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Abstract 

Background The mechanisms of work-related asthma are incompletely delineated. Nasal cell samples may be informative about processes in the lower 

airways. Our aim was to determine the nasal protein expression profiles of work-related asthma caused by different kind of exposures. 

Methods We collected nasal brush samples from 82 non-smoking participants, including healthy controls and work-related asthma patients 

exposed to 1) protein allergens, 2) isocyanates, and 3) welding fumes the day after relevant exposure. The proteome changes in samples 

were analysed by two-dimensional difference gel electrophoresis and the differentially regulated proteins found were identified by mass 

spectrometry. Immunological comparison was carried out using Western blot. 

Results We detected an average of 2500 spots per protein gel. Altogether 228 protein spots were chosen for identification, yielding 77 different proteins. 

Compared to the controls exposure to protein allergens had the largest effects on the proteome. Hierarchical clustering revealed that protein allergen 

and isocyanate related asthma had similar profiles, whereas asthma related to welding fumes differed. The highly overrepresented functional categories 

in the asthma groups were defence response, protease inhibitor activity, inflammatory and calcium signalling, complement activation, and cellular 

response to oxidative stress. Immunological analysis confirmed the found abundance differences in Galectin 10 and Protein S100-A9 between the 

groups. 

Conclusions Work-related asthma patients exposed to protein allergens and isocyanates elicit similar nasal proteome responses and the profiles of 

welders and healthy controls were alike. Revealed biological activities of the protein expression changes are associated with allergic inflammation 

and asthma. 

 

  



Introduction  

Occupational exposure can initiate or trigger asthma, leading to the development of different types of work-related asthma (WRA) (1). 

Protein allergens at workplaces cause asthma via Immunoglobulin E (IgE)-associated mechanisms, which are similar to allergic asthma 

unrelated to work (2). Asthma associated with isocyanate exposure is often IgE-independent, but the mechanisms are incompletely 

delineated. Welding fumes and aerosols composed of potentially hazardous metals and gases are also common exposures among WRA 

patients (3, 4). These fumes diminish functionality of local and circulating immune cells but the mechanisms in airway diseases are poorly 

understood (5). 

Asthma and rhinitis commonly coexist and this is also true in WRA. Up to 90% of WRA patients report work-related rhinitis symptoms (6). 

Nasal epithelium provides an important physico-chemical and immunological barrier against the different factors targeting lower airways, 

but the mechanisms explaining the correlations between these diseases are not fully understood. According to the united airway concept, 

both diseases could be secondary to the same disease mechanisms occurring throughout the respiratory tract (7). 

Proteomic approaches offer great potential for the systematic analysis of complex biological airway samples and have the advantage of 

assessing the presence and abundance of gene products (i.e., proteins), which are functionally relevant to the clinical phenotypes of airway 

diseases (8). A nasal brush sample (NBS) is a relatively non-invasive specimen containing proteins secreted from epithelial and inflammatory 

cells (9). Induced sputum and nasal lavage fluid (NLF), have been applied to characterize proteomic changes in airway diseases (10, 11). The 

identified proteins in these samples have been mostly identical (12) suggesting that also NBS may be useful in the research of upper airway 

epithelia and as a surrogate of lower airways.  

We assessed the NBS proteome in patients with WRA who were exposed to protein allergens, isocyanates or welding fumes, and in healthy 

subjects. Our aim was to determine whether the proteomics method could reveal differences between the protein expressions of these 

groups and to investigate potential reaction mechanisms. Our premise was that nasal samples could reflect the protein profile of the entire 

airways. 

 

Materials and methods 

Study design and population  

The study population included WRA patients examined at the Finnish Institute of Occupational Health during 2009-2012 (Figure 1). Their 

asthma diagnosis was confirmed by demonstrating reversible airway obstruction or bronchial hyperresponsiveness. They were exposed at 

work to 1) protein allergens, 2) isocyanates, or 3) welding fumes. Their asthma symptoms emerged while they were exposed to the 

occupational agent, and worsened during exposure. The control group comprised healthy men who carried out their military service 1986-

1990 and participated in a follow-up study in 2009 (13). Current smokers were excluded. A subset of samples were used in the proteomic 

analysis and few found differences were compared both in the whole population and in those excluded from proteomic analysis. In order to 

analyse representative and homogeneous groups, NBS from eight participants in each group were selected based on clinical symptoms to 

represent their groups, outliers were not included. The clinical characteristics of these groups are presented in Table S1. The study was 



approved by the ethics committee of Helsinki University Central Hospital (approval number 284/13/03/00/08, 125/13/03/00/09). All 

participants signed their informed consent.  

Methods of clinical tests, controlled exposure to occupational agent as well as induced sputum and nasal brush sample preparation are 

described in Supplementary material 1.  

 

Two-dimensional differential gel electrophoresis and gel spot protein identification 

For proteomics analysis, 2 ml of NBS supernatant was concentrated. Protein samples were prepared and two-dimensional differential gel 

electrophoresis (2D-DIGE) was performed, as previously described (12). For protein identification, in-gel digestion was conducted for the 

chosen gel spots and the resulting peptides were extracted (12) and dried in a vacuum centrifuge. Each peptide mixture was analysed by an 

automated EASY nanoLC 1000 (Proxeon, Thermo Fisher Scientific Inc., USA) coupled to an electrospray ionization quadrupole orpitrap mass 

spectrometer (QExactive, Thermo Fisher Scientific Inc., USA). Reverse-phase separation of peptides was carried out using a 75 μm × 15 cm 

Acclaim PepMap100 C18 column (Dionex, Thermo Fisher Scientific Inc., USA) at a flow rate of 300 nL /min. Peptides were eluted from the 

column with a linear gradient of 5–35% solvent B (0.1% formic acid in 95% acetonitrile) in 80 minutes. Solvent A was 0.1% formic acid in 5% 

acetonitrile. We searched for the mass fragment spectra obtained in the SwissProt database (www.uniprot.org) against human entries using 

Proteome Discoverer 1.4 (Thermo Fisher Scientific Inc., USA). 

 

Immunological comparison 

Abundances of Glutathione S-transferase 1 (GSTP1), Galectin 10 (LEG10), Protein S100-A9 (S10A9), and Calcyphosin (CAYP1) were 

compared by Western blotting in the whole study population using precast 26-well 12% Criterion TGX gels (BioRad), as previously 

described (12). The gel lane was loaded with 10 µl of untreated NBS. Primary antibody dilutions were 1:100 for S10A9 (Abcam 24111), 

1:10000 for LEG10 (Abcam 157475), 1:2000 for GSTP1 (Abcam 47709) and 1:4400 for CAYP1 (Abcam 188470). Immunoblots were stained 

with anti-rabbit or anti-mouse peroxidase-conjugated immunoglobulins (1:2000) (Dako Cytomaton) and chemiluminescent HRP-substrate 

ECL detection reagent (Perkin Elmer). They were visualized by an Image Quant LAS 4000 mini quantitative imager (GE Healthcare 

Biosciences). ImageQuant TL (GE Healthcare Biosciences) was used to calculate the intensities of the protein bands, which were normalized 

to the band intensity of a pool containing all samples. 

 

Statistical and  bioinformatical analyses 

Continuous variables were expressed as means (± standard deviation) or median (interquartile range) depending on their distribution and 

categorical values as percentages. Logaritmic transformation was used to attain normal distribution of continuous variables. The differences 

between the groups were analysed using Student’s t-test or Anova and Fisher’s LSD test for post hoc comparisons. Mann-Whitney U-test or 

Kruskal-Wallis test or was used when normal distribution was not attained after logarithmic transformation, and Chi-square test for 

categorical values. We computed Spearman´s correlation between continuous values. A p-value of <0.05 was considered statistically 



significant. IBM SPSS Statistics for Windows, Version 20.0 (Armonk, NY: IBM Corp.) software was used for analysing the clinical parameters 

and for correlations. Principal component analysis (PCA) and hierarchical clustering of the identified differentially abundant proteins were 

performed with DeCyder Extended Data Analysis software (Version 7.0, GE Healthcare), using average linkage and the Euclidean metric as a 

distance measure. Western blot intensities were statistically analysed using GraphPad Prism 5 software (GraphPad Software).  

Ingenuity Pathway Analysis (IPA) (Qiagen), String (string-db.org) and Enrichr (amp.pharm.mssm.edu/Enrichr) were used to investigate 

interactions, functions and pathways of relevance in the identified proteins.  

 

Results 

Study population  

Table 1 presents the characteristics of 82 participants. Work-exacerbated rhinitis symptoms were reported by 27 (93%) of the WRA patients 

in the protein allergen group, 12 (100%) in the isocyanate group, and 11 (79%) in the welding group (p= 0.139). Nonspecific bronchial 

hyperresponsiveness was detected in 17 (59%), 4 (33%), 7 (54%) of the patients of the above groups, respectively (p=0.333) (n=54). Nasal 

steroid was withdrawn at least three days before sample collection; 12 (22%) of the WRA patients had used a nasal steroid during the 

previous four weeks. Positive skin prick tests (SPT) to common environmental allergens were detected more often in the protein allergen 

group (82%) than in the isocyanate (42%), welding (43%) or control (30%) groups (Table 1). Positive SPT to the occupational allergen of 

controlled exposure was found in 26 of 27 tested participants in the protein allergen group, but none in the isocyanate or welding group 

reacted to the isocyanate-albumin conjugate or metal suspension. Similarly, specific IgE to the occupational allergen was detected in 21 of 

28 tested participants in the protein allergen group, but in none of the 10 tested in the isocyanate group. Fractional exhaled nitric oxide 

(FeNO) was highest in the protein allergen group, whereas nasal eosinophil count was biggest in the isocyanate group.  

 

Two-dimensional differential gel electrophoresis (2D-DIGE) differences in protein abundances  

DeCyder software matched on average 2500 spots per DIGE gel, no significant difference was observed between the total number of protein 

spots of the study groups. 228 protein spots with changed intensity from statistical analysis (Student’s t –test <0.05, a fold change of ≤ -1.5 

or ≥ 1.5) between groups were identified (Table S2, Figure S1) revealing altogether 77 different proteins (Table 2), as several proteins were 

identified from multiple gel spots. As many as 95% of the proteins found are known to have an extracellular location (Gene Ontology 

(GO):0070062, GO:0005615). In addition to plasma-derived proteins, various nasal epithelium proteins were detectable. Of the identified 

molecules, 32 were involved in inflammatory responses, 36 in cellular movement, 20 in free radical scavenging, 42 in cell death and survival, 

and 18 in allergy (Table S3). Calcium binding proteins were also enriched among the proteins identified. Three up-regulated and seven down-

regulated proteins were common to all the WRA groups. 

 

Clustering analyses revealed similar protein regulation patterns in protein allergen and isocyanate groups  



Unsupervised classification analyses were applied to the data to obtain an overview of protein abundance patterns. Hierarchical clustering 

analysis (Figure 2A), in which proteins with similar manifestation profiles are clustered together, showed that the protein patterns from 

participants with protein and isocyanate WRA resembled each other, and that the patterns in the welding group differed from the other 

WRA groups. When PCA was applied to the set of all the proteins identified in the nasal epithelium, the groups were positioned into separate 

quadrants, implying that different types of occupational exposures appear to perturb the global variability of nasal epithelial protein levels 

(Figure 2B). The PCA of identified protein spots (Figure 2C) showed clear separation of the spots to two abundance clusters, similarly to the 

abundance differences in Figure 2A.   

 

Group-specific differently abundant proteins  

The largest effects on the proteome of nasal epithelium were in the protein allergen group (Tables 2 and S1, Figures 2A and S2), in which 20 

proteins were up-regulated and 43 down-regulated in comparison to the healthy controls. Exposure to isocyanates showed changes in 32 

proteins and welding in 19 proteins. When WRA groups were compared with each other, the largest proteome differences observed were 

between the protein allergen and welding groups (45 different proteins). Welding-specific changes were decreased levels of heat shock 

cognate 71 kDa protein spots, and increased amounts of pyruvate kinase isozymes M1/M2 and Fatty acid binding protein. 

Protein S100-A9 abundance was increased in all WRA groups, but protein S100-A8 (S10A8) was identified only for the protein allergen group. 

Other calcium binding proteins, calcyphosin (CAYP1) and annexins A1 and A2 (ANXA1, 2) had decreased protein levels in the protein allergen 

and isocyanate groups. The protein allergen group seemed to also contain low levels of annexins 3 and 5.  

We identified several proteins involved in the detoxification of reactive oxygen species (Table 2). The catalase level was increased, whereas 

the levels of glutathione (GSH) synthesis-linked proteins s-formylglutathione hydrolase, glutathione synthetase and adenosylhomocysteinase 

were diminished, as was the GSH conjugation catalysing enzyme, GSTP1. Peroxiredoxins 1, 2 and 5 (PRDXs) levels were lower in the protein 

allergen group, and superoxide dismutase (SODC) levels decreased in the protein allergen and isocyanate groups. Changes in the abundancies 

of thioredoxin and protein disulphide-isomerase, which also belongs to the thioredoxin superfamily, were specific to isocyanate exposure. 

 

Pathways and networks of proteins  

Figure S2 shows the protein association networks of the proteins identified in each WRA group. Mitogen-activated protein kinases (MAPKs) 

and nuclear factor kappa B (NFκB)-signalling pathways consistently emerged in network searches, including single protein fishes, and were 

thus added to Figure S3 networks. 

Pathways and diseases linked to the observed proteomic changes of the nasal mucosa in the IPA search are presented in Table 3. The 

reported ethanol degradation pathway, common to the protein allergen and isocyanate groups, is most likely connected to the aldehyde 

dehydrogenases involved in the metabolism of corticosteroids. The nuclear factor erythroid 2-related, factor 2 (Nrf2)-mediated oxidative 

stress response pathway is common to protein allergen and isocyanate WRA groups. Nrf2 is a key transcription factor that regulates 

antioxidant defence in macrophages and epithelial cells (14), and is a component of the GSTP1 interactome (15). Protein-allergen and 



Isocyanate exposed asthma patients experienced more severe nasal symptoms and had a suggestive increase in nasal and sputum 

eosinophils which may be linked to inflammatory response in Table 3.  

 

Immunological comparison of nasal brush samples  

Several of the identified proteins are associated with allergic reaction mechanisms, among them GSTP1, LEG10 and S100A9,  which were 

selected for further analysis as high quality commercial antibodies were also available for them. The unfamiliar fourth analyte, calcium 

binding protein CAYP1, may play a role in cellular signaling events..The Western blot analysis revealed similar abundance differences in a few 

proteins in the whole study population (Figure 3) and in 50 subjects who were excluded from proteomic analysis (Table S4). The levels of the 

calcium binding protein S10A9 and T cell proliferation suppressor protein LEG10 were up-regulated in all asthma groups. The oxidative stress 

defence protein GSTP1 showed a trend of reduction in the protein allergen group in comparison to the control group, whereas there was 

tendency for decreased levels of CAYP1 in all WRA groups compared to the controls. Abundances of the GSTP1 and CAYP1 proteoforms might 

vary in opposite directions, and together with the statistically relatively small study population, they could be the underlying causes for the 

lack of clear group differences. 

 

Associations between protein abundances and clinical parameters 

Protein abundances of GSTP1, LEG10, S10A9 or CAYP1 did not correlate with age, sputum eosinophils, FeNO, nNO or total IgE, whereas 

moderate correlation was seen between LEG10 and blood eosinophils (r=0.536, p=0.008) as well as S10A9 and FEV1/FVC (r=0.438, p=0.017). 

GSTP1 was higher in men (p=0.016), but no significant gender difference was found in Western blot intensities of GSTP1 (p=0.242) or other 

protein abundances.   

 

Discussion 

Proteomic analysis of NBS is a relatively non-invasive way to evaluate airway inflammation. Hierarchical clustering analysis of the protein 

abundance patterns of NBS indicated that the nasal protein profile in protein-allergen- and isocyanate-related asthma groups are similar, 

and differ from those of healthy controls, whereas the welding group pattern bore more resemblance to that of the controls. 

Clinical tests targeted to show causal relationship with asthma and occupational exposure (e.g. specific IgE, specific inhalation challenge) 

may select patients based on disease mechanisms. To avoid this preselection, we studied WRA patients. The vast majority of our WRA 

patients had concurrent work-aggravated rhinitis symptoms, as others have reported (6). The use of nasal steroids among the three WRA 

groups (p=0.75) during the four previous weeks did not significantly differ, suggesting that steroids had no significant effect on the protein 

abundances of these groups. Highest FeNO level reflecting Th2-derived inflammation in protein-allergen-related asthma group was similar 

to pervious findings (16). Isocyanate-related asthma patients had more nasal, but not sputum, eosinophils than other groups. Raulf-Heimsoth 

et al. detected an increase in sputum eosinophils but not in NLF after a positive isocyanate challenge (17). 



Few studies have reported the proteome of work-related airway diseases. Mörtstedt et al. performed targeted proteomic analyses of NLF 

before and after a persulfate challenge among hairdressers with bleaching powder-associated rhinitis as compared to healthy hairdressers 

and atopic subjects (18). They detected changes in proteins related to inflammatory responses and oxidative stress, but the changes were 

not specific to rhinitis patients. Studies of nasal proteome in seasonal allergic rhinitis have shown a perennial inflammatory response in nasal 

mucus and lack of adequate reaction to allergens in season (19-21). 

Proteomic changes in airway diseases have been characterized from induced sputum and NLF (10, 11). The most abundant proteins observed 

in these biofluids are plasma proteins, which are presumably derived from diffusion across the blood-air barrier (e.g. albumin, transferrins, 

immunoglobulins, alpha-1-antitrypsin), and interfere with the detection of less abundant proteins (12). NBS has rarely been used to 

investigate the proteome of patients with respiratory disorders (22). In this study, NBS provided good quality material, which was not 

distracted by blood derived high abundance proteins.  

Protein abundance patterns analysed by hierarchical clustering were similar in protein allergen- and isocyanate-related WRA. IgE-mediated 

sensitization to isocyanates was not detected, while it was seen to occupational protein allergens in all but one case. This suggests that 

protein-allergen- and isocyanate-related WRA share non-IgE mediated immunological mechanisms. The welders’ profile differed from that 

of the other WRA groups and controls, proposing different underlying mechanisms. 

Our results indicate that the nasal epithelial proteome of the WRA patients is highly enriched in processes related to inflammatory and 

calcium signalling, free radical scavenging and oxidative stress response, and metabolism. The most relevant signalling networks were 

through the pathways associated with redox sensitive transcription factors, NFB and Nfr2, and with MAPKs, which differentially regulate 

pro-inflammatory cytokine genes and protective antioxidant genes (23-25). Nrf2-deficient mice have a heightened susceptibility to asthma, 

including elevated oxidative stress, inflammation, mucus, and airway hyperresponsiveness (26). Airway inflammation and remodelling in 

asthma involves degradation of the extracellular matrix. Among the identified proteases and their inhibitors was Serpin B3, which inhibits 

inflammation and promotes epithelial proliferation with increased transforming growth factor-beta secretion (27). Several inflammatory 

defence proteins with both increased and decreased abundance were detected in subjects exposed to protein allergens and isocyanates.  

LEG10 (aka Charcot-Leyden Crystal (CLC) protein, Eosinophil lysophospholipase) has been associated with eosinophilic inflammation in 

allergic diseases (28, 29) and with the function of regulatory T-cells (30). LEG10 is mainly released from eosinophil granules, but it is also 

expressed by basophils and some T cells (30). It belongs to the galectin superfamily of lectins (31), although its physiologically relevant 

carbohydrate ligand is unknown. Further knowledge of this would help us understand its role in inflammatory reactions.  

Oxidative stress is important for the pathogenesis of lung damage and for the development of lung fibrosis. Among the various enzymatic 

and non-enzymatic mechanisms that protect cells and tissues from oxidants, GSH, SODs and PRDXs play a key protective role, especially in 

the lungs (32, 33). A lower level of GSH synthesis enzymes, SODs and PRDXs might induce continuous oxidative stress in the airways. In this 

study, a decreased abundance of all these proteins was observed in the participants with symptoms on exposure to protein allergens and 

isocyanates, but not in the welding group, suggesting that the impairment of protection from oxidative stress might play a key role in the 

pathogenesis of WRA.  



GSTP1 plays a significant role in detoxification processes that regulate inflammatory responses stimulated by xenobiotic and oxidative 

compounds, and is important in determining susceptibility to asthma. GSTP1 conjugates reduce GSH to electrophilic species, and adduct 

formation with xenobiotics promotes their elimination, whereas binding to protein thiols causes a reversible posttranslational modification, 

S-glutathionylation, which protects proteins from irreversible oxidations and can modulate their function (34). GSTP1 gene activation is 

mainly regulated by Nrf2 (35), and the functional association between GSTP and Nrf2 proteins supports the regulatory role of GSTP in the 

adaption response to cellular stresses produced in the course of inflammatory and oxidative reactions (15). As in the present study, GSTP 

was decreased in NLF after the persulphate challenge (18). 

Ca2+ signals are important in inflammatory signalling and in the pathophysiology of airway diseases. Calcium-modulated S100 protein family 

members S10A9 and S10A8 are both among the most abundant proteins in airway cells during chronic inflammation. They may form a 

calprotectin complex which can induce cell proliferation, apoptosis, inflammation, collagen synthesis, and cell migration. S10A9 alone 

mediates fibroblast proliferation, increases mucin production, and is involved in NFκB network and inflammasome activation (36), whereas 

the protective role of S10A8 in allergic inflammation is to modulate mast cell activation and eosinophil recruitment, and scavenge the 

oxidants generated by activated leukocytes (37). Synthesis and activation of CAYP1 is induced by the cAMP cascade (protein kinase A) and 

CAYP1 may regulate cell proliferation and differentiation (38, 39). Interestingly, String DB predicts as functional partners for CAYP1 several 

MAP kinases,  which are activated in response to inflammatory and oxidative stress signals (24). Glucocorticoid regulated annexins interact 

with cell membrane phospholipids, and are involved in various cellular processes, including endocytosis, exocytosis, membrane-cytoskeletal 

organization, and migration through the association of partner proteins, including members of the S100 family. ANXA1 is an anti-

inflammatory protein that plays a critical regulatory role in the development of asthma (40, 41), whereas ANXA2 promotes fibrinolysis (42). 

The roles of ANXA3 and 5 in asthma are largely unknown, but their amounts were reduced in the protein allergen exposure groups. 

  

Conclusions 

Proteome analysis of NBS provides preliminary results regarding the mechanisms of work-related airway diseases in patients exposed to 

protein allergens, isocyanates and welding fumes. WRA patients exposed to protein allergens and isocyanates showed similar nasal proteome 

responses, although the specific IgE was found only among patients exposed to protein allergens. The proteome of patients exposed to welding fumes 

resembled healthy controls. The identified changes in protein expressions of asthma patients reveal biological activities related to airway inflammation, 

oxidation reduction, tissue matrix turnover, and inflammatory signalling. Our findings provide new possibilities to biomarker research and the 

development of diagnostic methods of work-related airway diseases.  
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Table 1 Characteristics of 82 participants. Continuous variables were expressed as means (± standard deviation) or median (interquartile range) 

depending on their distribution and categorical values as percentages. Logaritmic transformation was used to attain normal distribution of continuous 

variables. The differences between the groups were analysed using the ANOVA, Kruskal-Wallis test (when normal distribution was not 

attained after logarithmic transformation) or Chi-square test. 

 Healthy Asthma related to  

 

 

controls (n=27) protein allergen 

(n=29) 

isocyanate (n=12) welding (n=14) p 

Age, mean (SD) 43.2 (1.9) 42.7 (10.3) 41.0 (10.9) 43.4 (9.9) 0.880 

Sex, male, n (%)  27 (100.0) 10 (34.5) 9 (75.0) 12 (85.7) <0.001 

Duration of work exposure, years, 

median (Q1-Q3)# 

NA 9.0  

(5.0-27.0) 

4.0  

(2.3-9.5) 

15.5 

(8.8-25.3) 

0.014 

Duration of asthma symptoms, years, 

median (Q1-Q3)¤ 

NA 2.0 (2.0-3.5) 1.0 (0.6-2.0) 2.0 (1.8-9.0) 0.006 

VAS rhinitis, mm, median (Q1-Q3) #  12.0 

(3.0-25.0) 

30.0 

(7.5-54.5) 

30.0  

(2.0-50.0) 

10.0  

(2.5-45.5) 

0.123 

VAS nasal congestion, mm, median (Q1-

Q3) # 

12.0 

(0.0-22.5) 

40.0 

(14.0-57.3) 

50.0 

(9.0-80.0) 

30.0 

(8.5-71.5) 

0.003 

VAS nasal itching, mm , median (Q1-Q3) #  1.0 

(0.0-11.5) 

20.5 

(3.3-38.0) 

50.0 

(2.0-80.0) 

14.0 

(2.5-45.0) 

0.001 

Nasal steroid during 4 weeks,  

n (%) 

0 (0.0) 6 (20.7) 2 (16.7) 4 (28.6) 0.053 

Inhaled steroid during 4 weeks, n (%) 0.0 (0.0) 17 (58.6) 7 (58.3)  14 (100.0) <0.001 

≥1 SPT positive to common 

environmental allergen* 

8 (29.6) 22 (81.5) 5 (41.7) 6 (42.9) <0.001 

Positive SPT to exposed occupational 

allergen, n (%)* 

NA 26 (96.3) 0 (0.0) 0 (0.0) <0.001 

Total IgE, kU/l, median (Q1-Q3) ¤  

 

34.0 

(13.0-73.0) 

187 

(51.5-309.5) 

46.0 

(26.3- 70.0) 

61.5 

(29.3-132.5) 

<0.001 

Blood eosinophils 106/l, mean (SD) 129.3 (65.3) 206.6 (155.0) 148.3 (147.4) 182.5 (130.5) 0.137 

FVC % predicted, mean (SD)  96.9 (10.2) 99.4 (10.9) 97.9 (12.4) 95.7 (8.8) 0.706 

FEV1 % predicted, mean (SD)   95.8 (12.7) 91.0 (10.8) 92.9 (7.3) 88.9 (11.5) 0.239 

FeNO, ppb, median (Q1-Q3) ¤ 13.2 

(11.9-16.9) 

23.2 

(12.8-37.9) 

17.0 

(10.4-26.9) 

23.0 

(13.7-32.9) 

0.004 

nNO, ppb, mean (SD)  836.2 (272.7) 929.5 (351.1) 760.6 (233.8) 896.1 (339.8) 0.400 

Sputum eosinophil %, median (Q1-Q3), 

n=57#  

0.0 (0.0-0.25) 1.0 (0.0-4.0) 1.0 (0.0-1.5) 0.5 (0.0-1.0) 0.044 

Nasal eosinophil %, median (Q1-Q3)#  0.0 (0.0-0.0) 0.0 (0.0-1.0) 1.0 (0.0-1.0) 0.0 (0.0-0.0) 0.009 



 # Kruskal-Wallis test was used; Logaritmic transformation was used; *two participants with negative control wheal ≥2 mm were excluded from 

analysis; VAS, Visual analogue scale of nasal symptoms within a week; SPT, skin prick test; IgE, Immunoglobulin E; FVC, forced vital capacity; FEV1, 

Forced expiratory volume in one second; FeNO, exhaled nitric oxide; nNO, nasal nitric oxide. 
  



Table 2 Relationships between differently abundant proteins in study groups. Average ratios (≥|1.5| fold 
change in abundance) of statistically significant (Student’s T-test p-value ≤ 0.05) up- and down-regulated 
nasal mucosa proteins are presented for the protein allergen, isocyanate and welding exposed asthma 
groups in comparison to the control group. 

Protein Name UniProt AC Gene ID 

Protein 
allergen 

 vs Control 
Av. ratio 

Isocyanate    
vs Control 

 
Av. ratio       

Welding vs 
Control 

 
Av. ratio 

Alpha-2-macroglobulin (A2MG) P01023 A2M 1,83   
Complement C3 (CO3) P01024 C3 1,82   
Complement factor B (CFAB) P00751 CFB 1,88 1,88  
Alpha-actinin-4 (ACTN4) O43707 ACTN4  -1,77 -1,95 

Serum albumin (ALBU) P02768 ALB 3,17 2,81 2,36 
Polymeric immunoglobulin receptor 
(PIGR) P01833 PIGR 1,85   
Protein-glutamine gamma-
glutamyltransferase (TGM3) Q08188 TGM3 2   
Lactotransferrin (TRFL) P02788 TRFL 5,43 4,95 2,87 

Ig mu chain C region (IGHM) P01871 IGHM 1,89   
Serotransferrin (TRFE) P02787 TF 1,75   
Heat shock cognate 71 kDa protein 
(HSP7C) P11142 HSPA8   -2,49 

Protein disulfide-isomerase (PDIA1) P07237 P4HB  1,67  
Histidine ammonia-lyase (HUTH) P42357 HAL  1,74  
Glucose-6-phosphatate isomerase 
(G6PI) P06744 GPI   2,09 
Pyruvate kinase isozymes M1/M2 
(KPYM) P14618 PKM   2,45 

Ig alpha-1 chain C region (IGHA1) P01876 IGHA1 2,04   
Alpha-1-antitrypsin (A1AT) P01009 SERPINA1 2,15   
Histidine--tRNA ligase; cytoplasmic 
(SYHC) P12081 HARS -1,57   
Tryptophan-tRNA ligase; cytoplasmic 
(SYWC) P23381 WARS -1,67   
Aldehyde dehydrogenase (AL3A1) P30838 ALDH3A1 -2,76 -3,4 -2,19 

Selenium-binding protein 1 (SBP1) Q13228 SELENBP1 -2,05 -1,58  
Glutathione synthetase (GSHB) P48637 GSS -2,08   
Retinal dehydrogenase 1 (AL1A1) P00352 ALDH1A1 -2,25   
Rab GDP dissociation inhibitor beta 
(GDIB) P50395 GDI2 -2,51 -2 -1,71 
Glyceraldehyde-3-phosphate 
dehydrogenase (G3P) P04406 GAPDH -1,51 -1,55  
6-phosphogluconate dehydrogenase 
(6PGD) P52209 PGD  2,32 2 

Catalase (CATA) P04040 CAT 1,77 2,87  
Zinc-alpha-2-glycoprotein (ZA2G) P25311 AZGP1  1,63  
Serpin B3 (SPB3) P29508 SERPINB3 -2,02 -1,92 -1,72 
26S proteasome non-ATPase 
regulatory subunit 11 (PSD11) O00231 PSMD11 -1,58   
Haptoglobin (HPT) P00738 HP 2,02   
Isocitrate deheydrogenase [NADP]; 
cytoplasmic (IDHC) O75874 IDH1 -2,74   
Arginosuccinate synthase (ASSY) P00966 ASS1 -2,79   
Creatine kinase B-type (KCRB) P12277 CKB 1,71   
Fructose-bisphosphate aldolase A 
(ALDOA) P04075 ALDOA -2,53   
Leukocyte elastase inhibitor (ILEU) P30740 SERPINB1 -1,56   
GDP-L-fucose synthase (FLC) Q13630 TSTA3 -1,97   
Plasminogen activator inhibitor 2 
(PAI2) P05120 SERPINB2 -1,8   
Alcohol dehydrogenase [NADP(+)] P14550 AK1A1 -3,06   



Annexin A1 (ANXA1) P04083 ANXA1 -3,78 -5,05  
Annexin A2 (ANXA2) P07355 ANXA2 -4,59 -5,75  
Annexin A3 (ANXA3) P12429 ANXA3 -1,9   
Annexin A5 (ANXA5) P08758 ANXA5 -2,59   
S-formylglutathione hydrolase (ESTD) P10768 ESD -2,18   
Tropomyosin alpha-1 chain (TPM1)                
Tropomyosin alpha-4 chain (TPM4) 

P09493     
P67936 

TMP1      
TMP4 

-1,9 
  

Actin; cytoplasmic 1 (ACTB) P60709 ACTB -1,68   
Chloride intracellular channel protein1 
(CLIC1) O00299 CLIC1 -1,8  -1,56 

14-3-3 protein sigma (1433S) P31947 SFN -1,88   
14-3-3 protein zeta/delta (1433Z) P63104 YWHAZ -2,14 -1,58 -1,85 

14-3-3 protein epsilon (1433E) P62258 YWHAE -2,63 -2,27 -1,9 

Serum amyloid P-component (SAMP) P02743 APCS 1,75 2,01  
Proteasome subunit alpha type-5 
(PSA5) P28066 PSMA5 -1,96   
Kallikrein-7 (KLK7) P49862 KLK7 -2,75 -2,34 -1,89 

Glutathione S-transferase P (GSTP1) P09211 GSTP1 -2,6 -1,93  
Complement C1q subcomponent 
subunit C (C1QC) P02747 C1QC  1,6  
Heat shock protein beta-1 (HSPB1) P04792 HSPB1 1,75 1,85  
BPI fold-containing family A member 1 
(BPIA1) Q9NP55 BPIFA1  -1,96  
Translationally-controlled tumour 
protein (TCTP) P13693 TPT1 -1,95 -1,9 -1,59 

Peroxiredoxin-2 (PRDX2) P32119 PRDX2 -2,5   
Peroxiredoxin-1 (PRDX1) Q06830 PRDX1 -3,6   
Phosphatidylethanolamine-binding 
protein 1 (PEBP1) P30086 PEBP1 -2,18   
Adenine phosphoribosyltransferase 
(APT) P07741 APRT -3,11   
Calcyphosin (CAYP1) Q13938 CAPS -4,76 -5,15  
Nucleoside diphosphatate kinase A 
(NDKA) P15531 NME1  -1,58  
Thioredoxin (THIO) P10599 THIO  -2,16  
Superoxide dismutase [Cu-Zn] (SODC) P00441 SOD1 -1,98 -2,21  
Cofilin-1 (COF1) P23528 CFL1 -2,13 -2,13  
Nucleoside diphosphatate kinase B 
(NDKB) P22392 NME2 -2,26   
Prolactin-inducible protein (PIP) P12273 PIP 2,22   
Peroxiredoxin 5 (PRDX5) P30044 PRDX5 -2,85   
Peptidyl-prolyl cis-trans isomerase A 
(PPIA) P62937 PPIA -2,86   
Fatty acid binding protein, epidermal 
(FABP5) Q01469 FABP5   2,69 

Galectin 10 (LEG10) Q05315 CLC 4,04   
Haemoglobin subunit beta (HBB) P68871 HBB   -2,27 

Protein S100-A9 (S10A9) P06702 S100A9 2,2 7,11 8,71 

Protein S100-A8 (S10A8) P05109 S100A8 2,43     

 
 

Table 3 Pathways and diseases linked to the observed proteomic changes in the nasal mucosa after exposure to protein allergen, 

isocyanate and welding fume. 

 

  Canonical pathways   

Protein allergen Isocyanate Welding 

Acute Phase Response Signalling Superoxide Radicals Degradation Glycolysis I 



NRF2-mediated Oxidative Stress Response NRF2-mediated Oxidative Stress 

Response 

Cell Cycle: DNA Damage Checkpoint 

Regulation 

Tryptophan Degradation X Ethanol Degradation IV Myc Mediated Apoptosis Signalling  

LXR/RXR Activation Aryl Hydrocarbon Receptor 

Signalling 

ERK5 Signalling 

Ethanol Degradation IV Complement System HIPPO signalling  
   

  Diseases and Disorders   

Protein allergen Isocyanate Welding 

Inflammatory Response Inflammatory Response Dermatological Diseases and 

Conditions 

Immunological Disease Dermatological Diseases and 

Conditions 

Immunological Disease 

Dermatological Diseases and Conditions Immunological Disease Neurological Disease 

Haematological Disease Neurological Disease Psychological Disorders 

Inflammatory Disease Skeletal and Muscular Disorders Cancer 

      
   

The top five canonical pathways and disease-associated functions from the Ingenuity Pathway Analysis of the affected protein levels in 

protein allergen, isocyanate and welding challenged groups compared to the control group. The p-values of likelihoods for the protein 

list of each study group were calculated using the Fisher Exact test. The top five p-values were for protein allergens from E-21 to E-08, 

for isocyanate from E-11 to E-07 and for the welding group with the shortest identified protein list from E-11 to E-05. 

 
  



Figure legends 

Figure 1 Study flow chart. HDI, Hexamethylene diisocyanate; MDI, Methylene diphenyl diisocyanate. 

Figure 2 Clustering analyses of the differentially abundant proteins between study groups. A heat map of hierarchical clustering (A), on 

which nasal epithelial proteins with decreased abundance are marked in green and those with increased abundance in red; and Principal 

Component Analysis (B-C), in which spheres correspond to a study group (Fig. 2B) or to an identified gel spot (Fig. 2C). In the Fig. 2C the 

further apart from the origo a spot is, the clearer the separation between the groups, and the more suitable the finding would be as a 

biomarker. All figures indicate differences between the protein allergen (Protein) and isocyanate (Isocyanate) groups and the healthy 

controls (Control), whereas the welding group (Welding) shows the least up- or down-regulation to healthy persons. Immunoblot analysed 

gel spots are highlighted in Fig. 2C.  

Figure 3 Comparison of protein abundance by Western blotting. 2D-DIGE gel spot intensities for Glutathione S-transferase 1 (GSTP1, mean 

of several spots/gel), Galectin 10 (LEG10, one gel spot), Protein S100-A9 (S10A9, mean of several spots/gel) and Calcyphosin (CAYP1, one gel 

spot) of the 32 nasal brush samples (NBS) are on the left. The corresponding protein levels in the Western blot analysis for 82 NBS are on 

the right. Bars indicate means. Logaritmic transformation was used to attain normal distribution of the variables. The differences between the 

groups were analysed using the Anova and Fisher’s LSD test for post hoc comparisons. Control = healthy persons, Protein= protein allergens 

group; Isocyanate= isocyanate group; Welding= welding group.  
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Figure 3. 

 

Supplementary data 
 
Supplementary material 1 
Methods 

Skin prick tests and IgE measurements 
The skin prick test (SPT) panel for common environmental allergens included a negative control, a positive control 
(histamine), and 11 standardized environmental antigens (ALK-Abello, Hørsholm, Denmark). Occupational protein allergens 
were tested with commercial extracts, as is, or as an in-house extract in potassium phosphate, depending on the agent. 
Isocyanates were conjugated with human serum albumin (1), and metals (CoCl2, NiSO4, K2CrO4, CrCl2) were diluted in aqua. 
The results were regarded as positive if the mean wheal diameter was ≥ 3 mm, and the negative control wheal was < 2 mm. 
Serum total and specific (protein allergens and isocyanates) IgE were measured using the Phadia UniCAP System (Phadia, 
Uppsala, Sweden). A specific IgE of < 0.35 kU/l was considered normal. 
Lung function, exhaled and nasal nitric oxide 
Flow-volume spirometry was performed using a standard spirometer (Spirostar USB Medikro, Finland), and the predicted 
values of the Finnish population. Nonspecific airway hyperresponsiveness was measured using the histamine challenge (2). 
Exhaled  (FeNO) and nasal (nNO) nitric oxide were measured using an online chemiluminescence analyser (NIOX, Aerocrine 
AB, Solna, Sweden) in compliance with recommendations (3). 
Controlled exposure to occupational agent 
The WRA patients were exposed to the relevant occupational agent for 15‒30 minutes approximately 24 h before sample 
collection, by mimicking work tasks in a 6 m3 challenge chamber or by nebulizing allergen extracts (animal dander, storage 
mites), in-house solutions (Methylene diphenyl diisocyanate) or occupational agents (Hexamethylene diisocyanate) (4). 
Nasal brush and induced sputum samples 
The NBS was taken from the nasal cavity’s middle meatus. The brush was dipped into 5 mL of cold PBS, mixed gently and 
centrifuged at 500g. Supernatant was filtered through a 0.45 µm membrane, divided into aliquots and frozen to -70ºC for 
further use. Sputum was induced with hypertonic saline, in accordance with the guidelines (5). The number of eosinophils 
/200 cells were counted in the sputum and the NBS smear samples. 

 
 

1 Helaskoski E, Suojalehto H, Kuuliala O, Aalto-Korte K. Prick testing with chemicals in the diagnosis of 
occupational contact urticaria and respiratory diseases. Contact Dermatitis 2015: 72: 20-32. 

2 Sovijarvi A R, Malmberg L P, Reinikainen K, Rytila P, Poppius H. A rapid dosimetric method with controlled tidal 
breathing for histamine challenge. Repeatability and distribution of bronchial reactivity in a clinical material. 
Chest 1993: 104: 164-70. 

3 Ats/Ers. ATS/ERS recommendations for standardized procedures for the online and offline measurement of 
exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005: 171: 912-
30. 

4 Vandenplas O, Suojalehto H, Aasen T B, Baur X, Burge P S, De Blay F, Fishwick D, Hoyle J, Maestrelli P, Munoz X, 
Moscato G, Sastre J, Sigsgaard T, Suuronen K, Walusiak-Skorupa J, Cullinan P. Specific inhalation challenge in 
the diagnosis of occupational asthma: consensus statement. Eur Respir J 2014: 43: 1573-87. 

5 Djukanovic R, Sterk P J, Fahy J V, Hargreave F E. Standardised methodology of sputum induction and 
processing. Eur Respir J Suppl 2002: 37: 1s-2s. 

 
  



Table S1. Characteristics of 32 participants whose nasal brush samples were included in proteomic analysis. Continuous variables were expressed as 

means (± standard deviation) or median (interquartile range) depending on their distribution and categorical values as percentages. Logaritmic 

transformation was used to attain normal distribution of continuous variables. The differences between the groups were analysed using the 

ANOVA, Kruskal-Wallis test (when normal distribution was not attained after logarithmic transformation) or Chi-square test. 

 Healthy Asthma related to  

 controls (n=8) protein allergen 

(n=8) 

isocyanate (n=8) welding (n=8) 
p 

Age 43.8 (2.1) 35.6 (12.3) 41.7 (11.4) 43.3 (10.4) 0.349 

Sex, male, n (%) 8 (100.0) 1 (12.5) 6 (75.0) 6 (75.0) 0.002 

Duration of work exposure, years, 

median (Q1-Q3) # 
NA 7.5 (5.3-25.5) 6.5 (2.3-13.8) 21.5 (6.3-25.8) 0.265 

Duration of asthma symptoms, years, 

median (Q1-Q3) ¤ 
NA 3.0 (2.3-4.0) 1.0 (0.7-2.8) 3.5 (1.3-9.8) 0.032 

VAS rhinitis, mm, median (Q1-Q3) #  10.5 (0.0-16.3) 57.5 (11.8-66.8) 20.0 (0.0-50.0) 7.5 (0.0-38.5) 0.083 

VAS nasal congestion, mm, median (Q1-

Q3) # 
5.0 (0.0-20.5) 49.5 (30.3-71.3) 80.0 (30.0-84.0) 14.5 (2.3-45.5) 0.021 

VAS nasal itching, mm, median (Q1-Q3) #  0.0 (0.0-0.0) 45.0 (16.8-59.8) 60.0 (0.0-80.0) 4.5 (0.3-16.3) 0.002 

Nasal steroid during 4 weeks, 

n (%) 
0 (0.0) 1 (12.5) 1 (12.5) 2 (25.0) 0.515 

Inhaled steroid during 4 weeks, n (%) 0 (0.0) 3 (37.5) 5 (62.5) 8 (100.0) 0.001 

≥1 positive SPT to common 

environmental allergen, n (%)  
0 (0.0) 7 (87.5) 3 (37.5) 4 (50.0) 0.005 

Positive SPT to occupational allergen,  

n (%)  
NA 8 (100.0) 0 (0.0) 0 (0.0) <0.001 

Total IgE, kU/l, median (Q1-Q3) ¤ 
16.5 

(8.8-23.3) 

143.0  

(42.8-301.8) 

40.0 

(17.5-63.5) 

95.5 

(32.8-203.0) 
0.007 

Blood eosinophils 106/l, mean (SD) 128.8 (86.8) 255.0 (166.2) 183.8 (172.5) 207.5 (129.9) 0.374 

FVC % predicted, mean (SD) 98.6 (8.1) 99.9 (10.1) 97.3 (14.1) 94.9 (10.7) 0.821 

FEV1 % predicted, mean (SD) 97.9 (9.8) 92.6 (9.5) 92.5 (8.5) 91.0 (12.9) 0.573 

FeNO, ppb, median (Q1-Q3) ¤ 12.8 (11.1-16.9) 32.3 (18.5-69.4) 15.8 (10.4-25.1) 18.8 (10.5-39.9) 0.009 

nNO, ppb, mean (SD) 858.7 (263.4) 1006.7 (358.1) 694.4 (233.6) 927.1 (370.0) 0.249 

Sputum eosinophil %, median (Q1-Q3), 

n=20# 
0.0 (0.0-0.3) 3.0 (0.5-6.5) 1.0 (0.0-2.0) 0.5 (0.0-1.0) 0.080 

Nasal eosinophil %, median (Q1-Q3) #  0.0 (0.0-0.0) 0.5 (0.0-1.75) 1.0 (0.0-4.0) 0.0 (0.0-0.0) 0.056 

# Kruskal-Wallis test was used; ¤Logaritmic transformation was used; VAS, Visual analogue scale of nasal symptoms within a week; SPT, skin prick 

test; IgE, Immunoglobulin E; FVC, forced vital capacity; FEV1, Forced expiratory volume in one second; FeNO, exhaled nitric oxide; nNO, nasal nitric 

oxide. 
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Table S4. Western blot analysis of nasal brush samples from 50 subjects who were excluded from proteomic 
analysis. The protein levels of Glutathione S-transferase 1 (GSTP1), Galectin 10 (LEG10), Protein S100-A9 
(S10A9) and Calcyphosin (CAYP1) were assessed. Logarithmic transformation was used to attain normal distribution 
of the variables. The differences between the groups were analysed using the ANOVA and Fisher’s LSD test for 
post hoc comparisons.  

Control = 
healthy 
persons; 
Protein= 
protein 
allergen 
group; 
Isocyanate= 
isocyanate 
group; 
Welding= 
welding 
group; Q1-

Q3=interquartile range; NT= not tested 
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Figure S1 False colour two-dimensional differential gel electrophoresis (2D-DIGE) image of the identified 
protein spots in the nasal brush samples. Spot numbers are marked on the gel image and protein 
identifications are listed in Supplementary file Table S2 according to the spot number. 
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