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Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and
is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present
in large collision systems. With the recent observations of collective behavior of produced particles in small
system collisions, measurements of the modification of charmonium in small systems have become increasingly
relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision
systems, p + p, p + Al, p + Au, and 3He +Au, at

√
sNN = 200 GeV. The results are presented in the form of

the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared
to the scaled yield in p + p collisions. We examine the rapidity, transverse momentum, and collision centrality
dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target
sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for
p + Au and 3He +Au. However, for 0%–20% central collisions at backward rapidity, the modification factor for
3He +Au is found to be smaller than that for p + Au, with a mean fit to the ratio of 0.89 ± 0.03(stat)±0.08(syst),
possibly indicating final state effects due to the larger projectile size.

DOI: 10.1103/PhysRevC.102.014902

I. INTRODUCTION

The cross section for production of charmonium in proton
collisions with heavy nuclei is strongly modified relative to
that in p + p collisions. The effects that cause this modifica-
tion are often referred to as cold nuclear matter (CNM) effects
because of the longstanding presumption that the energy
density and temperature produced in the collision of a single
proton with a nucleus were not sufficient to form a deconfined
quark-gluon plasma, as produced in ultrarelativistic heavy
ion collisions at the BNL Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC). A
major motivation for this work is to study CNM effects
that can modify charm production in p + A collisions, which
include modification of the nuclear-parton-distribution func-
tions (nPDFs) in a nucleus [1,2], initial state parton energy
loss [3], breakup of the forming charmonium in collisions
with target nucleons [4,5], coherent gluon saturation [6,7], and
transverse momentum broadening [8]. These mechanisms are
generally expected to act in the early stages of the collision,
and effect either the production rates of charm quarks or
their propagation through the nucleus. All of these processes
are strongly (and differently) dependent on the rapidity and
transverse momentum of the produced charmonium, and the
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collision energy. They are therefore best studied using p + A
data covering the broadest possible range of collision energy,
rapidity and transverse momentum.

At RHIC, p + p, d + Au, p + Au, 3He +Au and p +
Al collisions have been studied at

√
sNN = 200 GeV. The

PHENIX experiment published data on J/ψ production in
d + Au collisions over the rapidity intervals 1.2 < |y| < 2.2
and |y| < 0.35 [9,10]. PHENIX also reported measurements
of the ψ (2S) in small collision systems, first with nuclear
modification in d + Au collisions (|y| < 0.35) [11], followed
by measurements of the ratio of ψ (2S) to J/ψ in p + Al,
p + Au and 3He +Au collisions at

√
sNN = 200 GeV (1.2 <

|y| < 2.2) [12]. The STAR collaboration has reported J/ψ
nuclear modification data for d + Au collisions (|y| < 1) [13].

At the LHC, nuclear effects in p + Pb collisions have been
studied at

√
sNN = 5.02 TeV. The ALICE collaboration has

reported data for J/ψ [14,15] and ψ (2S) [16,17] (−4.46 <

y < −2.96 and 2.03 < y < 3.53). The LHCb collaboration
has reported J/ψ [18] and ψ (2S) data [19] (−5.0 < y <

−2.5 and 1.5 < y < 4.0). The CMS collaboration has re-
ported J/ψ [20] and ψ (2S) [21] data (−2.4 < y < 1.93 and
pT > 4 GeV/c). The ATLAS collaboration has reported J/ψ
[22] and charmonium [23] data (|y| < 2 and pT > 8 GeV/c).
These measurements show a significant energy, rapidity, and
pT dependence of the modification of charmonia production
compared to the scaled p + p results.

The assumption that effects due to soft particles produced
in the collision are not important in p or d + A collision
at colliders was called into question by the observation of
strong suppression of the ψ (2S) relative to the J/ψ in central
d + Au collisions [11], and then in p + Pb collisions [16].
Because CNM effects on the production of charm quarks and
their transport through the nucleus are expected to affect both
states similarly, they do not appear to be able to explain this
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FIG. 1. Side view of the PHENIX detector in 2014 and 2015.

observation. However, it can be reproduced by the co-mover
break up model [24], where charmonium is dissociated by
interactions with produced particles in the final state, which
naturally gives a larger suppression effect on the much more
weakly bound ψ (2S). The observation of flow-like behavior
in p + Pb collisions at LHC (see for example [25]) and later
in d + Au collisions at RHIC [26,27] suggested that a quark-
gluon plasma of small size may be formed in high energy
collisions of these light systems. This led to the application
of transport models to p + Pb and d + Au data, which were
originally developed for charmonium production in heavy ion
collisions [28,29]. A plasma phase in these small collision
systems gives different suppression between the charmonia
states and allows a description of the data. In the case of most
central midrapidity d + Au collisions at

√
sNN = 200 GeV,

additional suppression beyond CNM effects has been pre-
dicted of approximately 20% for the J/ψ , and 55% for the
ψ (2S) [28], in good agreement with the data [9,11].

In 2014 and 2015, RHIC provided collisions of p + Al,
p + Au, and 3He +Au for a systematic study of small sys-
tems. A comparison of flow data from p + Au, d + Au, and
3He +Au with hydrodynamic models found that the data were
all consistent with hydrodynamic flow in the most central
collisions [30–32]. An obvious question is whether increased
energy density provided by the 3He projectile in comparison
to the proton produces any observable effect on charmonium
modification in collisions with a Au target.

In this paper we present PHENIX measurements of inclu-
sive J/ψ production in p + Al, p + Au, and 3He +Au col-
lisions at

√
sNN = 200 GeV. The inclusive J/ψ cross section

includes feed-down from ψ (2S) and χc states, and a smaller
contribution from B-meson decays. The results are directly
compared to p + p collisions at the same center of mass
energy by calculating the nuclear modification factor RAB.

The J/ψ data are presented as a function of pT , rapidity, and
centrality and are compared to theoretical models.

II. EXPERIMENTAL SETUP

The PHENIX detector [33] comprises two central arm
spectrometers at midrapidity and two muon arm spectrometers
at forward and backward rapidity. The detector configuration
during the data taking in 2014 and 2015 is shown in Fig. 1.
The data presented here are from J/ψ → μ+μ− decays
recorded with the muon arm spectrometers. The muon spec-
trometers have full azimuthal acceptance, covering −2.2 <

η < −1.2 (south arm) and 1.2 < η < 2.4 (north arm), where
the forward arm has a slightly larger acceptance than the
backward arm. For dimuons, the analysis is restricted to 1.2 <

|y| < 2.2 in both arms. Each muon arm comprises a forward
silicon vertex tracker (FVTX), followed by a hadron absorber
and a muon spectrometer.

The FVTX [34] is a silicon detector designed to measure a
precise collision vertex [also constrained by the silicon vertex
tracker (VTX) at midrapidity], and to provide precise tracking
for charged particles entering the muon spectrometer before
undergoing multiple scattering in the hadron absorber. The
FVTX was not used in this inclusive J/ψ analysis, because the
acceptance is reduced when requiring muon arm tracks that
match tracks in the FVTX. Following the FVTX is the hadron
absorber, composed of layers of copper, iron, and stainless
steel, corresponding to 7.2 nuclear interaction lengths (λI ).
The absorber suppresses hadrons in front of the muon arm
by a factor of approximately 1000, thus significantly reducing
hadronic background for muon based measurements.

Each of the muon spectrometers is composed of a muon
tracker (MuTr) embedded in a magnetic field followed by a
muon identifier (MuID). Each MuTr comprises three stations
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of cathode strip chambers, inside a magnet with a radial field
integral of

∫
B · dl = 0.72 T m. It provides a momentum

measurement for charged particles. Each MuID is composed
of five layers (referred to as gap 0–4) of steel absorber [4.8
(5.4) λI for south (north) arm] and two planes of Iarocci tubes.
This enables the separation of muons and hadrons based on
their penetration depth at a given reconstructed momentum.
The MuID in each arm is also used to trigger events containing
two or more muon tracks per event, called a dimuon trigger,
and each muon track is required to have at least one hit in
either gap 3 or gap 4. A more detailed discussion of the
PHENIX muon arms can be found in Refs. [35,36].

The beam-beam counters (BBC) are used to determine the
collision vertex position along the beam axis (zBBC) with a
resolution of roughly 2 cm in p + p collisions. Each BBC
comprises two arrays of 64 quartz Čerenkov detectors lo-
cated at z = ±144 cm from the nominal interaction point,
and has an acceptance covering the full azimuth and 3.1 <

|y| < 3.9. They also provide a minimum bias (MB) trigger
by requiring at least one hit in each BBC. The BBC trigger
efficiency, determined from the Van der Meer scan technique
[37], is 55% ± 5% for inelastic p + p events and 79% ± 2%
for events with midrapidity particle production [38,39]. In
p + Al, p + Au, and 3He +Au collisions, charged particle
multiplicity in the BBC in the Au/Al-going direction (−3.9 <

y < −3.1) is used to categorize the event centrality. The BBC
trigger efficiency is 72% ± 4%, 84% ± 3%, and 88% ± 4%
of inelastic p + Al, p + Au, and 3He +Au collisions, respec-
tively.

A Glauber model, combined with a simulation of the BBC
response, is used to relate charged particle multiplicity in the
BBC to parameters that characterize the collision centrality, as
described in [39]. The analysis produces the average number
of nucleon-nucleon collisions in each centrality category. It
also produces centrality dependent BBC bias correction fac-
tors which account for the correlation between BBC charge
and the presence of a hard scattering in the event, and are
applied as a multiplicative correction on invariant yields.
Table I shows the values of 〈Ncoll〉 and BBC bias correction
factor from this analysis.

III. DATA ANALYSIS

A. Data set

The data sets used in this analysis are 3He +Au data col-
lected in 2014, and p + p, p + Al, and p + Au data collected
in 2015. All data sets were recorded at a center of mass energy√

sNN = 200 GeV. The events considered here are triggered
by the dimuon trigger and are required to have a vertex
within ±30 cm of the center of the interaction region. The
corresponding integrated luminosity is 47 pb−1 for p + p,
590 nb−1 for p + Al, 138 nb−1 for p + Au, and 18 nb−1 for
3He +Au collisions.

B. J/ψ signal extraction

Yields of J/ψ mesons were extracted from the invariant
mass spectra constructed from combinations of unlike-sign
tracks that are identified as muons (see Fig. 2). The mass

TABLE I. 〈Ncoll〉 and BBC bias correction factors for different
centrality bins of p+Al, p+Au and 3He +Au collisions.

Collision system Centrality 〈Ncoll〉 Bias factor

p+Al 0%–20% 3.4 ± 0.3 0.81 ± 0.01
20%–40% 2.4 ± 0.1 0.90 ± 0.02
40%–72% 1.7 ± 0.1 1.04 ± 0.04
0%–100% 2.1 ± 0.1 0.80 ± 0.02

p+Au 0%–5% 9.7 ± 0.6 0.86 ± 0.01
5%–10% 8.4 ± 0.6 0.90 ± 0.01

10%–20% 7.4 ± 0.5 0.94 ± 0.01
0%–20% 8.2 ± 0.5 0.90 ± 0.01
20%–40% 6.1 ± 0.4 0.98 ± 0.01
40%–60% 4.4 ± 0.3 1.03 ± 0.01
60%–84% 2.6 ± 0.2 1.00 ± 0.06
0%–100% 4.7 ± 0.3 0.86 ± 0.01

3He +Au 0%–20% 22.3 ± 1.7 0.95 ± 0.01
20%–40% 14.8 ± 1.1 0.95 ± 0.01
40%–88% 5.5 ± 0.4 1.03 ± 0.01
0%–100% 10.4 ± 0.7 0.89 ± 0.01
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FIG. 2. Invariant mass distributions of unlike-sign and like-sign
dimuons in p + p and integrated centrality of p + Au collisions in
the south muon arm. Fit results to extract the J/ψ signal are also
presented.
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spectra contain muon pairs from J/ψ decays, as well as
significant contributions from combinations of real muons not
from a J/ψ , as well as misidentified hadrons. Details about
the dimuon selection to reduce the background contributions
are described in [40,41].

The mass spectrum constructed from like-sign tracks was
used to estimate the background due to random combina-
tions of kinematically unrelated tracks. A modified Hagedorn
function was used to represent the correlated background due
to kinematically related tracks. For J/ψ signal extraction,
crystal-ball functions [42] were used to describe the J/ψ
and ψ (2S) peaks, similar to the previous analysis in small
collision systems [12]:

f (m) = Nexp

(
− (m − m̄)2

2σ 2

)
, for

m − m̄

σ
> −α,

f (m) = NA

(
B − (m − m̄)2

σ

)−n

, for
m − m̄

σ
� −α,

A =
(

n

|α|
)n

exp

(
−|α|2

2

)
, B = n

|α| − |α|,

(1)

where σ and m̄ are the width and mass centroid of the Gaus-
sian component of the line shape and α and n are parameters
describing the tail.

The crystal-ball shape and tail parameters for the ψ (2S)
were fixed with respect to the J/ψ parameters, using the PDG
database value [43] for the energy difference and a width
broadening factor taken from simulations. In cases where the
statistical precision of the data led to poor definition of the
J/ψ signal shape, the mass and width of the J/ψ peak were
fixed and a systematic uncertainty was assigned to the yield
based on tests made with higher statistics cases. The statistical
uncertainties related to the extraction of the J/ψ yields were
determined from a covariance matrix in the fitting procedure.

C. Background estimation

The random combinatorial background in the unlike-sign
mass spectrum was approximated by combining all like-sign
tracks from the same events. There is a small correlated
contribution to the like-sign pairs from jets and open bottom;
however, compared to the other background sources, this is
small.

The correlated background comprises unlike-sign muon
pairs from charm, bottom, jets, and Drell-Yan. Because the
correlated background cannot be estimated independently
from the data, it must be fitted to the mass spectrum when
the J/ψ yield is extracted. Fitting the correlated background
effectively compensates for the small correlated component
included in the like-sign estimation of the combinatorial back-
ground.

We describe the correlated background using a modified
Hagedorn function [40,44,45]:

d2N

dmμμd pT
= p0[

exp
( − p1mμμ − p2m2

μμ

) + mμμ/p3
]p4

,

(2)
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FIG. 3. Acceptance and reconstruction efficiency as a function
of pT for dimuons from J/ψ decays in p + p collisions. GEANT4
simulations evaluate detector acceptance×efficiency simultaneously.

where mμμ is the reconstructed J/ψ mass, p0 is a normaliza-
tion parameter, p4 is the high mass tail parameter, and p1, p2,
and p3 are additional fit parameters. It was found during the
analysis that when fitting mass spectra with poor statistical
precision, the shape of the correlated background was not
well defined. This led to a contribution of less than 10% to
the point-to-point uncertainty in the J/ψ yields. Therefore,
the shape of the correlated background as a function of pT

(determined by p1, p2, and p3) was constrained using simula-
tion results based on a detailed study of dimuon mass spectra
[9,40,46,47]. A systematic uncertainty on the J/ψ yield was
assigned for this procedure by refitting the data with various
combinations of correlated background parameters left free.

D. Efficiency correction

1. Acceptance and reconstruction efficiency

The study of acceptance and reconstruction efficiency
of dimuons from J/ψ decays has been performed using a
GEANT4-based full detector simulation [48]. In this simu-
lation, the MuTr and MuID detector efficiencies are set to
values determined from the data. An emulator of the dimuon
trigger response is included in the simulation to account
for the trigger efficiency. As these efficiencies depend on
the instantaneous luminosity being sampled, each data set is
divided into three groups with different beam interaction rates,
and corrected yields with separate corrections are compared.
A systematic uncertainty is assigned to the extracted J/ψ
cross sections times branching fraction to μ+μ− to reflect the
differences, see Sec. III G for details.

The PYTHIA8 event generator package [49] is utilized to
generate J/ψ events used for the full GEANT4 detector simu-
lation. To take into account effects from background hits, the
simulated hits of PYTHIA8 J/ψ events are embedded into real
data events, separated into centrality classes of the collision
system. The track reconstruction is then run on the data with
embedded simulated hits to examine the effects of the under-
lying event on the reconstruction efficiency. Figure 3 shows
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the acceptance and reconstruction efficiency for the J/ψ as a
function of pT in p + p collisions. The difference between the
two muon arms is mainly from different inefficient detector
areas. There is little multiplicity effect on the reconstruction
efficiency in small collision systems, the relative difference
between 0%–20% and 40%–88% centrality bins at backward
rapidity in 3He +Au collisions is about 5%.

E. Invariant yield and nuclear modification factor

The invariant yield of dimuons from J/ψ decays in a given
rapidity and centrality bin for the integrated pT range is

Bll
dN

dy
= 1

�y

cBBC

εAeεtrig

NJ/ψ

Nevt
, (3)

where Bll is the branching ratio of J/ψ to dimuons, �y is the
width of the rapidity bin, NJ/ψ is the number of J/ψ obtained
from the fit procedure, cBBC is the BBC bias correction factor
described in Table I, Nevt is the number of sampled MB
events in the given centrality bin, εAe is the J/ψ acceptance
and reconstruction efficiency, and εtrig is the dimuon trigger
efficiency.

The invariant yield in a y, pT , and centrality bin is

Bll

2π pT

d2N

dyd pT
= 1

2π pT �pT �y

cBBC

εAeεtrig

NJ/ψ

Nevt
, (4)

where �pT is the width of the pT bin, and in this case
Nevt is the number of events in the centrality bin. Based on
the invariant yields calculated with Eq. (4), the J/ψ nuclear
modification factor RAB for a given y, pT , and centrality bin
is formed to quantify nuclear effects in p + Al, p + Au, and
3He +Au collisions. The RAB is defined as

RAB = 1

〈Ncoll〉
d2NAB/dyd pT

d2N pp/dyd pT
, (5)

where d2NAB/dyd pT is the J/ψ invariant yield for a certain
centrality bin of A + B collisions, d2N pp/dyd pT is the corre-
sponding J/ψ invariant yield for p + p collisions, and 〈Ncoll〉
is the mean number of binary collisions for that centrality bin
in A + B collisions.

F. 〈p2
T 〉 calculation

The 〈p2
T 〉 values for various centrality bins in all collision

systems have been calculated over the full measured pT range
(0 < pT < 7 GeV/c). We do not extrapolate the pT distri-
bution beyond 7 GeV/c. A previous study [10] determined
that extrapolating to infinite pT increased the 〈p2

T 〉 values by
3%. The value of 〈p2

T 〉 is calculated numerically using the
following formula:

〈
p2

T

〉 =
∑N

i=0 p2
T,iwi∑N

i=0 wi

, (6)

where pT,i is the center of the ith pT bin, and wi is the weight
factor proportional to the J/ψ invariant yield in the pT bin

wi = pT,id pT,i

(
Bll

2π pT

d2N

dyd pT

)
i

, (7)

where d pT,i is the width of the bin.

TABLE II. Fractional systematic uncertainties on the signal ex-
traction in p+p, p+Al, p+Au, and 3He +Au collisions at forward
(north arm) and backward (south arm) rapidity.

System Source Forward Backward Type

p+p Corr. bkg. 1.4% 1.8% B
p+Al 1.4% 1.8% B
p+Au 1.9%–2.7% 1.4%–2.8% B
3He +Au 2.3%–2.4% 1.4%–2.8% B
p+p Comb. bkg. <1.0% <1.0% B
p+Al 1.0% 4.4% B
p+Au 1.0% 1.0% B
3He +Au 1.0% 2.7% B
p+p Signal shape – – B
p+Al 1.1% 1.1% B
p+Au 0%–1.5% 0%–2.9% B
3He +Au 1.5% 2.9% B

G. Systematic uncertainties

In the measurements we present in the next section, Type
A uncertainties are uncorrelated point to point uncertainties,
and are dominated by the statistical precision of the data.
Type B systematic uncertainties are correlated point to point
uncertainties. Type C global uncertainties are fractional un-
certainties that apply to all measurements uniformly.

1. Signal extraction

As discussed in Sec. III C, the modified Hagedorn function
in Eq. (2) was used to describe the correlated background. Ini-
tial parameters were estimated based on the previous measure-
ment of dimuon mass spectra [40,46], and two parameters, p0

and p4, were left free to describe dimuon mass distributions
in the data more properly. For the systematic uncertainty
study, additional parameters, p1, p2, and p3, in the modified
Hagedorn function were also freed in the fit procedure. We
observe 1.4%–2.8% variations of J/ψ counts depending on
rapidity, pT , and centrality.

To describe the combinatorial background shape, the mod-
ified Hagedorn function in Eq. (2), used for the correlated
background component, was also used to fit like-sign dimuon
mass distributions. The effect of statistical fluctuations in the
like-sign dimuon mass distributions was studied by varying
the shape based on the statistical uncertainties of the fit
parameters. We observe 1.0%–4.4% variations of J/ψ counts
depending on rapidity, pT , and centrality.

The uncertainty related to fixing the J/ψ mass centroid
and width was evaluated by directly comparing the difference
in yields with the parameters free versus fixed, which ranges
from 1.1%–2.9% uncertainty.

Table II lists all Type B uncertainties arising from the J/ψ
signal extraction.

2. Acceptance and efficiency correction

The acceptance and reconstruction efficiency correction
and trigger efficiency correction are obtained from simulation,
so discrepancies between the data and calculations can be a
source of systematic uncertainty. The discrepancies can be
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due to a variation in the detector performance during the
data taking period and/or inaccuracy of detector geometry
and dead channel maps in the simulation. To quantify these
effects, we divide each data set into three groups of different
detector efficiency, based on the beam instantaneous lumi-
nosity and calculated invariant yields with separate correction
factors. In this comparison we observe 1.5%–5.0% variations,
depending on rapidity and data set, and assign this variation
as a systematic uncertainty. In addition, we compare the
azimuthal angle φ distribution of tracks in the MuTr between
the data and simulation, and assign a 2.5%–6.0% systematic
uncertainty depending on rapidity and data set.

In the simulation procedure, PYTHIA8 was used to generate
J/ψ events, and initial J/ψ rapidity and pT shapes in PYTHIA8
are tuned to match the measurements in p + p and d + Au
collisions [9,10,41]. These two different assumptions of the
distributions are used as bounds to estimate the sensitivity of
this analysis to the shapes of these distributions in p + Al,
p + Au, and 3He +Au collisions, which are not known a pri-
ori. The variation of acceptance and reconstruction efficiency
between two sets of rapidity and pT distributions is less than
2%, so we assigned a 2% conservative systematic uncertainty.

The uncertainty in the dimuon acceptance caused by lack
of knowledge of the J/ψ polarization was studied as described
in [41]. Because there is no precise measurement of J/ψ
polarization, a maximum polarization value (±1 in the helicity
frame) was considered to study the systematic uncertainty.
The variation of dimuon acceptance becomes larger as J/ψ
pT decreases, and 9%–20% systematic uncertainties are as-
signed depending on pT . We assumed that the J/ψ polar-
ization is not significantly modified in p + Al, p + Au, and
3He +Au collisions, and this uncertainty is canceled in the
RAB calculation. This assumption was also made in a similar
PHENIX analysis for J/ψ nuclear modification in d + Au
collisions [10].

To evaluate a systematic uncertainty on the dimuon trig-
ger efficiency, the single muon trigger efficiency in the MB
triggered data obtained with a large number of muon sam-
ples was compared with the emulated single muon trigger
efficiency determined from simulation. This difference was
propagated to the uncertainty in the dimuon trigger efficiency
based on a previous study [40], and a 1.0%–4.8% systematic
uncertainty was assigned. The Type B systematic uncertainties
related to acceptance and efficiency correction are shown
in Table III.

3. Multiple interaction

Due to the high instantaneous beam luminosity, particu-
larly in p + p and p + Al runs, it is possible to have mul-
tiple inelastic collisions from a single beam crossing, which
can affect the invariant yield calculation. To investigate this
effect, the variation among invariant yields in three groups
of different instantaneous luminosity for each data set was
studied, revealing a yield variation smaller than 5%. However,
the instantaneous luminosity dependence of the acceptance
and efficiency correction is already included as a systematic
uncertainty, and so no additional systematic uncertainty is
assigned.

TABLE III. Fractional systematic uncertainties on the accep-
tance and efficiency correction in p+p, p+Al, p+Au and 3He +Au
collisions at forward (north arm) and backward (south arm) rapidity.

System Source Forward Backward Type

p+p Run variation 4.0% 4.7% B
p+Al 2.8% 3.3% B
p+Au 1.6% 3.5% B
3He +Au 1.5% 5.0% B
p+p φ matching 5.8% 5.0% B
p+Al 3.6% 3.3% B
p+Au 3.4% 4.0% B
3He +Au 3.1% 2.5% B
all Initial shape 2.0% 2.0% B
all J/ψ pol. 10%–20% 9%–20% B
p+p Trigger eff. 1.0%–1.7% 1.0%–2.6% B
p+Al 1.0%–1.8% 2.0%–4.6% B
p+Au 1.0%–1.7% 1.0%–4.8% B
3He +Au 1.0%–2.4% 1.0%–2.4% B

4. 〈p2
T 〉

The 〈p2
T 〉 uncertainty is calculated based on the systematic

uncertainty of the invariant yield as a function of pT . The
systematic uncertainties are mostly point-to-point correlated,
and we assumed that the uncertainties in different pT bins are
linearly correlated. The upper and lower limits of invariant
yield in each pT bin are taken to calculate the upper and lower
limits of 〈p2

T 〉.

5. 〈Ncoll〉 and BBC efficiency

The systematic uncertainties on the BBC efficiency and
the determination of 〈Ncoll〉 in p + Al, p + Au, and 3He +Au
collisions described in Table I are evaluated by following the
procedure developed in the previous PHENIX analyses of d +
Au data [39]. These systematic uncertainties are considered
as Type C (Type B) systematic uncertainties in rapidity and
pT (centrality) dependence results. The systematic uncertainty
on the BBC efficiency in p + p collisions obtained in [38] is
10.1%, and this systematic uncertainty is considered as a Type
C systematic uncertainty.

IV. RESULTS

In this section, we present invariant yield, nuclear mod-
ification factor, and 〈p2

T 〉 results at forward and backward
rapidity. There have been significant changes to the muon
arm configuration and to the simulation framework since
the d + Au data set was recorded. Figure 4 shows the J/ψ
invariant yield as a function of pT in p + p collisions at√

s = 200 GeV at forward and backward rapidity, where bars
(boxes) represent point-to-point uncorrelated (correlated) un-
certainties. The global systematic uncertainty is 10.1%. The
ratio of invariant yields between the forward and backward
rapidity regions is presented in the bottom panel, where the
systematic uncertainty due to the J/ψ polarization cancels
in the ratio. The invariant yields at forward and backward
rapidity are consistent within the systematic uncertainties,
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√
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confirming that the detector efficiency is well understood in
p + p collisions.

Plots and tables of invariant yield are presented for the
other collision systems in the Appendix. We focus here on
the nuclear modification factors.

Figure 5 shows the rapidity dependence of the nuclear
modification factor for 0%–100% centrality in p + Al, p +
Au, and 3He +Au collisions. The rapidity dependence of the
nuclear modification for different centrality classes is shown
for p + Al in Fig. 6, for p + Au in Fig. 7, and for 3He +Au in
Fig. 8.

Figures 9 and 10 show the nuclear modification factor
as a function of pT for 0%–100% p + Al, p + Au, and
3He +Au collisions at backward and forward rapidity. The
pT dependence in different centrality classes is presented
for p + Al in Fig. 11, for p + Au in Figs. 12 and 13, and for
3He +Au in Fig. 14. The modification as a function of pT in
0%–20% central collisions is compared between p + Al and
p + Au in Fig. 15. Similar comparisons where the target is
identical, but the projectile is different are shown for 0%–20%
central collisions comparing d + Au and p + Au in Fig. 16
and comparing 3He +Au and p + Au in Fig. 17.

The pT integrated nuclear modification factor for p + Al,
p + Au and 3He +Au as a function of 〈Ncoll〉 is shown at
both forward and backward rapidity in Figs. 18 and 19. A
comparison between p + Al, p + Au and 3He +Au modifi-
cations when plotted as a function of the average nuclear
thickness sampled by the charmonium production is presented
in Fig. 20. Figure 21 shows the mean pT squared values for the
three systems p + Al, p + Au, and 3He +Au as a function of
〈Ncoll〉 for pT < 7 GeV/c at forward and backward rapidity.

V. DISCUSSION

A. Rapidity dependence

The rapidity dependence of the modification for 0%–100%
centrality, seen in Fig. 5, shows only weak modification for
p + Al collisions. For both p + Au and 3He +Au significant
suppression is seen at forward rapidity, with less suppres-
sion at backward rapidity. The modifications for p + Au and
3He +Au are very similar.

The rapidity dependence in three centrality bins for p + Al
collisions, seen in Fig. 6, shows only weak modification in all
centrality bins, both at forward and backward rapidity.

The p + Au data presented here contain finer centrality
binning for central collisions than was previously available
from d + Au. The rapidity dependence in six centrality bins
for p + Au collisions, seen in Fig. 7, shows a factor of more
than two suppression at the most forward rapidity in the
0%–5% centrality bin, and a marked increase in suppression
with increasing rapidity in the forward direction. At backward
rapidity, the modifications in all centrality bins show little
centrality dependence, all being somewhat suppressed.
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FIG. 5. Nuclear modification factor of inclusive J/ψ as a function of rapidity for 0%–100% p + Al (a), p + Au (b), and 3He +Au
(c) collisions. Bars (boxes) around data points represent point-to-point uncorrelated (correlated) uncertainties. The theory bands are discussed
in the text.
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The rapidity dependence in three centrality bins for
3He +Au collisions is shown in Fig 8. In comparison with
the p + Al results shown in Fig. 6 for the 0%–20% centrality
bin, which show little modification, the 3He +Au results
show a suppression at both forward and backward rapidity.
The modification becomes less pronounced in the 20%–40%
centrality range, and approaches unity for the most peripheral
collisions within uncertainties.

The rapidity dependence of the 0%–100% centrality data
is compared in Fig. 5 with model calculations from Vogt
[50,51] and Shao et al. [52–55] showing the effect of
nPDF modifications using the Eskola-Paakkinen-Paukkunen-
Salgado (EPPS16) [1] next-to-leading order (NLO) and/or
nuclear coordinated theoretical and experimental tests of
quantum chromodynamics (nCTEQ15) NLO parameteriza-
tions [2]. The Vogt EPPS16 NLO shadowing calculations in
general follow the methods described in [50], while the J/ψ
mass and scale parameters are discussed in [51]. The Shao
et al. model calculations for p + Au collisions are based on
a Bayesian reweighting method which uses J/ψ constraints

from p + Pb data at the LHC [52]. The dominant uncertainty
in the reweighting method is the factorization scale depen-
dence μF of the gluon modification factor RAu

g (x, μF ), where
μF = ξμ0, with μ2

0 = M2 + pT
2 for the J/ψ transverse mass,

and ξ = 0.5, 1, 2 for the factorization scale. The reweighting
however is not applied for lighter 3He and Al nuclei, with
the predictions for these nuclei based on the original method
described in [53–55]. For these predictions, the previous
PHENIX J/ψ measurement in p + p collisions [41] is used as
a baseline. The calculations were performed at all three factor-
ization scales (μ0, 0.5 μ0, and 2 μ0) and provide two different
confidence levels (68% and 90% CL). The uncertainty band
shown is for the 68% CL, and we have taken the envelope of
the uncertainty bands from the calculations at the three scales.

In Fig. 5, the calculations describe the data very well at
forward rapidity for all three collision systems, and for p + Al
at backward rapidity. For p + Au and 3He +Au at backward
rapidity the calculated modifications are too large by roughly
40%. However, the calculations do not contain effects of
nuclear absorption, which is expected to be important at
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FIG. 7. Nuclear modification factor of inclusive J/ψ as a function of rapidity in six centrality bins for p + Au collisions. Bars (boxes)
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backward rapidity at
√

sNN = 200 GeV [4], where the nuclear
crossing time is comparable with the charmonium formation
time. That is not expected to be the case at forward rapidity
at

√
sNN = 200 GeV, or at the rapidities of interest at LHC

energies. Because nuclear absorption is not included in the
model calculations, they should be expected to overpredict the
modification in p + Au and 3He +Au at backward rapidity.

An estimate of the effect of nuclear absorption at back-
ward rapidity can be obtained from a model [5] fitted to
absorption cross sections derived from shadowing corrected
data measured at a broad range of beam energies [4]. The
model assumes that the cc̄ pair size grows linearly with time

until it reaches the size of a fully formed charmonium meson.
Then the absorption cross section depends on the proper
time before the pair escapes the target. The effect of the
modification due to nuclear absorption at backward rapidity
from this model is added to Fig. 5, by folding it into the
shadowing calculation. The results indicate that the measured
modifications are reasonably consistent with shadowing plus
nuclear absorption.

B. pT dependence

The pT dependence for 0%–100% centrality, seen at back-
ward rapidity in Fig. 9 and at forward rapidity in Fig. 10,
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FIG. 18. Nuclear modification factor of J/ψ as a function of 〈Ncoll〉 for p + Al, p + Au, and 3He +Au collisions. Bars (boxes) around data
points represent point-to-point uncorrelated (correlated) uncertainties.
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FIG. 19. Nuclear modification factor of J/ψ as a function of 〈Ncoll〉 for p + Au collisions compared with the transport model. Bars (boxes)
around data points represent point-to-point uncorrelated (correlated) uncertainties.

shows little modification for p + Al but shows strong, and
similar, pT dependence for p + Au and 3He +Au. These data
are also compared with the calculations of Shao et al. [52].
As for the rapidity dependence, the calculations describe the
forward rapidity data well for all three collision systems and
for the backward rapidity p + Al. But the backward rapidity
modification for p + Au and 3He +Au is overpredicted. Sig-
nificant nuclear absorption is expected at backward rapidity
and low pT , and calculations that do not include it should
overpredict the modification there.

The p + Au modifications vs pT , seen at forward rapidity
in Fig. 13 for all centrality bins, shows very strong dependence
on centrality. The modification falls to 0.35 at low pT for the
5% most central collisions. At backward rapidity, as shown in
Fig. 12, the suppression is considerably weaker at low pT for
the most central collisions, but it changes more slowly with
centrality. The result is that for collision centralities above
20% the behavior of the modification versus pT becomes
rather similar at forward and backward rapidity. The pT

dependence of the nuclear modification factors in p + Al and
3He +Au collisions are shown in Figs. 11 and 14, respectively.

We see little modification across all three centrality ranges of
p + Al collisions, as was the case for the rapidity dependent
results shown in Fig. 6. The p + Al nuclear modification
factor for the 6–7 GeV/c data point seen in Fig. 9(a) is quite
low. However, the 6 GeV/c (5–7 GeV/c bin) points for the
three backward rapidity centrality bins shown in Fig. 11 do
not exhibit the same behavior. We have therefore interpreted
this last data point as being a deviation from the trend. In 0%–
20% 3He +Au collisions, a suppression is observed at both
forward and backward rapidity, and the modification becomes
weaker in higher pT . The modification is strongest in most
central collisions, and the RAB approaches unity for the most
peripheral collisions. As seen with p + Al, the last data point
(5–7 GeV/c bin) for 3He +Au is also quite low. Likewise, we
have interpreted this behavior as being a deviation from the
trend, considering the measurements shown in Fig. 9(c) do
not produce a similar effect.

The theory predictions shown in Figs. 12 and 13 are
the results of adapted transport models provided by Du and
Rapp, based on the original transport model by Zhao and
Rapp for A + A collisions [56]. The theory was extended for
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FIG. 20. Nuclear modification factor of J/ψ as a function of the mean target thickness sampled by charmonium production in the
centrality bin, for p + Al, p + Au and 3He +Au collisions. Bars (boxes) around data points represent point-to-point uncorrelated (correlated)
uncertainties.
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points represent point-to-point uncorrelated (correlated) uncertainties.

d + A collisions [28] and most recently for p + A collisions
[57]. The transport model includes a fireball generated by
a Monte Carlo Glauber model [58] in addition to shadow-
ing from Eskola-Paukkunen-Salgado (EPS09) [59] NLO, a
broadening parameter [60], and an absorption cross section
constrained by PHENIX d + Au data [11]. The J/ψ produc-
tion cross section is described in [57], and charged particle
multiplicity [61], hadronic dissociation rates [28], and open
charm production cross sections [57] are also considered.
The calculations reproduce the data at high pT , but gen-
erally underpredict the suppression at low pT at forward
rapidity. Because the modification of J/ψ production in the
transport model is not very strong at forward rapidity, the
suppression there is dominated by the EPS09 shadowing
contribution.

In a previous PHENIX measurement of charged particle
multiplicity [61], it was found that twice as many particles
are produced in 0%–20% central p + Au collisions than in
0%–20% central p + Al collisions, and the multiplicity in
0%–20% 3He +Au collisions is about a factor of two larger
than in 0%–20% p + Au collisions. To look for evidence of an
effect from this, Figs. 15, 16, and 17 show direct comparisons
between the modifications in the 0%–20% centrality bin of
different projectile (p/d/3He) and target sizes (Al/Au). The
ratio of nuclear modification factors is included in the bot-
tom panel. In the comparisons among p + Al, p + Au, and
3He +Au collisions, all systematic uncertainties from each
collision system are included except the initial shape uncer-
tainty, which cancels upon taking the ratio, and all systematic
uncertainties stemming from the p + p system cancel. In the
comparison between p + Au and d + Au, the two systems do
not share the same p + p reference, therefore all systematic
uncertainties are included in the ratio. Note the d + Au data
set was recorded in 2008, while the p + Au data was recorded
in 2015 with a new detector. Simulations for d + Au were
also performed using methods that differ from those used
for the new small systems study. For p + Au, d + Au and
3He +Au comparisons, a mean value has been fitted to the
ratios, and the result is shown on the plot together with the
fit uncertainty and the uncertainty from the systematic errors.
The systematic uncertainty was determined by repeating the

fit with all points moved to the upper or lower limits of their
systematic uncertainty.

The comparison in Fig. 15 of 0%–20% p + Al with 0%–
20% p + Au modifications contrasts the weak modification
in central p + Al collisions with the strong modification,
particularly at forward rapidity, in central p + Au collisions.
Figure 15(a) shows p + Au with a nuclear modification factor
of about 0.85 at 6 GeV/c (5–7 GeV/c bin). A drop in
modification at high pT is expected due to shadowing (and
possibly also kT broadening). The comparison in Fig. 16
of 0%–20% p + Au with 0%–20% d + Au modifications
highlights the similarity between the two systems. A fit to the
ratio of d + Au to p + Au at forward rapidity was found to
be 1.13 ± 0.03(stat) ± 0.13(syst) and at backward rapidity is
0.94 ± 0.02(stat) ± 0.07(syst).

In the comparison between 0%–20% p + Au and 0%–20%
3He +Au collisions shown in Fig. 17, the ratio at forward
rapidity is

R3HeAu/RpAu = 0.96 ± 0.03(stat) ± 0.05(syst),

which is consistent with unity. At backward rapidity the ratio
is

R3HeAu/RpAu = 0.89 ± 0.03(stat) ± 0.08(syst).

There may be deviations from the trend in the highest pT bin,
but large statistical uncertainties preclude firm conclusions.
The results are consistent with J/ψ production being reduced
for the 3He projectile, with the backward rapidity ratio having
a probability of 90% of being less than one.

C. 〈Ncoll〉 dependence

The pT integrated modifications as a function of 〈Ncoll〉
in each centrality bin are shown in Fig. 18 for the three
systems p + Al, p + Au and 3He +Au. No scaling with 〈Ncoll〉
is expected between p + Au and 3He +Au, because 3He +Au
will have roughly three times as many collisions as p + Au
in the same centrality class. The 〈Ncoll〉 dependence of the
p + Au modification is shown again in Fig. 19, where it
is compared with the pT integrated modification predicted
by Du and Rapp. The theory calculation shows both the
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CNM baseline and the result of the transport calculations.
At backward rapidity some nuclear absorption is expected.
At forward rapidity, it appears that the CNM effects are not
strong enough to explain the data. However, the model pre-
dicts a suppression beyond CNM effects at backward rapidity
for central collisions of approximately 10%.

Modifications that are due to CNM effects (including
nuclear absorption) would be expected to depend on the
thickness of the target nucleus at the impact parameter of the
nucleon that was involved in the hard process. The nuclear
thickness can be written

TA(rT ) =
∫

ρA(z, rT ) dz, (8)

where ρA(z, rT ) is the density distribution of nucleons in
nucleus A taken from the Woods-Saxon distribution used in
the Glauber model discussed in Sec. II. The parameter z is the
location in the nucleus along the beam direction, and rT is the
transverse distance from the center of the nucleus. TA(rT ) is
the average number of nucleons per unit area at the projectile
nucleon impact parameter rT . To get the average value of TA

sampled for charmonium production within a given centrality
bin, the values of TA(rT ) are weighted by the distribution of
rT values within the centrality bin, to reflect the number of
projectile nucleons having one or more inelastic collisions at
that rT , and additionally by the probability of a hard process
at that rT —which is proportional to TA(rT ).

Figure 20 shows the p + Al, p + Au and 3He +Au modifi-
cations plotted versus 〈TA〉, in each centrality bin. The modifi-
cations seem to fall on a common curve within uncertainties,
as would be expected if they were primarily due to CNM
effects.

The 〈p2
T 〉 values versus 〈Ncoll〉, shown in Fig. 21, fall on a

common curve for all three systems. The 〈Ncoll〉 dependence
is mild, with 〈p2

T 〉 increasing from 3.3 in p + p collisions to
approximately 4.0 in p + Au and 3He +Au collisions. The
〈p2

T 〉 is very similar between forward and backward rapidity,
as was also observed in d + Au collisions [10].

VI. SUMMARY AND CONCLUSIONS

We have presented invariant yields for inclusive J/ψ pro-
duction in p + p, p + Al, p + Au and 3He +Au collisions at√

sNN = 200 GeV, and the corresponding nuclear modifica-
tions for p + Al, p + Au and 3He +Au. The new p + Au re-
sults are found to agree within uncertainties with the previous
PHENIX d + Au results [9].

The p + Al modifications are found to be much weaker at
all centralities than those in p + Au. The 0%–100% centrality
data for p + Al are found to be well described in rapidity and
pT by calculations containing only shadowing effects from
the EPPS16 NLO and nCTEQ15 NLO parametrizations, aside
from slightly underpredicting the modification at 4–6 GeV/c
at forward rapidity.

The 0%–100% centrality p + Au and 3He +Au data are
also compared with calculations based on the EPPS16 NLO
and nCTEQ15 NLO shadowing parametrizations. At forward

rapidity, the calculations describe the p + Au and 3He +Au
modifications well in both rapidity and pT , again with the
exception of slightly underpredicting the modification at 4–6
GeV/c at forward rapidity. At backward rapidity, the calcula-
tions overpredict the modifications. We found that adding the
predicted nuclear absorption modification taken from previ-
ous work to the backward rapidity pT integrated data reduced
the modifications to values consistent with the data.

The ratio of the 3He +Au and p + Au modifications for the
0%–20% centrality bin at forward rapidity is

R3HeAu/RpAu = 0.96 ± 0.03(stat) ± 0.05(syst),

which is smaller but consistent with unity. At backward rapid-
ity it is

R3HeAu/RpAu = 0.89 ± 0.03(stat) ± 0.08(syst).

The results are consistent with a reduction in the modi-
fication for the heavier projectile case. Given the systematic
uncertainty, the backward rapidity ratio has a 90% probability
of being less than 1.0.

For p + Au at forward rapidity, the nuclear modification
vs pT shows very strong centrality dependence, dropping to
approximately 0.35 at low pT in the most central 5% of
collisions. At backward rapidity the suppression is weaker
for central collisions, but it changes more slowly. Comparison
with theory calculations that include EPS09 shadowing and a
final state transport model are able to reproduce the general
shape of the pT dependence at each centrality, but greatly
underpredict the suppression at low pT for central collisions.

The pT integrated modification for p + Au drops steeply
with centrality at forward rapidity, reaching approximately
0.5 for the 5% most central collisions. The modification at
backward rapidity is found to have weak centrality depen-
dence. Because nuclear absorption is evidently important at
backward rapidity, the weak centrality dependence there is
likely due to a trade-off between antishadowing and nuclear
absorption. It was found that plotting the modification vs 〈TA〉
for each centrality bin caused them to fall on a common line
for all three systems, as would be expected if CNM effects
dominate.
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APPENDIX

The invariant yields for all data sets are presented in this
Appendix. Figure 22 shows inclusive J/ψ invariant yield as
a function of rapidity in MB p + p, p + Al, p + Au, and
3He +Au collisions, and the invariant yields in p + Al, p +
Au, and 3He +Au collisions are scaled with 〈Ncoll〉 to compare
with the invariant yield in p + p collisions. In this and the
following figures showing results of invariant yield measure-
ment, the bars (boxes) around data points represent point-to-
point uncorrelated (correlated) uncertainties. Figures. 23, 24,
and 25 show inclusive J/ψ invariant yield as a function of ra-
pidity in different centrality of p + Al, p + Au, and 3He +Au
collisions, respectively. Invariant yields in p + Al, p + Au,
and 3He +Au collisions are scaled with 〈Ncoll〉, and the p + p
result is also presented in each panel. Figures 26, 27, and 28
show inclusive J/ψ invariant yield as a function of pT in dif-
ferent centrality of p + Al, p + Au, and 3He +Au collisions,
respectively.

At pT > 2.5 GeV/c, pT binning was changed for different
data sets depending on statistics as described in Table IV.
When calculating the nuclear modification factor for pT bins
of different �pT from the p + p data, additional fits to the
p + p data were performed to match the pT binning of the
p/3He + A data.
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FIG. 22. J/ψ invariant yield as a function of y in MB p + p, p + Al, p + Au, and 3He +Au collisions. Bars (boxes) around data points
represents point-to-point uncorrelated (correlated) uncertainties. There is also a global uncertainty of 10.1%, 11.5%, 12.1%, and 12.2%
corresponding to p + p, p + Al, p + Au and 3He +Au yields.

014902-18



MEASUREMENT OF J/ψ AT FORWARD AND … PHYSICAL REVIEW C 102, 014902 (2020)

3− 2− 1− 0 1 2 3
y

0

0.5

1

1.5

2

6−10×

d
N

/d
y

ll
B

0%-20%
〉

coll
N〈p+Al/

p+p

(a)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

6−10×

20%-40%
〉

coll
N〈p+Al/

p+p

(b)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

6−10×

40%-72%
〉

coll
N〈p+Al/

p+p

(c)ψInclusive J/
=200 GeVNNs

PHENIX

FIG. 23. J/ψ invariant yield as a function of y in various centrality bins of p + Al collisions. Bars (boxes) around data points represents
point-to-point uncorrelated (correlated) uncertainties. There is also a global uncertainty of 13.6%, 12.2%, and 12.3% corresponding to 0%–
20%, 20%–40%, and 40%–72% centrality.

3− 2− 1− 0 1 2 3
y

0

0.5

1

1.5

2

d
N

/d
y

ll
B

20%-40%
〉

coll
N〈p+Au/

p+p

(d)ψInclusive J/
=200 GeVNNs

PHENIX

0

0.5

1

1.5

2

6−10×

d
N

/d
y

ll
B

0%-5%
〉

coll
N〈p+Au/

p+p

(a)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

40%-60%
〉

coll
N〈p+Au/

p+p

(e)ψInclusive J/
=200 GeVNNs

PHENIX

6−10×

5%-10%
〉

coll
N〈p+Au/

p+p

(b)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

60%-84%
〉

coll
N〈p+Au/

p+p

(f)ψInclusive J/
=200 GeVNNs

PHENIX

6−10×

10%-20%
〉

coll
N〈p+Au/

p+p

(c)ψInclusive J/
=200 GeVNNs

PHENIX

FIG. 24. J/ψ invariant yield as a function of y in various centrality bins of p + Au collisions. Bars (boxes) around data points represents
point-to-point uncorrelated (correlated) uncertainties. There is also a global uncertainty of 11.9%, 11.8%, 12.2%, 12.1%, 12.2%, and 14.0%
corresponding to 0%–5%, 5%–10%, 10%–20%, 20%–40%, 40%–60%, and 60%–84% centrality.

3− 2− 1− 0 1 2 3
y

0

0.5

1

1.5

2

6−10×

d
N

/d
y

ll
B

0%-20%
〉

coll
N〈He+Au/3

p+p

(a)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

6−10×

20%-40%
〉

coll
N〈He+Au/3

p+p

(b)ψInclusive J/
=200 GeVNNs

PHENIX

3− 2− 1− 0 1 2 3
y

6−10

40%-88%
〉

coll
N〈He+Au/3

p+p

(c)ψInclusive J/
=200 GeVNNs

PHENIX

FIG. 25. J/ψ invariant yield as a function of y in various centrality bins of 3He +Au collisions. Bars (boxes) around data points represents
point-to-point uncorrelated (correlated) uncertainties. There is also a global uncertainty of 12.7%, 12.6%, and 13.4% corresponding to 0%–
20%, 20%–40%, and 40%–88% centrality.

014902-19



U. ACHARYA et al. PHYSICAL REVIEW C 102, 014902 (2020)

0 1 2 3 4 5 6 7 8
 (GeV/c)

T
p

14−10

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10
]

-2
d

y)
 [

(G
eV

/c
)

T
d

p
Tpπ

N
/(

2
2

 d ll
B

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

ψInclusive J/
=200 GeV

NN
s

PHENIX

-2.2<y<-1.2, p+Al

(a)

1 2 3 4 5 6 7 8
 (GeV/c)

T
p

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

010×0%-20% -110×20%-40%
-210×40%-72% -310×0%-100%

ψInclusive J/
=200 GeV

NN
s

PHENIX

1.2<y<2.2, p+Al

(b)

FIG. 26. J/ψ invariant yield as a function of pT in various centrality bins of p + Al collisions, and the yields in each centrality bin are
scaled for better visibility. Bars (boxes) around data points represents point-to-point uncorrelated (correlated) uncertainties. There is also a
global uncertainty of 10.2%, 10.3%, 10.9%, and 10.4% corresponding to 0%–20%, 20%–40%, 40%–72%, and 0%–100% centrality.

0 1 2 3 4 5 6 7 8
 (GeV/c)

T
p

19−10

18−10

17−10

16−10

15−10

14−10

13−10

12−10

11−10

10−10

9−10

8−10

7−10

6−10

]
-2

d
y)

 [
(G

eV
/c

)
T

d
p

Tpπ
N

/(
2

2
 d ll

B

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

ψInclusive J/
=200 GeV

NN
s

PHENIX

-2.2<y<-1.2, p+Au

(a)

1 2 3 4 5 6 7 8
 (GeV/c)

T
p

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

010×0%-5%
-110×5%-10% -210×10%-20% -310×20%-40%

-410×40%-60% -510×60%-84% -610×0%-100%

ψInclusive J/
=200 GeV

NN
s

PHENIX

1.2<y<2.2, p+Au

(b)

FIG. 27. J/ψ invariant yield as a function of pT in various centrality bins of p + Au collisions, and the yields in each centrality bin are
scaled for better visibility. Bars (boxes) around data points represents point-to-point uncorrelated (correlated) uncertainties. There is also a
global uncertainty of 11.8% for 60%–84% centrality and 10.2% for all remaining centralities.
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TABLE IV. pT bins in different data sets and centrality bins. All values are in GeV/c.

p+p p+Al p+Al p+Au p+Au 3He +Au 3He +Au
0%–100% Centrality 0%–100% Centrality 0%–100% Centrality

0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25 0.00–0.25
0.25–0.50 0.25–0.50 0.25–0.50 0.25–0.50 0.25–0.50 0.25–0.50 0.25–0.50
0.50–0.75 0.50–0.75 0.50–0.75 0.50–0.75 0.50–0.75 0.50–0.75 0.50–0.75
0.75–1.00 0.75–1.00 0.75–1.00 0.75–1.00 0.75–1.00 0.75–1.00 0.75–1.00
1.00–1.25 1.00–1.25 1.00–1.25 1.00–1.25 1.00–1.25 1.00–1.25 1.00–1.25
1.25–1.50 1.25–1.50 1.25–1.50 1.25–1.50 1.25–1.50 1.25–1.50 1.25–1.50
1.50–1.75 1.50–1.75 1.50–1.75 1.50–1.75 1.50–1.75 1.50–1.75 1.50–1.75
1.75–2.00 1.75–2.00 1.75–2.00 1.75–2.00 1.75–2.00 1.75–2.00 1.75–2.00
2.00–2.25 2.00–2.25 2.00–2.25 2.00–2.25 2.00–2.25 2.00–2.25 2.00–2.25
2.25–2.50 2.25–2.50 2.25–2.50 2.25–2.50 2.25–2.50 2.25–2.50 2.25–2.50
2.50–2.75 2.50–2.75 2.50–2.75 2.50–2.75 2.50–2.75 2.50–2.75 2.50–3.00
2.75–3.00 2.75–3.00 2.75–3.00 2.75–3.00 2.75–3.00 2.75–3.00 3.00–3.50
3.00–3.25 3.00–3.25 3.00–3.25 3.00–3.25 3.00–3.25 3.00–3.25 3.50–4.00
3.25–3.50 3.25–3.50 3.25–3.50 3.25–3.50 3.25–3.50 3.25–3.50 4.00–5.00
3.50–3.75 3.50–3.75 3.50–3.75 3.50–3.75 3.50–3.75 3.50–3.75 5.00–7.00
3.75–4.00 3.75–4.00 3.75–4.00 3.75–4.00 3.75–4.00 3.75–4.00
4.00–4.25 4.00–4.50 4.00–5.00 4.00–4.25 4.00–4.50 4.00–4.50
4.25–4.50 4.50–5.00 5.00–7.00 4.25–4.50 4.50–5.00 4.50–5.00
4.50–4.75 5.00–6.00 4.50–4.75 5.00–7.00 5.00–7.00
4.75–5.00 6.00–7.00 4.75–5.00
5.00–5.25 5.00–5.25
5.25–5.50 5.25–5.50
5.50–5.75 5.50–5.75
5.75–6.00 5.75–6.00
6.00–6.50 6.00–6.50
6.50–7.00 6.50–7.00
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