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Abstract 13 

HHCB [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran] and 4-tert-14 

octylphenol [4-(1,1,3,3-tetramethylbutyl)phenol] are widely used emerging contaminants that have 15 

the potential to cause adverse effects in the environment. The purpose of this study was to observe if 16 

and how environmentally realistic concentrations of these contaminants alter growth in plant 17 

populations. It was hypothesized that within an exposed Gypsophila elegans Bieb (annual baby’s 18 

breath) population especially fast-growing seedlings are impaired even when the population mean is 19 

unaffected, and small doses can cause hormesis and, thus, an increase in shoot or root length. In a 20 

dose-response experiment, an experimental population of G. elegans was established (total 15.600 21 

seeds, 50 seeds per replicate, 24 replicates per concentration, 5.2 seedlings/cm2) and exposed to 12 22 

doses of HHCB or 4-tert-octylphenol. After five days, shoot and root length values were measured 23 

and population averages, as well as slow- and fast-growing subpopulations, were compared with 24 

unexposed controls. Growth responses were predominantly monophasic. HHCB seemed to 25 
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selectively inhibit both root and shoot elongation among slow- and fast-growing individuals, while 26 

4-tert-octylphenol selectively inhibited both root and shoot elongation of mainly fast-growing 27 

seedlings. The ED50 values (dose causing 50 % inhibition) revealed that the slow-growing seedlings 28 

were more sensitive and fast-growing seedlings less sensitive than the average of all individuals. 29 

Although there was toxicant specific variation between the effects, selective toxicity was consistently 30 

found among both slow- and fast-growing plants starting already at concentrations of 0.0067 µM, that 31 

are usually considered to be harmless. This study indicates that these contaminants can change size 32 

distribution of a plant population at low concentrations in the nM/µM range.  33 

 34 

Keywords – Dose-response, Growth stimulation, Hormesis, Low toxin doses, Selective toxicity. 35 
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Introduction 37 

Some specific classes of substances called ‘emerging contaminants’ have been defined to be 38 

chemicals or materials which cause or have the potential to cause adverse effects on humans and/or 39 

the environment and, thus, require our special attention (Sauvé and Desrosiers 2014). Usually, these 40 

compounds are present in many widely used everyday products such as plastics, flame retardants and 41 

cosmetics. They have become a serious environmental issue after being detected in trace 42 

concentrations around the globe thanks to the rapid development of analytical techniques enabling 43 

identification and quantification of these contaminants (Klaschka et al. 2012; Tao et al. 2011).  44 

Once being released into the environment, many of these chemicals have been observed to cause 45 

adverse effects on wildlife (Pablos et al. 2015). In contrast, effects on plant populations, especially in 46 

environmentally realistic trace amounts, are seldom addressed and do not seem to cause significant 47 

inhibition (An et al. 2009). However, low-doses of plant toxins are well-known to have an impact on 48 

plant populations. Low-doses of plant toxins can induce stimulatory responses in many plant traits 49 

and species (Calabrese and Howe 1976; Duke et al. 2006; Cedergreen et al. 2007; Calabrese and Blain 50 

2009). This enhancement in plant performance due to low chemical exposure is believed to be a 51 

widespread phenomenon, generally known as hormesis (Calabrese 2008). In order to detect this 52 

growth enhancement, one should concentrate on very low concentrations that are below the 53 

concentrations causing significant toxic effects.  54 

Even though such stimulatory responses can be present at the mean population level, the phenomenon 55 

does not always seem to occur homogeneously throughout a population in dense plant stands (Belz 56 

and Sinkkonen 2016a, b). Moreover, hormesis may remain hidden at the mean population level even 57 

though slow-growing individuals with short root/shoot elongation show strong hormetic responses. 58 

The associated lack of hormesis among the fast-growing individuals with long root/shoot elongation 59 

may be due to a more limited capacity for enhanced growth since these vigorously growing 60 

individuals may already have allocated all possible resources to growth (Belz and Sinkkonen 2016a). 61 
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However, if hormesis is observed at the mean population level, it usually involves a stimulation of 62 

slow- and fast-growing individuals (Belz and Sinkkonen 2016a). 63 

Besides hormesis leading to significantly enhanced responses in population mean, another low-dose 64 

phenomenon may occur for plant toxins leading to significant effects on individual plants within a 65 

population without changing the overall response. This phenomenon is called ‘selective low-dose 66 

toxicity’ in the case of toxic effects and ‘selective low-dose stimulation’ in the case of stimulatory 67 

effects. These selective low-dose effects have been observed to appear differently among individuals 68 

having a different growth rate and, thus, whether they are fast- or slow-growing (Sinkkonen et al. 69 

2008, 2011). Exposing high-density plant populations to low toxicant concentrations has caused a 70 

significant decrease in growth especially in the fast-growing part of a population (Sinkkonen et al. 71 

2011; Belz and Sinkkonen 2016a, b). It has been proposed that the higher growth rate of the fast-72 

growing individuals leads to a faster toxicant uptake affecting growth in an adverse manner (Aina et 73 

al. 2006). 74 

Due to the possibility that environmental pollutants cause such low-dose phenomena in toxin-exposed 75 

natural plant populations, there is a risk for long-term environmental consequences. Since low 76 

toxicant exposures have been confirmed to inhibit mainly the growth of fast-growing seedlings, 77 

Sinkkonen et al. (2011) hypothesized that if natural conditions favor the survival of the fastest 78 

growing individuals, a low chemical exposure can drastically affect the overall survival of a plant 79 

population because root growth is directly linked to the efficiency of water uptake. The authors 80 

confirmed that two ‘emerging contaminants’, namely HHCB [1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-81 

hexamethylcyclopenta(g)-2-benzopyran] and 4-tert-octylphenol [4-(1,1,3,3-82 

tetramethylbutyl)phenol] can cause selective low-dose inhibition on root growth of the most fast-83 

growing individuals of Gypsophila elegans Bieb. (annual baby’s breath). As Sinkkonen et al. (2011) 84 

did not observe hormesis possibly because of limited replications, and as natural plant populations 85 

are commonly exposed to trace amounts of these two toxicants, HHCB and 4-tert-octylphenol were 86 
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chosen to investigate potential selective low-dose effects in more detail and the interplay with a 87 

possible induction of hormesis. 88 

HHCB, also known as galaxolide, is a synthetic musk compound widely used as an ingredient in 89 

consumer products such as cosmetics and fragrances (HERA 2004). It has been detected in both 90 

effluent waters from wastewater treatment plants (Klaschka et al. 2012) and sewage sludge (Kupper 91 

et al. 2004), which often have applications in agricultural use. Due to its high sorption in soil, low 92 

leaching and low soil degradation, HHCB is likely to remain in the upper soil layers after being 93 

applied to soils exposing also a putative risk for terrestrial plants (Litz et al. 2007). In addition, HHCB 94 

has been observed to affect also root elongation of wheat seedlings and of Lactuca sativa L. by 95 

inhibition at higher and stimulation at lower doses (An et al. 2009; Agathokleous et al. 2018; Belz et 96 

al. 2018). This biphasic action was said to be caused by the hormone-like characteristics of HHCB 97 

(An et al. 2009).  98 

4-tert-Octylphenol is a high-production volume alkylphenol substance with applications in industrial 99 

processes, for example in rubber processing or production of ethoxylates which are further used in 100 

emulsion polymerization or water-based paints (Brooke et al. 2005). The compound is especially 101 

found in aquatic environments including groundwater (Hernando et al. 2004, Tao et al. 2011), and 102 

can reach terrestrial environments when soils are irrigated with reclaimed wastewater (Chen et al. 103 

2013). Furthermore, 4-tert-octylphenol seems to accumulate in soils (Chen et al. 2013). 104 

Ecotoxicological data about the phytotoxicity of 4-tert-octylphenol seems to be lacking, yet 105 

Sinkkonen et al. (2011) observed a significant reduction of root length by low doses of the compound 106 

among the fast-growing seedlings of a G. elegans population. Moreover, 4-tert-octylphenol has been 107 

observed to cause o biphasic response on root elongation of L. sativa (Agathokleous et al. 2018; Belz 108 

et al. 2018). Therefore, when studying low-dose effects of the two emerging contaminants, HHCB 109 

and 4-tert-octylphenol, it is important to manifest possible ecological risks of such pollutant-driven 110 

low-dose effects on natural vegetation. 111 
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Previous studies about the selective low-dose effects explored the topic from an agricultural point of 112 

view. Commercially cultivated plant species or weed species were exposed to herbicides that are 113 

common in agriculture (Belz and Sinkkonen 2016a, b). Other studies focused on selective low-dose 114 

toxicity only (Sinkkonen et al. 2009, 2011). Therefore, the two main objectives of this study were to 115 

study the effects of emerging contaminants on a wild plant species, namely the wildflower G. elegans, 116 

and to explore low-dose stimulatory effects in order to better assess possible environmental 117 

consequences. We focused on the following hypotheses: a) the emerging contaminants HHCB and 4-118 

tert-octylphenol induce hormesis in a G. elegans population; and b) selective low-dose effects and/or 119 

hormesis appear and vary among the fast- and slow-growing individuals of G. elegans even though 120 

the population mean remains unchanged. Based on previous findings, selective low-dose toxicity 121 

among the fast-growing seedlings and more pronounced hormesis was expected to occur among the 122 

slow-growing seedlings, so that these low-dose phenomena would occur heterogeneously within the 123 

plant population and consequently alter the plant size distribution within the population. 124 

 125 

Materials and methods 126 

Bioassay 127 

An experimental high-density population of G. elegans (cv. Covent Garden; Saatgut-Vielfalt, 128 

Germany) (total 15,600 seeds; 5.2 seedlings/cm2) was used as the test population and exposed in 129 

complete dose-response germination experiments to HHCB and 4-tert-octylphenol (Table 1). Since 130 

plants are exposed to HHCB and 4-tert-Octylphenol mainly in the upper soil layers, where most plant 131 

seeds usually germinate (Litz et al. 2007, Chen et al. 2013), we chose to expose seeds in a germination 132 

bioassay. The test method has been used and published previously (Belz and Sinkkonen 2016a, b). 133 

Briefly, the assays were done in 6-well cell culture plates (Cellstar, Greiner bio-one) for 5-d prior to 134 

measuring shoot and root elongation as endpoints. One layer of filter paper (MN 615, Macherey-135 

Nagel) was placed inside each well before applying the chemicals. The applied concentrations of the 136 
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test chemicals were chosen based on preliminary tests and comprised besides an untreated control in 137 

total 12 concentrations ranging from 0.000067 to 0.67 mM for 4-tert-octylphenol (Sigma-Aldrich, 138 

Germany; purity 97 %) and from 0.0000067 to 2.00 mM for HHCB (Sigma-Aldrich, Germany; purity 139 

50 %). The number of replicates (one replicate equals one well) per treatment was 24 arranged in 140 

blocks of six replicates (one 6-well-plate) that were randomly placed in a climate chamber. Due to 141 

the low water solubility of the test chemicals, the various concentrations were prepared from ethanol 142 

stock solutions by adding increasing amounts to wells. All plates were left open for 1 d in order to let 143 

the ethanol evaporate. Then, 60 seeds of G. elegans and 1.5 mL of demineralized water were added 144 

to each well/replicate. With HHCB, 65 seeds/replicate were initially added because of a low 145 

germination rate in the first experiment with 4-tert-octylphenol. For the control treatment, only 1.5 146 

mL of demineralized water was added. The plates were sealed with parafilm before placing them in 147 

a completely randomized design into a climate chamber. The climate conditions were set to a 148 

day/night cycle of 12/12 h staring at 8 am with 24/18 °C and a 12 h light period of 50-70 μmol m–2 149 

s−1 photosynthetic active radiation (PAR). After 2-3 days, the number of seeds was harmonized to 50 150 

seeds/replicate. After 5 d of exposure, plates were frozen at -20 °C until the shoot and root growth of 151 

the seedlings was evaluated. The evaluation was done using Fitomed (Castellano et al. 2001). If the 152 

shoot/root length was <1 mm, it was counted as zero. 153 

Statistical analysis 154 

The statistical analysis applied has been largely used and published previously (for example, 155 

Sinkkonen et al. 2009, 2011; Belz and Sinkkonen 2016a, b), but it was now optimized to consider 156 

block effects and data normalization. All analyses were done with SAS® 9.4. At first, the mean values 157 

per replicate were calculated for absolute shoot and root length values (mean of the 50 seeds per 158 

replicate) as well as the percentile (%ile) values per replicate. At the left tail of the size distribution 159 

(the most short-grown individuals referred to as the slow-growing subpopulations), the 5, 8, 10, 15 160 

and 20 %iles were calculated for HHCB and the 20, 22, 23 and 25 %iles for 4-tert-octylphenol due 161 
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to a high number of ungerminated seeds in this experiment. At the right tail of the size distribution 162 

(the most long-grown individuals referred to as the fast-growing subpopulations), the 90, 95, 97 and 163 

99 %iles were calculated for both toxicants. Because at each treatment six replicates were blocked on 164 

one 6-well-plate, we first analyzed for significant differences between these four blocks within a 165 

treatment by a univariate analysis of variance (Anova; α=0.05). Since absolute and %ile values for 166 

root and shoot data of both contaminants showed partly significant differences between blocks and 167 

in parts a non-normal data distribution (Shapiro-Wilk’s test, p>0.05), we decided to consider block 168 

effects in the further statistical analysis and to transform any non-normal, blocked data via Box-Cox 169 

power transformation.  170 

Block effects were considered in the form of calculating a mean value per block based on all six 171 

replicates blocked on one plate, so that a treatment was characterized by four block values. The Box-172 

Cox transformation for datasets violating the assumption of normality was done after estimating the 173 

optimal value of the transformation parameter λ from the data by the maximum likelihood method (-174 

3 < λ < 3) using the TRANSREG procedure (Piepho 2009, Osborne 2010, Perla 2016, Damesa et al. 175 

2018). Transformation of data was necessary for seven datasets out of entirely 38. For all datasets 176 

transformed, the application of the Box-Cox transformation fixed the problem of violating normality. 177 

The mean values per block formed the basis for the evaluations at the subpopulation level. After that, 178 

these data were used to calculate the mean response per treatment (mean of the four block values per 179 

treatment). This formed the basis for the evaluations at the population level. 180 

Selective low-dose effects 181 

An ANOVA together with a Tukey test (α=0.05) was done to exclude the treatments with significantly 182 

different absolute mean shoot/root length values per block compared to the control treatment. For 183 

those treatments that did not show significant differences in absolute mean values at the population 184 

level, %ile values per block were compared by a Mann-Whitney U test (α=0.05) for significant 185 

differences between treatments and the control.  186 
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Dose-response modelling 187 

Dose-response relationships were modelled at the population level based on the mean response per 188 

treatment and at the ‘percentile-dependent’ subpopulation level based on percentile values, namely 189 

the mean response per treatment for the 95 %ile and, thus, the fast-growing subpopulation represented 190 

by the most long-grown plants, and for the ≤25 %ile and, thus, the slow-growing subpopulation 191 

represented by the most short-grown plants. Reduced forms of either a monophasic function (Streibig 192 

1988) (Eq. 1) or a hormetic model (Brain and Cousens 1989) was modelled (Eq. 2): 193 

Eq. (1) 𝑦 =  𝑑/(1 + exp(𝑏 ∗ log(𝑥/𝐸𝐷50))) 194 

Eq. (2) 𝑦 =  (𝑑 + 𝑓 𝑥)/(1 + exp(𝑏 ∗ log(𝑥/𝑒))) 195 

where d corresponds to the mean response of the untreated control, f reveals the degree of hormetic 196 

increase, b equals the slope of the decreasing curve part, and ED50 the dose causing 50 % inhibition 197 

while parameter e does not correspond to any actual biological factor (Brain and Cousens 1989). In 198 

case of a biphasic modelling, the following quantitative features were further deduced using 199 

reparameterizations of Eq. 2 (Schabenberger et al. 1999; Belz and Piepho, 2012, 2013): the ED50, the 200 

maximum stimulatory response ymax and the dose M where stimulation is maximal. 201 

Based on the nature of the data, either the mono- or the biphasic dose-response model was used. The 202 

choice of the specific model fitted was primarily based on the significance of parameter f as indicated 203 

by an estimate of f with a 95 % confidence interval that did not cover the value zero (f > 0) 204 

(Schabenberger et al. 1999). If f > 0 was not fulfilled, but the graph of the data for response y versus 205 

dose x indicated hormesis, a pairwise likelihood ratio test with the monophasic model (Eq. (1)) as the 206 

reduced model was performed as goodness-of-fit test with the p-value of the test statistic being 207 

approximated by the chi-square distribution χ² (Seber and Wild 1989; Belz and Piepho 2017). 208 

Additionally, the ED10 dose level was calculated to distinguish the low-dose range from high-dose 209 

inhibitory effects (Streibig and Jensen 2000) (Eq. 3): 210 

Eq. (3) 𝐸𝐷10 = 𝐸𝐷50 ∗ (10/100 − 10)1/𝑏 211 
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Starting values for the regression parameters were selected based on the graph of the data for response 212 

y versus dose x. Response variance heterogeneity was accounted for by using the inverse variance of 213 

replicates at each dose as weight. Significant differences between dose-response curves were 214 

evaluated by comparing regression parameters using the CONTRAST statement within the 215 

NLMIXED procedure (α=0.05). 216 

 217 

Results 218 

HHCB 219 

Selective low-dose effects 220 

After an HHCB exposure, seven out of 12 treatments showed no significant difference in terms of 221 

mean shoot elongation when compared to the control (Table 2). Shoot elongation of the slow-growing 222 

seedlings (≤20 %iles) was significantly inhibited at six doses (excluding 0.002 mM) at all percentiles 223 

tested. The last treatment, however, may already account for beginning of high-dose inhibition. The 224 

fast-growing seedlings (≥90 %iles) were negatively affected only by a dose of 0.013 mM at two 225 

percentiles tested. This indicates that low-dose toxicity affected shoot elongation by HHCB among 226 

both slow- and fast-growing seedlings, while selective low-dose stimulation was absent. 227 

Regarding mean root elongation, nine out of 12 treatments were not significantly different from the 228 

control. Among the slow-growing seedlings, two doses (0.0000067 and 0.00013 mM) negatively 229 

affected root elongation at two percentiles tested. Root elongation of the fast-growing seedlings was 230 

selectively inhibited at three doses (0.0000067, 0.013 and 0.067 mM) at all percentiles tested. The 231 

highest treatment, however, may already account for beginning high-dose inhibition. Hence, results 232 

indicate that low-dose toxicity by HHCB was less pronounced on root elongation compared to shoot 233 

elongation. 234 
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Dose-response modelling 235 

HHCB exposure lead to monophasic responses at the population level for both endpoints measured 236 

(Fig. 1; Supplement Table A.1 and A.2). Regarding shoot growth, the ED50 value was 0.316±0.031 237 

mM. Modelling dose-response curves for the 20 and 95 %ile revealed as well only monophasic 238 

relationships (Fig. 2; Supplement Table A.1). A high variability was observed among the slow-239 

growing individuals, so that the biphasic model could not provide a significant fit to the data despite 240 

a triphasic low-dose trend in the data in the form of a horizontal s-shaped curve in the low-dose range 241 

with a slight inhibition before the stimulatory peak. However, this kind of dose-response pattern 242 

cannot be captured well by the current biphasic model (Brain and Cousens 1989), but for example by 243 

the hormetic model by Cedergreen et al. (2005) which allows the curve to go down before the 244 

hormetic increase. Nevertheless, due to the high variability the Cedergreen et al. (2005) model could 245 

not be fitted to the data. 246 

The ED50 for the 20 %ile was 0.076±0.026 mM and, thus, significantly lower (4.2-fold) as compared 247 

to the ED50 of the entire population indicating a higher sensitivity of the slow-growing seedlings. The 248 

fast-growing part seemed to be less prone to HHCB and showed an ED50 of 0.876±0.074 mM 249 

corresponding to a 2.8-fold higher value compared to the mean population and 11.5-fold compared 250 

to the slow-growing seedlings. Hence, the more vigorously growing seedlings were significantly less 251 

sensitive to HHCB than most of the population and needed considerably higher doses to be inhibited. 252 

Therefore, shoot elongation of the slow- and fast-growing seedlings clearly showed selective dose 253 

inhibition after an HHCB exposure and indicated an impact on the size distribution.  254 

Regarding root growth, the ED50 value at the population level was 0.216±0.025 mM. Modelling dose-255 

response curves for the 10 and 95 %ile revealed only monophasic relationships that did however not 256 

significantly differ in ED50 from the population mean (Fig. 2). A high variability occurred again 257 

among the slow-growing individuals so that any visible bi- or triphasic trend in the data could not be 258 

significantly modelled. The ED50 for the 10 %ile was 0.267±0.195 mM. Root growth of the fast-259 
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growing individuals was more homogenous and showed an ED50 of 0.200±0.013 mM. For that reason, 260 

HHCB exposure did not cause selective effects on root elongation of the slow- and fast-growing 261 

seedlings.  262 

4-tert-Octylphenol 263 

Selective low-dose effects 264 

According to Tukey test, the mean shoot growth of four treatments was not statistically different from 265 

the control (Table 3). Regarding the slow-growing seedlings (≤25 %iles), no significant selective 266 

low-dose effects occurred. Shoot growth of the most fast-growing seedlings (≥90 %iles) was also not 267 

selectively stimulated, but inhibited at two doses (0.002 and 0.02 mM) at all percentiles tested. This 268 

indicated the presence of some low-dose toxicity on shoot growth in the fast-growing subpopulations, 269 

although not very prevalent.  270 

Regarding mean root elongation, seven out of 12 treatments were not significantly different from the 271 

control (Table 3). Root growth of the slow-growing seedlings showed no significant selective low-272 

dose effects. Among the fast-growing seedlings, five treatments caused significant inhibition at 273 

between one and all percentiles tested (0.000067, 0.00067, 0.002, 0.0067 and 0.02 mM). This 274 

widespread selective inhibition of root elongation among mainly the fast-growing part of the 275 

population clearly indicated the presence of low-dose toxicity, while selective low-dose stimulation 276 

was again absent. 277 

Dose-response modelling 278 

4-tert-Octylphenol exposure led to monophasic responses at the population level for both endpoints 279 

measured (Fig. 3; Supplement Table A.1 and A.2). The ED50 value for shoot elongation was 280 

0.099±0.008 mM. Modelling dose-response curves for shoot growth at the 25 and 95 %ile revealed 281 

as well only monophasic relationships (Fig. 4; Supplement Table A.1). A high variability was again 282 

observed among the slow-growing 25 %ile showing an ED50 of 0.062±0.018 mM. This value was 283 

significantly lower (1.6-fold) as compared to the ED50 of the entire population indicating a higher 284 
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sensitivity of the slow-growing seedlings. The response of the fast-growing part (95 %ile) seemed to 285 

be more stable with an ED50 for shoot elongation of 0.117±0.008 mM. This value was not significantly 286 

higher than that of the mean population, but corresponded to a 1.9-fold higher value compared to the 287 

slow-growing seedlings. Therefore, the most fast-growing seedlings were less sensitive to 4-tert-288 

octylphenol than the slow-growing seedlings and needed considerably higher doses in order to be 289 

inhibited. 290 

Regarding root growth, the ED50 value for 4-tert-octylphenol at the population level was 0.102±0.008 291 

mM (Fig. 3). As to the subpopulation levels (23 and 95 %ile), modelling dose-response curves for 292 

root length revealed that a biphasic dose-response curve provided the best fit for the slow-growing 293 

seedlings despite an insignificant f value, while responses of the fast-growing seedlings were 294 

monophasic (Fig. 4; Supplement Table A.2). The maximum stimulation (ymax) was 185±51 % at a 295 

dose M of 5.8 ± 2.7 µM. The ED50 value for the slow-growing seedlings was 0.074±0.037 mM, which 296 

was not significantly different compared to the ED50 of the mean population. Considering the fast-297 

growing 95 %ile, the ED50 for root growth was 0.124±0.008 mM. This value was significantly higher 298 

as compared to the mean population (1.2-fold) and the slow-growing subpopulation (1.7-fold). 299 

Consequently, there was some selective hormesis in the population albeit restricted to the slow-300 

growing seedlings and masked at the population level. The most fast-growing seedlings were also 301 

significantly less sensitive to 4-tert-octylphenol in root growth as most of the population. 302 

 303 

Discussion 304 

This study aimed at investigating selective low-dose toxin effects and dose-dependent selectivity 305 

from an environmental perspective by exposing a wild plant population to two emerging contaminants 306 

at environmentally relevant concentrations. The two chosen toxicants did not cause selective low-307 

dose stimulation without changing the mean plant size and did not induce significant hormesis in root 308 

or shoot growth despite one exception observed with 4-tert-octylphenol at the slow-growing 309 
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subpopulation. A wide absence of hormesis does not necessarily mean that a compound is generally 310 

not hormetic since there are several factors that influence the occurrence and expression of a hormetic 311 

response in plants (Belz and Piepho 2014). Changing the experimental setup in terms of a prolonged 312 

timeframe, different test parameters, or several lower concentrations can sometimes reveal hormesis. 313 

Microbial interactions, resource competition and pests can be the reason for the lack of hormesis in 314 

many plant stands (Hansi et al. 2014, Płociniczak et al. 2013, 2016, Yu et al. 2015). Additionally, the 315 

expression of stimulatory responses seems to be linked to the species or biotype used, so that some 316 

plants are simply prone to lack hormesis. For example, Rodriguez et al. (2012) identified one 317 

quantitative trait locus (QTL) on a chromosome that caused the natural variation and the lack of 318 

hormesis in the heat-stress response of different biotypes of the nematode Caenorhabditis elegans 319 

Maupas. This finding suggests that natural variation in hormesis and its absence may have a genetic 320 

background. Furthermore, the lack of hormesis can also be due to growth conditions since both poor 321 

and exceptionally optimized conditions have been shown to cause the absence of hormesis even 322 

though a compound would otherwise induce hormesis (Belz and Cedergreen 2010). For instance, an 323 

increase in leaf area of Sinapis arvensis L. (wild mustard) under a parthenin exposure was lacking 324 

during a non-optimal warm period, yet the enhancement occurred under cooler conditions (Belz 325 

2008). The same phenomenon was observed with glyphosate-exposed Hordeum vulgare L. (barley) 326 

by altering the CO2 supply. The amount of biomass of H. vulgare in response to glyphosate did not 327 

increase at below ambient concentrations even though the hormetic response was observed at ambient 328 

and even higher CO2 levels (Cedergreen and Olesen 2010). Additionally, a study conducted with 329 

parthenin-exposed Lactuca sativa L. (lettuce) revealed that hormesis was absent under exceptionally 330 

good growing conditions (Belz and Cedergreen 2010). It has been surmised that the cell growth rate 331 

under optimal conditions is already at maximum and cannot be further enhanced (Vichi and Tritton 332 

1989). Hence, a toxicant-induced hormesis seems to be most pronounced at below maximal, but still 333 

at favorable environmental conditions.  334 
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Selective low-dose toxicity of mainly fast-growing seedlings seemed to be characteristic for low-dose 335 

effects of HHCB and 4-tert-octylphenol on G. elegans, although this phenomenon was not very 336 

prevalent. Previous studies by Sinkkonen et al. (2008, 2011) with the same contaminants were ten 337 

times smaller in scale than the current well replicated study and used separate individuals as 338 

replicates, while the current study uses percentile and mean values per dish as replicates. Furthermore, 339 

previous studies used commercially cultivated plant species or weed species rather than a more 340 

heterogeneous, wild plant population. Therefore, this study clearly indicates that the phenomenon of 341 

selective low-dose effects within a population also holds true under ecologically more relevant 342 

conditions and represents a further step towards the elucidation of the ecological significance of this 343 

low-dose phenomenon. 344 

Low-dose toxicity may be linked to density-dependent phytotoxicity, so that when plants share the 345 

same toxicant pool in dense plant stands (Weidenhamer et al. 1989, Sinkkonen 2001, 2003), the fast-346 

growing individuals can take up higher amounts of toxicants due to their higher activity (Sinkkonen 347 

et al. 2009). Regarding high-dose selective toxicity, the slow-growing seedlings showed the highest 348 

sensitivity to the chosen compounds, followed by the mean population, while the fast-growing 349 

subpopulation seemed to be the most inert part of the population. This pattern of sensitivity was rather 350 

consistent throughout our findings irrespective of the compound or endpoint investigated. A decrease 351 

in sensitivity among the fast-growing subpopulation and a respective increased sensitivity among the 352 

slow-growing seedlings has also been observed in previous studies using other test species and 353 

chemicals (Belz and Sinkkonen 2016a). Nonetheless, compared to our previous studies with other 354 

toxins and plant species, both compounds showed a rather low capacity to differentiate populations 355 

of G. elegans, especially at low doses. 356 

Selective effects of HHCB exposure 357 

Under an HHCB exposure, the shoot growth of the slow-growing subpopulation was adversely 358 

affected by several different doses, yet the fast-growing subpopulation remained widely unaffected 359 
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whether shoot or root growth was considered. Based on this, it seems that there is some low-dose 360 

toxicity with HHCB, but it did not seem to be as prevalent and characteristic mainly for the fast-361 

growing subpopulation as expected from earlier findings with other plant species. This indicated that 362 

the pattern and expression of selective low-dose effects may depend on the effective compound and/or 363 

the exposed plant species. The finding that G. elegans is rather inert to low-dose selective effects of 364 

HHCB corresponds to previous reports where low-dose toxicity of HHCB was also not very 365 

pronounced (Sinkkonen et al. 2011).  366 

The detected environmental concentration of 0.00631 µM (Table 1) (Litz et al. 2007) closely 367 

corresponds to the lowest dose actually tested and causing significant, selective inhibition of shoot 368 

growth in both fast- and slow-growing seedlings (0.0067 µM). Although the observed ED50 values 369 

are several magnitudes higher, this observation clearly substantiates the environmental significance 370 

of low-dose exposures of HHCB in terms of alterations in size distribution of exposed plant 371 

populations by selective low-dose toxicity. 372 

Selective effects of 4-tert-octylphenol exposure 373 

Regarding 4-tert-octylphenol, selective low-dose toxicity occurred more profoundly among the fast-374 

growing subpopulation since both shoot and root elongation were selectively inhibited at certain low-375 

doses, while the slow-growing part of the population remained unaffected. Especially root growth of 376 

the fast-growing seedlings showed selective low-dose toxicity by 4-tert-octylphenol, which is in line 377 

with a previous study showing significant reduction in root length of G. elegans among the fast-378 

growing subpopulation after 4-tert-octylphenol exposure (Sinkkonen et al. 2011). This is an important 379 

revelation as the previous study was produced in a different laboratory using another root 380 

measurement method. Therefore, the current study finds the first proof that selective low-dose toxicity 381 

is a persistent phenomenon. 382 

Regarding selective hormetic effects, 4-tert-octylphenol was only stimulatory towards root growth of 383 

slow-growing G. elegans plants with a maximum of 85 % stimulation above control. Because this 384 
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selective enhancement of growth was masked at the population level, the results confirm the 385 

assumption that the stimulation of fast-growing seedlings is the decisive factor for the formation of 386 

hormesis at the population level (Belz and Sinkkonen 2016a, b). Additionally, the ED50 values 387 

revealed significant differences in sensitivity of the different subpopulations compared to the mean 388 

population with the slow-growing seedlings being the most sensitive group and then the fast-growing 389 

seedlings being the least sensitive. Hence, 4-tert-octylphenol clearly has a potential to dissect a plant 390 

population at low-doses. However, compared to the reported environmental concentration of 0.00044 391 

µM in wastewater treatment plant effluent (Table 1) (Höhne et al. 2008), the lowest dose actually 392 

tested and causing significant, selective inhibition of root growth was several fold higher (0.067 µM) 393 

so that 4-tert-octylphenol would not seem to cause either adverse or stimulatory selective effects on 394 

G. elegans at such environmental levels. 395 

Dose-response modelling 396 

For several curves generated for HHCB, there was clearly a trend that a slight decrease in response 397 

was followed by an enhancement in both shoot and root lengths not only among the slow-growing 398 

seedlings, but also fast-growing ones and even at the mean population level. This so called triphasic 399 

dose-response cannot be captured by a monophasic model (Streibig 1988), which widely ignores this 400 

low-dose depression in responses. However, to a certain extent the biphasic model of Cedergreen et 401 

al. (2005) is flexible enough to capture a triphasic pattern (Belz and Piepho 2012). In this study, a 402 

triphasic pattern could however not be significantly fitted whether the dose-response modelling was 403 

based on the individual values from each replicate per treatment or the mean values per treatment in 404 

order to dampen the variability observed in the data especially at the low percentiles. This apparent 405 

lack of a better fit than the monophasic model may account for the partly high variability of responses, 406 

but also an insufficient number of treatments covering the observed low-dose depression. In the latter 407 

case, a triphasic curve is not easy to model which is probably why triphasic curve shapes are seldom 408 
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reported. However, there are some previous studies showing this phenomenon (Belz and Piepho 409 

2012). 410 

Practical implications 411 

Previous studies performed with commercially cultivated L. sativa have established the parallel 412 

occurrence of hormesis, selective low-dose toxicity and selective low-dose stimulation within a dense 413 

plant population (Belz and Sinkkonen 2016a). Based on the genetic homogeneity of a cultured species 414 

such as L. sativa, these findings should be applied carefully to natural plant populations since the 415 

genetic variation of wild plants is expected to be more pronounced (Belz and Sinkkonen 2016a). 416 

Nevertheless, the hypothesis that low toxicant levels can segregate certain plant populations has 417 

already been confirmed with an agricultural weed population (Belz and Sinkkonen 2016b). Compared 418 

to this, our results showed rather weak low-dose effects of the chosen compounds on populations of 419 

G. elegans. This provokes the question of whether this is due to the compounds tested or the plant 420 

species used. Hormetic effects on plants have not been studied before using HHCB and 4-tert-421 

octylphenol, so that it is unknown if the observed lack of hormesis is a common situation. However, 422 

G. elegans, as a wild plant, expressed a rather pronounced variation response-wise, which made it 423 

difficult to observe significant low-dose effects. The high variability of responses among the slow-424 

growing seedlings seemed to disturb the detection of significant low-dose effects and thus acted as 425 

an argument for focusing on higher %iles for dose-response modelling compared to our previous 426 

studies. Additionally, due to the relative slow development of G. elegans compared to the previously 427 

studied fast-developing L. sativa and the more pronounced occurrence of selective low-dose toxicity 428 

in L. sativa (Belz and Sinkkonen 2016a), it can be hypothesized that species with a low overall growth 429 

rate are less prone to develop selective low-dose effects. 430 

Since there is a vast amount of harmful chemicals at low doses in the environment (for example, 431 

Klaschka et al. 2012), the likelihood that natural vegetation is exposed to compounds causing 432 

selective effects at low-doses seems to be very realistic. The importance of studying the topic of low-433 
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dose effects has been emphasized before (Belz and Sinkkonen 2016a), especially in relation to 434 

extreme weather conditions such as drought, since a change in root size distribution is of utmost 435 

importance for the efficiency of water uptake and, thus, the survival of plants (Sinkkonen et al. 2009). 436 

If a population is simultaneously exposed to both drought and low toxicant doses, the fast-growing 437 

seedlings seem to be more prone to an inhibition of root growth, as observed in this study. This can 438 

decrease the overall survival of that plant population, such that the plants that would be the most 439 

likely to survive from drought are now inhibited and may not be able to contribute to the survival of 440 

the whole plant population. Additionally, in natural conditions, chemical exposure is likely to be 441 

rather continuous, especially since both of the studied compounds have shown a tendency to persist 442 

in soil (Litz et al. 2007, Chen et al. 2013). This kind of prolonged low-dose exposure could cause 443 

further effects even on more slow-growing species such as G. elegans. Overall, it has been surmised 444 

that such low-dose driven changes in the structure of a population are directly related to plant 445 

performance and survival under extreme environmental conditions (Chu et al., 2008, 2009) and, 446 

hence, ultimately to reproduction. This may change population dynamics and lead to genotypic 447 

adaptations and/or ecotype formation in the longer term with ecologically significant consequences 448 

for the ecosystem or biodiversity (Sinkkonen et al. 2009). 449 

Despite the fact that toxicant levels detected from the environment tend to be rather low, usually in 450 

the ng/L to µg/L range (Klaschka et al. 2012, Tao et al. 2011), it indeed seems that such negligible 451 

concentrations have the potential to lead to negative growth effects within a plant population even 452 

though such concentrations would have been considered safe in ecotoxicological bioassays. A similar 453 

trend was observed by Sinkkonen et al. (2009) who further suggested that current laboratory standards 454 

in risk evaluation should include the possibility of low-dose effects and that re-evaluation of the 455 

threshold levels for environmental contaminants would be needed. One of the lowest predicted no 456 

effect concentrations (PNEC) in aquatic environments regarding HHCB is 0.23 µM for the fish 457 

Pimephales promelas Rafinesque (fathead minnow) (HERA 2004). As we observed adverse selective 458 
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effects at levels that were tens of times lower, the current study implicates a need to re-evaluate the 459 

test protocol of PNECs. 460 

 461 

Supplementary data 462 

Table A.1 Regression parameters from the monophasic modeling (Streibig 1988) of toxin effects on 463 

shoot growth of Gypsophila elegans. Data given as mean ± standard error. 464 

Table A.2 Regression parameters and estimated quantitative features from the monophasic (Streibig 465 

1988) or biphasic (Brain and Cousens 1989) modeling of toxin effects on root growth of Gypsophila 466 

elegans. Data given as mean ± standard error. 467 
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Tables 627 

 628 

Table 1 Some chemical properties and environmental concentrations of HHCB and 4-tert-629 

octylphenol. 630 

Chemical name Formula 
Molecular 

weight [g/mol] 
CAS no. 

Effluent 

[µM] 

Sludge 

[mg/kg d.m.] 

HHCB 

C18H26O 258.41 1222-05-5 0.00631 1 20.3 2 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8- 

hexamethylcyclopenta[g]-2-

benzopyran 

4-tert-octylphenol 
C14H22O 206.32 140-66-9 0.00044 3 0.08-0.20 4 

4-(1,1,3,3-tetramethylbutyl)phenol 
1 Klascka et al. 2012, 2 Kupper et al. 2004, 3 Höhne et al. 2008, 4 Bolz et al. 2001; d.m.=dry mass 631 

 632 

Table 2 Statistical significance of low-dose effects of HHCB on shoot and root length of Gypsophila 633 

elegans at different percentiles. Displayed are only concentrations for which mean root/shoot length 634 

at the population level was not significantly different from control (Tukey-test at α=0.05 for four 635 

blocks with six replicates per concentration (mm)). 636 

 

End- 

point 

 

Dose 

Mean 

Percentile               

[mM] 5 % 8 % 10 % 15 % 20 % 90 % 95 % 97 % 99 % 

sh
o

o
t 

le
n

g
th

 

[m
m

] 

control 6.6 0.8 1.5 2.0 3.0 3.8 10.6 11.6 12.0 12.9 

0.0000067 5.8 0.1* 0.3* 0.6* 2.0* 3.1 9.7 10.6 11.2 12.1 

0.000067 6.2 0.3 0.5 1.1* 2.3 2.9 10.5 11.7 12.2 13.1 

0.00067 6.3 0.2 0.6* 1.1* 2.1 3.1 10.5 11.4 11.9 12.6 

0.002 6.8 0.7 1.3 1.8 3.0 4.0 11.0 11.7 12.4 13.3 

0.0067 6.1 0.0* 0.2* 0.3* 1.1* 2.0* 10.8 11.9 12.5 13.6 

0.013 5.4 0.3 0.5 0.8* 1.4* 2.3 9.3* 10.3* 10.8 11.7 

0.02 5.6 0.3 0.7* 0.9* 1.5* 2.3 9.8 10.7 11.2 12.1 

r
o
o

t 
le

n
g

th
 

[m
m

] 

control 13.3 0.8 1.5 1.8 3.6 5.4 23.5 25.6 27.2 30.4 

0.0000067 11.5 0.1* 0.4 1.3 2.7* 4.2 20.7* 23.5* 25.0* 27.7* 

0.000067 12.2 0.8 1.4 1.6 3.0 4.4 22.8 25.6 27.2 29.6 

0.00013 11.7 0.3 0.7 1.2 2.5* 4.1 22.1 24.7 26.4 28.9 

0.00067 12.8 0.5 1.1 2.0 3.7 5.4 22.9 25.4 26.4* 28.7 

0.002 14.0 1.1 2.0 2.8 4.8 6.4 23.9 26.3 28.2* 30.9 

0.0067 13.1 0.2 0.9 1.4 2.9 4.8 23.9 27.0 28.2 30.4 

0.013 12.0 0.5 1.0 1.9 3.3 4.6 21.6 23.8 25.1 27.0* 

0.02 12.5 0.9 1.7 2.3 3.4 4.7 22.5 25.1 26.4 29.1 

0.067 11.3 0.9 1.6 1.9 3.2 4.4 20.8* 22.8* 24.0* 25.9* 

‘*’significantly different from control according to Mann-Whitney U test at α=0.05.  637 
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Table 3 Statistical significance of low-dose effects of 4-tert-octylphenol on shoot and root length of 638 

Gypsophila elegans at different percentiles. Displayed are only concentrations for which mean 639 

root/shoot length at the population level was not significantly different (ns) from control (Tukey-test 640 

at α=0.05 for four blocks with six replicates per concentration (mm)). 641 

 

End- 

point 

 

Dose 

Mean 

Percentile            

[mM] 20 % 22 % 23 % 25 % 90 % 95 % 97 % 99 % 

sh
o

o
t 

le
n

g
th

 

[m
m

] 

control 7.0 1.4 1.6 1.9 2.6 12.2 13.0 13.5 14.8 

0.000067 6.3 0.2 0.5 0.9 2.0 11.6 12.6 13.3 14.5 

0.00067 6.8 1.3 2.0 2.2 2.4 12.4 13.7 14.6 15.7 

0.002 6.2 1.5 2.0 2.2 2.4 10.9* 11.7 12.3 13.3 

0.02 5.9 1.5 1.7 1.9 2.5 10.6* 11.5* 12.1* 13.1* 

r
o
o

t 
le

n
g

th
 

[m
m

] 

control 13.3 1.4 1.7 2.0 3.0 27.6 30.7 32.4 34.7 

0.000067 12.0 0.3 0.6 1.0 2.3 24.7* 28.1* 29.3* 31.0* 

0.00067 12.5 1.3 2.0 2.2 2.7 26.1* 28.8* 30.6 33.7 

0.002 13.1 1.7 2.4 2.7 3.3 26.0* 28.9* 31.1 34.8 

0.0033 12.7 0.8 1.5 1.9 2.4 26.9 29.7 32.0 35.0 

0.0067 12.2 1.5 2.2 2.5 3.0 25.3* 28.5* 30.3 33.0 

0.013 12.0 1.0 1.2 1.4 1.8 26.4 29.6 31.3 34.2 

0.02 12.3 1.5 1.9 2.3 3.3 25.7* 30.2 32.2 35.5 

‘*’significantly different from control according to Mann-Whitney U test at α=0.05. 642 
  643 
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Figure Captions 644 

 645 

Fig. 1 Dose-response curves for the effects of HHCB on shoot length (a) and on root length (b) of 646 

Gypsophila elegans at the population level. The dotted line shows the ED10 value which 647 

distinguishes the low-dose range from high-dose inhibitory effects. Doses that are significantly 648 

different from the control are marked with an asterisk ‘*’ (Tukey test, α = 0.05). 649 

 650 

Fig. 2 Dose-response curves for the effects of HHCB on shoot length of Gypsophila elegans at the 651 

20 and 95 % percentiles (%iles) (a) and on root length at the 10 and 95%ile (b) of the tested 652 

population. The dotted line shows the ED10 value which distinguishes the low-dose range from high-653 

dose inhibitory effects. Doses that are significantly different from the control are marked with an 654 

asterisk ‘*’ (Mann-Whitney U test, α = 0.05). 655 

 656 

Fig. 3 Dose-response curves for the effects of 4-tert-octylphenol on shoot length (a) and on root 657 

length (b) of Gypsophila elegans at the mean population level. The dotted line shows the ED10 value 658 

which distinguishes the low-dose range from high-dose inhibitory effects. Doses that are significantly 659 

different from the control are marked with an asterisk ‘*’ (Tukey test, α = 0.05). 660 

 661 

Fig. 4 Dose-response curves for the effects of 4-tert-octylphenol on shoot length of Gypsophila 662 

elegans at the 25 and 95 %iles (a) and on root length at the 23 and 95%ile (b) of the tested population. 663 

The dotted line shows the ED10 value which distinguishes the low-dose range from high-dose 664 

inhibitory effects. Doses that are significantly different from the control are marked with an asterisk 665 

‘*’ (Mann-Whitney U test, α = 0.05). 666 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 1 Click here to access/download;Figure;Figure 1.tif

https://www.editorialmanager.com/ectx/download.aspx?id=115272&guid=ea31cfb0-b48c-458b-97d9-e6969c1c932e&scheme=1
https://www.editorialmanager.com/ectx/download.aspx?id=115272&guid=ea31cfb0-b48c-458b-97d9-e6969c1c932e&scheme=1


Figure 2 Click here to access/download;Figure;Figure 2.tif

https://www.editorialmanager.com/ectx/download.aspx?id=115276&guid=b763b548-c3b5-4931-8df4-0fce51b8c407&scheme=1
https://www.editorialmanager.com/ectx/download.aspx?id=115276&guid=b763b548-c3b5-4931-8df4-0fce51b8c407&scheme=1


Figure 3 Click here to access/download;Figure;Figure 3.tif

https://www.editorialmanager.com/ectx/download.aspx?id=115277&guid=6e608e05-c8a5-4682-8c63-464dfaac08ac&scheme=1
https://www.editorialmanager.com/ectx/download.aspx?id=115277&guid=6e608e05-c8a5-4682-8c63-464dfaac08ac&scheme=1


Figure 4 Click here to access/download;Figure;Figure 4.tif

https://www.editorialmanager.com/ectx/download.aspx?id=115278&guid=b87d0097-7426-478e-88f7-5cedf0d7f57e&scheme=1
https://www.editorialmanager.com/ectx/download.aspx?id=115278&guid=b87d0097-7426-478e-88f7-5cedf0d7f57e&scheme=1


Supplement Table A.1 Regression parameters from the monophasic modeling (Streibig 1988) of toxin effects 
on shoot growth of Gypsophila elegans . Data given as mean ± standard error. 

toxin percentile model providing best fit d  [mm] b ED 50  [mM ] ED 50  95% CI [mM ]

20% monophasic 3.01 ± 0.16 1.17 ± 0.32 0.076 ± 0.026 c 0.024‐0.127
HHCB 95% monophasic 11.46 ± 0.10 0.60 ± 0.03 0.876 ± 0.074 b 0.732‐1.021

population mean monophasic 6.17 ± 0.09 0.91 ± 0.08 0.316 ± 0.031 a 0.256‐0.376
25% monophasic 2.08 ± 0.19 1.43 ± 0.68 0.062 ± 0.018 b 0.026‐0.098
95% monophasic 12.37 ± 0.15 1.22 ± 0.11 0.117 ± 0.008 a 0.101‐0.133
population mean monophasic 6.31 ± 0.11 1.16 ± 0.07 0.099 ± 0.008 a 0.084‐0.115

CI = confidence interval; small letters indicate significant differences between ED 50 values at α=0.05

Supplement Table A.2 Regression parameters and estimated quantitative features from the monophasic (Streibig 1988) or biphasic (Brain and Cousens 1989) 
modeling of toxin effects on root growth of Gypsophila elegans . Data given as mean ± standard error. 

toxin percentile model providing best fit d  [mm] b f M  [µM ] ED 50  [mM ] ED 50  95% CI [mM ] y max [%]

10% monophasic 1.78 ± 0.24 1.34 ± 1.00 n.s. ‐ 0.267 ± 0.195 a ‐0.118‐0.651 ‐
HHCB 95% monophasic 25.74 ± 0.29 1.03 ± 0.06 n.s. ‐ 0.200 ± 0.013 a 0.173‐0.226 ‐

population mean monophasic 12.54 ± 0.23 1.00 ± 0.09 n.s. ‐ 0.216 ± 0.025 a 0.167‐0.265 ‐
23% biphasic 1.36 ± 0.30 1.74 ± 0.26 470 ± 440 5.789 ± 2.669 0.074 ± 0.037 a 0.002‐0.147 185 ± 51
95% monophasic 29.39 ± 0.22 1.88± 0.13 n.s. ‐ 0.124 ± 0.008 b 0.108‐0.141 ‐
population mean monophasic 12.74 ± 0.18 1.57 ± 0.11 n.s. ‐ 0.102 ± 0.008 a 0.086‐0.118 ‐

n.s. = no significant hormesis; CI = confidence interval; small letters indicate significant differences between ED50 values at α=0.05
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