
Is CoAP Congestion Safe?
Ilpo Järvinen

University of Helsinki

ilpo.jarvinen@helsinki.fi

Iivo Raitahila

University of Helsinki

iivo.raitahila@helsinki.fi

Zhen Cao

Huawei

zhen.cao@huawei.com

Markku Kojo

University of Helsinki

markku.kojo@cs.helsinki.fi

ABSTRACT
A huge number of Internet of Things (IoT) devices are ex-

pected to be connected to the Internet in the near future.

The Constrained Application Protocol (CoAP) has been in-

creasingly deployed for wide-area IoT communication. It is

crucial to understand how the specified CoAP congestion

control algorithms perform. We seek an answer to this ques-

tion by performing an extensive evaluation of the existing

IETF CoAP Congestion Control proposals. We find that they

fail to address congestion properly, particularly in the pres-

ence of a bufferbloated bottleneck buffer. We also fix the

problem with a few simple modifications and demonstrate

their effectiveness.

CCS CONCEPTS
•Networks→Network performance evaluation; Cross-
layer protocols; Transport protocols; Application layer proto-

cols;

1 INTRODUCTION
The Internet of Things (IoT) devices are expected to become

ubiquitous in the near future and communicate over the

Internet. Tens of billions IoT devices are expected to be con-

nected to the Internet by year 2025. For any Internet traffic,

congestion control is very important consideration as it is

necessary to ensure stability and reasonable performance of

the Internet. Safe handling of congestion is the primary objec-

tive of the congestion control. Any secondary performance

related optimization in congestion control algorithms must

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ANRW ’18, July 16, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5585-8/18/07. . . $15.00

https://doi.org/10.1145/3232755.3232857

be considered through its effects on reaching that primary

object to ensure the stability of the Internet.

While the effect of a single device, especially in case of

constrained IoT devices, may seem miniscule, it is inevitable

that the expected, very large-scale deployment of IoT devices

will incur high traffic volumes and congestion at least in

some settings. Such traffic may impact the Internet or some

parts of it in a harmful way unless the congestion control

algorithms deployed on those devices are congestion safe,

even in the presence of high density hotspots.

The Constrained Application Protocol (CoAP) [14] is the

IETF standardized protocol for IoT. Many exchanges with

CoAP are ephemeral which is challenging to any congestion

control algorithm because it is difficult to acquire enough

state to prevent persistent congestion that would cause se-

vere problems. The CoAP base specification in RFC7252

includes only a very limited congestion control based on

retransmission timeout (RTO) backoff. We call this conges-

tion control Default CoAP. CoAP Simple Congestion Con-

trol/Advanced (CoCoA) [5] is an ongoing work that aims

to improve CoAP congestion control algorithm such that

persistent congestion is not caused by the CoAP traffic.

With the increasing deployment of CoAP and the trend of

using it for Low-PowerWide-Area Network (LPWAN) [6, 13],

it becomes important to understand how the CoAP Conges-

tion Control proposals perform and if they are safe. This

paper seeks an answer to this question by an extensive per-

formance evaluation of the current specified algorithms. Our

key findings and contributions include:

• We reveal that both Default CoAP and CoCoA fail to

control congestion properly in a bufferbloated environ-

ment [7]. Particularly, they perform numerous unnec-

essary retransmissions that waste network capacity.

This condition is stable and known as Congestion Col-

lapse [11];

• We diagnose the current IETF proposals, and find that

current CoAP congestion control specifications depart

from the principles guided by Karn’s algorithm [9] in

significant ways, and as a consequence, pose a threat

to the stability of the Internet;

https://doi.org/10.1145/3232755.3232857

ANRW ’18, July 16, 2018, Montreal, QC, Canada Ilpo Järvinen, Iivo Raitahila, Zhen Cao, and Markku Kojo

• We propose an improved RTO backoff logic that allows

Default CoAP and CoCoA to achieve robustness similar

to TCP using Karn’s algorithm. We confirm that the

improved logic successfully solves the problem with

unnecessary retransmissions, allowing the network to

reach a safe operating point even under a very heavy

load.

2 COAP CONGESTION CONTROL
The Constrained Application Protocol (CoAP) [14] has by

default extremely basic congestion control based on an initial

retransmission timeout (RTO) and an exponential backoff

for the RTO timer. The initial RTO for each new reliable

message exchange is set to a random value between two and

three seconds to avoid synchronization effects and no RTT

estimation is performed.

CoAP Simple Congestion Control/Advanced (CoCoA) [5]

performs RTT measurements with a specific RTO calcula-

tion logic based on strong and weak RTO estimators. Both

estimators are based on the TCP RTO calculation [12]. The

strong RTO estimator is updated from RTT samples for the

responses of not retransmitted requests. The weak RTO es-

timator is used otherwise but only if the request was not

retransmitted more than two times. The weak RTO estimator

uses 1 instead of 4 as the factor K for RTT variation. The

current RTO is calculated from the RTO estimator that was

updated most recently using exponentially weighted moving

average with weight of 0.5 and 0.25 for strong and weak RTO

estimator, respectively.

In addition, instead of using a binary exponential RTO

backoff each time the retransmission timer expires, CoCoA

uses a variable backoff factor; when the RTO is below 1

second CoCoA employs a backoff factor of 3 and when the

RTO is above 3 seconds it employs the factor of 1.5. When

the RTO is between 1 and 3 seconds, the backoff factor is 2.

CoCoA evaluations have shown that CoCoA performs

better than Default CoAP [2–4, 8, 15]. However, heavily con-

gested or bufferbloated settings are not covered by them.

3 TEST ARRANGEMENTS
3.1 Network
The test setup consists of IoT devices that communicate with

a fixed host as shown in the Figure 1. The CoAP endpoints

running on these hosts are implemented in libcoap [10]. The

Figure 1: The test setup

network connection is emulated with Netem (included in

the Linux kernel) to have the characteristics of a wireless

asymmetric link. The constrained bottleneck link between

the last-hop router and the IoT devices has a data rate of 30

kbps downstream with 400 msecs one-way delay, 60 kbps

upstream with 200 msecs delay and 296 bytes MTU. An

additional 10 to 20 msecs delay with random variation is

added between the last-hop router and the fixed host.

The buffer size in front of the bottleneck link is selected

from four options. The smallest buffer is 2500 bytes which is

roughly the bandwidth-delay product of the link. The larger

14100, 28200 and 1410000 (infinite) bytes buffer sizes cause a

varying degree of bufferbloat. The intermediate buffer sizes

are omitted from the results when the buffer is large enough

to no longer cause congestion losses.

3.2 Work Load
The number of concurrent IoT devices in each test varies

from 1 to 400. There are two types of CoAP clients with only

either one used in each test. The clients of both type represent

typical CoAP traffic on IoT devices, exchanging small request-

response pairs one at the time. The payload size in a CoAP

response is 60 bytes. Continuous clients send requests until 50
successful pairs have been exchanged. Random clients divide

the 50 pairs to random size batches of 1 to 10 pairs and after

each batch all congestion control state information is reset.

This emulates a scenario where multiple devices come and

go one after the other, each exchanging only a few messages

but 50 successful pairs are exchanged in total. The distinction

is meaningful for CoCoA but not for ordinary Default CoAP,

because it does not preserve any state information. Each

testcase is run for 20 replications.

3.3 Congestion Control
We compare the congestion control algorithms Default CoAP

as per RFC7252 [14] and CoCoA as per Internet-draft [5].

To prevent distorting the results, some of the CoAP pa-

rameters are modified. According to the CoAP specifications

retransmitting is terminated after MAX_RETRANSMIT (by

default four) retransmissions, but in our experiments with

high congestion more retransmissions are required for a suc-

cessful message exchange. Otherwise, a message exchange

could become aborted, distorting the results as some clients

would not be able to complete all 50 message exchanges.

Thus, the MAX_RETRANSMIT parameter is set to 20 and

the EXCHANGE_LIFETIME and MAX_TRANSMIT_WAIT

parameters are modified correspondingly. To avoid unneces-

sarily long RTOs, the maximum backed off RTO is bounded

to 60 seconds for Default CoAP.

Is CoAP Congestion Safe? ANRW ’18, July 16, 2018, Montreal, QC, Canada

Table 1: Flow completion times (secs) with 50 clients

CC Buffer min 10 25 median 75 90 max

Default 2500B 60.999 61.250 61.500 62.001 63.342 63.767 63.930

CoCoA 2500B 61.024 61.275 61.525 62.001 63.347 63.767 63.930

Default 14100B 62.077 62.177 62.377 62.690 63.003 63.178 63.304

CoCoA 14100B 62.077 62.177 62.377 62.690 63.003 63.179 63.304

4 RESULTS
The traffic over the bottleneck link is subject to congestion-

related losses only. We include a router queue with different

buffer sizes in front of the bottleneck link in order to ex-

periment with the effect of a small buffer as well as larger

buffer sizes representing different levels of buffer bloat that

is typical in the various network devices deployed in the

Internet today.

We evaluate the congestion control algorithms based on

the following main metrics, namely, (i) flow completion

time (FCT): the elapsed time to complete the exchange of 50

request-response pairs for a client, (ii) number of unneces-

sary retransmissions per client: the number of unnecessary

retransmissions performed by a client while completing the

exchange of 50 request-response pairs, and (iii) frequency of

transmissions: the number of (re)transmissions needed for a

successful exchange of a request-response pair.

4.1 Existing CoAP Congestion Control
With both 1 and 10 clients even the small buffer is large

enough to hold all concurrent messages in flight. When only

one client is transmitting, it completes the transmissions

of 50 messages in 33.003 to 33.208 seconds. No congestion

occurs and the flow completion time is limited only due to

Round-Trip Time (RTT) of the network path that is around

660 msecs with one client and with 10 clients slightly longer

due to a little amount of queueing. The queueing delay in-

creases the flow completion time of 10 clients by up to a few

hundreds milliseconds. There is no difference in results be-

tween Default CoAP and CoCoA, because no retransmissions

were needed.

The flow completion times (FCTs) for 50 continuous clients

are shown in Table 1. With 50 simultaneous clients the FCTs

increase being between 61 and 64 secs when using the small

2500 bytes router buffer. Not only the queueing delay in-

creases compared to one and ten clients, but also little con-

gestion starts to occur resulting in a few packet losses. The

major reason for the increased FCT compared to one and 10

clients, however, is in increased queueing delay because on

average only a few packets per client becomes dropped.

With 50 clients and a larger 14100 bytes router buffer,

the buffer can absorb more packets eliminating all packet

losses. This slightly increases the queueing delay because

the packets dropped with the 2500 bytes buffer now fit into

the buffer. This becomes visible as a slight increase in FCTs

at lower percentiles. At the same time the FCT decreases for

those flows for which no packet losses need to be recovered.

This is visible as decreased FCTs at the upper percentiles

and more stable FCTs compared to the case with 2500 bytes

buffer.

The differences between continuous and random clients

are negligible with 50 clients as hardly any packet losses and

retransmissions are present.

Figure 2a shows the median, quartiles, and 10th/90th per-

centiles of the FCT for 100 simultaneous clients of continuous

and random type. The median FCTs increase substantially

compared to the 50 simultaneous clients case. This is due

to increased congestion that results in more packet losses

with the small router buffer and longer queueing delay with

the larger router buffers. The results with continuous and

random clients are still very similar. With the 2500 bytes

router buffer the median FCTs are approx. 102 seconds for

Default CoAP and approx. 105 and 106 seconds for CoCoA

with continuous and random clients, respectively.

With 100 clients and the smallest buffer both congestion

control variants react to congestion by backing off the RTO

when retransmitting amessage. This allows exchangingmost

of the messages without retransmissions, while those clients

for which retransmissions are needed suffer from long FCTs

visible in the upper FCT percentiles. This indicates a Lock-

Out phenomenon of some degree which is typical for a con-

gested tail-drop router queue [1].

With 100 clients and larger buffer sizes, the buffers can

absorb more packets eliminating most of the packet losses

with the 14100 bytes buffer and all losses with the infinite

buffer. Again, the larger buffer increases the queueing delay

and results in longer FCTs for both congestion control vari-

ants. However, the queueing delay increases such that the

round-trip time becomes extended well beyond 2 seconds

and Default CoAP starts to show unacceptable behaviour

because it is not able to adjust its RTO. Instead, it employs

the initial RTO between 2 and 3 seconds for all message ex-

changes. When these messages hit the full queue many of

them inevitably encounter a spurious retransmission time-

out. The spurious RTOs further add to the load in the queue

extending the RTT beyond 3 seconds and thereby result in

one unnecessary retransmission for almost all request mes-

sages. Therefore, FCTs for Default CoAP are nearly twice as

long as for CoCoA.

With 100 continuous clients and larger buffers CoCoA is

able to adjust its RTO beyond the actual RTT after some num-

ber of message exchanges. However, during this time period

it unnecessarily retransmits a few messages per client before

it is able to update its RTO to a high enough value. The weak

RTT samples often help CoCoA to update its RTO despite

ANRW ’18, July 16, 2018, Montreal, QC, Canada Ilpo Järvinen, Iivo Raitahila, Zhen Cao, and Markku Kojo

 0

 50

 100

 150

 200

 250

 300

2500B 14100B Infinite

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Default CoAP/continuous
CoCoA/continuous
Default CoAP/random
CoCoA/random

(a) 100 clients

 0

 200

 400

 600

 800

 1000

2500B 14100B 28200B Infinite

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Default CoAP/continuous
CoCoA/continuous
Default CoAP/random
CoCoA/random

(b) 200 clients

 0

 500

 1000

 1500

 2000

 2500

 3000

2500B 14100B 28200B Infinite

F
lo

w
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
s
)

Default CoAP/continuous
CoCoA/continuous
Default CoAP/random
CoCoA/random

(c) 400 clients

Figure 2: Flow completion times with different number of clients

of the retransmissions, but these unnecessary retransmis-

sions further increase the queue size temporarily, slowing

down the RTO adjustment. With random clients, however,

the FCTs for CoCoA are higher compared to the FCTs with

continuous clients, because the RTO is reset after each batch

and CoCoA has problems to quickly inflate the RTO large

enough to avoid unnecessary retransmissions. It, however,

manages to acquire a few weak RTT samples that increase

the RTO well above the initial RTO and therefore CoCoA

unnecessarily retransmits clearly less than Default CoAP,

resulting in a lower FCT than that of Default CoAP.

Figures 2b and 2c show the FCTs for 200 and 400 simulta-

neous clients. The higher congestion level results in further

increase in the number of packet losses and/or queueing

delay depending on the router buffer size. Also, FCTs are

further extended as expected.

With the 2500 bytes buffer the median FCT for Default

CoAP is slightly shorter than that of CoCoA. This is because

CoCoA has some problems of adjusting RTO to a proper

value as it takes weak RTT samples for retransmitted mes-

sages, resulting in somewhat higher RTO values compared

to the initial RTO of 2-3 seconds that Default CoAP uses.

Hence, on the average RTO expires a bit later for CoCoA

than for Default CoAP, resulting in longer time to complete

a message exchange when retransmissions are needed.

While Default CoAP copes reasonably well with the large

number of clients and small router buffer that result in sig-

nificant number of packet losses, it continues to indicate

unsustainable behaviour with large buffer sizes. The queue-

ing delay increases alongside the increase in buffer sizes. The

larger queueing delay inherently affects the completion time

of all clients, but leads to a vast number of spurious RTOs

with Default CoAP due to the unadjustable RTO value in use.

Even though Default CoAP applies exponential backoff to

the timer on retransmissions, it does not help much at all as

it is returned back to the initial RTO of two to three seconds

for each new message exchange. This results in a significant

amount of spurious RTOs. In particular, with 400 clients the

large buffers are filled with unnecessary retransmissions and

the capacity of the bottleneck link is wasted causing even

more delay. This behaviour fulfils the symptoms of the clas-

sical congestion collapse [11], where little forward progress

is made compared to the time spent in delivering the un-

necessary retransmissions as indicated in Table 2. Default

CoAP unnecessarily retransmits almost all messages four

times, wasting nearly 80% of the bottleneck link capacity

with unnecessary retransmissions.

CoCoA handles the increased congestion and delay with

200 continuous clients and larger buffers relatively well but

with random clients FCTs for CoCoA increase further as the

buffer size is increased, resulting in much higher FCTs for

CoCoA with random clients than with continuous clients.

This is due to increasing number of unnecessary retransmis-

sions as CoCoA is not able to adjust its RTO promptly. With

Table 2: Frequency of retransmissions with 400 clients
and infinite buffer (0=orig. transmission)

CC / Workload 0 1 2 3 4 5 6 7

Default/continuous 1474 3984 4793 7795 381954 0 0 0

CoCoA/continuous 339971 23563 19621 13216 3629 0 0 0

Default/random 1482 3995 4797 7965 381761 0 0 0

CoCoA/random 1982 14500 13915 8713 18510 245248 97132 0

Is CoAP Congestion Safe? ANRW ’18, July 16, 2018, Montreal, QC, Canada

400 random clients and the infinite buffer, however, the FCT

for CoCoA explodes and becomes even higher than that of

Default CoAP. The median FCT for CoCoA is approx. 2898

seconds and for Default CoAP 2425 seconds. With random

clients CoCoA cannot timely adjust its RTO to the high RTT

level caused by buffer-bloated queueing and it is forced to

use the initial RTO values similar to Default CoAP, result-

ing in a huge number of unnecessary retransmissions. The

number of unnecessary retransmissions for CoCoA is even

higher than that of Default CoAP because CoCoA applies the

variable backoff factor of 1.5 for most of the time, whereas

Default CoAP employs the backoff factor of 2. This means

that CoCoA random clients retransmit more aggressively

and cause even higher degree of congestion collapse than

Default CoAP clients. With random clients CoCoA unnec-

essarily retransmits almost all messages 5 to 6 times before

getting a response as illustrated in Table 2.

A typical behaviour for a CoCoA client among 400 simul-

taneous random clients and with the infinite buffer size can

be characterized as follows. The first random client may be

able to get a weak RTT measurement for some of its message

exchanges. A few individual weak RTT measurements, how-

ever, do not deviate the RTOmuch from the initial RTO value

of 2 to 3 seconds, while the prevailing RTT is much higher

and keeps increasing due to all unnecessary retransmissions.

From this point on, each subsequent random client is unable

get a valid RTT measurement as it is forced to retransmit

each message more than two times. After several retrans-

missions it receives an acknowledgement but uses the initial

RTO value of 2 to 3 seconds for the subsequent message

and is again forced to retransmit several times. The same

behaviour is repeated with all remaining random clients and

all these unnecessary retransmissions explode the queueing

delay and raise the perceived round-trip time drastically.

The results indicate that neither Default CoAP nor CoCoA

are able to scale properly with increasing level of conges-

tion, resulting in congestion collapse in the worts case. They

both fail to respond properly to congestion as they revert

the backed off retransmission timer back to a too low RTO

value immediately after getting an acknowledgement for an

unnecessarily retransmitted message. In addition, both algo-

rithms have problems in adjusting the RTO. Default CoAP

is not able to adjust the RTO at all but always uses an ini-

tial RTO of 2-3 seconds for a new message exchange, while

CoCoA uses a blind initial RTO of 2 seconds to initialize the

RTO, instead of using a proper RTT sample when available.

CoCoA also uses RTO calculation that adjusts the RTO very

slowly because it applies an additional weight of 0.5 or 0.25

when computing the RTO.

4.2 Full Backoff Congestion Control
We implement a couple of simple modifications for both

Default CoAP and CoCoA congestion control to make them

congestion safe. We call these Full Backoff variants.

For Default CoAP we first implement the Fullbackoff1 vari-
ant that is similar to Karn’s algorithm; it retains, after re-

transmitting, the backed off RTO value for the subsequent

message exchange until an exchange with no retransmis-

sions is successfully completed. If the already backed off

timer expires with the subsequent exchange, the RTO value

is doubled as usual. After a successful exchange with no

retransmissions, the initial RTO is reverted.

The Fullbackoff1 variant, however, leaves Default CoAP
quite aggressive in high latency environments because it

always starts over with the preset initial RTO after a suc-

cessful, non-retransmitted message exchange. Therefore, we

introduce a more conservative Fullbackoff2 variant for De-
fault CoAP that, instead of reverting the initial RTO after a

successful exchange, halves the backed off RTO after each

successful exchange until the initial RTO value is reached.

This results in more conservative and thereby more conges-

tion safe behaviour when no RTT measurement and RTO

adjustment is present.

CoCoA Fullbackoff1 variant retains the backed off RTO

value after retransmissions like the Fullbackoff1 variant for
Default CoAP. This approach, however, does not take into

account that CoCoA may update the weak RTO estimate

after retransmitting. This update, may increase the RTO

value significantly, even beyond the currently backed off

timer value, in case the actual RTT is rapidly increasing. To

address this, we implement also the Fullbackoff2 variant for
CoCoA that, after retransmitting, takes the maximum of the

current RTO and a newly updated RTO, if available. It then

recalculates the backed off RTO based on the maximum and

uses it for the next message exchange.

The Flow completion times (FCTs) for 200 and 400 clients

with the Full Backoff variants are shown in Figures 3a and 3b.

The Fullbackoff variants for both Default CoAP and CoCoA

reduce the FCTswith larger buffer sizes, yielding a significant

decrease in FCTs with the infinite buffer, particularly when

using 400 random clients.

The effectiveness of the Full Backoff variants is further de-

picted in Figure 4 that shows a dramatic decrease in the num-

ber of unnecessary retransmissions with the bufferbloated

bottlenecks. When running continuous clients, the Default

CoAP Fullbackoff1 variant yields clearly more conservative

behaviour than the existing Default CoAP, reducing the me-

dian for the number of unnecessary retransmissions per

client by 68% and 47%with the infinite and 28200 bytes buffer,

respectively. With random clients, the reduction in the num-

ber of unnecessary retransmissions per client is slightly less

ANRW ’18, July 16, 2018, Montreal, QC, Canada Ilpo Järvinen, Iivo Raitahila, Zhen Cao, and Markku Kojo

 0

 200

 400

 600

 800

 1000

28200B Infinite

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
e

c
s
)

Default CoAP/continuous
Default CoAP+fb1/continuous
Default CoAP+fb2/continuous
CoCoA/continuous
CoCoA+fb1/continuous
CoCoA+fb2/continuous
Default CoAP/random
Default CoAP+fb1/random
Default CoAP+fb2/random
CoCoA/random
CoCoA+fb1/random
CoCoA+fb2/random

(a) 200 clients

 0

 500

 1000

 1500

 2000

 2500

 3000

28200B Infinite

F
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e

 (
s
e

c
s
)

Default CoAP/continuous
Default CoAP+fb1/continuous
Default CoAP+fb2/continuous
CoCoA/continuous
CoCoA+fb1/continuous
CoCoA+fb2/continuous
Default CoAP/random
Default CoAP+fb1/random
Default CoAP+fb2/random
CoCoA/random
CoCoA+fb1/random
CoCoA+fb2/random

(b) 400 clients

Figure 3: Flow completion times with full backoff

 0

 50

 100

 150

 200

 250

 300

 350

28200B Infinite

U
n
n
e
c
e
s
s
a
ry

 r
e
tr

a
n
s
m

is
s
io

n
s

Default CoAP/continuous
Default CoAP+fb1/continuous
Default CoAP+fb2/continuous
CoCoA/continuous
CoCoA+fb1/continuous
CoCoA+fb2/continuous
Default CoAP/random
Default CoAP+fb1/random
Default CoAP+fb2/random
CoCoA/random
CoCoA+fb1/random
CoCoA+fb2/random

Figure 4: The number of unnecessary retransmissions
per client with 400 clients and full backoff

significant because a new random client using the initial

RTO starts relatively often and retransmissions with the ini-

tial RTO cannot be avoided. Nevertheless, the median for

the number of unnecessary retransmissions is reduced by

62% with the infinite buffer and by 42% with the 28200 bytes

buffer.

The Fullbackoff2 variant for Default CoAP yields even

more notable reduction in the number of unnecessary re-

transmissions per client compared to the existing Default

CoAP. For Fullbackoff2 variant the median of the unneces-

sary retransmissions per client with the infinite buffer and

28200 bytes buffer is 86% and 72% less than that of the ex-

isting Default CoAP, respectively. With random clients, the

Fullbackoff2 variant reduces the median for the number of

unnecessary retransmissions compared to the existing De-

fault CoAP by 77% and 58% with the infinite buffer and 28200

bytes buffer, respectively.

The Full Backoff variants for CoCoA avoid the congestion

collapse with random clients and infinite buffer effectively.

The median for the number of unnecessary retransmissions

per client is reduced by 83% and by 88% with the Fullbackoff1
and Fullbackoff2 variant, respectively.
We also run a set of experiments where different CoAP

endpoints implement different congestion control variants

to confirm that the misbehaviour of the existing congestion

controls also have an adverse effect on competing traffic.

As expected, the results confirm that when a half of the

clients runs Default CoAP and the other half runs one of the

Full Backoff variants misbehaving Default CoAP ruins the

performance of the well-behaving variant, while at the same

time the well-behaving variant helps misbehaving Default

CoAP to improve its performance.

5 CONCLUSIONS
In this paper we evaluate the Default CoAP and CoCoA

congestion control algorithms in environments with varying

levels of congestion and bufferbloat. The results indicate

that both algorithms perform a large number of unnecessary

retransmissions in a bufferbloated environment and result

in wasting most of the network capacity similar to classical

congestion collapse. We identify the root cause for the issue

in the robustness of the backoff logic and propose improved

backoff algorithms to mitigate the issue. The evaluation of

the improved algorithms demonstrate their effectiveness.

Is CoAP Congestion Safe? ANRW ’18, July 16, 2018, Montreal, QC, Canada

REFERENCES
[1] F. Baker and G. Fairhurst. 2015. IETF Recommendations Regarding

Active Queue Management. rfc 7567.
[2] A. Betzler, C. Gomez, I. Demirkol, and M. Kovatsch. 2014. Congestion

Control for CoAP Cloud Services. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA). 1–6. https:

//doi.org/10.1109/ETFA.2014.7005340

[3] August Betzler, Carles Gomez, Ilker Demirkol, and Josep Paradells.

2015. CoCoA+: An Advanced Congestion Control Mechanism for

CoAP. Ad Hoc Networks 33 (2015), 126–139. https://doi.org/10.1016/j.

adhoc.2015.04.007

[4] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells. 2016. CoAP Con-

gestion Control for the Internet of Things. IEEE Communications
Magazine 54, 7 (July 2016), 154–160. https://doi.org/10.1109/MCOM.

2016.7509394

[5] C. Bormann, A. Betzler, C. Gomez, and I. Demirkol. 2018. CoAP Simple
Congestion Control/Advanced. Internet Draft. https://www.ietf.org/id/

draft-ietf-core-cocoa-03.txt Work in progress.

[6] S. Farrell. 2018. Low-Power Wide Area Network (LPWAN) Overview.
rfc 8376.

[7] J. Gettys and K. Nichols. 2011. Bufferbloat: Dark Buffers in the Internet.

ACM Queue 9, 11 (Nov. 2011). https://doi.org/10.1109/MIC.2011.56

[8] I. Järvinen, L. Daniel, and M. Kojo. 2015. Experimental Evaluation of

Alternative Congestion Control Algorithms for Constrained Applica-

tion Protocol (CoAP). In The 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT). https://doi.org/10.1109/WF-IoT.2015.7389097

[9] P. Karn and C. Partridge. 1987. Improving Round-trip Time Estimates

in Reliable Transport Protocols. In SIGCOMM’87 Proceedings of the
ACM Workshop on Frontiers in Computer Communications Technology.
2–7. https://doi.org/10.1145/55482.55484

[10] Libcoap [n. d.]. libcoap: C-Implementation of CoAP. Retrieved June

15, 2018 from https://libcoap.net/

[11] J. Nagle. 1984. Congestion Control in IP/TCP Internetworks. rfc 896.
[12] V. Paxson, M. Allman, J. Chu, and M. Sargent. 2011. Computing TCP’s

Retransmission Timer. rfc 6298.
[13] U. Raza, P. Kulkarni, and M. Sooriyabandara. 2017. Low Power Wide

Area Networks: An Overview. IEEE Communications Surveys Tutori-
als 19, 2 (Jan. 2017), 855–873. https://doi.org/10.1109/COMST.2017.

2652320

[14] Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Applica-
tion Protocol (CoAP). rfc 7252.

[15] F. Zheng, B. Fu, and Z. Cao. 2016. CoAP Latency Eval-
uation. Internet Draft. https://www.ietf.org/archive/id/

draft-zheng-core-coap-lantency-evaluation-00.txt Work in progress.

https://doi.org/10.1109/ETFA.2014.7005340
https://doi.org/10.1109/ETFA.2014.7005340
https://doi.org/10.1016/j.adhoc.2015.04.007
https://doi.org/10.1016/j.adhoc.2015.04.007
https://doi.org/10.1109/MCOM.2016.7509394
https://doi.org/10.1109/MCOM.2016.7509394
https://www.ietf.org/id/draft-ietf-core-cocoa-03.txt
https://www.ietf.org/id/draft-ietf-core-cocoa-03.txt
https://doi.org/10.1109/MIC.2011.56
https://doi.org/10.1109/WF-IoT.2015.7389097
https://doi.org/10.1145/55482.55484
https://libcoap.net/
https://doi.org/10.1109/COMST.2017.2652320
https://doi.org/10.1109/COMST.2017.2652320
https://www.ietf.org/archive/id/draft-zheng-core-coap-lantency-evaluation-00.txt
https://www.ietf.org/archive/id/draft-zheng-core-coap-lantency-evaluation-00.txt

	Abstract
	1 Introduction
	2 CoAP Congestion Control
	3 Test Arrangements
	3.1 Network
	3.2 Work Load
	3.3 Congestion Control

	4 Results
	4.1 Existing CoAP Congestion Control
	4.2 Full Backoff Congestion Control

	5 Conclusions
	References

