1	
2	Accretion Product Formation from Ozonolysis and OH Radical Reaction of
3	α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene
4	
5	
6	
7	Torsten Berndt, ^{*,#} Bernhard Mentler, [§] Wiebke Scholz, [§] Lukas Fischer, [§] Hartmut Herrmann, [#] Markku
8	Kulmala, ^{\perp} and Armin Hansel [§]
9	
10	
11	
12	[#] Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS),
13	04318 Leipzig, Germany.
14	[§] Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria.
15	$^{\perp}$ Institute for Atmospheric and Earth System Research (INAR) / Physics, University of Helsinki,
16	Helsinki 00014, Finland.
17	
18	
19	* To whom correspondence should be addressed. E-mail: <u>berndt@tropos.de</u>
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	

38 Abstract

- α -Pinene, C₁₀H₁₆, represents one of the most important biogenic emissions in the atmosphere. Its
- 40 oxidation products can significantly contribute to the secondary organic aerosol (SOA) formation.
- 41 Here, we report on the formation mechanism of C_{19} and C_{20} accretion products from α -pinene
- 42 oxidation, which are believed to be efficient SOA precursors. Measurements have been performed in a
- 43 free-jet flow system. Detection of RO₂ radicals and accretion products was carried out by recent mass
- 44 spectrometric techniques using different ionization schemes. Observed C_{10} -RO₂ radicals from α -
- 45 pinene ozonolysis were $O,O-C_{10}H_{15}(O_2)_xO_2$ with x = 0, 1, 2, 3 and from the OH radical reaction HO-
- $C_{10}H_{16}(O_2)_{\alpha}O_2$ with $\alpha = 0, 1, 2$. All detected C_{20} accretion products can be explained via the accretion
- 47 reaction $RO_2 + R'O_2 \rightarrow ROOR' + O_2$ starting from the measured C_{10} -RO₂ radicals. We speculate that
- 48 C₁₉ accretion products are formed in an analogous way assuming CH₂O elimination. Addition of
- 49 isoprene, C₅H₈, producing C₅-RO₂ radicals, leads to C₁₅ accretion products formed via cross-reactions
- 50 with C_{10} -RO₂ radicals. This process is competing with the formation of C_{19}/C_{20} products from the pure
- α -pinene oxidation. A similar behavior has been observed for ethylene additives that form C₁₂
- 52 accretion products. In the atmosphere a complex accretion product spectrum from self- and cross-
- reactions of available RO₂ radicals can be expected. Modeling atmospheric conditions revealed that
- C_{19}/C_{20} product formation is only reduced by a factor of 1.2 or 3.6 in isoprene-dominated
- 55 environments assuming a 2-fold or 15-fold isoprene concentration over α -pinene, respectively, as
- 56 present in different forested areas.

75 Introduction

- 76 Monoterpenes, $C_{10}H_{16}$, are emitted into the atmosphere with a mean global rate of 95×10^6 metric tons
- of carbon per year. α -Pinene, the main C₁₀H₁₆ compound, accounts for about one-third of that.^{1,2} Its
- atmospheric degradation, starting with the attack of hydroxyl (OH) or nitrate (NO₃) radicals or ozone
- (O_3) and subsequent O_2 addition, generates different RO_2 radicals as reactive intermediates.³ These
- 80 RO₂ radicals can undergo isomerization reactions, such as intra-molecular H shifts⁴⁻⁸ or endo-
- 81 cyclization in the case of unsaturated RO₂ radicals ^{7,9,10}, which result in higher oxidized RO₂ radicals
- 82 after subsequent O₂ addition. Competing bimolecular RO₂ radical reactions with NO, HO₂ or other
- 83 RO_2 radicals as well as the RO_2 self-reaction represent the main loss processes in the atmosphere.³
- 84 It is well established that RO₂ self- and cross-reactions mainly form either the corresponding
- alkoxy radicals or an alcohol along with a carbonylic substance.¹¹⁻¹³ A third reaction pathway leading
- to peroxides, pathway (1), has been considered to be minor based on experimental results obtained
 from small RO₂ radicals such as CH₃O₂ or C₂H₅O₂.^{14,15}
- 88
- 89

$$RO_2 + R'O_2 \rightarrow ROOR' + O_2$$
 (1)

90

In the course of investigations on atmospheric autoxidation processes and associated with the progress
of analytical techniques in recent years, high-molecular weight products have been identified that are
likely formed via the peroxide route according to pathway (1).^{5-8,16-19} Very recently, universal validity
of accretion product formation from the self- and cross-reactions of RO₂ radicals via pathway (1) has
been proposed.²⁰

96 Due to their lower vapor pressure, accretion products ROOR' formed from C_{10} -RO₂ radicals of the 97 α -pinene oxidation are believed to be more efficient aerosol precursors than the corresponding C_{10} 98 closed-shell products.^{21,22} For example, calculated vapor pressures of C_{20} accretion products from the 99 OH + α -pinene reaction were below 10⁻¹⁵ atm while those of the corresponding highly oxidized C_{10} 100 closed-shell products were in the range (0.5 - 8) × 10⁻¹⁰ atm.⁷

101 α-Pinene emissions in forestlands are accompanied by emissions of a series of other hydrocarbons,
 102 such as isoprene and ethylene, which are present in large excess over the monoterpenes in some

- 103 areas.²³⁻²⁵ For instance in the Amazon tropical forest, α -pinene mixing ratios are in the range of 0.05 -
- 104 0.15 ppbv, those of isoprene 1.14 2.72 ppbv and those of ethylene 0.63 1.68 ppbv.²³ It can be
- 105 supposed that RO₂ radicals arising from the degradation of other hydrocarbons can significantly
- 106 disturb the formation of pure α -pinene derived accretion products through competitive RO₂ cross-
- 107 reactions. In this context, rates of early particle growth by organics, as experimentally determined for
- 108 highly oxidized products from the pure α -pinene oxidation ²⁶, do not hold describing field
- 109 observations in isoprene-dominated forests.²⁷

- 110 While different groups consistently observed the formation of C₁₉ and C₂₀ accretion products from
- 111 α -pinene oxidation up to now ^{5-7,18,19,22,26}, the knowledge on the mechanism, the reacting RO₂ radicals
- and the kinetics of this process is very sparse. Here, we use a free-jet flow system for mechanistic and
- 113 kinetic studies of accretion product formation from α -pinene oxidation at close to atmospheric
- 114 conditions. RO₂ radicals and closed-shell products are measured simultaneously applying most recent
- 115 mass spectrometric techniques that provide a more complete overview of the product distribution.
- 116 Isoprene and ethylene additives to the reaction gas gave insight into competing RO₂ radical reactions
- and the resulting modification of the product distribution.
- 118
- 119

120 Methods

- 121 The investigations were carried out in a free-jet flow system at a temperature of 297 ± 1 K and a
- 122 pressure of 1 bar purified air that allows experiments for almost wall-free conditions.^{7,20,28} Briefly, the
- 123 flow system consists of an outer tube (i.d. 16 cm, length of 200 cm) and an inner tube (o.d. 9.5 mm)
- 124 equipped with a nozzle. The first reactant, usually ozone, premixed with air (5 L min⁻¹ STP) is injected
- through the inner tube into the main gas stream (95 L min⁻¹ STP), which contains the second reactant,
- 126 α -pinene and other organics if needed. The chosen flow conditions and the nozzle geometry ensure

127 rapid reactant mixing and the development of a free-jet type gas flow. Gas sampling takes place from

- the center flow that is fully unaffected by wall interactions. The reaction time was 7.9 s.
- 129 Ozone was produced by means of an ozone generator (UVP OG-2). In the case of photolysis
- 130 experiments, isopropyl nitrite was taken from a gas mixture prepared in a gas-metering unit.
- 131 Photolysis was carried out downstream the mixing point of the gas streams by means of 8 NARVA
- 132 36W Blacklight Blue lamps.
- 133 Reactant concentrations were in the range: $[O_3] = (4.6 23) \times 10^{11}$, $[\alpha$ -pinene] = $(2.7 300) \times 10^{10}$,
- 134 [isoprene] = $(6.6 146) \times 10^{10}$, [isoprene-1-¹³C] = $(6.6 145) \times 10^{10}$ and [ethylene] = $(3.65 80.3) \times 10^{10}$
- 135 10^{11} molecules cm⁻³. Isopropyl nitrite concentrations in the photolysis experiments were (1.7 31) ×
- 136 10^{10} molecules cm⁻³.

137 Detection of RO₂ radicals and accretion products was carried out by means of a CI-APi-TOF

138 (chemical ionization - atmospheric pressure interface - time-of-flight) mass spectrometer (Airmodus,

- 139 Tofwerk) and a CI3-TOF (chemical ionization time-of-flight) mass spectrometer²⁹ sampling from the
- 140 center flow of the free-jet flow system with a rate of 10 L min⁻¹ (STP) each. Used reagent ions of the
- 141 CI-APi-TOF were protonated n-propylamine $(C_3H_7NH_3^+)$, acetate (CH_3COO^-) or nitrate (NO_3^-) . The
- 142 CI3-TOF was running in the ammonium mode (NH₄⁺). Mass spectra are depicted with the mass-to-
- 143 charge unit Thompson (Th), where 1 Th = 1 u/e. Given concentrations from CI-APi-TOF
- 144 measurements are lower end values based on calculated calibration factors. The NH₄⁺-CI3-TOF was
- 145 calibrated using 3-hexanone from a gas standard. More information is given in the Supporting
- 146 Information (SI).

148 **Results and Discussion**

149 **Detection of RO₂ radicals from** α **-pinene oxidation.** First, we focused on the investigation of the

150 formed RO₂ radicals from the combined O₃/OH + α -pinene reaction, which represent the intermediates

- $151 \qquad \text{generating finally the accretion products. Recently, progress has been made for the detection of RO_2$
- 152 radicals in different reaction systems applying acetate (CH_3COO^-), ammonium (NH_4^+) or protonated
- 153 n-propylamine $(C_3H_7NH_3^+)$ as the reagent ion instead of the mostly used nitrate.^{7,20,29} Using these
- 154 reagent ions, detected main RO₂ radicals from the $O_3/OH + \alpha$ -pinene reaction comprise two groups,
- 155 i.e. the ozonolysis derived RO₂ radicals O,O-C₁₀H₁₅(O₂)_xO₂ with x = 0, 1, 2, 3 and those from the OH
- radical reaction HO-C₁₀H₁₆(O₂) $_{\alpha}$ O₂ with $\alpha = 0, 1, 2$ (Figure 1, SI Figure S1).^{5-7,18} Bimolecular RO₂ loss
- 157 processes were unimportant under the chosen reaction conditions because of the relatively low RO₂
- 158 radical concentrations mostly far smaller than 10^8 molecules cm⁻³, the kinetic limitation of bimolecular
- 159 RO_2 reactions for the reaction time of 7.9 s, and the absence of efficient reaction partners like HO_2
- 160 radicals in excess. The detection of the less oxidized RO₂ radicals with x = 0 and $\alpha = 0$ is reported
- 161 here for the first time.
- 162 Scheme 1 shows the expected pathways leading to the less oxidized RO_2 radicals with x = 0 and $\alpha = 0$ based on the knowledge given in the literature.³⁰⁻³³ Ozonolysis of α -pinene leads to two different 163 Criegee intermediates (CI)³⁴, each of which appear in different conformers³⁵. The CIs are formed with 164 165 excess energy, denoted with an asterisk in the scheme. They can either decompose forming mainly OH 166 radicals and O,O-C₁₀H₁₅ alkyl radicals or they are thermalized by collisions with any gas molecule M 167 forming stabilized Criegee intermediates (sCI). Stabilization accounts for about 15% at atmospheric 168 conditions.^{36,37} Due to the longer sCI lifetime compared to that of non-thermalized CI, also 169 bimolecular sCI reactions with water vapor or trace gases are possible being competing with the 170 decomposition pathway. The isomeric O,O-C₁₀H₁₅ alkyl radicals form the corresponding RO₂ radicals 171 172 intermediates react readily with α -pinene in the system forming after O₂ addition the isomeric RO₂ 173 radicals HO-C₁₀H₁₆(O₂) $_{\alpha}$ O₂ with $\alpha = 0$. Subsequently, repetitive RO₂ radical isomerization followed 174 by O₂ addition may take place forming the higher oxidized RO₂ radicals O₂O₂ $O_1O_1O_1O_2 = 0$ with x = 175 1, 2, 3 and HO-C₁₀H₁₆(O₂) $_{\alpha}$ O₂ with $\alpha = 1, 2$. The exact chemical nature of these reaction steps and the 176 chemical structures of the resulting RO₂ radicals are uncertain up to now. In ref.7 the variety of 177 pathways and structures of OH-derived RO₂ radicals from α -pinene oxidation is presented as obtained 178 from theoretical calculations. Here, it will be argued in the following with the chemical formulas only. 179 The RO_2 radical primarily formed from ozonolysis with x = 0 was consistently detected with high 180 sensitivity by the C₃H₇NH₃⁺-APi-TOF and the NH₄⁺-CI3-TOF while the CH₃COO⁻-APi-TOF 181 underestimated its concentration by more than three orders of magnitude. Higher oxidized RO₂
- 182 radicals with x = 1, 2, 3 were much more efficiently detected by the CH₃COO⁻-APi-TOF caused by
- 183 the stronger binding of the (RO₂)CH₃COO⁻ clusters.^{38, 39} The concentrations of the RO₂ radicals with

- 184 x = 1, 2, 3 were measured in reasonable agreement within a factor of about 2 3 applying the three
- ionization schemes, with exception of the RO_2 radical with x = 3 that was not observed by the NH_4^+ -186 CI3-TOF.
- 187 In the case of the different RO_2 radicals from the $OH + \alpha$ -pinene reaction, a similar oxidation-state-
- dependent behavior of the detection sensitivity for the three ionization schemes has been observed asfor the ozonolysis derived RO₂ radicals (Figure 1).
- 190 Furthermore, unambiguous identification of a C_9 -RO₂ radical, $C_9H_{15}O_5$, has been achieved by the
- 191 NH_4^+ -CI3-TOF as well as the C₃H₇NH₃⁺-APi-TOF. The measured C₉H₁₅O₅ concentrations, however,
- 192 did not exceed 4×10^5 molecules cm⁻³ and the importance of C₉H₁₅O₅ radicals within the reaction
- 193 system was assumed to be small.
- 194 Total ozonolysis products detected by the $C_3H_7NH_3^+$ -APi-TOF technique, including RO₂ radicals
- and the closed-shell products $C_{10}H_{16}O_2$ and $C_{10}H_{16}O_3$, account for 51 60 % of the reacted carbon
- being close to the attainment of the carbon balance (SI Figure S2). Almost identical results have been
- 197 obtained using protonated ethylamine or n-butylamine as the reagent ion for the aminium-APi-TOF
- 198 measurements. In the case of the OH radical reaction, however, the total products measured by the
- 199 $C_3H_7NH_3^+$ -APi-TOF account only for 14 22 % of the reacted carbon assuming an OH yield of 85 %
- 200 from α -pinene ozonolysis.⁴⁰ The reason for the seemingly low total sensitivity for OH radical products
- is not clear at the moment and more precise measurements are needed. The carbon balance obtained
- 202 by the NH₄⁺-CI3-TOF measurements is similar to the one of the aminium-APi-TOF due to almost the
- same sensitivity for the main products.
- 204

Figure 1. Main RO₂ radicals from the O₃/OH + α -pinene reaction measured by different ionization schemes: A C₃H₇NH₃⁺-APi-TOF, **B** CH₃COO⁻-APi-TOF, **C** NH₄⁺-CI3-TOF. OH radicals were formed by the ozonolysis reaction. Depicted are the ozonolysis derived RO₂ radicals O,O-C₁₀H₁₅(O₂)_xO₂ with x = 0, 1, 2, 3 in red and the OH-reaction derived RO₂ radicals HO-C₁₀H₁₆(O₂)_{α}O₂ with α = 0, 1, 2 in blue. Reactant concentrations were [O₃] = 6.8 × 10¹¹ and [α -pinene] = (2.7 - 40.5) × 10¹⁰ molecules cm⁻³.

- 212
- 213

215 216 Scheme 1. Reaction scheme for the formation of the first, less oxidized RO₂ radicals A: O,O-C₁₀H₁₅O₂ 217 from α -pinene ozonolysis and B: HO-C₁₀H₁₆O₂ from the OH + α -pinene reaction. The asterisk 218 indicates the presence of excess energy, M stands for all gas-phase molecules acting as collision 219 partner. The alkyl radical moiety is highlighted by a shaded oval. 220

221

222 Formation of C₁₉/C₂₀ accretion products. Figure 2 shows a mass spectrum from the O₃/OH + α -223 pinene reaction in the mass range of 380 - 500 Th recorded by the $C_3H_7NH_3^+$ -APi-TOF. The spectrum 224 of the extended mass range of 500 - 650 Th is given in SI Figure S3. The measurement in the presence 225 of the OH radical scavenger revealed the accretion products that are exclusively formed via reactions 226 of ozonolysis derived RO₂ radicals, see the upper part in red of Figure 2 and SI Figure S3. Additional 227 experiments on the pure $OH + \alpha$ -pinene reaction, forming OH radicals via photolysis of isopropyl 228 nitrite, disclosed the accretion products that solely arise from OH-reaction derived RO₂ radicals, i.e. 229 $C_{20}H_{34}O_{4,6,8,10,12}$ (SI Figure S4). Their $C_3H_7NH_3^+$ -adduct signals are marked in blue in the given spectra 230 (Figure 2, SI Figure S3). 231 Starting from the 7 main C_{10} -RO₂ radicals generated by the combined O₃/OH + α -pinene reaction 232 (Figure 1), all possible C₂₀ accretion products from RO₂ self- and cross-reactions according to

233 pathway (1) have been observed. These are $C_{20}H_{30}O_{6,8,10,12,14,16,18}$ formed solely from ozonolysis

derived RO₂ radicals O,O-C₁₀H₁₅(O₂)_xO₂ with $x = 0, 1, 2, 3, C_{20}H_{34}O_{4,6,8,10,12}$ from OH-reaction derived

- 235 RO₂ radicals HO-C₁₀H₁₆(O₂) $_{\alpha}$ O₂ with $\alpha = 0, 1, 2$ and C₂₀H₃₂O_{5,7,9,11,13,15} from the mixed reactions of
- both types of RO₂ radicals. The larger number of remaining accretion product signals in the spectra
- 237 can be explained in a similar way according to pathway (1) but with an involvement of a formal CH_2O
- elimination. Accordingly, C₁₉H₂₈O_{5,7,9,11,13} can be formed from ozonolysis derived RO₂ radicals and

- 239 C₁₉H₃₀O_{6,8,10,12,14} from the mixed reactions of both types of RO₂ radicals. No C₁₉ accretion products
- 240 have been observed as a result of the pure $OH + \alpha$ -pinene reaction. It should be noted, that there is no
- 241 experimental evidence for a CH_2O release and we cannot state a possible mechanistic explanation for
- that at the moment. It is just a suggestion that helps to describe the experimental findings.
- 243 Determination of the exact accretion product masses supports the proposed chemical composition of
- the accretion products (SI Table S1).
- 245
- 246

Figure 2. Accretion products from the $O_3/OH + \alpha$ -pinene reaction in the mass range 390 - 500 Th measured by $C_3H_7NH_3^+$ -APi-TOF, the upper part in red is obtained in the presence of the OH radical scavenger propane, the lower spectrum "w/o α -pinene" characterizes the background. Reactant concentrations were $[O_3] = 2.3 \times 10^{12}$, $[\alpha$ -pinene] = 1.2×10^{12} and $[propane] = 2.5 \times 10^{16}$ molecules cm⁻³. Given numbers are nominal masses of the $C_3H_7NH_3^+$ -adducts with the accretion products. Color coding of ROOR' formation via pathway (1):

258 <u>black:</u> $C_{20}H_{32}O_{5,7,9}$ via O,O-C₁₀H₁₅(O₂)_xO₂ + HO-C₁₀H₁₆(O₂)_{α}O₂ for x + α = 0, 1, 2; <u>black italic bold:</u> 259 $C_{19}H_{30}O_{6,8,10}$ via O,O-C₁₀H₁₅(O₂)_xO₂ + HO-C₁₀H₁₆(O₂)_{α}O₂ for x + α = 1, 2, 3 incl. CH₂O release.

- 260
- 261

We tested for unwanted processes in the ion-molecule reaction (IMR) region of the CI-APi-TOF

that could affect the detected signals of the accretion products. To do so, measurements with increased

reactant concentrations have been conducted sampling either the undiluted reactions gas or after

dilution by a factor of 8.^{7,20} The measured accretion product signals decreased by a factor of 6.3 - 8.5

after dilution being in line with the dilution factor within the experimental uncertainty. That confirms
that the product formation predominantly takes part in the flow system and not in the IMR region (SI
Figure S5).

- Accretion product spectra were also recorded applying the mostly used NO_3^- -APi-TOF technique⁵⁻⁷
- 270 (SI Figure S6). The spectra are qualitatively in good agreement with the results from the $C_3H_7NH_3^+$ -
- APi-TOF for accretion products with 8 9 O atoms or more. For ROOR' with lower oxygen content,
- however, the NO₃⁻-APi-TOF is less sensitive or totally fails to detect them. This behavior is obviously
- 273 due to missing functional groups in the less oxidized products that prevent sufficient strong binding
- with the NO₃⁻ ion.^{38,41} Nevertheless, the detectable accretion products by the NO₃⁻ -APi-TOF
- $\label{eq:275} conclusively support the proposed assignment of ROOR' products to the reacting RO_2 precursors.$
- Accretion products with 4 or 5 O atoms, not detectable by the NO₃⁻-APi-TOF, were observed by the
- 277 NH_4^+ -CI3-TOF and the C₃H₇NH₃⁺-APi-TOF in good agreement including C₂₀H₃₀O₄ and C₂₀H₃₀O₅ with
- relatively low concentrations (SI Figure S7). Formation paths leading to $C_{20}H_{30}O_4$ and $C_{20}H_{30}O_5$ are
- not understood at the moment.

Some studies in the literature point to accretion product formation from ozonolysis experiments based on sCI reactions.^{42,43} However, rapid unimolecular decomposition as well as the effective water vapor reactions result in low steady-state sCI concentrations from α -pinene ozonolysis⁴⁴ making an efficient sCI contribution to the accretion product formation questionable, at least for close to

- atmospheric reactant conditions. We tested for possible sCI reactions forming accretion products by
- adding acetic acid as sCI scavenger. Acetic acid additive of 5.0×10^{12} molecules cm⁻³ results in an
- additional sCI loss rate of 10^3 s⁻¹ assuming a CH₃COOH + sCI rate coefficient of 2×10^{-10} cm³
- 287 molecule⁻¹ s^{-1.45} The addition of acetic acid yielded a measureable lowering of the RO_2 radical

concentrations in the range of 11 - 17% due to suppression of the unimolecular sCI decomposition,

- that forms the precursors of the RO₂ radicals O, O- $C_{10}H_{15}(O_2)_xO_2$ and HO- $C_{10}H_{16}(O_2)_{\alpha}O_2$ to some
- 290 extent, see Scheme 1. It is to be noted, that a new, very strong signal appeared, which is consistent
- 291 with an addition product of $CH_3COOH + sCI$. The comparison of the accretion product spectrum in
- the presence of acetic acid, upper part, with that in absence of the addition is depicted in Figure 3. In
- the whole spectrum, accretion product signals from the sCI scavenger experiment were about 20 30%
- lower compared to the basis spectrum. This behavior reflects the square dependence of RO₂
- 295 concentrations for the ROOR' formation kinetics according to pathway (1). Reduction of RO₂
- concentrations by 11 17% should theoretical lead to a lowering of the ROOR' concentrations by 21 -
- 297 31%. Thus, as a result of the sCI scavenger experiments there were no indications for sCI-driven
- 298 accretion product formation. The finding is supported by the outcome of the pure $OH + \alpha$ -pinene
- reaction in total absence of Criegee intermediates, that also gave rise to the five possible ROOR'
- 300 products, $C_{20}H_{34}O_{4,6,8,10,12}$, from HO- $C_{10}H_{16}(O_2)_{\alpha}O_2$ with $\alpha = 0, 1, 2$ (SI Figure S4).
- 301 Moreover, also any heterogeneous process for accretion product formation⁴⁶ is highly unlikely
- 302 because wall interactions are strongly suppressed in the used flow system.

Figure 3. Accretion products from the $O_3/OH + \alpha$ -pinene reaction in the mass range 390 - 500 Th measured by $C_3H_7NH_3^+$ -APi-TOF, the upper part in red is obtained in the presence of the sCI scavenger. Reactant concentrations were $[O_3] = 2.3 \times 10^{12}$, $[\alpha$ -pinene] = 1.2×10^{12} and [acetic acid] = 5.0×10^{12} molecules cm⁻³. Stated nominal masses of the $C_3H_7NH_3^+$ -adducts with ROOR' belong to $C_{20}H_{30}O_{6,8,10}$ (in red) formed from ozonolysis derived RO₂ radicals and $C_{20}H_{34}O_{4,6,8,10}$ (in blue) from OH-reaction derived RO₂ radicals.

- 312
- 313

314 Kinetics of accretion product formation. The free-jet flow system allows conducting the 315 experiments with negligible wall interactions. Particles were not present in the purified feed gas and 316 new particle formation did not take place due to the low reactant conversion and the short reaction 317 time. Thus, RO₂ radical and accretion product concentrations were not influenced by unwanted wall 318 losses or gas/particle partitioning, which admits the determination of rate coefficients based on 319 measured reactant and product concentrations. The C19/C20 product concentrations, ROOR', showed a 320 square dependence regarding increasing α-pinene concentrations for constant O₃ (Figure 4), i.e. a 321 slope of about 2 for $\log([ROOR'])$ vs. $\log([\alpha-pinene])$, that also stands for a square dependence with 322 respect to reacted α -pinene. The RO₂ radicals increased almost linearly with rising α -pinene 323 conversion (Figure 1, SI Figure S8). This behavior is in line with the 2nd order kinetics of accretion 324 product formation according to pathway (1) starting from the respective RO_2 radicals. 325 326 327

Figure 4. A series of C_{19}/C_{20} accretion products, ROOR', from the $O_3/OH + \alpha$ -pinene reaction as a function of the α -pinene concentration for constant O_3 measured by $C_3H_7NH_3^+$ -APi-TOF. The dashed line represents the slope of 2 for log([ROOR']) vs. log([α -pinene]). Reactant concentrations were [O_3] $= 6.4 \times 10^{11}$ and [α -pinene] = (1.08 - 12.1) × 10^{11} molecules cm⁻³. The respective measurements of RO₂ radicals are given in SI Figure S8.

335

For the chosen experimental conditions, RO₂ radical concentrations increased linearly with time and RO₂ consuming reaction steps did not significantly influence their concentrations (SI Figure S9). Hence, the rate coefficients k₁ of accretion product formation via pathway (1) can be estimated in a simple manner according to equation (I) using the measured concentrations of ROOR' and RO₂ radicals at the reaction time t, see Supporting Information (SI):

341

$$k_{1} = \frac{[ROOR']_{t}}{[RO_{2}]_{t} \times [R'O_{2}]_{t}} \frac{3}{t}$$
(I)

343

344 It is assumed that the highest oxidized RO₂ radicals, $O_1O_{10}H_{15}(O_2)_xO_2$ with x = 3 and HO-345 $C_{10}H_{16}(O_2)_{\alpha}O_2$ with $\alpha = 2$ are detected with close to maximum sensitivity by the $C_3H_7NH_3^+$ -APi-TOF 346 due to the expected high content of oxygen-containing moieties and the strong binding with the 347 reagent ion. High sensitivity detection can also be assumed for O,O-C₁₀H₁₅O₂, the predominant RO₂ 348 radical from ozonolysis, because of the carbon balance of ozonolysis products of up to 60%. That 349 justifies selection of their reactions for the estimation of rate coefficients of ROOR' formation. 350 Accretion products according to pathway (1), which can be attributed to reactions of the chosen RO₂ 351 radicals with reasonable certainty, are C₂₀H₃₀O₁₈, C₂₀H₃₄O₁₂ and C₂₀H₃₀O₆ from the respective self-352 reactions and C₂₀H₃₂O₁₅ from the cross-reaction of O,O-C₁₀H₁₅(O₂)₃O₂ with HO-C₁₀H₁₆(O₂)₂O₂. The

- 353 kinetic analysis based on equation (I) revealed the expected linear dependence $[ROOR']_t$ vs. $[RO_2]_t \times$
- 354 $[R'O_2]_t$ properly (SI Figure S10). The corresponding rate coefficients are in the range (9.7 79) × 10⁻¹²
- 355 cm³ molecule⁻¹ s⁻¹ with an assumed uncertainty being not higher than a factor of 3 (Table 1).
- Additionally, rate coefficients of the RO_2 self-reactions with respect to ROOR' formation of $C_6H_{13}O_2$,
- $HO-C_5H_8O_2$ and $HO-C_9H_{12}(O_2)O_2$ from the OH radical reaction with n-hexane, isoprene and
- 358 mesitylene (1,3,5-trimethylbenzene), respectively, are shown in Table 1 for comparison.²⁰ The rate
- 359 coefficients cover a range of more than three orders of magnitude. The RO₂ reactivity in the process of
- accretion product formation increases with rising functionalization of the RO₂ radicals²⁰ and probably
- 361 with the RO₂ size as well. Comprehensive experimental studies, including theoretical investigations,
- are needed to get a deeper insight into the ROOR' formation process on molecular level.
- 363
- 364

Table 1. Selected rate coefficients of accretion product formation via $RO_2 + R'O_2 \rightarrow ROOR' + O_2$ from the O₃/OH + α -pinene reaction and comparison with data from a former study²⁰. T = 297 ± 1 K

RO ₂	R'O ₂	k (cm ³ molecule ⁻¹ s ⁻¹)	
O,O-C ₁₀ H ₁₅ O ₂	O,O-C ₁₀ H ₁₅ O ₂	$9.7 imes 10^{-12}$	
HO-C ₁₀ H ₁₆ (O ₂) ₂ O ₂	$HO-C_{10}H_{16}(O_2)_2O_2$	3.7×10^{-11}	
O,O-C ₁₀ H ₁₅ (O ₂) ₃ O ₂	O,O-C ₁₀ H ₁₅ (O ₂) ₃ O ₂	$4.8 imes 10^{-11}$	
HO-C ₁₀ H ₁₆ (O ₂) ₂ O ₂	O,O-C ₁₀ H ₁₅ (O ₂) ₃ O ₂	$7.9 imes 10^{-11}$	
^a HO-C ₅ H ₈ O ₂	$O, O-C_{10}H_{15}(O_2)_xO_2 \ x = 0 - 3$	$(1.3 - 2.3) \times 10^{-11}$	
^b HO-C ₂ H ₄ O ₂	$O, O-C_{10}H_{15}(O_2)_xO_2 x = 0 - 3$	$(1.2 - 3.6) \times 10^{-11}$	
^c C ₆ H ₁₃ O ₂ (from OH + n-hexane)	$C_6H_{13}O_2$	9.2×10^{-14}	
°HO-C ₅ H ₈ O ₂ (from OH + isoprene)	HO-C ₅ H ₈ O ₂	6.0×10^{-13}	
° HO-C ₉ H ₁₂ (O ₂)O ₂ (from OH + mesitylene)	$HO-C_9H_{12}(O_2)O_2$	$(1.4 - 2.5) \times 10^{-10}$ d	
 ^a from experiments with isoprene addition ^b from experiments with ethylene addition ^c ref.20 ^d results from different reaction conditions 			

Addition of isoprene or ethylene. Experiments in the presence of isoprene, C₅H₈, or ethylene, C₂H₄,
 demonstrate how additional RO₂ radicals, i.e. HO-C₅H₈O₂ or HO-C₂H₄O₂, modify the accretion

- 374 product formation in the $O_3/OH + \alpha$ -pinene system.
- 375 Figure 5 shows the measured RO₂ radical concentrations from a series with rising isoprene addition 376 and otherwise constant reaction conditions. Increasing isoprene concentrations led to lowering of the 377 steady-state OH radical concentration due to enhanced OH consumption by the OH + isoprene 378 reaction, see calculated OH radical concentration "OH calc.". Accordingly, concentrations of OH-379 reaction derived RO₂ radicals, HO-C₁₀H₁₆(O₂) $_{\alpha}$ O₂ with $\alpha = 1, 2$ shown in Figure 5, decreased while 380 HO-C₅H₈O₂ radical concentrations grew up nearing a maximum level for [isoprene] / $[\alpha$ -pinene] > 3 with more than 85% OH consumption by isoprene, $k(OH+isoprene, 298 \text{ K}) = 1.0 \times 10^{-10}$ and $k(OH+\alpha-$ 381 pinene, 298 K) = 5.3×10^{-11} cm³ molecule⁻¹ s⁻¹.⁴⁷ The measured HO-C₅H₈O₂ concentrations were 382 383 within a factor of 2 of the calculated values. Moreover, a signal appeared at the nominal product mass 384 of 101 Th that was attributed to the RO₂ radical C₄H₅(O)O₂ formed most likely from the C₄ Criegee intermediate of isoprene ozonolysis.⁴⁸ Within the present study, no effort was undertaken for the 385 386 identification of products of $C_4H_5(O)O_2$ due to its low concentration and the expected small 387 importance for product formation. The formation and the resulting concentrations of ozonolysis 388 derived RO₂ radicals, O,O-C₁₀H₁₅(O₂)_xO₂ with x = 0 and 2 given in Figure 5, were not influenced by 389 the isoprene addition due to the unchanged ozone concentration and the small importance of RO_2 390 radical consuming reactions for the RO₂ radical concentrations.

Figure 5. RO₂ radicals from the O₃/OH + α -pinene reaction for increasing isoprene addition and otherwise constant reactant conditions. HO-C₅H₈O₂ and C₄H₅(O)O₂ formed from isoprene have been measured by the NH₄⁺-CI3-TOF, the C₁₀-RO₂ radicals by the C₃H₇NH₃⁺-APi-TOF. Concentrations of ozonolysis derived RO₂ radicals are depicted in red and the OH-reaction derived RO₂ radicals in blue. "HO-C₅H₈O₂ calcs." and "OH calcs." were obtained by modeling. Reactant concentrations were [O₃] = 2.0 × 10¹², [α -pinene] = 3.9 × 10¹¹ and [isoprene] = (0 - 1.46) × 10¹² molecules cm⁻³.

- 401 Concentrations of the accretion products strictly followed the behavior of their RO₂ radical
- 402 precursors with rising isoprene addition according to the kinetics of the respective RO₂ self- and cross-
- reactions via pathway (1) (Figure 6). Hence, accretion products ROOR' arising solely from ozonolysis
- 404 derived RO₂ radicals were unaffected by the isoprene additives due to the unaffected concentrations of
- 405 ozonolysis derived RO₂ radicals, e.g. C₁₉H₂₈O₇ and C₁₉H₂₈O₁₁ in Figure 6A. Concentrations of ROOR'
- 406 formed from cross-reactions of OH-reaction derived and ozonolysis derived RO₂ radicals dropped
- down in parallel to the declining OH level in the experiment, see $C_{19}H_{30}O_8$ and $C_{20}H_{32}O_9$ in Figure 6A.
- 408 A steeper decrease than the declining OH level was detected for ROOR' that are formed from two
- 409 OH-reaction derived RO_2 radicals, again in line with the expected behavior, see $C_{20}H_{34}O_8$ in Figure
- 410 6A. Generally, the experiments with additional RO_2 radicals, here shown for $HO-C_5H_8O_2$ radicals,
- 411 confirmed the attribution of the reacting C_{10} -RO₂ radicals to the observed C_{19}/C_{20} accretion products as
- 412 described before.
- With increasing isoprene addition, rising signals of C₁₅ accretion products from the reaction of HO-
- 414 $C_5H_8O_2$ radicals with C_{10} -RO₂ radicals emerged in the spectrum. Figure 6B shows the occurrence of
- 415 the 4 possible ROOR' products, $C_{15}H_{24}O_{5,7,9,11}$, from the reaction of HO- $C_5H_8O_2$ radicals with O,O-
- 416 $C_{10}H_{15}(O_2)_xO_2$ radicals with x = 0, 1, 2, 3. Experiments with isoprene-1-¹³C confirmed the signal
- 417 assignment. Kinetic analysis of the accretion product formation according to pathway (1) led to rate
- 418 coefficients in the range of $(1.3 2.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ for the C₁₅ products (Table 1, SI
- 419 Figure S11). It should be noted that also the signal of $C_{10}H_{18}O_4$ from the HO- $C_5H_8O_2$ radical self-
- 420 reaction via pathway (1) was detected in line with the finding of a former study.²⁰
- 421
- 422

424Figure 6. Accretion product formation from the O₃/OH + α-pinene reaction as a function of increasing425isoprene addition. A: C_{19}/C_{20} products solely formed from ozonolysis derived RO₂ radicals in red,426solely from OH-reaction derived RO₂ radicals in blue and those from both types of RO₂ radicals in427black. B: C_{15} products from the reaction of HO- $C_5H_8O_2$ radicals with O,O- $C_{10}H_{15}(O_2)_xO_2$ radicals with428x = 0, 1, 2, 3. All products have been measured by the $C_3H_7NH_3^+$ -APi-TOF. Reaction conditions are429stated in the caption of Figure 5.

Experiments with ethylene addition revealed the same behavior for the C_{10} -RO₂ radicals and

430 431

432

- 433 C_{19}/C_{20} accretion products as observed in the case of runs with isoprene addition. Due to its lower OH 434 reactivity, ethylene was applied in a larger excess over α -pinene than isoprene, k(OH+ethylene, 435 298 K) = $8.5 \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹.⁴⁷ Cross-reactions of HO-C₂H₄O₂ radicals with C₁₀-RO₂ 436 radicals formed the corresponding C₁₂ accretion products. SI Figure S12 shows the concentrations of 437 $C_{12}H_{20}O_{5,7,9,11}$ from the reaction with O,O-C₁₀H₁₅(O₂)_xO₂ radicals with x = 0, 1, 2, 3. The 438 corresponding rate coefficients were in the range of (1.2 - 3.6) × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (Table 1, SI
- 439 Figure S13).

440 Moreover, also the OH radical scavenger experiments with propane have been analyzed with

- 441 respect to new accretion product formation. Presence of high propane concentrations leads to the
- formation of propyl peroxy radicals, $C_3H_7O_2$, instead of $HO-C_{10}H_{16}(O_2)_{\alpha}O_2$ radicals. The $C_3H_7O_2$
- 443 radicals formed C_{13} accretion products from the reaction with ozonolysis derived C_{10} -RO₂ radicals
- 444 $O,O-C_{10}H_{15}(O_2)_xO_2$ according to pathway (1) (SI Figure S14). This finding further supports the

universal validity of accretion product formation from all RO₂ radical combinations in a reactionsystem.

- 447
- 448

449 **Atmospheric implications.** The measurements showed that C_{20} accretion products according to 450 pathway (1) have been formed from all possible combinations of the 7 main C_{10} -RO₂ radicals. 451 Additionally, C₁₉ accretion products occurred whose formation can be tentatively explained in an 452 analogous way assuming CH₂O elimination. With that, almost the whole accretion product distribution 453 can be mechanistically explained. Obtained rate coefficients of RO₂ radical self- and cross-reaction according to pathway (1) are in the range $(9.7 - 79) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ being similar or slightly 454 higher than the k-values of $(5 - 20) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ generally applied for the major RO₂ loss 455 456 reactions with NO or HO₂ radicals.¹¹⁻¹³ The relatively high rate coefficients of C₁₀-RO₂ radical cross-457 reactions with HO-C₅H₈O₂ or HO-C₂H₄O₂ (Table 1) suggest that effective accretion product formation 458 is possible with a number of other RO₂ radicals present in the atmospheric reaction system, such as those generated from other alkenes or aromatics.²³⁻²⁵ Thus, a complex accretion product spectrum can 459 be expected as already proposed from an experimental study with a series of model RO₂ radicals.²⁰ A 460 461 reasoned evaluation of the role of RO_2 radical self- and cross-reaction according to pathway (1) for 462 different situations in the atmosphere is possible based on the rate coefficients obtained in this study 463 and from the former study 20 .

464 In atmospheric science the mechanistic explanation of early particle growth suppression in isoprene-dominated forestlands^{27,49} is still an open question. In a recent field study carried out in a 465 466 mixed deciduous forest in Alabama, no growth of sub-2 nm particles was observed while C_9 and C_{10} 467 low-volatility oxygenated products (HOMs) from α -pinene oxidation were measured with mixing ratios of 20 - 30 pptv.²⁷ This behavior stands in stark contrast to the expected growth rates by HOMs 468 from pure α -pinene oxidation as deduced from a chamber study.²⁶ Moreover, suppression of particle 469 470 formation by isoprene was reported as a result of a plant chamber experiment, which was simply explained by lowering of the OH radical level in the system due to the isoprene additive.⁵⁰ In the 471 472 atmosphere, however, the OH radical concentration is not lowered in isoprene-dominated areas calling a direct application of the plant chamber findings to the atmosphere into question.⁵¹ 473

474 We suppose that probably the C_{19}/C_{20} accretion products play a critical role for the early particle 475 growth, rather than the C_9/C_{10} HOMs, and performed modeling calculations for atmospheric daytime 476 conditions with different isoprene / α -pinene ratios. The modeling considered constant oxidant concentrations of OH radicals and ozone of 2×10^6 and 7.5×10^{11} molecules cm⁻³, respectively, and 477 constant concentrations of HO₂ radicals and NO that are defining the main loss reactions of the RO₂ 478 479 radicals. Rate coefficients for accretion product formation were taken from the present study, see 480 Supporting Information (SI). 2-fold isoprene excess over α -pinene, representing the Alabama 481 conditions, led to a reduction of the C_{10} -RO₂ radical concentration of about 10% and in the case of a

482	15-fold isoprene excess, as present in the Amazon forest, to a reduction of 48% (SI Figure S15). ^{23,27}
483	Consequently, the concentrations of the C_{19}/C_{20} accretion products dropped down by a factor of 1.2
484	and 3.6, respectively. Concentrations of the C_{15} products substantially increased with rising isoprene
485	excess. As a result of the modeling, it is difficult to assume that C_{19}/C_{20} product reduction of only
486	\sim 20 % for the Alabama case can explain early growth suppression by isoprene. Further studies are
487	needed in order to discover reasons for early growth suppression in isoprene-dominated forestlands,
488	such as in Alabama or in the Amazon forest.
489	
490	
491	
492	Associated Content
493	Supporting Information
494	The Supporting Information is available free of charge on the ACS Publication website at
495	Additional Information regarding instrumental analysis, kinetic analysis and other materials
496	are shown in Figures S1 - S15 and Table S1.
497	
498	
499	Notes
500	The authors declare no competing financial interest.
501	
502	
503	Acknowledgements
504	We thank K. Pielok and A. Rohmer for technical assistance, the tofTools team for providing a data
505	analysis toolbox, the Austrian Research Funding Association (FFG. Project Number 846050) for
506	financial support and IONICON Analytik GmbH for in-kind contributions within the funded project.
507	
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	

518 References

- 519 (1) Sindelarova, K.; Grainer, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.-520 F.; Kuhn, U.; Stefani, P.; Knorr, W. Global data set of biogenic VOC emissions calculated by 521 the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 14, 9317-9341. 522 (2) Goldstein, A.H.; Galbally, I.E. Known and unexplored organic constituents in the Earth's 523 atmosphere. Environ. Sci. Technol. 2007, 41, 1514-1521. 524 (3) Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution 525 to Climate Change (Wiley, New York, 1998). 526 (4) Crounse, J.D.; Nielsen, L.B.; Jørgensen, S.; Kjaergaard, H.G.; Wennberg, P.O. Autoxidation 527 of organic compounds in the atmosphere. J. Phys. Chem. Lett. 2013, 4, 3513-3520. 528 (5) Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; 529 Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I. H.; Rissanen, M.; 530 Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, K.; Nieminen, T.; Kurtén, T.; 531 Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. K.; Canagaratna, M.; Maso, M. D.; Berndt, T.; 532 Petäjä, T.; Wahner, A.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.; Mentel, T. 533 F. A large source of low-volatility secondary organic aerosol. *Nature* 2014, 506, 476-479. 534 (6) Jokinen, T.; Sipilä, M.; Richters, S.; Kerminen, V. M.; Paasonen, P.; Stratmann, F.; Worsnop, 535 D.; Kulmala, M.; Ehn, M.; Herrmann, H.; Berndt, T. Rapid autoxidation forms highly 536 oxidized RO₂ radicals in the atmosphere. Angew. Chem. Int. Ed. 2014, 53, 14596-14600. 537 (7) Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjær, R. V.; Kjaergaard, H. 538 K.; Stratmann, F.; Herrmann, H.; Sipilä, M.; Kulmala, M.; Ehn, M. Hydroxyl radical-induced 539 formation of highly oxidized organic compounds. Nat. Commun. 2016, 7, 13677. (8) Praske, E.; Otkjaer, R.V.; Crounse, J.D.; Hethrox, J.C.; Stoltz, B.M.; Kjaergaard, H.G.; 540 541 Wennberg, P.O. Atmospheric autoxidation is increasingly important in urban and suburban 542 North America. Proc. Natl. Acad. Sci. USA 2018, 115, 64-69. 543 (9) Vereecken, L.; Müller, J.-F.; Peeters, J. Low-volatility poly-oxygenates in the OH-initiated 544 atmospheric oxidation of α -pinene: impact of non-traditional peroxyl radical chemistry. *Phys.* 545 Chem. Chem. Phys. 2007, 9, 5241-5248. 546 (10)Richters, S.; Pfeifle, M.; Olzmann, M.; Berndt, T. endo-Cyclization of unsaturated 547 RO₂ radicals from the gas-phase ozonolysis of cyclohexadienes. Chem. Commun. 2017, 53, 548 4132-4135. 549 (11)Lightfoot, P.D.; Cox, R.A.; Crowley, J.N.; Destriau, M.; Hayman, G.D.; Jenkin, M.E.;
- Moortgat, G.K.; Zabel, F. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric
 chemistry. *Atmos. Environ.* 1992, 26, 1805-1961.

552 (12) Wallington, T.J.; Dagaut, P.; Kurylo, M.J. UV absorption cross sections and reaction 553 kinetics and mechanisms for peroxy radicals in the gas phase. *Chem. Rev.* 1992, *92*, 667-710.

- 554 (13)Orlando, J.J.; Tyndall, G.S. Laboratory studies of organic peroxy radical chemistry: an 555 overview with emphasis on recent issues of atmospheric significance. Chem. Soc. Rev. 2012, 556 41, 6294-6317.
- 557 (14)Weaver, J.; Meagher, J.; Shortridge, R.; Heicklen, J. The oxidation of acetyl radicals. 558 J. Photochem. 1975, 4, 341-360.
- 559 (15) Anastasi, C.; Waddington, D.J.; Woolley, A. Reactions of oxygenated radicals in the 560 gas phase. J. Chem. Soc., Faradav Trans. 1 1983, 79, 505-516.
- 561 Mentel, T. F.; Springer, M.; Ehn, M.; Kleist, E.; Pullinen, I.; Kurtén, T.; Rissanen, M. (16)562 P.; Wahner, A.; Wildt, J. Formation of highly oxidized multifunctional compounds: 563 Autoxidation of peroxy radicals formed in the ozonolysis of alkenes-deduced from structure-564 product relationships. Atmos. Chem. Phys. 2015, 15, 6745-6765.
- 565 Berndt, T.; Richters, S.; Kaethner, R.; Voigtländer, J.; Stratmann, F.; Sipilä, M.; (17)566 Kulmala, M.; Herrmann, H. Gas-phase ozonolysis of cycloalkenes: Formation of highly 567 oxidized RO₂ radicals and their reactions with NO, NO₂, SO₂, and other RO₂ radicals. J. Phys. 568 Chem. A 2015, 119, 10336-10348.
- 569 Jokinen, T.; Berndt, T.; Makkonen, R.; Kerminen, V.-M.; Junninen, H.; Paasonen, P.; (18)Stratmann, F.; Herrmann, H.; Guenther, A.; Worsnop, D. R.; Kulmala, M.; Ehn, M.; Sipilä, M. 570 571 Production of extremely low volatile organic compounds from biogenic emissions: Measured 572 yields and atmospheric implications. Proc. Natl. Acad. Sci. USA 2015, 112, 7123-7128.
- 573 (19)Zhang, X.; Lambe, A. T.; Upshur, M. A.; Brooks, W. A.; Be, A. G.; Thomson, R. J.; 574 Geiger, F. M.; Surrat, J. D.; Zhang, Z.; Gold, A.; Graf, S.; Cubison, M. J.; Groessl, M.; Jayne, 575 J. T.; Worsnop, D. R.; Canagaratna, M. R. Highly oxygenated multifunctional compounds in 576

α-pinene secondary organic aerosol. Environ. Sci. Technol. 2017, 51, 5932-5940.

- 577 Berndt, T.; Scholz, W.; Mentler, B.; Fischer, L.; Herrmann, H.; Kulmala, M.; Hansel, (20)578 A. Accretion product formation from self- and cross-reactions of RO₂ radicals in the 579 atmosphere. Angew. Chem. Int. Ed. 2018, 57, 3820-3824.
- 580 Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H. E.; Nieminen, (21)581 T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; Franchin, A.; Jokinen, T.; Järvinen,
- 582 E.; Äijälä, M.; Kangasluoma, J.; Hakala, J.; Aalto, P. P.; Paasonen, P.; Mikkilä, J.; Vanhanen,
- 583 J.; Aalto, J.; Hakola, H.; Makkonen, U.; Ruuskanen, T.; Mauldin III, R. L.; Duplissy, J.;
- 584 Vehkamäki, H.; Bäck, J.; Kortelainen, A.; Riipinen, I.; Kurtén, T.; Johnston, M. V.; Smith, J.
- 585 N.; Ehn, M.; Mentel, T. F.; Lehtinen, K. E. J.; Laaksonen, A.; Kerminen, V.-M.; Worsnop, D.
- 586 R. Direct observation of atmospheric aerosol nucleation. Science 2013, 339, 943-946.
- 587 (22)Mohr, C.; Lopez-Hilfiker, F. D.; Yli-Juuti, T.; Heitto, A.; Lutz, A.; Hallquist, M.;
- 588 D'Ambro, E. L.; Rissanen, M. P.; Hao, L.; Schobesberger, S.; Kulmala, M.; Mauldin III, R.
- 589 L.; Makkonen, U.; Sipilä, M.; Petäjä, T.; Thornton, J. A. Ambient observation of dimers from

terpene oxidation in the gas phase: Implications for new particle formation and growth. *Geophys. Res. Lett.* **2017**, *44*, 2958-2966.

- 592 (23) Zimmerman, P.R.; Greenberg, J.P.; Westberg, C.E. Measurements of atmospheric
 593 hydrocarbons and biogenic emission fluxes in the Amazon boundary layer. *J. Geophys. Res.*594 1988, 93, 1407-1416.
- 595 (24) Hakola, H.; Laurila, T.; Rinne, J.; Puhto, K. The ambient concentrations of biogenic
 596 hydrocarbons at a northern European, boreal site. *Atmos. Environ.* 2000, *34*, 4971-4982.
- 597 (25) Fehsenfeld, F.; Calvert, C.; Fall, R.; Goldan, P.; Guenther, A. B.; Hewitt, C. N.; Lamb,
 598 B.; Liu, S.; Trainer, M.; Westberg, H.; Zimmermann, P. Emissions of volatile organic
 599 compounds from vegetation and the implications for atmospheric chemistry. *Global*600 *Biogeochemical Cycles* 1992, *6*, 389-430.
- 601 (26) Tröstl, J.; Chuang, W. K.; Gordon, H.; Heinritzi, M.; Yan, C.; Molteni, U.; Ahlm, L.;
 602 Frege, C.; Bianchi, F.; Wagner, R.; Simon, M.; Lehtipalo, K.; Williamson, C.; Craven, J. S.;
 603 Duplissy, J.; Adamov, A.; Almeida, J.; Bernhammer, A.-K.; Breitenlechner, M.; Brilke, S.;
- Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs, C.; Guida, R.; Gysel, M.; Hansel, A.;
 Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Keskinen, H.; Kim, J.; Krapf, M.;
- Hoyle, C. R.; Jokinen, T.; Junninen, H.; Kangasluoma, J.; Keskinen, H.; Kim, J.; Krapf, M.;
 Kürten, A.; Laaksonen, A.; Lawler, M.; Leiminger, M.; Mathot, S.; Möhler, O.; Nieminen, T.;
- 607 Onnela, A.; Petäjä, T.; Piel, F. M.; Miettinen, P.; Rissanen, M. P.; Rondo, L.; Sarnela, N.;
- 608 Schobesberger, S.; Sengupta, K.; Sipilä, M.; Smith, J. N.; Steiner, G.; Tomè, A.; Virtanen, A.;
- Wagner, A. C.; Weingartner, E.; Wimmer, D.; Winkler, P. M.; Ye, P.; Carslaw, K. S.; Curtius,
- 610 J.; Dommen, J.; Kirkby, J.; Kulmala, M.; Riipinen, I.; Worsnop, D. R.; Donahue, N. M.;
- Baltensperger, U. The role of low-volatility organic compounds in initial particle growth in
 the atmosphere. *Nature* 2016, *533*, 527-531.
- 613 (27) Lee, S.-H.; Uin, J.; Guenther, A. B.; de Gouw, J. A.; Yu, F.; Nadykto, A. B.; Herb, J.;
 614 Ng, N. L.; Koss, A.; Brune, W. H.; Baumann, K.; Kanawade, V. P.; Keutsch, F. N.; Nenes, A.;
 615 Olsen, K.; Goldstein, A.; Ouyang, Q. Isoprene suppression of new particle formation:
- 616 Potential mechanisms and implications. J. Geophys. Res. Atmos. 2016, 121, 14621-14635.
- 617 (28) Berndt, T.; Kaethner, R.; Voigtländer, J.; Stratmann, F.; Pfeifle, M.; Reichle, P.;
- Sipilä, M.; Kulmala, M.; Olzmann, M. Kinetics of the unimolecular reaction of CH₂OO and
 the bimolecular reactions with the water monomer, acetaldehyde and acetone under
 atmospheric conditions. *Phys. Chem. Chem. Phys.* 2015, *17*, 19862-19873.
- (29) Hansel, A.; Scholz, W.; Mentler, B.; Fischer, L.; Berndt, T. Detection of RO₂ radicals
 and other products from cyclohexene ozonolysis with NH₄⁺ and acetate chemical ionization
 mass spectrometry. *Atmos. Environ.* 2018, *186*, 248-255.
- (30) Kroll, J. H.; Sahay, S. R.; Anderson, J. G.; Demerjian, K. L.; Donahue, N. M.
 Mechanism of HO_x formation in the gas-phase ozone-alkene reaction. 2. Prompt versus
 thermal dissociation of carbonyl oxides to form OH. J. Phys. Chem. A 2001, 105, 4446-4457.

627	(31)	Donahue, N. M.; Kroll, J. H.; Anderson, J. G.; Demerjian, K. L. Direct observation of	
628	OH	production from the ozonolysis of olefins. Geophys. Res. Lett. 1998, 25, 59-62.	
629	(32)	Zhang, D.; Zhang, R. Ozonolysis of <i>a</i> -pinene and <i>b</i> -pinene: Kinetics and mechanism.	
630	J. C	<i>Them. Phys.</i> 2005 , <i>122</i> , 114308.	
631	(33)	Peeters, J.; Vereecken, L.; Fantechi, G. The detailed mechanism of the OH-initiated	
632	atm	ospheric oxidation of α -pinene: a theoretical study. <i>Phys. Chem. Chem. Phys.</i> 2001 , <i>3</i> ,	
633	548	9-5504.	
634	(34)	Criegee, R. Mechanism of ozonolysis. Angew. Chem. Int. Ed. 1975, 14, 745-752.	
635	(35)	Taatjes, C. A.; Welz, O.; Eskola, A. J.; Savee, J. D.; Scheer, A. M.; Shallcross, D. E.;	
636	Rotavera, B.; Lee, E. P.; Dyke, J. M.; Mok, D. K.; Osborn, D. L.; Percival, C. J. Direct		
637	measurements of conformer-dependent reactivity of the Criegee intermediate CH ₃ CHOO.		
638	Scie	ence 2013 , <i>340</i> , 177-180.	
639	(36)	Drozd, G. T.; Donahue, N. M. Pressure dependence of stabilized Criegee intermediate	
640	form	nation from a sequence of alkenes. J. Phys. Chem. A 2011, 115, 4381-4387.	
641	(37)	Sipilä, M.; Jokinen, T.; Berndt, T.; Richters, S.; Makkonen, R.; Donahue, N. M.;	
642	Mau	Ildin III, R. L.; Kurtén, T., Paasonen, P., Sarnela; N., Ehn, M.; Junninen, H.; Rissanen, M.	
643	P.; Thornton, J.; Stratmann, F.; Herrmann, H.; Worsnop, D. R.; Kulmala, M.; Kerminen, V		
644	М.;	Petäjä, T. Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and	
645	mor	noterpene ozonolysis toward SO ₂ and organic acids. Atmos. Chem. Phys. 2014, 14, 12143-	
646	121	53.	
647	(38)	Hyttinen, N.; Rissanen, M.P.; Kurtén, T. Computational comparison of acetate and	
648	nitra	ate chemical ionization of highly oxidized cyclohexene ozonolysis intermediates and	
649	proc	ducts. J. Phys. Chem. A 2017, 121, 2172-2179.	
650	(39)	Hyttinen, N.; Otkjær, R.V.; Iyer, S.; Kjaergaard, H.G.; Rissanen, M.P.; Wennberg,	
651	P.O	.; Kurtén, T. Computational comparison of different reagent ions in the chemical	
652	ioni	zation of oxidized multifunctional compounds. J. Phys. Chem. A 2018, 122, 269-279.	
653	(40)	Atkinson, R.; Aschmann, S.M.; Arey, J.; Shores, B. Formation of OH radicals in the	
654	gas	phase reaction of O ₃ with a series of terpenes. J. Geophys. Res. 1992, 97, 6065-6073.	
655	(41)	Hyytinen, N.; Kupiainen-Määttä, O.; Rissanen, M.P.; Muuronen, M.; Ehn, M.; Kurtén,	
656	T. N	Addeling the charging of highly oxidized cyclohexene ozonolysis products using nitrate-	
657	base	ed chemical ionization. J. Phys. Chem. A 2015, 119, 6339-6345.	
658	(42)	Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D. Dimers in α -	
659	pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and		
660	aero	osol acidity. Atmos. Chem. Phys. 2014, 14, 4201-4218.	
661	(43)	Zhao, Y.; Wingen, L. M.; Perraud, V.; Greaves, J.; Finlayson-Pitts, B. J. Role of the	
662	reac	tion of stabilized Criegee intermediates with peroxy radicals in particle formation and	
663	grov	wth in air. Phys. Chem. Chem. Phys. 2015, 17, 12500-12514.	

- (44) Newland, M. J.; Rickard, A. R.; Sherwen, T.; Evans, M. J.; Vereecken, L.; Munoz, A.;
 Rodenas, M.; Bloss, W. J. The atmospheric impacts of monoterpene ozonolysis on global
 stabilized Criegee intermediate budgets and SO₂ oxidation: experiment, theory and modelling. *Atmos. Chem. Phys.* 2018 18, 6095-6120.
- 668 (45) Welz, O.; Eskola, A. J.; Sheps, L.; Rotavera, B.; Savee, J. D.; Scheer, A. M.; Osborn,
 669 D. L.; Lowe, D.; Booth, A. M.; Xiao, P.; Khan, M. A. H.; Percival, C. J.; Shallcross, D. E.;
- Taatjes, C. A. Rate coefficients of C1 and C2 Criegee intermediate reactions with formic and
 acetic acid near collision limit: Direct kinetics measurements and atmospheric applications. *Angew. Chem. Int. Ed.* 2014, *53*, 4547-4550.
- (46) Ziemann, P. J.; Atkinson, R. Kinetics, products, and mechanisms of secondary organic
 aerosol formation. *Chem. Soc. Rev.* 2012, *41*, 6582-6605.
- 675 (47) Atkinson, R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl
 676 radical with organic compounds under atmospheric conditions. *Chem. Rev.* 1986, *86*, 69-201.
- (48) Nguyen, T. B.; Tyndall, G. S.; Crounse, J. D.; Teng, A. P.; Bates, K. H.; Schwantes,
 R. H.; Coggon, M. M.; Zhang, L.; Feiner, P.; Miller, D. O.; Skog, K. M.; Rivera-Rios, J. C.;
 Dorris, M.; Olson, K. F.; Koss, A.; Wild, R. J.; Brown, S. S.; Goldstein, A. H.; de Gouw, J.
 A.; Brune, W. H.; Keutsch, F. N.; Seinfeld, J. H.; Wennberg, P. O. Atmospheric fates of
 Criegee intermediates in the ozonolysis of isoprene. *Phys. Chem. Chem. Phys.* 2016, *18*,
- 68210241-10254.
- (49) Pöhlker, C.; Wiedemann, K. T.; Sinha, B.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Su,
 H.; Artaxo, P.; Chen, Q.; Cheng, Y.; Elbert, W.; Gilles, M. K.; Kilcoyne, A. L. D.; Moffet, R.
 C.; Weigand, M.; Martin, S. T.; Pöschl, U.; Andreae, M. O. Biogenic potassium salt particles
- as seeds for secondary organic aerosol in the Amazon. *Science* **2012**, *337*, 1075-1078.
- (50) Kindler-Scharr, A.; Wildt, J.; Dal Maso, M.; Hohaus, T.; Kleist, E.; Mentel, T.F.;
 Tillmann, R.; Uerlings, R.; Schurr, U.; Wahner, A. New particle formation in forests inhibited
 by isoprene emissions. *Nature* 2009, *461*, 381-384.
- 690 (51) Stone, D.; Whalley, L.K.; Heard, D.E. Tropospheric OH and HO₂ radical: field
 691 measurements and model comparison. *Chem. Soc. Rev.* 2012, *41*, 6348-6404.
- 692
- 693 694
- 695
- 696
- 697
- 698
- 698
- 699

- **TOC entry**

