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a b s t r a c t 

Fast, accurate, and stable computation of the Clebsch-Gordan (C-G) coefficients is always desirable, for ex- 

ample, in light scattering simulations, the translation of the multipole fields, quantum physics and chem- 

istry. Current recursive methods for computing the C-G coefficients are often unstable for large quantum 

numbers due to numerical overflow or underflow. In this paper, we present an improved method, called 

the sign-exponent recurrence, for the recursive computation of C-G coefficients. The result shows that the 

proposed method can significantly improve the stability of the computation without losing its efficiency, 

producing accurate values for the C-G coefficients even with very large quantum numbers. 

© 2020 The Author. Published by Elsevier Ltd. 
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. Introduction 

The Clebsch-Gordan (C-G) coefficients arise whenever the cou-

ling of two angular momenta is involved. The computation of C-

 coefficients has a broad range of applications including parti-

le light scattering simulations [1–4] , fast multipole methods [5,6] ,

pherical polar Fourier transform [7] , quantum physics and chem-

stry [8] . In the context of light scattering by small particles, for

nstance, the C-G coefficients are needed for the realization of an-

lytical random orientation average using T-matrix. Developed by

. Mishchenko [1] , the analytical random orientation scheme is

erhaps one of the greatest advantages of T-matrix method, which

ould save massive amount of computational time if the orien-

ation averaged properties are needed. In addition, the C-G coef-

cient also arises when one need to compute the translation of

ultipole fields [4] . Consequently, the importance of obtaining fast,

eliable and accurate computation of C-G coefficients should not

e underestimated. Currently, the computation of C-G coefficients

ith large quantum numbers is often based on a modified recur-

ion method, which was originally proposed by Schulten and Gor-

on [9,10] and later modified and implemented by M. Mishchenko

1] and Wielaard et al. [2] in T-matrix simulations. According to 

11] , the modified recursive method can compute the C-G coeffi-

ients with quantum number up to 150 in a stable and accurate

anner. Although the size of T-matrix up to this order is already

uite large, it is always desirable to develop a highly stable and
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ccurate method for calculating the C-G coefficients with quantum

umber as large as possible. In this paper, we present an improved

ethod which could largely extend this limitation without losing

he accuracy and efficiency. 

The paper is organised as follows. In Section 2 , we briefly intro-

uce the widely applied recursion method for the computation of

-G coefficients and analyse its limitations. Section 3 presents our

ethod. In Section 4 , we demonstrate the stability, accuracy, and

fficiency of the proposed method by comparing the results with

hose from the previous methods. Section 5 concludes this study. 

. The recursive computation of C-G coefficients 

The C-G coefficients are related to the Wigner’s 3j symbol in

ccordance with 

 

(
j 1 j 2 j 3 

m 1 m 2 −m 3 

)
= (−1) j 1 − j 2 + m 3 

√ 

2 j 3 + 1 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)
,

(1) 

here the j 1,2,3 and m 1,2,3 are angular momentum and its pro-

ection on the quantization axis, and “ C ” here denotes the CG-

oefficients. In this study, we use the term principle and magnetic

ngular-momentum quantum numbers for j and m respectively, as

sed by Schulten and Gordon [9] . The C-G coefficient will be zero

nless the following conditions are satisfied simultaneously, 

 

j 1 − j 2 | ≤ j 3 ≤ ( j 1 + j 2 ) , (2)

 = −(m + m ) . (3)
3 1 2 
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To be consistent with Schulten and Gordon [9] on notation, we fo-

cus on the discussion of Wigner’s 3 j symbol, while the C-G coeffi-

cients can be easily derived from Eq. 1 . For small quantum num-

bers, the 3 j symbols can be computed conveniently using Racah’s

formula [12] . For large quantum numbers, however, the computa-

tion using Racah’s formula becomes very expansive and suffers nu-

merical instabilities due to the high order factorials. It is believed

that the 3 j symbols with large quantum numbers can be evaluated

most efficiently with the recurrence relations. In light scattering

simulations, one needs to compute the 3 j symbols with a range

of principle quantum number j or magnetic quantum number m .

Because the symmetry properties of the 3 j symbols (see Appendix

D of [11] ), the recurrence relations for one of the three quantum

numbers shall be enough to compute the recursion of all others.

Without loss of generality, let us focus on the computation of j 3 
and m 2 . The recurrence relations for the two quantum numbers

are [9] : 

j 3 A ( j 3 + 1) 

(
j 1 j 2 j 3 + 1 

m 1 m 2 m 3 

)
+ B ( j 3 ) 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)

+ ( j 3 + 1) A ( j 3 ) 

(
j 1 j 2 j 3 − 1 

m 1 m 2 m 3 

)
= 0 , (4)

(m 2 + 1) 

(
j 1 j 2 j 3 

m 1 m 2 + 1 m 3 − 1 

)
+ D (m 2 ) 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)

+ C(m 2 ) 

(
j 1 j 2 j 3 

m 1 m 2 − 1 m 3 + 1 

)
= 0 , (5)

where 

A ( j 3 ) = 

(
[( j 3 ) 

2 − ( j 1 − j 2 ) 
2 ][( j 1 + j 2 + 1) 2 − ( j 3 ) 

2 ] 

× [( j 3 ) 
2 − (m 3 ) 

2 ] 
)1 / 2 

, (6)

B ( j 3 ) = −(2 j 3 + 1) [ j 1 ( j 1 + 1) m 3 − j 2 ( j 2 + 1) m 3 

− j 3 ( j 3 + 1)(m 2 − m 1 ) ] , (7)

(m 2 ) = [( j 2 − m 2 + 1)( j 2 + m 2 )( j 3 + m 3 + 1)( j 3 − m 3 )] 1 / 2 , (8)

D (m 2 ) = j 2 ( j 2 + 1) + j 3 ( j 3 + 1) − j 1 ( j 1 + 1) + 2 m 2 m 3 . (9)

For recursive computation using Eq. 4 , j 3 lies in the following range

max (| m 1 + m 2 | , | j 1 − j 2 | ) ≤ j 3 ≤ ( j 1 + j 2 ) . (10)

For recursive computation using Eq. 5 , m 2 lies in the following

range 

− min ( j 2 , j 3 + m 1 ) ≤ m 2 ≤ min ( j 2 , j 3 − m 1 ) . (11)

In the original method proposed by Schulten and Gordon [9] , the

recursions can start from arbitrary real number, e.g., unity , and

go both forward and backward from the minimum and maximum

quantum number respectively. The method therefore requires the

computation of a scaling factor such that the forward and back-

ward recursions give the same number at the intermediate quan-

tum number. The coefficients can then be determined by applying

the unitary properties: 

j 3 max ∑ 

j 3 = j 3 min 

(2 j 3 + 1) 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)2 

= 1 (12)

m 2 max ∑ 

m 2 = m 2 min 

(2 j 1 + 1) 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)2 

= 1 (13)
In addition to iteration direction [9] , there are two more sources

hat could cause inaccuracy or numerical instability via recursion.

irstly, because the recursion starts with arbitrary number, the

omputed values need to be scaled twice, first by the scaling factor

nd then by the normalization factor. The errors of the factors, pos-

ibly arising from the inaccuracy of particular coefficients or their

atios, could propagate to the whole group of the computed values.

o illustrate this, we compare the exact values with those com-

uted by scaling and normalization as displayed in Fig. 1 . It can be

een that most of the computed values can be shifted by certain

agnitude due to the multiplication of the factors. 

The second source of errors in the existing methods is the lack

f a mechanism to avoid numerical overflows or underflows. Note

hat in the case of high order quantum numbers, the magnitude of

uantities (or their ratios) involved in the computations could be

xtremely small or large. 

In [13] , Luscombe and Luban propose to iterate the ratio of two

uccessive 3 j symbols to avoid numerical overflows. Nevertheless,

heir method is not without drawbacks. Firstly, it has to perform

ormailzation, which could cause unnecessary shifting of values.

econdly, in their method, the values of C-G coefficients are to be

btained by multiplication of many ratios, and this could still in-

uce numerical overflow/underflow, even though the iteration of

he ratios may have no such risks. Thirdly, the necessity of identi-

ying classical and nonclassical regions complicates the algorithm. 

One way to remove the necessity of scaling and normalization

s to start with an exact value of C-G coefficient at the minimum

r maximum quantum number. As described in Appendix A , there

re four different cases to be considered for j 3 = j 3 min 
, while there

s only one case for j 3 = j 3 max 
. The usage of exact starting values

xclude the necessity of scaling and normalization, which improves

he computational stability and accuracy. However, it does not ex-

lude the possibility of numerical underflow/overflow, because for

arge quantum numbers, the factorial computations for the starting

alues will likely exceed the precision of the arithmetic. 

. The sign-exponent recurrence method 

If the quantum numbers satisfy the conditions of Eq. 2 and

q. 3 , the 3 j symbols are generally non-zero. However, it is well-

nown that some of the coefficients can be “accidentally” zero

ven if the conditions are fulfilled [14] . Such zeros are called non-

rivial zeros. But the non-trivial zeros are quite rarely encountered,

or the moment, let us assume that all the coefficients involved are

on-zero. In this case, one can write arbitrary 3 j symbols as 

f ( j 3 ) = 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)
= s ( j 3 ) exp (k ( j 3 )) , (14)

(m 2 ) = 

(
j 1 j 2 j 3 

m 1 m 2 −m 2 − m 1 

)
= s (m 2 ) exp (h (m 2 )) , (15)

here k ( j 3 ) and h ( m 2 ) are real functions of j 3 and m 3 respectively,

nd 

s ( j 3 ) = sign ( f ( j 3 )) 
s (m 2 ) = sign (g(m 2 )) 

(16)

By introducing Eq. 14 into Eq. 4 , we obtain 

 ( j 3 + 1) exp (k ( j 3 + 1)) = exp (k ( j 3 ))[ α( j 3 ) s ( j 3 ) 

+ β( j 3 ) s ( j 3 − 1) exp (−�( j 3 ))] , (17)

here 

( j 3 ) = k ( j 3 ) − k ( j 3 − 1) , (18)

( j 3 ) = − B ( j 3 ) 

j A ( j + 1) 
, (19)
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Fig. 1. Global shifting caused by scaling and normalization. 
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( j 3 ) = − ( j 3 + 1) A ( j 3 ) 

j 3 A ( j 3 + 1) 
. (20) 

From Eq. 17 , one can obtain the recurrence relations for both

 ( j 3 ) and k ( j 3 ), i.e., 

 

s ( j 3 + 1) = sign [ α( j 3 ) s ( j 3 ) + β( j 3 ) s ( j 3 − 1) exp (−�( j 3 ))] 
k ( j 3 + 1) = k ( j 3 ) + ln | α( j 3 ) s ( j 3 ) + β( j 3 ) s ( j 3 − 1) 

exp (−�( j 3 )) | . 
(21) 

imilarly, recurrence relation for m 2 can be obtained by introduc-

ng Eq. 15 into Eq. 5 , i.e., 
 

 

 

 

 

s (m 2 + 1) = sign [ λ(m 2 ) s (m 2 ) + η(m 2 ) s (m 2 − 1) 
exp (−�(m 2 )) ] 

h (m 2 + 1) = h (m 2 ) + ln | λ(m 2 ) s (m 2 ) + η(m 2 ) s (m 2 − 1) 
exp (−�(m 2 )) | 

(22) 

here 

(m 2 ) = h (m 2 ) − h (m 2 − 1) , (23)

(m 2 ) = − D (m 2 ) 

C(m 2 + 1) 
, (24) 

(m 2 ) = − C(m 2 ) 

C(m 2 + 1) 
. (25) 

t the starting minimum quantum number, we have 

s ( j 3 min 
− 1) = 0 

s (m 2 min 
− 1) = 0 . 

(26) 

herefore the iteration becomes 

s ( j 3 min 
+ 1) = sign [ α( j 3 min 

) s ( j 3 min 
)] 

k ( j 3 min 
+ 1) = k ( j 3 min 

) + ln | α( j 3 min 
) s ( j 3 min 

) | , (27) 
nd 

s (m 2 min 
+ 1) = sign [ λ(m 2 min 

) s (m 2 min 
)] 

h (m 2 min 
+ 1) = h (m 2 min 

) + ln | λ(m 2 min 
) s (m 2 min 

) | . (28) 

t can be seen that we have separated the original recurrence re-

ation into sign-recursion and exponent-recursion. Note that the

bove relations are valid for the forward direction which increases

he quantum number. Similarly, it would be straightforward to de-

ive the backward recurrence relation that reduces the quantum

umber. The basic idea behind such recurrence relations is that

e could focus on computing the sign and exponent of the co-

fficient, rather than the coefficient itself. In principle, as long as

he sign and exponent are computed accurately, the coefficient

an always be calculated accurately via Eq. 14 or Eq. 15 . Because

he 3 j symbols can vary many orders of magnitude, the sign-

xponent recurrence can significantly reduce the risk of numeri-

al underflows/overflows. To apply the derived relations, we just

eed to compute the starting exponent and sign of the coefficient

t the minimum or maximum quantum numbers. According to our

umerical tests, the method would not induce numerical under-

ow/overflow even with quantum number larger than 10 million. 

For now, we shall consider the problem of encountering non-

rivial zeros. Once zero-value is encountered, the sign value will

ecome 0 and the exponent will become −∞ , making the compu-

ation of �( m 2 ) or �( j 3 ) meaningless. Therefore, the above recur-

ence relations must be avoided and the original three-term linear

ecurrence relations should be applied. The condition for using the

ign-exponent recursions shall be that both s ( j 3 − 1) and s ( j 3 ) are

on-zero (same for m 2 case), otherwise the three-term linear re-

ations should be invoked. For large quantum numbers, the non-

rivial zeros are rarely encountered. For most of the cases, only the

ign-exponent iteration is invoked in the computation. 
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Fig. 2. A test comparison between the widely-applied three-term linear recursion and the sign-exponent recursion method introduced in this study. The values are scaled 

back to C-G coefficients. The black plus − sign marks the values computed by the three-term linear recurrence method, while the red circle marks the values computed by 

the sign-exponent recurrence method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Test comparison between the three-term linear recurrence and sign-exponent recurrence for large quantum numbers. The values have been scaled back to C-G 

coefficients.The red dot marks the values from the sign-exponent recurrence method, while the black dot marks the values from the three-term linear recurrence method. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Results and discussion 

In this section, we shall discuss the stability, accuracy, and effi-

ciency of the proposed method by comparing with the widely ap-

plied three-term linear recurrence with exact starting values. For
arge quantum numbers, in general, all recursion-based methods

re much faster than those using the direct definition or formula.

he efficiency of the proposed method is almost the same as the

revious recursion methods. To quantify the accuracy of the com-

utation, we define the following error term, which is consistent
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 2 )!(2

(

 m 1 +
 

)!( j

(

ith [4] . 

 = | 1 −
m 2 max ∑ 

m 2 = m 2 min 

(2 j 1 + 1) 

(
j 1 j 2 j 3 

m 1 m 2 m 3 

)2 

| (29)

lease note that all the results are obtained by applying the

ouble-precision arithmetic. We compute the starting values for

 2 recurrence by firstly using the recurrence relation for j 3 , there-

ore the comparison on m 2 recurrence is preferred. The following

gure displays a comparison between the three-term linear recur-

ence and sign-exponent recurrence method. 

It can be seen that the results of the two are indistinguish-

ble from Figure 2 . In fact, for the three-term linear recursion,

 = 1 . 0334 × 10 −12 , while for the sign-exponent recursion, R =
 . 0214 × 10 −12 . The values of R suggest that the sign-exponent re-

urrence method has at least the same performance as the three-

erm linear recurrence on numerical accuracy. The biggest advan-

age of the proposed method perhaps is that it can avoid numeri-

al underflow when computing the starting values and this is cru-

ial for dealing with large quantum numbers because the starting

alues could be extremely small. Fig. 3 demonstrates the compar-

son for the case of very large quantum numbers. The three-term

inear recurrence suffers numerical underflow and becomes zero

hroughout the iteration. On the contrary, the sign-exponent recur-

ence method excludes the risk of obtaining zero starting values.

onsequently, for the three-term linear recurrence, R = 1 , while for

he sign-exponent recursion, R = 5 . 9769 × 10 −10 , which still main-

ains high accuracy. Based on our extensive tests, the proposed

ethod is generally much more stable than the original linear re-

ursion method, while having the same level of numerical accuracy

nd efficiency. To further demonstrate the accuracy and stability of

ur method, in Appendix B , we provide a link to our Matlab code

nd more test examples in comparisons with the most accurate

ackage Python SymPy. 

. Conclusion 

In this paper, an improved recursion method for computing the

-G coefficients is introduced. Specifically, the method separates

he recursion process into sign-recursion and exponent-recursion,

hile the C-G value itself is not involved in the recursion ex-

ept a non-trivial zero occurs. The C-G values can be obtained af-

er the computation of their signs and exponents. By using the

ign-exponent recursion, the method removes the risk of gener-

ting numerical overflows or underflows. The results presented in

j 1 j 2 j 2 − j 1 
m 1 m 2 −m 1 − m 2 

)
= (−1) j 2 + m 2 

×
[

(2 j 2 − 2 j 1 )!(2 j 1 )!( j 2 − m 1 )!( j 2 + m 1 )! 

( j 2 − j 1 − m 1 − m 2 )!( j 1 − m 1 )!( j 1 + m 1 )!( j 2 − j 1 + m 1 + m

j 1 j 2 m 2 + m 1 

m 1 m 2 −m 1 − m 2 

)
= (−1) j 2 + m 2 

×
[

( j 1 + m 1 )!( j 2 + m 2 )!( j 2 + j 1 − m 1 − m 2 )!(2

( j 1 − m 1 )!( j 2 − m 2 )!( j 1 − j 2 + m 1 + m 2 )!( j 2 − j 1 + m 1 + m 2

j 1 j 2 −m 2 − m 1 

m 1 m 2 −m 1 − m 2 

)
= (−1) j 1 + m 1 

[

× ( j 1 − m 1 )!( j 2 − m 2 )!( j 2 + j 1 + m 1 + m 2 )!(−2 m 1 −

( j 1 + m 1 )!( j 2 + m 2 )!( j 1 − j 2 − m 1 − m 2 )!( j 2 − j 1 − m 1 − m 2 )!( j
his paper, together with our extensive tests, have shown that the

ign-exponent recurrence method is in general more stable than

he original three-term linear recurrence method, while having the

ame level of accuracy and efficiency. As the sign-exponent method

rovides a mechanism to avoid numerical overflows/underflows, it

ould also potentially improve the computation of multipole fields

nd their translations and this would be a future direction to pur-

ue. 
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ppendix A. The computation of starting values 

The recursive computation without using the scaling and nor-
alization relies on the exact computation of the starting values.

or backward recursion, the starting value is unique, i.e., 

j 1 j 2 j 1 + j 2 
m 1 m 2 −m 1 − m 2 

)
= (−1) j 1 + j 2 + m 2 + m 1 

×
[

(2 j 1 )!(2 j 2 )!( j 1 + j 2 − m 1 − m 2 )!( j 1 + j 2 + m 1 + m 2 )! 

(2 j 1 + 2 j 2 + 1)!( j 1 − m 1 )!( j 1 + m 1 )!( j 2 − m 2 )!( j 2 + m 2 )! 
. 

]1 / 2 

(A.1) 

For the forward iteration, we have four possibilities, depending on 

he values of j 3 min 
, i.e., 

j 1 j 2 j 1 − j 2 
m 1 m 2 −m 1 − m 2 

)
= (−1) j 1 + m 1 

×
[

(2 j 1 − 2 j 2 )!(2 j 2 )!( j 1 − m 1 )!( j 1 + m 1 )! 

( j 1 − j 2 − m 1 − m 2 )!( j 2 − m 2 )!( j 2 + m 2 )!( j 1 − j 2 + m 1 + m 2 )!(2 j 1 + 1)! 

]1 / 2 

(A.2) 

 j 2 + 1)! 

]1 / 2 

(A.3) 

 2 m 2 )! 

 1 + j 2 + m 1 + m 2 + 1)! 

]1 / 2 

(A.4) 

2 m 2 )! 

 1 + j 2 − m 1 − m 2 + 1)! 

]1 / 2 

(A.5) 
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In the computation of the above values, we can compute the

logarithm of the factorials to avoid overflow. To be more specific,

one can write arbitrary starting value as 

f ( j start ) = s ( j start ) exp (k ( j start )) = (−1) l 
[ 

a 1 ! a 2 ! a 3 ! a 4 ! 

b 1 ! b 2 ! b 3 ! b 4 ! b 5 ! 

] 1 / 2 
(A.6)

Obviously, the starting values for s and k functions are 

s ( j start ) = (−1) l (A.7)

k ( j start ) = 

1 

2 

[ ln (a 1 !) + ln (a 2 !) + ln (a 3 !) + ln (a 4 !) 

− ln (b 1 !) − ln (b 2 !) − ln (b 3 !) − ln (b 4 !) − ln (b 5 !))] (A.8)

To compute the logarithm of the factorials, we may use the follow-

ing formula to avoid numerical overflow, 

ln (N!) = 

N ∑ 

i =1 

ln (i ) . (A.9)

Alternatively, a formula ( Eq. 23 ) in [4] can be applied. 

Appendix B. Comparison with Python library SymPy 

To demonstrate the accuracy of the proposed method, we com-

pile some of the results from Python library SymPy and compare

with the proposed method in this study. The code for our method

can be accessed from [15] . The code for SymPy can be obtained

from [16] . The SymPy is based on symbolic manipulation, which

could be considered as the most accurate method. The computa-

tional time by the recursion methods ranges between 0.01 to 0.03

seconds for most of the cases with quantum number smaller than

10 0 0, while the SymPy package could take up to roughly a few

seconds. It can be seen that the two recursion methods are both

very accurate comparing to SymPy and their levels of accuracy are

pretty much the same. However, as we increase the quantum num-

bers, the three-term linear recursion becomes unstable and gener-

ates zeros due to numerical underflows. The Python SymPy simply

produces errors at very large quantum numbers, while the sign-

exponent method is still stable and produces reasonable results. 

j 1 = 280 , j 2 = 220 , j 3 = 189 , m 1 = 90 

m 2 Sign-Exponent Three-Term Linear Python SymPy 

−120 0.002887948213256 0.002887948213256 0.00288794821325701 

−125 0.058508415288557 0.058508415288558 0.0585084152885739 

−128 0.020928845109162 0.020928845109162 0.020928845109168 

−130 -0.028070293415027 -0.028070293415028 -0.0280702934150357 

−135 -0.038257492867934 -0.038257492867934 -0.038257492867945 

( continued on next page )
j 1 = 480 , j 2 = 320 , j 3 = 300 , m 1 = 90 

m 2 Sign-Exponent Three-Term Linear Python SymPy 

−125 -0.046262518791471 -0.046262518791468 -0.0462625187915161 

−128 -0.041062246328595 -0.041062246328592 -0.0410622463286351 

−120 0.041718263408549 0.041718263408546 0.0417182634085898 

−130 0.047752989423874 0.047752989423870 0.0477529894239198 

−135 -0.047799931849649 -0.047799931849645 -0.0477999318496948 

j 1 = 700 , j 2 = 620 , j 3 = 230 , m 1 = 300 

m 2 Sign-Exponent Three-Term Linear Python SymPy 

−200 -0.029578200668109 -0.029578200668109 -0.0295782006677839 

−250 -0.033722189882640 -0.033722189882640 -0.0337221898822695 

−300 -0.000885723206928 -0.000885723206928 -0.0008857232069200 

−350 0.032668945677003 0.032668945677002 0.0326689456767071 

−400 0.032449523658905 0.032449523658904 0.0324495236586107 

j 1 = 70 0 0 , j 2 = 620 0 , j 3 = 230 0 , m 1 = 30 0 0 

m 2 Sign-Exponent Three-Term Linear Python SymPy 

−20 0 0 0.001244977301861 0.001244977301860 Error. 

−2500 -0.007275107384171 -0.007275107384171 Error. 

−30 0 0 0.002712153629703 -0.000000000000000 Error. 

−3500 0.006665616564930 -0.000000000000000 Error. 

−40 0 0 -0.010583441967577 -0.000000000000000 Error. 

j 1 = 90 0 0 0 0 0 , j 2 = 620 0 0 0 , j 3 = 780 0 0 0 0 , m 1 = 30 0 0 0 0 0 

m 2 Sign-Exponent Three-Term Linear Python SymPy 

−20 0 0 0 0 0 -0.000258969176674 0.000000000000000 Error. 

−250 0 0 0 0 -0.000236627240189 -0.000000000000000 Error. 

−30 0 0 0 0 0 -0.000146400518567 -0.000000000000000 Error. 

−350 0 0 0 0 -0.000144722745846 0.000000000000000 Error. 

+350 0 0 0 0 0.000396746931467 -0.000000000000000 Error. 
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