa               Aplodontia rufa 2.906448                3 1131	

## Sciurus carolinensis     Sciurus carolinensis 2.736715                1 1132	

## Sciurus griseus               Sciurus griseus 2.847480                1 1133	

## Sciurus niger                   Sciurus niger       NA                1 1134	

## Tamiasciurus douglasii Tamiasciurus douglasii 2.352183                1 1135	

 1136	

Now we read in shapefiles containing polygons that represent the geographic ranges for 1137	

all of the species of interest. These specific shape files were obtained from IUCN Redlist 1138	
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using their spatial data download option (www.iucnredlist.org). If you are dealing with 1139	

large shapefiles, then this step will take a reasonable amount of processing time.  1140	

geography <- 1141	

shapefile("data/TERRESTRIAL_MAMMALS/TERRESTRIAL_MAMMALS.shp") 1142	

 1143	

Next we create a list of species at each sampling locality by first turning the sampling 1144	

points into spatial points with the function SpatialPoints(). We assign the coordinate 1145	

reference system of our spatial points to a proj4string to match the coordinate reference 1146	

system of the spatial polygons representing the geographic ranges. We then create a list 1147	

with the function over(). If you are dealing with large shapefiles, keep in mind that the 1148	

over() function will take a reasonable amount of time to process. 1149	

sp <- SpatialPoints(climate[,2:3], proj4string = CRS(proj4string(geography))) 1150	

o <- over(sp, geography, returnList = T) 1151	

 1152	

The sample size at each site is calculated by determining the length of the vector returned 1153	

for each site. The ecometric for body mass and hypsodonty index are summarized for the 1154	

community level distribution. Here, we summarize with the mean. 1155	

richness <- unlist(lapply(o, function(x) length(traits[x$binomial,"hypsodonty_index"]))) 1156	

ecometric_bodymass <- unlist(lapply(o, function(x) 1157	

mean(traits[x$binomial,"BodyMass"], na.rm = T))) 1158	

ecometric_hypsodonty <- unlist(lapply(o, function(x) 1159	

mean(traits[x$binomial,"hypsodonty_index"], na.rm = T))) 1160	

 1161	



	 59	

FIRST APPROXIMATION WITH TRANSFER FUNCTION 1162	

Now we create a model describing the relationship between traits and climate. First we 1163	

consider the relationship between hypsodonty and precipitation. We build a simple linear 1164	

model to describe the variation in precipitation due to the variation in hypsodonty using 1165	

the function lm(). We only use sites that we have data for more than five species. We 1166	

look at a summary of the model using the function summary(). Both the intercept and the 1167	

coefficient (here the coefficient represents the slope of the linear relationship) are not 1168	

zero (p < 0.001). The amount of explained variation (R2) is 30%. We then make a 1169	

scatterplot of those variables to look at the general spread of data and add the linear 1170	

model with the function abline(). 1171	

model_hyp <- lm(climate[richness > 5,5] ~ ecometric_hypsodonty[richness > 5]) 1172	

summary(model_hyp) 1173	

## Call: 1174	

## lm(formula = climate[richness > 5, 5] ~ ecometric_hypsodonty[richness >  5]) 1175	

## Residuals: 1176	

##     Min      1Q  Median      3Q     Max  1177	

## -1.9984 -0.3348 -0.0163  0.3821  4.3388  1178	

## Coefficients: 1179	

##                                    Estimate Std. Error t value Pr(>|t|) 1180	

## (Intercept)                         9.99886    0.06160   162.3   <2e-16 1181	

## ecometric_hypsodonty[richness > 5] -2.35602    0.03869   -60.9   <2e-16 1182	

## (Intercept)                        *** 1183	

## ecometric_hypsodonty[richness > 5] *** 1184	
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## --- 1185	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 1186	

## Residual standard error: 0.5834 on 8651 degrees of freedom 1187	

##   (15 observations deleted due to missingness) 1188	

## Multiple R-squared:  0.3001, Adjusted R-squared:    0.3  1189	

## F-statistic:  3709 on 1 and 8651 DF,  p-value: < 2.2e-16 1190	

plot(ecometric_hypsodonty[richness > 5], climate[richness > 5,5], xlab = "HYP", ylab = 1191	

"Annual Precipitation", pch = 16, col = "gray") 1192	

abline(model_hyp, col = "red", lwd = 4) 1193	

 1194	

 1195	

From this model, we can see there is some predictive power in this transfer function, but 1196	

the linear model does not capture the relationship well. In the next section we will show 1197	

how to estimate annual precipitation from hypsodonty with a maximum likelihood 1198	

approach that better captures the relationship between annual precipitation and 1199	

hypsodonty. 1200	
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Now we create a model describing the relationship between the body mass and 1201	

temperature. We build a linear model to describe the variation in body mass due to the 1202	

variation in temperature using the function lm(). We look at a summary of the model 1203	

using the function summary(). Both the intercept and all the coefficients are significantly 1204	

different from zero (p < 0.001). The amount of explained variation (R2) is approximately 1205	

34%. We then make a scatterplot of those variables to look at the general spread of data 1206	

and add the model with the function curve(). 1207	

model_mass <- lm(climate[richness > 5,4] ~ ecometric_bodymass[richness > 5]) 1208	

summary(model_mass) 1209	

## Call: 1210	

## lm(formula = climate[richness > 5, 4] ~ ecometric_bodymass[richness >  5]) 1211	

## Residuals: 1212	

##     Min      1Q  Median      3Q     Max  1213	

## -170.72  -65.22  -24.73   43.71  375.19  1214	

## Coefficients: 1215	

##                                  Estimate Std. Error t value Pr(>|t|)     1216	

## (Intercept)                       471.512      6.571   71.76   <2e-16 *** 1217	

## ecometric_bodymass[richness > 5] -153.559      2.304  -66.64   <2e-16 *** 1218	

## --- 1219	

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 1220	

## Residual standard error: 92.6 on 8651 degrees of freedom 1221	

##   (15 observations deleted due to missingness) 1222	
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## Multiple R-squared:  0.3392, Adjusted R-squared:  0.3391  1223	

## F-statistic:  4440 on 1 and 8651 DF,  p-value: < 2.2e-16 1224	

plot(ecometric_bodymass[richness > 5], climate[richness > 5,4], ylab = "MAT", xlab = 1225	

"Body Mass", pch = 16, col = "gray") 1226	

curve(model_mass$coefficients[1] + model_mass$coefficients[2] * x, col = "red", lwd = 1227	

4, add = T) 1228	

 1229	

 1230	

From this model, we can see that, again, there is some predictive power in this transfer 1231	

function, but the linear model does not capture the relationship well. In the next section 1232	

we will show how to estimate mean annual temperature from body mass with a maximum 1233	

likelihood approach that better captures the relationship between the two. 1234	

The coefficients that were estimated in both of these models can be used to estimate 1235	

paleotemperature and precipitation. Confidence limits can also be calculated given the 1236	

input dataset. It is important to note that the size of the confidence limits will vary with 1237	
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climate. For example, between 5 C and 28 C, there is a stronger relationship with body 1238	

size than below or above those temperatures. Hypsodonty has high variability throughout 1239	

the precipitation range present in North America; however, there is a central tendency 1240	

about the average relationship between precipitation and hypsodonty index that is useful 1241	

in reconstructing paleoprecipitation with confidence limits. 1242	

 1243	

MAXIMUM LIKELIHOOD ESTIMATION 1244	

Although transfer functions, while easy to apply and adequate for first approximations, 1245	

assume a fairly simple relationship one-to-one relationship between environment and trait 1246	

means. Combining different traits that have functional relationships with the same 1247	

environmental factor is also awkward with conventional regression-based transfer 1248	

functions, especially if the traits are fundamentally different in kind or scale (e.g., body 1249	

mass measured in kg and humerus shape measured in Procrustes units).  1250	

An alternative strategy is to estimate the likelihood of environmental parameters given 1251	

the distribution of traits in a community (Lawing et al. 2012; Polly and Head 2015). This 1252	

approach, like many likelihood or Bayesian methods, requires far fewer assumptions 1253	

about the statistical distributions of variables and it allows otherwise incommensurable 1254	

data to be combined into the same estimate. 1255	

To begin, we need to create another variable at the community level, namely the standard 1256	

deviation, to use in the maximum likelihood estimate of temperature. 1257	

sd_ecometric_bodymass <- unlist(lapply(o, function(x) 1258	

sd(traits[x$binomial,"BodyMass"], na.rm = T))) 1259	

 1260	
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We create bins using the body mass variable and extract the break points for each bin. 1261	

#bin the community level trait distribution into 25X25 1262	

#first take the range of each 1263	

mtemp <- range(ecometric_bodymass, na.rm = T) 1264	

sdtemp <- range(sd_ecometric_bodymass, na.rm = T) 1265	

#get the break points for the mean and sd 1266	

mbrks <- seq(mtemp[1], mtemp[2], diff(mtemp)/25) 1267	

sdbrks <- seq(sdtemp[1], sdtemp[2], diff(sdtemp)/25) 1268	

#assign bin codes for each 1269	

mbc <- .bincode(ecometric_bodymass, breaks = mbrks) 1270	

sdbc <- .bincode(sd_ecometric_bodymass, breaks = sdbrks) 1271	

 1272	

We calculate the temperature for each bin. 1273	

#calculate the data for the raster 1274	

obj <- array(NA,dim = c(25,25)) 1275	

for(i in 1:25){ 1276	

  for(j in 1:25){ 1277	

    dat <- round(temperature[which(mbc==i & sdbc==j)]/10) 1278	

    obj[26 - j,i] <- mean(dat, na.rm = T)  1279	

  } 1280	

} 1281	

 1282	

Next, we create a raster to store the body mass and temperature data for bins. 1283	
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#make a raster 1284	

r <- raster(extent(0,25,0,25), resolution = 1) 1285	

#set the values to the obj 1286	

r <- setValues(r,obj) 1287	

 1288	

Plot the raster and highlight the bin that we will use to extract data to show an example of 1289	

that maximum likelihood estimate. 1290	

#make an empty plot 1291	

plot(1:25, 1:25, type = "n", xlim = c(1,25), ylim = c(1,25), 1292	

     xaxs = "i", yaxs = "i", asp = 1, axes = F, xlab ="", ylab="") 1293	

#add the rectangle/box 1294	

rect(0, 1, 25, 25, lwd = 3) 1295	

#add the raster data 1296	

plot(r, col = colorRampPalette(c("darkblue", "blue",  1297	

    "grey","yellow", "red"))(round(maxValue(r) -  1298	

    minValue(r))), add = T) 1299	

#this is mean = 3.1, 12, and sd = 1.08, 10 1300	

rect(11, 9, 12, 10, lwd = 4) 1301	
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 1302	

The colors in this raster plot show the Mean Annual Temperature maximum likelihood 1303	

estimate given the associated mean and standard deviation of each bin. 1304	

We extract the data for the highlighted bin and plot the kernel density with a Gaussian 1305	

kernel. This shows the distribution of the likelihood surface. 1306	

#grab all the data for that box 1307	

dat <- round(temperature[which(mbc==12 & sdbc==10)]/10) 1308	

#plot the kernel density with gaussian kernel, bandwidth = 1 1309	

mod <- density(dat, bw = 1) 1310	

plot(mod, ylim = c(0,1), col = "darkblue", lwd = 2) 1311	

polygon(mod$x, mod$y, col = "skyblue") 1312	
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 1313	

This likelihood surface shows a bimodal distribution of the most likely temperature. 1314	

Although it is bimodal, it is much more likely that the temperature falls on the warm end 1315	

of the spectrum, as opposed to the cold end. 1316	

Next, we calculate the maximum likelihood for all bins. 1317	

modmax <- array(NA, dim = length(points[,1])) 1318	

mod <- list() 1319	

for(i in 1:length(points[,1])){ 1320	

  if(!(is.na(mbc[i]) | is.na(sdbc[i]))){ 1321	

    dat <- round(temperature[which(mbc==mbc[i] & sdbc==sdbc[i])]/10) 1322	

    mod[[i]] <- density(dat, bw = 1) 1323	

    modmax[i] <- mod[[i]]$x[which.max(mod[[i]]$y)] 1324	

}} 1325	

modmax <- round(modmax*10) 1326	
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We only use bins with more than the number of species specified as the cutoff. Here we 1327	

use seven. This means that there needs to be at least seven species recorded at each 1328	

location to be included in the estimate. 1329	

cutoff <- 7  1330	

 1331	

To plot the maximum likelihood temperature estimate from the ecometric values, we 1332	

create a color palette for the temperature estimates. In addition, we save the histogram 1333	

with five break points to a variable to use in plotting. 1334	

colfunc_eco <- colorRampPalette(c("darkblue", "blue", "gray", "yellow", 1335	

"red"))(temp_range)[1 + modmax - min(modmax, na.rm = T)] 1336	

h <- hist(temperature, main = "", xlab = "Mean Annual Temperature", col = "gray", 1337	

breaks = 5) 1338	

 1339	

 1340	
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We plot the maximum likelihood temperature estimate from body mass. 1342	

plot(points[,2:3], col = "gray", pch = 16) 1343	

points(points[richness > cutoff, 2:3], col = colfunc_eco[richness > cutoff], pch = 16) 1344	

legend(-31.5, 61, legend = h$breaks/10, pch = 16, col = colorRampPalette(c("darkblue", 1345	

"blue", "gray", "yellow", "red"))(length(h$breaks))) 1346	

 1347	

 1348	

Next we plot the actual temperature to compare with the estimated temperature. 1349	

plot(points[,2:3], col = "gray", pch = 16, main = "Mean Annual Tempeature (C)") 1350	

points(points[richness > cutoff,2:3], col = colfunc_temp[richness > cutoff], pch = 16) 1351	

legend(-31.5, 61, legend = h$breaks/10, pch = 16, col = colorRampPalette(c("darkblue", 1352	

"blue", "gray", "yellow", "red"))(length(h$breaks))) 1353	

 1354	
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	1355	
We plot the anomaly to visualize the difference between the estimated and actual Mean 1356	

annual Temperature. 1357	

plot(points[,2:3], col = "gray", pch = 16) 1358	

anom <- temperature - modmax 1359	

colfunc_anom <- colorRampPalette(c("purple", "grey", "green"))(max(anom, na.rm = 1360	

T) - min(anom, na.rm = T))[1 + anom - min(anom, na.rm = T)] 1361	

points(points[richness > cutoff, 2:3], col = colfunc_anom[richness > cutoff], pch = 16) 1362	

legend(-31.5, 61, legend = h$breaks/10, pch = 16, col = colorRampPalette(c("purple", 1363	

"grey", "green"))(length(h$breaks))) 1364	

 1365	
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 1366	

The anomaly between the estimated Mean Annual Temperature and the actual Mean 1367	

Annual Temperature shows that most of the temperature estimates are less that one 1368	

degree C. 1369	

 1370	
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