
Abstract—Transportation electrification is increasing and 
recently more focus has been directed on heavy vehicles and 
especially on city buses. Battery electric buses are inherently more 
energy efficient than diesel buses and the efficiency can be further 
increased by different methods. This paper evaluates the energy 
consumption reductions that are achievable with an aluminum 
chassis, low-drag body, low-rolling-resistance class C tires, heat 
pump, and predictive driving. A simulation model of a generic 
electric bus was developed in the Simulink software. Simulations 
were carried out on various types of driving cycles in cold (-10 °C) 
and warm conditions (20 °C). A novel nonlinear model predictive 
control problem formulation was created for minimizing the 
energy consumption of an electric bus.  Using a heat pump instead 
of an electric heater provided the highest energy savings in the cold 
conditions with an average consumption reduction of 12.7 %. The 
results indicated that a heat pump is particularly effective on low-
speed bus routes. However, the class C tires and aluminum chassis 
provided higher energy savings than the heat pump in the warm 
conditions. The low-rolling-resistance tires achieved the most 
robust energy savings. The aluminum chassis reduced the energy 
consumption more than the class C tires, but the benefit of the 
lighter chassis was shown to also correlate strongly with the 
aggressiveness of the driving. The results showed that a low-drag 
body is a potential method for consumption reduction on high-
speed bus routes. Predictive driving was found to reduce the 
average consumption by 9.5 % at -10 °C when using 10-second 
prediction and control horizons.1 
 

Index Terms—Aerodynamics, electric vehicles, energy 
consumption, predictive control, tires, vehicle driving 

I. INTRODUCTION 

The urgent need for reducing the environmental impact of 
transportation has made battery electric buses an interesting 
option to replace traditional diesel buses [1]. In recent years, 
electric buses have developed at a fast pace together with 
advanced charging technologies [2], [3]. Increasing amounts of 
demonstration fleets of electric buses have been deployed 
worldwide [4], [5]. Furthermore, some cities have already 
decided to electrify their bus fleets in the coming years, e.g., 
Paris, Amsterdam, and Shenzhen [6]. One major advantage of 
transport electrification is the higher energy conversion 
efficiency of the powertrain, which typically consists of a 
battery pack, inverter, electric motor (EM), and differential 
gear. Recent research studies indicate that electric buses can 

 
1Manuscript submitted January 18, 2019. This work was supported in part 

by Business Finland under grant 9977/31/2016, Henry Ford Foundation Finland 
under grant 20170122, and Yrjö and Senja Koivunen Foundation under grant 
27/09/2017. 

K. Kivekäs, J. Vepsäläinen, and K. Tammi are with the Department of 
Mechanical Engineering at Aalto University, Espoo, 02150 FI (e-mail: 

already achieve higher cost effectiveness than diesel buses 
depending on the operating conditions [7]. 

Previous publications have shown that the energy 
consumption of electric vehicles (EVs) can vary significantly 
due to the operating conditions [8]–[10]. Although electric 
buses are highly energy efficient, their consumption is also 
influenced by the driving pattern, passenger load, and 
particularly by the ambient temperature [11]. As there is much 
less waste heat produced by the electric powertrain in 
comparison to a diesel engine, a significant portion of the 
battery energy has to be sacrificed for heating the cabin when 
the ambient temperature is particularly low [12], [13]. 
Alternatively, a fuel heater can heat the cabin. However, the 
choice is less-than-ideal due to the pollution caused by the 
heater. Cabin thermal management has been increasingly 
studied among electric vehicles [14], [15]. Different 
technological solutions to improve the energy efficiency of the 
thermal management of the cabin have been proposed [12]. For 
electric buses, heat pumps have been identified as a key 
technology to efficiently ensure passenger comfort and increase 
thermal energy efficiency [16]. However, the downside of heat 
pumps is that in very cold ambient conditions (𝑇 <  −20 °C ) 
their efficiency is not usually any better than that of electric 
heaters [17]. 

This research evaluates different methods to improve the 
energy efficiency of battery electric buses. Four key design and 
component-choice-related methods are identified and 
compared. Furthermore, the potential energy consumption 
reductions provided by predictive driving are examined. To that 
end, a novel nonlinear model predictive control (NMPC) 
algorithm is presented. The impact of the length of the 
prediction and control horizons is examined. The results 
provide novel insights about the most effective ways to reduce 
the energy consumption of electric buses and how to optimally 
formulate an NMPC algorithm for an electric bus. 

This paper is a continuation of our previous research focusing 
on the energy consumption of electric buses [18]. In this paper, 
we begin with a literature review of electric bus energy 
consumption and driving optimization studies. In section III, a 
simulation model of a generic electric bus is presented. Then, 
four key methods are identified for reducing the energy 
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consumption through design and component choices. In section 
IV, the novel NMPC algorithm is described. The simulation 
results are presented and discussed in section V. In the final 
section, conclusions are drawn and possible future 
developments considered. 

II. STATE-OF-THE-ART 

In recent years, several studies have been conducted to 
examine the different factors influencing the energy 
consumption of EVs. More and more simulation tools are 
dedicated to electric powertrain modeling and optimization 
[19]. The significance of ambient temperature to the energy use 
of EVs has been noted in various papers. Younes et al. [20] 
analyzed measurement data from an electric car and found that 
the most influential factors to energy consumption were driving 
aggressiveness and ambient temperature. Fiori et al. [21] found 
in a simulation study that the energy consumption of an electric 
car could increase by 32 % when the ambient temperature 
decreased from 25 to -5 °C. The increased heating power 
demand in cold conditions leads to a proportionally higher 
increase in energy consumption compared to conventional 
internal combustion engine (ICE) vehicles. Several studies have 
demonstrated that the influence of ambient temperature is even 
more severe on electric buses compared to electric cars because 
of higher heating power requirements [9], [16], [22], [23]. The 
energy consumption variations caused by the variations in 
heating, ventilation, and air conditioning (HVAC) system 
power demand must be carefully considered when assessing the 
feasibility of deploying electric buses [3]. One approach to 
mitigate this issue is to use a heat pump instead of conventional 
HVAC systems, as a heat pump can operate at a significantly 
higher efficiency in most conditions [16]. 

Rolling resistance has also been shown to be one of the most 
significant sources of energy losses in electric cars and buses 
[24], [25]. Lajunen and Tammi [25] conducted a simulation 
analysis of electric buses that showed rolling resistance to 
account for approximately 25-30 % of the energy losses 
depending on the driving cycle. Aerodynamic drag could 
represent between 3 to 25 % of the total losses. The 
aerodynamic losses are highly dependent on the average speed 
of the driving cycle. 

Vepsäläinen [26] investigated the differences in driving 
styles between diesel bus and electric bus operation. He found 
that electric buses are generally driven more aggressively, as 
the instantaneous peak torque and fast response invite higher 
accelerations. On the other hand, several studies have indicated 
that the energy consumption of electric buses is influenced less 
by the driving cycle compared to diesel buses in urban and 
suburban operation [27]–[30]. The lower sensitivity to driving 
cycle uncertainty is largely explained by the ability to perform 
regenerative braking. However, the stop frequency is still one 
of the most significant factors in the energy consumption of 
electric buses [31], [32]. It has also been demonstrated that the 
energy consumption influence of the aggressiveness of the 
driving is magnified by increases in the passenger load [25]. 

Earlier efforts to reduce the energy consumption of city buses 
via driving improvements involved incentive-based systems for 

bus drivers. Liimatainen [33] proposed a peer-competition-
based system but noted the significant ethical concerns caused 
by potentially making the workplace more competitive. 
Additionally, it is challenging to set fair targets for energy 
consumption due to the uncertainty involved in bus operation 
[34]. Thus, automated driving optimization is now seen as a 
better alternative for reducing city bus energy consumption. 

Various papers have presented methods for driving 
optimization using dynamic programming (DP) although they 
have mostly focused on passenger cars [35]–[37]. Lajunen [38] 
developed a distance-based DP algorithm to optimize the 
Braunschweig driving cycle for an electric bus and found that 
the energy usage could be reduced by 19 %. However, DP is 
typically computationally-intensive, and it requires full 
knowledge of the entire driving route [39]. Consequently, DP is 
not suited for real-time optimization. Ozatay et al. [40] 
proposed using cloud computing to enable enough computing 
power for real-time online use of DP. Doan et al. [41] developed 
an iterative DP algorithm for optimizing the driving of EVs, 
which they demonstrated to be fast enough for real-time use. 

Model predictive control (MPC) has been widely used in 
vehicular applications. For example, it has been utilized to 
optimize the energy management of series, parallel, and power 
split hybrid vehicles [42]–[46]. Additionally, MPC has been 
employed for yaw control, vehicle following, path planning and 
tracking for collision avoidance, intervehicular traffic flow 
management, thermal management, as well as charging 
optimization of EVs [47]–[55]. Furthermore, MPC has been 
used in driving optimization applications. Kamal et al. [56] 
developed a time-based nonlinear model predictive control 
(NMPC) algorithm to optimize the driving of a conventional 
ICE passenger car in traffic. Fuel consumption was 
approximated as a function of speed and positive acceleration 
using a third-degree polynomial. NMPC has also been proposed 
for use in an ecological adaptive cruise controller for plug-in 
power split hybrid vehicles in congested conditions [57]. In the 
developed algorithm, fuel consumption was estimated as a 
function of engine power and vehicle speed with a second-
degree polynomial, and the EM efficiencies were assumed 
constant. Held et al. [58] developed a linear-MPC-based driving 
optimization algorithm for heavy EVs. With a horizon length of 
500 m, the distance-based MPC was shown to achieve energy 
savings similar to offline optimization using Pontryagin’s 
minimum principle (PMP). Zhang et al. [59] proposed an 
explicit MPC method for controlling EVs. Additionally, they 
employed a Bayes network model to predict the movement of 
the preceding vehicle. The results demonstrated that the energy 
savings can be significantly improved with a better 
understanding of the approaching traffic environment. Lim et 
al. [39] proposed the use of a two-stage optimization algorithm 
based on quadratic programming (QP). First, the driving profile 
of the entire route would be optimized before departure. Traffic 
would then be accounted for in local adaptation with a short 
optimization horizon. 

While the different factors affecting the energy consumption 
of electric buses have been examined in previous papers, a 
direct comparison between the energy savings achieved with 



the various methods has not been conducted. This paper aims 
to fill that research gap by comparing the energy savings 
achieved with a lightweight chassis, low-rolling-resistance 
tires, low-drag body, heat pump, and NMPC driving 
optimization. A novel formulation for the NMPC control 
problem is presented using the nonlinear MPC controller in 
MATLAB/Simulink, which was launched with the R2018b 
version of the software [60]. 

III. ELECTRIC BUS SIMULATION MODEL 

A simulation model of a standard 12-meter long battery 
electric bus was developed in the Simulink software. The 
simulation model is based on equations (1)–(12). The model 
takes as its inputs the EM torque demand, mechanical braking 
force, and road grade, and it outputs the speed of the vehicle as 
well as the battery power. 

In the model, the acceleration of the vehicle (𝑎) is calculated 
as follows: 
 

𝑎(𝑡) =
𝐹 (𝑡) − 𝐹 (𝑡)

𝑚 + 𝐽 /𝑟
 (1)

 
where 𝑡 is time, 𝑚 is the total mass of the bus, 𝐹  is the tractive 
force at the driven wheels, 𝐹  is the sum of the resistive forces, 
𝐽  is the total moment of inertia superimposed at the driven 
axle, and 𝑟  is the dynamic radius of the wheels. The total mass 
is the sum of the curb weight (𝑚 ) of the vehicle and the 
passenger load (𝑚 ): 
 
𝑚 = 𝑚 + 𝑚 . (2)
 
The resistive forces are calculated as: 
 
𝐹 (𝑡) = 𝑚𝑔(𝑓 cos 𝛼(𝑡) + sin 𝛼(𝑡)) + 𝜌𝑐 𝐴𝑣(𝑡) /2 (3)
 
where 𝑔 is the gravitational acceleration (9.81 m/s2), 𝑓  is the 
rolling resistance coefficient, 𝛼 is the road grade, 𝜌 is the 
density of air, 𝑐  is the drag coefficient, 𝐴 is the frontal area, 
and 𝑣 is the speed of the bus. The rolling resistance term is zero 
if speed is zero. The tractive force is defined as: 
 
𝐹 (𝑡) = 𝑇 (𝑡)𝑖 𝑖 𝛨 𝑃 (𝑡) /𝑟 + 𝐹 (𝑡) (4)
 
where 𝑇  is the EM torque, 𝑖  is the gear ratio of the gearbox, 
𝑖  is the gear ratio of the final drive, and 𝐹  is the mechanical 
brake force. The variable 𝛨 , which represents the efficiency 
of the drivetrain, depends on the EM output power 𝑃  in the 
following way: 
 

𝐻 = 𝜂 𝜂 ,

𝐻 = 1/(𝜂 𝜂 ),
 

𝑃 (𝑡) ≥ 0 
(5) 

𝑃 (𝑡) < 0 
 
where 𝜂  and 𝜂  are the efficiencies of the gearbox and final 
drive. The rotational speed of the motor is calculated as: 
 

𝜔 (𝑡) = 𝑣(𝑡)𝑖 𝑖 /𝑟 . (6)
 
The total power consumption of the battery 𝑃  is calculated as 
a sum of the battery output power 𝑃 _  and the internal losses 
of the battery 𝑃 _ , as shown in (7): 
 
𝑃 (𝑡) = 𝑃 _ (𝑡) + 𝑃 _ (𝑡) = 𝐼 (𝑡)𝑈 (𝑡) + 𝑟 (𝑡) 𝑞 (𝑡) 𝐼 (𝑡)  

 (7)
 
where 𝐼  is the battery current, 𝑈  is the pole voltage of the 
battery, and 𝑟  is the internal resistance of the battery as a 
function of the battery state-of-charge (SOC) 𝑞 . The output 
power of the battery can also be calculated as: 
 
𝑃 _ (𝑡) = 𝛨 𝜔 (𝑡), 𝑇 (𝑡) 𝑇 (𝑡)𝜔 (𝑡) + 𝑃 ,  (8)
 
where 𝑃 ,  is the total auxiliary device power demand. The 
total auxiliary power demand consists of the HVAC power 
demand (𝑃 ) and the power demand of other auxiliary 
devices (𝑃 , ): 
 
𝑃 , = 𝑃 + 𝑃 , . (9)
 
The other auxiliary devices include power steering, air 
compressor, powertrain thermal management, and other 
electronics. The variable 𝛨  in equation (8) represents the 
combined efficiency of the EM and the inverter and is defined 
as: 
 

𝐻 = 𝜂 𝜔 (𝑡), 𝑇 (𝑡) ,

𝐻 = 1/𝜂 𝜔 (𝑡), 𝑇 (𝑡) ,
 

𝑃 (𝑡) < 0 
(10)𝑃 (𝑡) ≥ 0 

 
where 𝜂  is the efficiency value obtained from the efficiency 
map. The efficiency map that was used in reference [18] was 
also used in this simulation model. The battery was modeled 
with a resistance model. Thus, the model calculates the battery 
current as: 
 

𝐼 (𝑡) =
𝑈 𝑞 (𝑡) − 𝑈 𝑞 (𝑡) − 4𝑟 𝑞 (𝑡) 𝑃 _ (𝑡)

2𝑟 𝑞 (𝑡)
 

 (11)
 
where 𝑈  is the open-circuit voltage of the battery as a 
function of the SOC. The SOC is calculated based on the battery 
current and capacity 𝐶  (in Ah) as: 
 
𝑑𝑞

𝑑𝑡
= 𝐼 (𝑡)/(3600𝐶 ). (12)

 
The model was parameterized based on our previous research  

[25]. The key technical specifications of the bus model are 
presented in Table 1. The limits for regenerative braking were 
defined in the same way as in the model in our previous work 



[30]. Full regeneration would be allowed at speeds above 10.8 
km/h. Below that speed, the regeneration limit declines linearly 
until no regeneration is allowed below 5.4 km/h. Similarly, full 
regeneration is only allowed at decelerations up to 2.5 m/s2, and 
partial regeneration is enabled up to 4.0 m/s2. A motor 
controller unit enforces these limits as well as the EM power 
and torque limits. Any excess negative power requested from 
the motor by the driving controller is converted to mechanical 
braking force. The power demand 𝑃 ,  was defined as 5 
kW based on our previous research where the auxiliary device 
power demand of an electric bus operating in Espoo, Finland 
was measured [32]. 

In order to evaluate different design and component-choice-
related methods to reduce the energy consumption of electric 
buses, simulations were carried out with reference parameters 
and with changes to four key parameters. These parameters 
were the curb weight, aerodynamic drag, rolling resistance and 
HVAC power. Table 2 presents the reference and reduced 
values of these parameters. The reference curb weight was 
chosen to represent a typical steel chassis bus, and the reduced 
value would represent an aluminum chassis bus. The weight 
difference was approximated based on previous works and 
publicly available bus data [61]–[63]. The reference 
aerodynamic drag value was chosen to represent a typical city 
bus with a height of 3.3 m and width of 2.55 m and ride height 
assumed as 30 cm [63]. The reference drag coefficient was set 
to 0.8. The value presented in Table II is the frontal area 
multiplied with the drag coefficient. A low-drag bus was 
represented with the reduced drag value. A lower body profile 
can have a frontal area of close to 6 m2, and it is also known 
that the drag coefficient tends to reduce with the frontal area 
[62], [64]. The reference and reduced rolling resistance 
coefficient values were chosen such that the reference value 
would represent a typical class E bus tire, and the low-resistance 
version would represent a more premium class C bus tire. The 
rolling-resistance-based tire classes are presented in reference 
[65]. The simulations were run at -10 and 20 °C ambient 
temperatures. The HVAC power demand values were 
approximated based on reference [25] where the power demand 
was approximated as a function of the ambient temperature 
based on recent literature. The reference HVAC power demand 
represents an electric heater, and the reduced value represents a 
heat pump. The HVAC power demand reduction achieved with 
a heat pump was approximated to be 50 % based on previous 
works [16], [17]. The HVAC power demand was defined as 
being constant to approximate the average HVAC power use. 
In equations (1)–(12), the parameters corresponding to the curb 
weight, aerodynamic drag, rolling resistance, and HVAC power 
that were changed in the tests to simulate the effect of the design 
and component changes are 𝑚 , 𝑐 𝐴, 𝑓 , and 𝑃 . The 
drag coefficient 𝑐  and frontal area 𝐴 were both changed, and 
the value shown in Table II is the product of the frontal area and 
the drag coefficient. 

Simulations were carried out on 15 different driving cycles. 
Descriptions of the cycles along with their parameters can be 
found in reference [18]. A proportional controller was used for 
controlling the vehicle. The input of the controller was set as 

the difference between the target speed, which was acquired 
from the profile of the driving cycle, and the current speed of 
the bus. The output of the P controller was the EM torque 
demand. The initial SOC level was set to 80 %. 

 
TABLE I. 

TECHNICAL SPECIFICATIONS OF THE ELECTRIC BUS 
 

Description Value 
Battery chemistry and capacity Titanate Oxide, 60Ah 
Battery system specific energy (Wh/kg) 60 
Battery energy capacity (kWh) 77.3 
Battery system weight (kg) 1295 
Motor nominal power (kW) 170 
Motor max peak torque (Nm) 1710 
Constant aux. power without HVAC (kW) 5.0 
Gear reduction 1.75 
Final drive ratio 4.72 
Tires 275/70/22.5 
Tire dynamic radius 0.478 
Bus curb weight (kg) 12350 
Passenger load (kg) 415 

 

TABLE II. 
SIMULATION PARAMETERS 

 
Description Reference 

value 
Reduced 

value 
Bus curb weight (kg) 12350 10500 
Aerodynamic drag (m2) 6.12 4.30 
Rolling resistance coeff. 0.008 0.006 
HVAC power at -10 °C (kW) 7.0 3.5 
HVAC power at 20 °C (kW) 2.0 1.0 

 
The electric bus model was verified by comparing the energy 

consumption on the 15 cycles to the energy consumption 
acquired with the electric bus simulation model used in our 
previous work [30]. The electric powertrain model utilized in 
the earlier study had been validated with measurement data 
acquired from an electric bus operating in Helsinki, Finland. 
For the comparison, the total auxiliary device power 
consumption was set to 7 kW and the curb weight to 12350 kg 
for both models. The comparison between the two models 
showed that the energy consumption of the model presented in 
this paper differed on average by only 3.5 % from the 
consumption of the validated model on the 15 cycles. Hence, it 
can be stated that the energy consumption produced by the 
simulation model representing a generic electric bus used in this 
research is in a realistic range. Furthermore, similar modelling 
approaches for electric vehicles have been used in a variety of 
previous works, such as in references [7], [21], [59], and [66]. 

IV. PREDICTIVE DRIVING 

As was discussed in section II, energy consumption can be 
decreased by optimizing the driving mission, thus minimizing 
the energy consumption on a given operating route [38]. In the 
case of electric buses, the driving optimization typically focuses 
on predicting stopping and minimizing powertrain losses. MPC 
presents two major improvements when compared to standard 
PID controllers: 1. It allows for the minimization of not only the 
control error (i.e. difference between actual state and reference 
state), but also for the control action and, in principle, for any 



other variable that the user can be interested in minimizing. 2. 
It allows including the presence of constraints in the control 
formulation, hence ensuring that the system stays within its 
operational boundaries for the whole control horizon. 

The classical MPC problem formulation was devised for a 
quadratic objective, convex equality constraints, linear 
inequality constraints, and a linear system model [67]. 
However, there has been increasing focus in recent years on 
NMPC. In this research, the NMPC controller in Simulink was 
used for approximating the potential energy savings that are 
achievable with automated predictive driving. The effect of the 
length of the prediction and control horizons on the energy 
consumption was investigated. The Simulink controller uses the 
sequential quadratic programming (SQP) algorithm to solve the 
control problem. The problem formulation must be continuous 
and continuously differentiable. In the controller, the state-
space model of the electric bus is defined as: 
 

𝑥(𝑘 + 1) =
𝑥 (𝑘) + 𝑥 (𝑘)𝑇 + 𝑎(𝑘)𝑇 /2

𝑥 (𝑘) + 𝑎(𝑘)𝑇
 (13) 

 
where the first state 𝑥  is the distance travelled by the bus, the 
second state 𝑥  is the speed of the bus, and 𝑇  is the sample time 
of the controller. The sample time was set to 1 s in this research. 
The model outputs are defined as being the same as the states. 
The acceleration at discrete time instant 𝑘 is defined as: 
 

𝑎(𝑘) =
𝐹 (𝑘) − 𝐹 (𝑘)

𝑚 + 𝐽 /𝑟
. (14) 

 
The resistive forces in (3) are smoothened by approximation: 
 
𝐹 (𝑘) = 𝑚𝑔(𝑓 cos 𝛼(𝑘) tanh(𝑐 𝑥 (𝑘)) + sin 𝛼(𝑘))

+ 𝜌𝑐 𝐴𝑥 (𝑘) /2 
(15)

 
where the hyperbolic tangent factor in the rolling resistance 
term drives the term to zero when the speed is zero whilst still 
keeping the model continuous and continuously differentiable. 
The multiplier 𝑐  was set to 5 by testing how high the value 
could be set without adversely affecting the computation time. 
An estimate of the road grade at each prediction step must be 
provided to the controller. The grade is approximated by 
assuming that the speed stays constant for the duration of the 
prediction horizon, thus making it possible to acquire the grade 
for each prediction step from the known road grade versus 
distance profile. The tractive force is calculated similar to (4) 
as: 
 
𝐹 (𝑘) = 𝑢 (𝑘)𝑖 𝑖 𝛨 , 𝑢 (𝑘) /𝑟 + 𝑢 (𝑘) (16) 
 
where the first control variable 𝑢  is the EM torque output, and 
the second control variable 𝑢  is the mechanical brake force. 
The variable 𝛨 , , which represents the drivetrain efficiency, 
is defined as: 
 

𝐻 , =
− tanh 𝑢 (𝑘) + 1

2𝜂 𝜂
+

(tanh 𝑢 (𝑘) + 1)𝜂 𝜂

2
, (17)

 
which approximates (5). The use of hyperbolic tangent to 
smoothen the equation ensures that the model is continuous and 
continuously differentiable. 

The inequality constraints are defined as: 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥 ≤ 𝑣 , + 𝑐 𝑒

𝑥 ≥ 0
𝑢 ≤ 𝑇 ,

𝑢 ≥ 𝑇 ,

𝑢 ≤ 0
𝑢 ≥ 𝐹 ,

𝑢 𝑥 𝑖 𝑖 /𝑟 ≤ 𝑃 ,

𝑢 𝑥 𝑖 𝑖 /𝑟 ≥ 𝑃 ,

𝑥 (𝑘 + 𝑝) ≤ 𝑑 + 𝑐 𝑒

𝑥 (𝑘 + 𝑝) ≥ 𝑑 − 𝑐 𝑒

 (18)

 
where 𝑣 ,  is the maximum speed on driving segment 𝑖, 
𝑇 ,  and 𝑇 ,  are the maximum and minimum EM torque 
values, 𝐹 ,  is the maximum (negative) mechanical brake 
force, 𝑃 ,  and 𝑃 ,  are the maximum and minimum EM 
power, 𝑑  is the target distance, 𝑒  is a slack variable for 
constraint softening, 𝑐  and 𝑐  are slack coefficients, and 𝑘  
is the current instant. For the NMPC simulations, the 15 driving 
cycles described in section III were used. The cycles were 
divided into segments between full stops. A full stop was 
considered to be any stop maneuver where the vehicle is 
stationary for two seconds or more. A maximum speed limit 
was defined for each segment as the highest speed on that 
segment plus 5 km/h. The driving cycles were used to define 
the target distance for the NMPC controller. The target was set 
as the distance travelled on the original cycle at the time instant 
of the end of the prediction horizon. Stops were handled such 
that the target distance would not be allowed to increase until 
one second before the beginning of the next acceleration in the 
original cycle. By defining the target distance in this way, the 
distance of each segment would be practically identical to the 
distance of the segment in the original cycle. 

The cost function in the NMPC controller is defined as: 
 

𝑓 = 𝑐 𝛨 𝑢 (𝑘) 𝜔 (𝑘) + 𝜔 (𝑘 + 1) /2

+ 𝑐 𝑢 (𝑘) + 𝑐 𝑥 (𝑘 + 1)

+ 𝑐 𝑒 + 𝑐 𝑢 (𝑘) − 𝑢 (𝑘 − 1)

+ 𝑐 𝑢 (𝑘) − 𝑢 (𝑘 − 1)  

(19)

 
where the variable 𝛨  represents the efficiency of the motor 
and inverter, 𝑐  is the coefficient of the i-th term, and 𝑝 is the 
length (in number of time steps) of the prediction horizon. The 
purpose of the first term is to minimize the energy consumption 



by minimizing the input power of the EM. The second term 
penalizes mechanical brake usage. The aim of the third term is 
to help with the energy reduction minimization by reducing the 
aggressiveness of the driving, which can be defined as [30]: 
 

𝐴 = 𝑎(𝑡) ∙ 𝑣(𝑡)

,

,

𝑑𝑡 𝑠 (20) 

 
where 𝑛 is the number of positive acceleration periods, 𝑡 ,  and 
𝑡 ,  are the start and end of the i-th positive acceleration period, 
and 𝑠 is the total distance of the driving cycle. The driving 
aggressiveness has been shown to correlate strongly with the 
energy consumption of city buses in a previous publication 
[30]. The fourth term in (19) gives a penalty for not respecting 
the constraints, as the value of the slack variable increases the 
more the constraints are violated. The purpose of the fifth and 
sixth terms is to prevent rapidly oscillating control inputs and 
in so doing maintain a comfortable experience for the 
passengers. The EM speed 𝜔  is calculated according to (6). 
The efficiency-related variable 𝛨  is calculated as: 
 

𝛨 =
tanh 𝑢 (𝑘) + 1

2𝜂 (𝑘)
−

tanh 𝑢 (𝑘) − 1

2
𝜂 (𝑘) (21) 

 
where 𝜂  is the approximated value for the combined 
efficiency of the EM and inverter. The efficiency was 
approximated as 86.6 %, as that was the average efficiency in 
the operating region. Equation (21) is a smoothened 
approximation of (10). It was found that the use of this type of 
hyperbolic tangent approximation yielded 30 % reduced 
computation times compared to raising 𝜂  to the power of the 
sign of the EM torque. As the speed of the bus is assumed to 
never fall below zero, it is sufficient to examine torque rather 
than power, as their signs are the same. 

The values of the coefficients 𝑐  in (19) were determined by 
manually finding reasonable ranges for the values and then 
conducting a sweep. For the parameter sweep, the H58E cycle 
was used because it is the most average of the cycles in terms 
of aggressiveness, average speed, and stop frequency. 
Prediction and control horizons of 2, 4, 6, 8, and 10 s were 
tested in order to examine the influence of the horizon length 

on the energy consumption and computation time. Horizons 
longer than 10 s were not considered due to computational 
inefficiency. Default parameters provided by MATLAB were 
used for the SQP solver, including a maximum limit of 400 
iterations. The ambient temperature was set to -10 °C for the 
NMPC predictive driving simulations. 

The simulation tests were conducted in the following way. 
First, the design and component-choice related methods 
discussed in section III were tested. The results of the tests are 
presented in section V.A. Then, the predictive driving tests 
were conducted, and the acquired results are shown in section 
V.B. Finally, the predictive driving and the four design and 
component-related methods were used simultaneously to 
observe the magnitude of the consumption reductions that are 
achievable when utilizing all of the possible methods together. 
The results are presented in section V.C. 

V. RESULTS AND DISCUSSION 

A. Design and component simulations 

The simulation results were analyzed in order to evaluate the 
influence of the selected key factors on energy consumption. 
The distribution of energy losses on the 15 driving cycles in 
cold and warm conditions using the reference parameter values 
is presented in Fig. 1 in the order of increasing total energy 
consumption. The road grade was defined for the cycles marked 
with a star in the x-axis label. The losses were calculated by 
using the following six main categories: battery, auxiliary 
devices, powertrain (including EM, inverter, and gear 
reductions), rolling resistance, mechanical braking, and 
aerodynamic resistance. These results clearly show that the 
auxiliaries, powertrain, and rolling resistance caused the 
majority of the losses on all of the cycles. The powertrain losses 
varied between 17.5 and 24.4 % of the total losses at -10 °C and 
between 22.3 and 29.4 % at 20 °C. Auxiliary device power 
demand accounted for between 24.2 and 57.6 % of the losses 
on the cycles in the cold conditions. At 20 °C, the auxiliary 
losses caused 16.3–44.5 % of the losses. The highest auxiliary 
consumption, which was 1.1 kWh/km at -10 °C and 0.64 
kWh/km at 20 °C, occurred on the Manhattan (MAN) cycle. 
Rolling resistance accounted for between 14.6 and 24.6 % of 
the losses in the cold conditions and between 19.3 and 30.7 % 
in the warm conditions. The rolling resistance losses varied 

Fig. 1. Distribution of energy losses on the 15 driving cycles with reference parameter values and proportional controller at -10 °C (left) and 20 °C (right). 



between 278.0 and 278.3 Wh/km. Rolling resistance losses are 
highly consistent because they are caused by a constant force, 
and the only variation is caused by road elevation, as can be 
deduced from equation (3). On the other hand, the aerodynamic 
drag losses varied significantly. The lowest drag losses 
occurred on the MAN cycle where they were only 2.9 % of the 
total losses at -10 °C and 3.5 % at 20 °C. The drag losses were 
highest on the Helsinki 3 (H3) cycle at 323 and 290 Wh/km at 
-10 and 20 °C. These values equaled to 26.7 and 27.7 % of the 
total losses. As the results demonstrate, the higher the average 
speed of the cycle, the higher the drag losses and the lower the 
auxiliary losses are. The higher air density in colder conditions 
also has a minor impact on the drag losses. Mechanical braking 
caused between 1.4 and 10.0 % of the total losses on the cycles 
at -10 °C and between 1.7 and 12.2 % at 20 °C. Certain cycles, 
such as Tampere 25 (TA25W) and Helsinki 24 (H24) feature a 
significant number of aggressive braking maneuvers that 
require deploying the mechanical brakes. On all the cycles, 
battery losses were minimal and only accounted for 1.3 to 2.6 
% of the losses in the cold conditions and 1.5–2.9 % in the warm 
conditions. The overall energy consumption ranged from 1.13 
to 1.91 kWh/km with an average of 1.41 kWh/km at -10 °C. In 
the warm conditions, the range was 0.91–1.44 kWh/km, and the 
average was 1.14 kWh/km.  

Each of the four design and component-related changes 
shown in Table II were simulated on the 15 driving cycles, and 
the energy consumption results are presented in Fig. 2. The 
average consumption reductions provided by the aluminum 
chassis, low-drag body, class C tires, and heat pump were 98, 
45, 73, and 179 Wh/km in the cold conditions. In the warm 
conditions, the low-drag body reduced the consumption by 40 
Wh/km and the heat pump by 51 Wh/km on average. There was 
virtually no change in the energy savings achieved by the 
aluminum chassis and low-rolling-resistance tires between the 
cold and warm conditions. While the heat pump did provide the 
highest reductions at -10 °C, it lost out to the aluminum chassis 
and class C tires at 20 °C. Based on previous publications, it is 
known that HVAC power requirements are low in particular 
between temperatures 5 and 20 °C [25]. The results also show 
that the consumption reductions provided by the heat pump 
were strongly dependent on the driving cycle. The lowest 
energy use reduction occurred on the H3 cycle with an 

improvement of 87 Wh/km in the cold conditions and 25 
Wh/km in the warm conditions. The highest improvement was 
seen on the low-speed MAN cycle at 322 Wh/km at -10 °C and 
92 Wh/km at 20 °C. 

On the other hand, the results demonstrate that the energy use 
reductions provided by class C tires are highly robust. As can 
be seen in Fig. 2, the driving cycle had barely any influence on 
the amount of energy use reduction provided by the tire choice. 
The effect of the aluminum chassis on the energy consumption 
was also reasonably consistent with the values ranging between 
71 and 137 Wh/km. However, it is worth noting that the 
consumption reduction contribution correlated strongly with 
the aggressiveness of the driving cycle with the Pearson 
correlation coefficient being 0.94. The low-drag body brought 
the lowest average energy use reductions in both conditions. 
The consumption reduction correlated strongly with the average 
driving speed of the cycle with the Pearson coefficient being 
0.95. The energy use reductions achieved with the low-drag 
body ranged from 17 to 106 Wh/km at -10 °C and from 16 to 
95 Wh/km at 20 °C. 

The results demonstrate that the heat pump can achieve the 
highest energy savings, but it is at its most effective on low-
speed routes and in cold conditions. The aluminum chassis 
provides a relatively robust energy efficiency improvement, 
and it reduces the influence of the driving style on the energy 
consumption, as evidenced by the high correlation with the 
driving aggressiveness. The low-drag body achieves significant 
consumption reductions only in high-speed driving, so it is not 
particularly beneficial on urban bus routes. Low-rolling-
resistance tires provide the most robust energy efficiency 
improvements and are thus recommended to be used regardless 
of the route type. 

B. Predictive driving 

The 15 driving cycles were simulated at -10 °C using 2, 4, 6, 
8, and 10-second prediction and control horizons for the NMPC 
controller. An example of an MPC-optimized cycle is shown in 
Fig. 3, which features the Espoo 11 (E11) cycle. The 
distributions of the energy consumption reductions and 
computational speeds achieved using the different horizon 
lengths are presented in Fig. 4. The average energy 
consumption reductions achieved were 20, 68, 97, 120, and 138 

Fig. 2. Influence of the key parameters on energy consumption decrease in all simulated cycles using the proportional controller. 
 



Wh/km with the 2, 4, 6, 8, and 10-second horizons. It was found 
that the relationship between the average simulation speed and 
the consumption reduction with the different horizon lengths 
was directly proportional, with a linear model fit having an R2 
value of 0.9963. The result demonstrates that it is desirable to 
have as long a horizon as possible in order to maximize the 
energy efficiency. 

 

When using the simple proportional controller instead of the 
NMPC controller, the simulation model was capable of 
performing approximately 350 times faster than real-time. 
Hence, it can be deduced that the controller caused the vast 
majority of the computational effort required in the NMPC 
simulations. The simulations were run with an Intel Xeon E3-

1231 v3 @ 3.4 GHz processor. 
The loss distributions were further examined in the case of 

the 10-second horizon. The majority of the energy consumption 
reductions came from reduced powertrain losses. The average 
powertrain loss reduction was 74 Wh/km or 24 %. Mechanical 
braking losses were reduced between 16 and 77 % depending 
on the cycle. In the original cycles, the highest amount of 
mechanical braking losses was 10.4 times as high as on the 
cycle with the lowest mechanical braking losses. With the 
NMPC, that factor was cut down to less than half (5.0). 
Aerodynamic drag losses were reduced by 4–28 % and battery 
losses by 23–52 % on the 15 cycles. The overall average energy 
consumption reduction achieved with predictive driving was 
9.5 %. The percentage varied between 5.4 % and 17.4 % on the 
15 cycles with the highest savings occurring on the H24S cycle 
and the lowest on the E11 cycle. Overall, the results 
demonstrate that predictive driving can provide worthwhile 
energy efficiency improvements, as the average consumption 
reduction with a 10-second horizon was higher than with the 
design and component-related methods with the exception of 
the heat pump. 

C. Combining predictive driving and the design and 
component-choice methods 

Finally, the cycles were simulated using both the design and 
component-related methods and NMPC simultaneously in 
order to examine the total energy use reductions that could be 
achieved with all possible methods being utilized. A horizon 
length of 10 seconds was used in the NMPC controller in these 
tests. The distribution of losses on the cycles is presented in Fig. 
5. The overall average energy use reduction was 492 Wh/km or 

Fig. 3. NMPC optimization on the E11 cycle with 10-second prediction and control horizons. 
 

Fig. 4. Distributions of the average consumption reductions and simulation 
speeds achieved with different horizon lengths on the 15 driving cycles. 
 

Fig. 5. Distribution of energy losses on the 15 cycles using the design and component-related methods as well as NMPC at -10 °C (left) and 20 °C (right). 
 



34.9 % at -10 °C and 358 Wh/km or 31.4 % at 20 °C. The 
percentage varied between 32.3 and 40.3 % in the cold 
conditions and between 27.4 and 38.1 % in the warm 
conditions. These results indicate that there is significant room 
for improvement in electric bus energy efficiency with the right 
design and component choices as well as driving optimization. 

Certain limitations in this study limited the scope of the 
results. Firstly, while the 15 driving cycles feature various types 
of driving, a higher number of cycles would give a more 
complete picture of the effects of the different energy efficiency 
improvement methods. Furthermore, the target distance for the 
NMPC was obtained from the existing driving cycles, but in 
order to implement the NMPC in a real application, a method 
for determining the target distance dynamically would have to 
be developed along with incorporating safe vehicle-following. 
However, the NMPC implementation in this paper was 
considered to provide a good approximation of real NMPC use, 
as the driving was constrained by the characteristics of the 
original cycle. 

VI. CONCLUSIONS 

The energy consumption of a standard 12-meter long electric 
bus was evaluated based on simulations in different types of 
driving cycles using MATLAB and Simulink. The influence of 
four key design and component choices were investigated in 
detail: aluminum chassis, low-drag body, class C tires, and heat 
pump. The average consumption reductions achieved with the 
four methods at -10 °C were 7.0, 3.2, 5.2, and 12.7 %. At 20 °C, 
the reductions were 8.6, 3.5, 6.4, and 4.5 %. 

The simulation results clearly indicated that the auxiliary 
power has a significant influence on energy consumption. 
Furthermore, the influence is heavily dependent on the driving 
cycle and the ambient temperature. On low-speed driving 
cycles in cold conditions, the heat pump achieved significantly 
higher energy use reductions than the other methods. It can thus 
be concluded that a heat pump is particularly advantageous on 
congested urban routes at low ambient temperatures. 

The consumption reductions achieved with the low-drag 
body were also highly dependent on the driving cycle, as the 
benefit of the reduced aerodynamic drag is speed-dependent. 
On high-speed cycles, the low-drag body was able to reduce the 
energy consumption by a similar amount as the low-rolling-
resistance tires and the aluminum chassis. 

On the other hand, the class C tires were shown to be the most 
robust way of reducing the consumption. The driving cycle 
dependence of the benefit of the class C tires was demonstrated 
to be minimal. The aluminum chassis achieved higher energy 
use reductions than the low-rolling-resistance tires. However, 
there was also higher variation in the consumption reductions. 
The lighter chassis was found to be particularly advantageous 
in aggressive driving cycles. Hence, it can be concluded that an 
aluminum chassis makes the energy consumption more robust 
to variations in the driving aggressiveness. 

A novel NMPC problem formulation was presented for 
minimizing the energy consumption of an electric city bus. A 
novel method for exploiting hyperbolic tangent in order to 
ensure continuous model and problem formulations in the 

NMPC was shown. The energy consumption reductions 
achievable with predictive driving were examined with 
simulations using the devised NMPC algorithm. Ten-second 
prediction and control horizons were shown to achieve an 
average consumption reduction of 9.5 % at -10 °C. The 
relationship between the computational speed of the NMPC 
algorithm and the energy use reductions was found to be 
directly proportional. 

Finally, all of the methods, including the NMPC predictive 
driving and the design and component-choice related methods, 
were used simultaneously in order to observe how much the 
energy consumption of electric buses could be reduced in total. 
It was found that the consumption could be reduced by 32 to 40 
% at -10 °C and by 27 to 38 % at 20 °C. Overall, the results 
clearly indicate that there is substantial room for improvement 
in the energy efficiency of electric city buses. Furthermore, 
consideration must be given for the type of route the bus will be 
operated on when designing an electric bus so that the most 
effective consumption reduction methods can be employed. 

Future work is required to better understand the lifecycle 
costs of the proposed energy efficiency improvement methods. 
Additional methods could also be considered. Further research 
is needed on the NMPC controller in order to make it viable in 
real use. A method for dynamically calculating the target 
distance needs to be devised. Safe vehicle-following should 
also be implemented. The controller could then be tested in a 
real application. The sensitivity of the effectiveness of the 
controller to uncertainty factors could be investigated as well. 
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