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ABSTRACT: 

 

Various biotic and abiotic stresses are threatening forests. Modern remote sensing technologies provide powerful means for 

monitoring forest health, and provide a sustainable basis for forest management and protection. The objective of this study was to 

develop unmanned aerial vehicle (UAV) based spectral remote sensing technologies for tree health assessment, particularly, for 

detecting the European spruce bark beetle (Ips typographus L.) attacks. Our focus was to study the early detection of bark beetle 

attack, i.e. the “green attack” phase. This is a difficult remote sensing task as there does not exist distinct symptoms that can be 

observed by the human eye. A test site in a Norway spruce (Picea abies (L.) Karst.) dominated forest was established in Southern-

Finland in summer 2019. It had an emergent bark beetle outbreak and it was also suffering from other stress factors, especially the 

root and butt rot (Heterobasidion annosum (Fr.) Bref. s. lato). Altogether seven multitemporal hyper- and multispectral UAV 

remote sensing datasets were captured from the area in August to October 2019. Firstly, we explored deterioration of tree health 

and development of spectral symptoms using a time series of UAV hyperspectral imagery. Secondly, we trained assessed a 

machine learning model for classification of spruce health into classes of “bark beetle green attack”, “root-rot”, and “healthy”. 

Finally, we demonstrated the use of the model in tree health mapping in a test area. Our preliminary results were promising a nd 

indicated that the green attack phase could be detected using the accurately calibrated spectral image data.  

 

 

1. INTRODUCTION 

Forests provide a multitude of critical ecosystem services, such 

as climate regulation, water supply and regulation, timber, 

energy, habitat for biodiversity, clean air, erosion control and 

many others. Various biotic and abiotic stresses are threatening 

our forests. For instance, climate change affects tree species 

composition, the extreme climate effects such as droughts 

impair the tree health and resilience, the wild forest fires burn 

down large forest areas all over the globe, and the attacks of 

insect pests are causing timber losses at increasing intensities; 

these stresses are increasing due to climate change (e.g. 

Trumbore et al., 2015).  

 

Modern remote sensing technologies provide powerful means 

for monitoring forest health, which provides a sustainable basis 

for forest management and protection. The objective of this 

study was to develop unmanned aerial vehicle (UAV) based 

remote sensing technologies for tree health assessment, 

particularly, for detecting the European spruce bark beetle (Ips 

typographus L.) attacks. Bark beetles have caused serious 

spruce forest mortality in the recent years in central Europe, 

Russia, and Canada, and now they are building outbreaking 

populations up in the North, where the warming climate is 

providing suitable conditions for their spreading. 

 

Of special interest is the detection of the so-called “green 

attack” phase, which is the outcome of the first interaction 

between the beetle and the host tree, and occurs when the host 

is being colonized by the pioneer individuals of the bark beetle 

(Abdullah et al., 2018). In the green attack phase, the beetle 

lays its eggs under the bark of the tree, and the infested trees 

do not have any distinct symptoms that can be observed by the 

human eye (Niemann and Visintini, 2005). The only visible 

symptoms of the initial colonization phase are entrance holes of 

beetles in the tree trunks, fresh resin flow and brown sawdust 

on the ground that are very difficult to observe by satellite or 

UAV remote sensing. During this stage, the infested tree is 

still physiologically green and very much alive, although 

exhibiting stress in the near infrared (invisible to the human 

eye) (Niemann and Visintini, 2005). 

 

Näsi et al. (2015) were the first to utilize UAV-based 

hyperspectral imagery for identifying different infestation 

stages of the European spruce bark beetle (Ips typographus L.). 

The UAV data were captured at 100 m height from the ground 

level with a GSD of 10 cm using a hyperspectral camera based 
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on the Fabry-Pérot interferometer from the test site in Southern 

Finland. The same sensor was also operated from an airplane 

over larger areas with a GSD of 50 cm (Näsi et al., 2018a). 

Trees were classified to healthy, infested and dead classes 

based on their colour symptoms using the Support Vector 

Machine classifier with an overall accuracy of 81% and 73% 

with the UAV and aircraft, respectively (Näsi et al., 2018a). 

Klouček et al. (2019) used a low-cost UAV-based system with 

RGB and modified CIR cameras to capture multispectral time 

series of the bark beetle (Ips typographus) outbreak area in the 

northern part of the Czech Republic. The results indicated that 

the low-cost UAV-based sensor system provided information of 

various stages of bark beetle infestation across seasons; results 

also indicated that early phases of bark beetle attack could be 

detected. Safonova et al. (2019) studied the detection of the 

invasion of the bark beetle (Polygraphus proximus Blandford) 

in fir forests (Abies sibirica Ledeb) in Russia using RGB 

photogrammetric imagery. They proposed a two-stage solution; 

first searching for the potential tree crowns and in the second 

stage using a convolutional neural network (CNN) architecture 

to predict the fir tree damage stage in each detected candidate 

region. 

 

Our objective was to develop methods for the detection of the 

bark beetle (Ips typographus L.) infestation at early phases 

utilizing hyperspectral and multispectral imaging from UAV. 

Firstly, we explored deterioration of tree health and 

development of spectral symptoms using a time series of UAV 

hyperspectral imagery. Secondly, we trained assessed a 

machine learning model for classification of spruce health into 

different health classes. Finally, we demonstrated the use of 

the model in tree health mapping in a test area. 

 

2. MATERIALS AND METHODS 

2.1 Test area 

The test site was a Norway spruce (Picea abies (L.) Karst.) 

dominated forest area of size of 10 ha in Espoo, in Southern 

Finland. The area has an active bark beetle infestation but also 

other deficiencies, especially due to the root and butt rot, later 

referred as root-rot of spruce (Heterobasidion annosum (Fr.) 

Bref. s. lato). Field surveys were carried out by a forester 

several times during the summer 2019. He identified a total of 

28 spruces in the area with active bark beetle attack and 16 

trees with root-rot through intersecting stump-level drillings. 

Other spruces were classified as healthy. We selected a total of 

28 spruces to the healthy tree sample. There was one spruce 

that died during the period due to the bark beetle infestation. It 

went through phases from a visually healthy crown (green 

attack), yellow, red/brown (red attack), and finally grey (dead) 

colors. Other infested spruces did not develop visible crown 

color symptoms, thus they could be considered as green attack 

samples. The test area is presented in Figure 1. 

 
Figure 1. The test area and the trees used in the study. 

 

2.2 UAV data captures 

Altogether seven remote sensing campaigns were carried out in 

the area from August to October 2019 (Table 1). A quadcopter 

drone was equipped with a multisensory remote sensing 

instrumentation consisting of two oblique RGB cameras, a 

hyperspectral 2D format frame camera, and a multispectral 

camera. The RGB sensors were used for the object 3D 

modeling and the hyperspectral and multispectral imagery were 

used for the spectral studies of the crown symptoms. The RGB 

cameras were two Sony A7R II 42.4 megapixels cameras, with 

a Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T* lens. The 

hyperspectral camera was the 2D-format frame camera Rikola, 

which is based on an adjustable Fabry-Pérot interferometer 

(FPI) acquiring spectral bands using a time sequence based 

process, i.e., the acquisition is not simultaneous for all bands 

of the same hyperspectral cube. The sensor was set to collect 

46 bands in the spectral range of 502-907 nm with 4-10 nm of 

full width at half maximum (FWHM). Furthermore, the 

Micasense Altum camera was used; it has five multispectral 

bands in blue, green, red, red-edge, and near-infrared spectral 

ranges, as well as a thermal band. The flying height was 140 m 

above the ground level, thus the ground sample distances 

(GSDs) were 2.1 cm for the RGB camera, 8.6 cm for the FPI 

camera, 6.0 cm for the Altum multispectral bands, and 90 cm 

for Altum thermal band. Each camera was configured to 

capture images in two-second intervals. The forward and side 

overlaps were 87% and 76% for the hyperspectral camera, 

89% and 83% for the Altum multispectral camera, and 91% 

and 88% for the RGB camera. The system was equipped with 

the Applanix APX 15 GNSS/IMU system for accurate direct 

georeferencing. Two sensors measuring incident irradiance 

were installed onboard the drone: the FGI’s Aerial Imaging 

Reference System (AIRS) (Suomalainen et al., 2018) and the 

Altums’s incident irradiance sensor. 

 

We installed to the study site altogether five GCPs, which were 

measured using Topcon Hiper HR multi-purpose GNSS 

receiver’s static measuring mode with a coordinate accuracy of 

9 mm horizontally and 15 mm vertically. The GCPs were 

signalled with painted circular targets with a diameter of 0.6 

m. For the reflectance transformation, reflectance panels of 

size of 1 m x 1 m were placed on ground with reflectance 

ranging from 0.03 to 0.50. Micasense Altum manufacturer 

provides its own reference panel, which was used on each 

campaign, by acquiring images before and after of each flight. 
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Table 1. Information about data capture flights. 

Block Date Time (GPS) Weather 
N2-F1 15.08.2019 12.08-12:28 Sunny 
N3-F2 22.08.2019 12.18-12.38 Mostly sunny 
N4-F1 30.08.2019 12.40-13.00 Sunny 
N5-F 06.09.2019 10.35-10.55 Varying 
N6-F1 17.09.2019 10.45-11.05 Sunny 
N7-F2 02.10.2019 13.09-13.29 Cloudy 
N8-F2 15.10.209 12.14-12.35 Cloudy 

 

2.3 Data processing 

Rigorous photogrammetric and radiometric processing was 

used to derive calibrated remote sensing data products 

(Nevalainen et al., 2017; Honkavaara et al., 2017, 2018). A 

photogrammetric workflow was applied for each of the three 

camera datasets using Agisoft Metashape 1.5 software and FGI 

in-house software. The workflow includes aligning images 

through a self-calibrating process, followed by dense point 

cloud and orthomosaic generation procedures. The RGB and 

Micasense datasets were processed using the Metashape. For 

the FPI-camera, four bands were first processed with the 

Metashape together with RGB data images in the same 

processing (Nevalainen et al., 2017). Once the four bands of 

the data cubes were aligned, the in-house RadBA software 

(Honkavaara et al., 2017) was used to estimate the position 

and orientations of the rest of the bands.  

 

In order to compare the spectral features of multispectral and 

hyperspectral images over the time, it was necessary to 

calibrate the image radiometric values to spectral reflectance 

with a high accuracy. Firstly, the sensors were radiometrically 

calibrated to provide at-sensor radiance values. The 

radiometric processing of the Micasense dataset was done in 

the Metashape. Micasense data was loaded into the Metashape 

as a multispectral camera, where the metadata of the images 

holding information about camera GPS data, calibration 

parameters, and radiometric parameters is recognized by the 

software. For the reflectance transformation, we evaluated two 

methods. In the first method, images of the camera’s 

reflectance panel taken before and after the flight were 

automatically located and identified by Metashape, and the 

reflectance calibration was then performed based on panel data 

and, in some cases, also DLS information (Agisoft Metashape, 

2020). In the second method, we carried out the reflectance 

transformation using images of our own reflectance panels 

taken at the beginning and end of the flight. We manually 

located and identified the panels in the Metashape, and 

performed the reflectance calibration using the panel data. The 

second method was selected for the study as it provided better 

results. Next, the reflectance orthomosaics were generated and 

exported as GeoTIFF files. In the radiometric processing of the 

hyperspectral data, the radiometric block adjustment method 

developed by Honkavaara et al. (2013; 2018) in RadBA 

software was applied to each dataset. Examples of the RGB 

and hyperspectral mosaics from August 15 and October 15 are 

shown in Figure 2. 

 

 

 
 

(a) 

 

 
(b) 

Figure 2. RGB and hyperspectral color-infrared mosaics from 

the test area (a) August 15 and (b) October 15. 

 

2.4 Data analysis and classification 

The data analysis had three major objectives. Firstly, we 

studied the spectral characteristics of different vegetation 

health classes. Secondly, we developed models for 
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classification of different health classes, and third, we 

demonstrated the entire analysis chain in production of spruce 

health maps in the test area. All of these analyses were carried 

out using the hyperspectral images. The Micasense 

multispectral images were used in the classification of health 

classes in order to compare these sensors. 

 

The analysis was carried out using the FGI’s highly automated 

Python-based processing pipeline that is based on works of  

Nevalainen et al., (2017) and  Näsi et al., (2015; 2018a, 

2018b). The steps include individual tree detection, feature 

extraction, tree species classification, and tree health 

classification. Individual trees were detected from the 3D point 

clouds using the FUSION software (Nevalainen et al., 2017). 

The species classification was carried out using the Random 

Forest (RF) classifier utilizing the spectral features 

(Nevalainen et al., 2017). Finally, the health classification of 

the spruces was carried out using the RF classifier and spectral 

features (Näsi et al. (2018a, 2018b). 

 

In the high-resolution drone images there are hundreds of 

pixels in the crown area. In the analysis we used different 

spectral values including average and median values of all, the 

brighter than median, the six brightest, the darker than median, 

and the normalized pixel values. The normalization was 

carried out by averaging the spectra with the average value of 

the entire spectrum. We used individual tree crown size for 

each tree based on the average tree crown diameter determined 

by the FUSION software. These methods resulted in a total of 

368 spectral observations from the 46 bands of the 

hyperspectral images and 40 observations from the 

multispectral bands. In addition, 42 and 30 vegetation indices 

were extracted from the hyperspectral and multispectral 

images, respectively. 

  

In phase 1, the spectra of different classes were compared to 

each other using one sided variance analysis with p value of 

0.01 to find the spectral bands with significant differences. 

This analysis was carried out using the average spectral values 

over the crown area. 

 

In phase 2, we used machine learning to develop models for 

classifying different health classes including “bark beetle green 

attack”, “root-rot”, and “healthy”. The RF classifier was used 

in this study and we used all spectral and index features to 

develop the classification models (Näsi et al., 2018b). The 

leave-one-out method was used to evaluate the accuracy of the 

classification.  

 

In the final phase, tree health maps were created over the 

entire area using the pipeline described above. In the tree 

health classification all spectral and index features were used 

utilizing the models developed in the phase 2. 

 

3. RESULTS AND DISCUSSION 

3.1 Spectral analysis 

One of the spruces went through the full range of visual 

symptoms from the green attack phase to dead during the 

period of monitoring as visualized in Figure 3a; for 

comparison, a stable reference tree is shown in Figure 3b. The 

normalized spectra of the dying and stable spruces were 

calculated as averages over the crown area from the 

hyperspectral UAV images in each date (Figure 4). During the 

first dates (August 15 and 18), the spectra followed the healthy 

vegetation spectra. However, on August 30 the tree 

deterioration became clearly visible in the visible wavelengths 

and, particularly, in the chlorophyll absorption feature at 

around 680 nm disappeared. The spectra of the stable reference 

spruce remained stable during the whole monitoring period.  

 

 
(a) 

 
(b) 

 

Figure. 3. Visual examination of (a) a dying and (b) a stable 

spruce from different views on four dates July 24, 

August 28, August 30 and October 15. 

 

 
Figure 4. Spruce spectra from the HSI image time series 

(normalized mean spectra). The dying spruce is 

shown on left and the healthy spruce on right.  

 

As there was only one tree that died during the monitoring 

period, the other trees with bark beetle infestation represented 

the “green attack” phase. Average spectra were calculated for 

the sample of healthy and bark beetle attacked trees for each 

date using the hyperspectral UAV data (Figure 5). It could be 

seen that the spectra on the visible spectral range (500-680 

nm) was higher for the spruces suffering from the bark beetle 

attack than for the healthy spruces. The variance analysis 

indicated that there were significant differences in the spectra 

in this range on dates 30.8, 2.10 and 15.10. In the first dates 

(15.8 and 22.8) the differences were smaller, which was 

consistent with the expectation that the symptoms caused by 

the bark beetles were not that serious in the beginning of the 

infestation. Also on 17.9 the analysis did not indicate 

significant differences, which could be due to some issues with 

the radiometric calibration. 
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Figure 5. Spectral analysis of healthy and infested spruces. The 

vertical lines indicate areas with significant 

differences detected by the variance analysis 

(p<0.01). 

 

3.2 Models for tree health classification 

The model for the tree health classification to the classes of  

“bark beetle green attack”, “root-rot” and “healthy” was 

trained using the RF. The model was assessed using the leave-

one-out method (Figure 6). The  overall accuracy was 40-55% 

for the hyperspectral data and 40-50% for the multispectral 

data; overall, the accuracy was slightly better for the 

hyperspectral data. At best, the kappa-coefficient was 0.3 on 

September 17. From the confusion matrix, it can be seen that 

out of 28 spruces suffering from the bark beetle infestation, 18 

were classified correctly, whereas two were classified to the 

class “root-rot” and 8 to the class “healthy”. Considering the 

healthy spruces, 19 were correctly classified to the class 

“healthy”, five were classified to the class “bark beetle green 

attack” and four to the class “root-rot”. The accuracies were 

not high, but better than only random classification. It is 

important to notice that identifying the green attack phase is an 

extremely challenging task and the detection of “root-rot” 

might be even more difficult, and that the both of these 

disturbance factors can be within the same tree. Furthermore, 

the issues that there was no information about the severity of 

the bark beetle infestation and also the exact attack dates were 

not available might also have caused some confusion to the 

results. Thus bearing in mind these factors, the result can be 

considered promising. 

 

 

 

 
Figure 6. Overall accuracy (top) and kappa-coefficient of the 

health classification obtained with the leave-one-out 

error estimation method. MS: multispectral images; 

HS: Hyperspectral images. 

 

Table 2. Confusion matrix for the tree health classification 

using model based on hyperspectral data from 17 

September. 

Real class Classification result 

 Bark beetle 

green attack 

Root rot Healthy 

Bark beetle 

green attack 

18 2 8 

Root rot 6 3 7 

Healthy 5 4 19 

 

3.3 Spruce health mapping 

In order to carry out the spruce health map, we first performed 

species classification.  In addition to the spruces (Figure 1), 10 

pines and 10 deciduous trees were selected to the species 

training data. The species classification was carried out using 

the August 15 hyperspectral image dataset and the RF 

classifier (Figure 7). Then the health classification was carried 

out for the trees classified as spruces using the August 30 

dataset. The results showed that there were 973 healthy 

spruces, 811 spruces with root-rot and 573 spruces with bark 

beetle infestation. (Figure 8). This result has not yet been 

confirmed. 

 

 
Figure 7. Species classification in the study area. Total number 

of trees: 2359; spruces: 1981; deciduous trees: 355 

pines: 23 

 

 
Figure 8. Health classification of spruces in the test area.  
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4. CONCLUSION 

Our study developed techniques for detecting early phases of 

bark beetle (Ips typographus L.) infestation based on UAV 

hyperspectral and multispectral imaging. Firstly, we explored 

impact of the deterioration of tree health on the remote sensing 

spectral signatures using a time series of UAV hyperspectral 

imagery. Secondly, we trained a machine learning model for 

classification of spruce health into classes of “bark beetle green 

attack”, “root-rot”, and “healthy” using hyperspectral and 

multispectral UAV images. Finally, we demonstrated the use 

of the model in a tree health mapping task in the test area. Our 

preliminary results were promising and indicated that the green 

attack phase could be detected using the accurately calibrated 

spectral image data. The hyperspectral imagery provided 

slightly better results than the multispectral imagery. In the 

further studies our aim is to further improve the classification 

method utilizing more extensive reference datasets and more 

comprehensive classification techniques. 
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