1	Submitted to Chemosphere
2	February 18 th , 2019
3	Revision submitted on May 25, 2019
4	
5	Dissolution of radioactive, cesium-rich microparticles released from the
6	Fukushima Daiichi Nuclear Power Plant in simulated lung fluid, pure-
7	water, and seawater
8	
9	
10	Mizuki Suetake, ¹ Yuriko Nakano, ¹ Genki Furuki, ¹ Ryohei Ikehara, ¹ Tatsuki Komiya, ¹ Eitaro Kurihara ¹
11	Kazuya Morooka, ¹ Shinya Yamasaki, ² Toshihiko Ohnuki, ³ Kenji Horie, ^{4,5} Mami Takehara ⁴ , Gareth T.
12	W. Law, ⁶ William Bower, ⁶ Bernd Grambow, ⁷ Rodney C. Ewing, ⁸ and Satoshi Utsunomiya, ^{1*}
13	
14	
15	¹ Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
16	² Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental
17	Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
18	³ Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of

19	Technology, 2-12-1	Ookayama, Meguro-ku	, Tokyo 152-8550, Japan
----	--------------------	---------------------	-------------------------

20	⁴ National	Institute	of Polar	Research,	10-3.	Midori-cho,	Tachikawa-shi,	Tokvo,	190-8518,	Japan
	1 (000000000000000000000000000000000000	11100100000	01 1 0101		,			101190,	190 0010,	v ap an

- ⁵Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan
- 22 Village, Hayama, Kanagawa, 240-0193, Japan
- 23 ⁶ Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki Finland, 00014
- ⁷SUBATECH, IMT Atlantique, CNRS-IN2P3, the University of Nantes, Nantes 44307, France
- 25 ⁸Department of Geological Sciences and Center for International Security and Cooperation, Stanford
- 26 University, Stanford, CA 94305-2115 USA
- $\mathbf{27}$
- 28
- 29
- 30
- 31
- 32 *Correspondence: utsunomiya.satoshi.998@m.kyushu-u.ac.jp
- 33

34 Abstract

35To understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) 36 released from the Fukushima Daiichi Nuclear Power Plant in March, 2011, we have, for the first time, 37performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample 38with 108 Bq and one sample with 57.8 Bq of ¹³⁷Cs) using three types of solutions: simulated lung fluid, 39 ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The ¹³⁷Cs was released rapidly 40within three days and then steady-state dissolution was achieved for each solution type. The steadystate ¹³⁷Cs release rate at 25 °C was determined to be 1.3×10³, 1.3×10³, and 4.7×10³ Bq·m⁻²·s⁻¹ for 4142simulated lung fluid, ultrapure water, and artificial sea water, respectively. This indicates that the 43simulated lung fluid promotes the dissolution of CsMPs. The dissolution of CsMPs is similar to that 44of Si-based glass and is affected by the surface moisture conditions. In addition, the Cs release from 45the CsMPs is constrained by the rate-limiting dissolution of silicate matrix. Based on our results, 46CsMPs with ~ 2 Bq, which can be potentially inhaled and deposited in the alveolar region, are 47completely dissolved after >35 years. Further, CsMPs could remain in the environment for several 48decades; as such, CsMPs are important factors contributing to the long-term impacts of radioactive Cs 49in the environment.

50

51

53 1. Introduction

54	In March 2011, $\sim 10^{16}$ Bq of radioactive Cs was released from the Fukushima Daiichi
55	Nuclear Power Plant (FDNPP) (Buesseler et al., 2017; Stohl et al., 2012), and the surface environment
56	remains contaminated today, mainly with radioactive ¹³⁴ Cs (half-life of 2.1 y) and ¹³⁷ Cs (half-life of
57	30 y) (Kaneko et al., 2015; Yamasaki et al., 2016). The Cs speciation at the time of release from the
58	reactors was either as a soluble form (e.g., CsOH and CsCl) or as sparingly soluble microparticles
59	enriched in Cs (Adachi et al., 2013). These Cs-rich microparticles (CsMPs) constitute a condensed-
60	matter material that formed during meltdown inside the reactors (Furuki et al., 2017; Imoto et al.,
61	2017a). In general, CsMPs are composed mainly of O, Si, Fe, Zn, and Cs. High-resolution transmission
62	electron microscopy (HRTEM) analysis revealed that SiO ₂ -glass-matrix-encapsulated Fe-Zn-oxide
63	nanoparticles that adsorb Cs and other fissionogenic products (Furuki et al., 2017; Imoto et al., 2017a,
64	2017b). Particle sizes range from sub-micron to a few μ m in diameter. The Cs concentration in the
65	particles is as high as 8 to 46 wt.% and the radioactivity per unit mass is typically $\sim 10^{11}$ Bq·g ⁻¹ (Ikehara
66	et al., 2018). Recent work has shown that CsMPs account for a significant amount of Cs in soils close
67	to FDNPP, and that there are up to ~300 CsMPs per gram of soil (Ikehara et al., 2018).
68	Because of the high local β and γ radiation, there have been concerns about adverse health
69	effects stemming from inhalation of these particles (Imoto et al., 2017a), since no published data are
70	available for the dose conversion coefficient for the sparingly soluble microparticles with high-density

71	radioactivity (ICRP, 2012, 1993). In addition, a recent study reported the association of discrete debris
72	fragments with CsMPs (Ochiai et al., 2018). The debris fragments contain intrinsic uranium dioxides
73	within Fe-oxides, that also contain other fission products such as Mo and Tc. As such, inhalation of
74	these materials gives a possibility of internal dose by alpha radiation. On the other hand, it is well
75	known that the plume containing CsMPs spread to the Kanto region, including the metropolitan city
76	of Tokyo located ~230 km south of the FDNPP (Adachi et al., 2013; Imoto et al., 2017a; Tanaka et al.,
77	2013). Compared with the CsMPs found near FDNPP, the radioactivity of the individual CsMP
78	characterized in the city of Tokyo, was much lower (0.094-2.3 Bq), indicating that the CsMPs
79	transported across longer distances were generally small, < a few micron in size (Imoto et al., 2017a).
80	Originally, CsMPs were reported to be insoluble in water (Adachi et al., 2013). Considering
81	the properties of CsMPs which have a glassy matrix, they may yet dissolve in ambient conditions;
82	however, knowledge on their dissolution behavior and residence time has been limited to a recent
83	study that reported the dissolution in pure water and seawater (Okumura et al., 2019). The present
84	study demonstrates dissolution experiments involving CsMPs in simulated lung fluid to better
85	understand the mechanisms and kinetics of CsMP dissolution, the residence time, and Cs leaching in
86	human lungs. Additional experimental conditions are tested in ultrapure water and seawater to
87	investigate the CsMP dissolution in the ambient environment

89 2. Methods

2.1. Isolation of Cs-rich microparticles and particle preparation for dissolution experiments

91	CsMPs with high radioactivity, >100 Bq, are rarely found in Fukushima soil samples;
92	however, highly radioactive CsMPs were necessary for the dissolution experiments presented here in
93	order to permit direct determination of Cs radioactivity leached into solution. Two such particles (>100
94	Bq) were successfully prepared in the present study. The CsMPs were isolated from surface soils
95	collected from Ottozawa and Koirino, Okuma town in the Fukushima prefecture. Both sites are within
96	5 km of FDNPP. The soil samples were labeled KU-312 and -150, respectively, in the Kyushu
97	University Fukushima sample archive. However, within the present article, the isolated CsMPs are
98	labeled OTZ and KOI, which, to avoid confusion, differ from the labels used in our previous studies
99	(Furuki et al., 2017; Imoto et al., 2017b; Ochiai et al., 2018). Isolation of the CsMPs followed the
100	procedure described in our previous study (Furuki et al., 2017). First, the soil samples were sieved
101	through a 114-µm mesh. The samples were dispersed on an Al board and covered with a plastic sheet;
102	an imaging plate (IP, Fuji film, BAS-SR 2025) was then placed on the samples for 5-25 minutes. The
103	autoradiograph image was recorded with a pixel size of 100 μ m using an IP reader (GE, Typhoon FLA
104	5100). After identifying the positions of intense radioactive spots, droplets of pure water were added
105	to the positions and then taken up using a pipet to make a suspension with a small amount of soil
106	particles. During this procedure, the sample was wet for a limited time compared to the duration of

107	the dissolution experiments. The procedure was repeated until the suspension did not contain a
108	significant amount of soil particles. Subsequently, the position containing a highly radioactive spot
109	was sampled using double-sided adhesive carbon tape (Nissin EM Inc.) for scanning electron
110	microscopy. The piece of carbon tape with the radioactive particle was cut into smaller pieces using a
111	blade.
112	After isolation, each CsMP was adhered to the surface of double-sided adhesive carbon tape
113	with the dimension of ~50×50 μ m and then fixed to a 1×1 cm ² Al plate. Given the size of the CsMPs,
114	this method was necessary to fix the CsMPs in place during our dissolution method (see below). A
115	caveat of this method is that the fraction of each CsMP attached to the carbon tape would likely
116	experience lower rates dissolution. Unfortunately, the difficulty of obtaining and extracting CsMP
117	samples, and the complexity of completing dissolution experiments with single particles of <6 μm
118	diameter, makes this caveat unavoidable. However, the dissolution rates presented herein is within the
119	same order of magnitude of results that could be obtained if experiments were completed without
120	CsMP adhesion. Also, of note, the CsMPs used in the study were not carbon-coated, even for scanning
121	electron microscopy (SEM) observations.
122	After isolation of each CsMP, some soil particles, including clays, remained, surrounding
123	the CsMP on the carbon tape (see Fig. 1a for case of KOI and Fig. S1 for the case of OTZ). To prevent

124 reactions between the remaining clays and the dissolved Cs ions, or dissociation of Cs previously

125	adsorbed to the clays, the entire surface of the specimen (except the CsMP) was coated with tungsten
126	(W) by using a focused-ion-beam system (Quanta 3D 200i, FEI). The result of this procedure was that
127	only the CsMP surface was in contact with the solution because it was not coated by W. Further, during
128	the W treatment on the surrounding soil particles, observation with the ion-beam in the FIB was
129	minimized to maintain the CsMP surface as undamaged due to the absence of W coat. To test the
130	efficiency of this W-coating strategy, a dissolution experiment was conducted on a specimen (prepared
131	in the same way) with no CsMP. The gamma spectrum revealed no peak at the position of ¹³⁷ Cs,
132	confirming that the W-coated soil particles were not reactive in the experiments (Fig. S2). In addition,
133	the potential for re-adsorption of Cs onto double-sided adhesive carbon tape and Al plate was
134	investigated. We prepared the same material without any CsMPs; that is, a small piece of double-sided
135	adhesive carbon tape on Al plate. The material was immersed in 5 ml of the simulated body fluid with
136	1.79±0.01 Bq of ¹³⁷ Cs for 6 days at 25 °C. After immersion, the radioactivity of ¹³⁷ Cs of the solution
137	was measured as 1.78±0.02 Bq, indicating that no Cs adsorbed to the double-sided adhesive carbon
138	tape and Al plate. As such, it is highly unlikely that there would have been any re-adsorption of the
139	radioactive Cs leached from the CsMP during the dissolution experiment.

2.2. Dissolution experiment with Cs-rich microparticles

142 The CsMPs used in the present experiment were isolated from the natural environment one

(KOI) and six years (OTZ) after deposition from the FDNPP. As such, they would have already
experienced some degree of post depositional alteration under wet and dry conditions. This cannot be
quantified.

146In our dissolution experiment approach, each prepared CsMP (see section 2.1) was statically 147immersed in a 5.0 mL solution (see below for solution types and the immersion sequence for each CsMP) in a 10 mL Perfluoroalkoxy alkane (PFA) vessel sealed with a screwed lid to avoid evaporation. 148149In order to simulate the possible conditions of exposure for CsMPs after deposition in the 150natural environment, which could include either wet, or wet/dry cycles, two types of immersion 151conditions were prepared in the dissolution experiments: (i) wet and dry, and (ii) wet only. The conditions are summarized in Fig. 2a. For condition (i), the CsMP being studied was immersed in an 152153aliquot of solution, reacted, and then removed from the solution after an arbitrary period. Next, the 154solution was analyzed using gamma spectrometry. The CsMP was left to dry in air during the gamma measurements, which typically lasted for 1-7 days depending on counting statistics. After counting, 155156the CsMP was then immersed again in the same solution to continue the dissolution processes for the 157desired time. This process was repeated until the end of the reaction period. For condition (ii), the CsMP being studied was immersed in an aliquot of solution and removed after a certain time. The 158159CsMP was then quickly immersed in ultra-pure water (UPW) to maintain its wet surface and also to 160 rinse the surface. Soon thereafter, the CsMP was immersed in another aliquot of solution, which had

the same initial composition as the previously used solution, but without any leached Cs. The solutionsafter the reactions of all durations were analyzed by gamma spectrometry.

163The sequence of immersion for each particle is summarized in Fig. 2b. The KOI CsMP was 164 first immersed and reacted in simulated lung fluid (SLF) (Marques et al., 2011) at 25 °C for 31 days, 165with occasional solution sampling completed under wet and dry conditions (i.e. condition (i); Fig. 2a; 166Seq. 1). The composition of the SLF is given in Table S1. After reaction in the SLF, the same CsMP 167was then immersed in the ultra pure water (UPW; 18.2 MΩcm) and reacted at 25 °C for 43 days as a 168control experiment (Seq. 2), with occasional solution sampling taking place under condition (i). After 169reaction in the UPW, the CsMP was immersed in SLF again, but at 37 °C for 63 days (Seq. 3), with 170occasional solution sampling under condition (i). After reaction, the CsMP was rinsed with UPW, 171because secondary phase precipitation was observed over the sample. The rinsing process efficiently 172removed the precipitates. The same CsMP was then immersed in artifical seawater (ASW) purchased 173from Daigo Inc. at 25 °C for 30 days (Seq. 4), with occasional solution sampling under condition (i). 174Table S1 gives the composition of the ASW. Finally, the CsMP was immersed in SLF at 25 °C for 30 175days (Seq. 5), with occasional solution sampling under the wet only condition (i.e. condition (ii); Fig. 1762a). The UPW, ASW, and SLF had a pH of 7.0, 7.8, and 7.4, respectively, as measured by using a 177TOKO TPX-999i pH meter (PCE108CW-SR) equipped with an calibrated electrode (PCE108CW-SR). 178The OTZ CsMP was immersed (Fig. 2b) in UPW at 25 °C for 30 days (Seq. 1), with

179	occasional solution	sampling under	condition (i). The	n, the OTZ CsMP	was immersed in SI	LF at 25 °C
			•••••••••••••••••••••••••••••••••••••••			

- 180 for 10 days (Seq. 2), with occasional solution sampling under condition (i).
- 181 The SLF after the experiments was further used for an evaporation test; here, the SLFs for
- 182 KOI (from the initial SLF treatment) and OTZ CsMPs were condensed at 15 and 9.1 times by
- 183 evaporating under air, respectively. The pH of the condensed SLF droplets of ~0.3 ml was measured
- 184 by using a compact pH meter (LAQUAtwin-pH-22B; HORIBA).
- 185

186 **2.3. Scanning electron microscopy**

- 187 Secondary-electron images and the elemental maps were obtained by using SEM
- 188 (Shimadzu, SS-550) equipped with energy dispersive X-ray analysis (EDX, EDAX). The
- 189 acceleration voltage was 15–25 kV.

190

191 **2.4. Gamma spectrometry**

192	The radioactivity of ¹³⁴ Cs and ¹³⁷ Cs in the CsMPs was determined by using gamma
193	spectrometry. The point-source standard prepared in our previous study (Furuki et al., 2017) was
194	used for calibration to analyze the microparticles. The Cs radioactivity of the solutions in sealed
195	Teflon vessels was also measured after reactions. To calibrate the gamma spectrum for the solution
196	sample, 5 mL of the solution with a known concentration of radioactive Cs in a PFA vessel of the

197	same shape was measured and used as the standard. The radioactivity measurements were made by
198	using germanium semiconductor detectors GMX23 and GMX40 (all from SEIKO E&G) at the
199	Center for Radioisotopes of Kyushu University. The acquisition time ranged from 1 to 162 hours so
200	that the net area of the ¹³⁴ Cs and ¹³⁷ Cs peaks both exceeded 1000 counts. Reaching over 1000 counts
201	results in a relative uncertainty better than 3%. The errors in gamma measurements were calculated
202	in Gamma Studio (SEIKO EG&G).
203	
204	3. Results and Discussion
205	3.1. Properties of CsMPs used in dissolution experiment
206	The radioactivity and the associated parameters of the two CsMPs; KOI and OTZ, prior to
207	the dissolution experiments, are summarized in Table 1. The ratio of the radioactivity of ¹³⁴ Cs to that
208	of 137 Cs, decay-corrected to March 12, 2011, is ~1, indicating that the CsMPs originated from FDNPP.
209	The experimental results reported hereinafter are based only on non-decay-corrected ¹³⁷ Cs, because
210	its radioactive decay is negligible due to its half-life of 30 years being much longer than the duration
211	of the experiments.
212	Figure 1 shows the SEM images and the elemental maps of the major constituents. The
213	particle size is 5.64 μ m for KOI and 4.20 μ m for OTZ. The elemental distribution of major constituents
214	within the CsMPs appears to be same as that of CsMPs in previous studies, which include examples

of CsMPs transported over large distances from the FDNPP (Adachi et al., 2013; Furuki et al., 2017;

- 216 Imoto et al., 2017a, 2017b; Yamaguchi et al., 2016).
- 217

218 **3.2. Dissolution experiments with CsMPs**

Figure 3 shows the time course of ¹³⁷Cs radioactivity release during the dissolution 219experiments with KOI from seq. 1 to seq. 5. The measured radioactivities are also given in Table 2. In 220221the present experiment, the radioactive Cs leached from the CsMP was successfully determined using 222gamma spectrometry despite the extremely low concentrations. The maximum radioactivity of ¹³⁷Cs 223 \sim 2 Bq in 5 ml solution is equivalent to only \sim 9 \times 10⁻¹³ mol/L. This low concentration of Cs is negligible 224in evaluating the effects on the solution chemistry. Based on the composition of CsMP (Furuki et al., 2252017), it is likely that the amount of the other major constituents (Si, Fe, and Zn) that leached from 226the CsMP were very low. In seq. 1 - 3, the ¹³⁷Cs radioactivity rapidly increase after immersing the CsMP, and then 227228reaches steady state after 3 days. We calculate the ¹³⁷Cs release rate after the release rate attains an

apparent steady state, meaning that the radioactivity data can be approximated by a regression line.

230 For the SLF at 37 °C (seq. 3) the Cs release did not reach a clear steady state, as the data after 63 days

- 231 deviates lower than the linear trend (Fig. 3), which likely is due to precipitation of secondary phases
- 232 observed after 63 days at 37 °C. For experiments at 25 °C (seq. 1, 2, and 4) under condition (i), the

 $^{137}Cs \text{ release rate is calculated to be } 4.68 \times 10^3, 1.33 \times 10^3, \text{ and } 1.29 \times 10^3 \text{ Bq} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \text{ for SLF, UPW, and } \\ ASW, \text{ respectively. The release rate in the SLF is clearly greater than that in UPW (by a factor of 3.5). } \\ Based on the ^{137}Cs release rate, we calculate the radioactivity over time due to the dissolution of CsMP }$

236 by using

$$D_{t,x} = \left\{ D_{0,137} - 4\pi k \int_{0}^{t} \left(r_{0} - \frac{k}{d} t \right)^{2} dt \right\} \times e^{\left(-t \times \ln 2/\tau_{1/2,x} \right)}$$

$$238 = \left\{ D_{0,137} - 4\pi k \left(r_{0}^{2} t - \frac{kr_{0}}{d} t^{2} + \frac{k^{2}}{3d^{2}} t^{3} \right) \right\} \times e^{\left(-t \times \ln 2/\tau_{1/2,x} \right)}$$

$$239 \qquad (1)$$

241where $D_{t,x}$ and $D_{\theta,x}$ are the ^xCs radioactivity of the CsMP at time t and time zero in Bq. The x denotes 242the mass of the Cs isotope: 134 or 137, r_0 is the radius of CsMP at time zero (time is in units of minutes), k is the 137 Cs radioactivity leach rate determined based on the 137 Cs release per unit area of CsMP 243244(Bq·m⁻²·s⁻¹), d is the radioactivity per unit volume of CsMP (Bq·m⁻³), and $\tau_{1/2,x}$ is the half-life of ^xCs 245(seconds). In this dissolution model, the CsMP was approximated as a sphere and the decreasing rate 246of radius was assumed to be constant, which was calculated based on the ¹³⁷Cs leach rate. This model 247accounts for the decrease in the surface area of the CsMP as a function of time. Based on the release rate of 137 Cs, the duration for the complete dissolution (t_{total}) and for 248249dissolution to particle sizes less than 100 nm (t_{100nm}) were calculated for all conditions (Table 3). 250Because the solubility of particles of size less than 100 nm is greater than that of the bulk sample

251	(Stumm, 1992), the dissolution rate after reaching t_{100nm} can be greater for these particles, and actual
252	total time can be less than t_{total} . In this calculation, t_{total} was calculated based on the equation (1); thus,
253	the actual total time may be plotted between t_{100nm} and t_{total} . The estimated time course of radioactivity
254	is calculated for all conditions based on the ¹³⁷ Cs release rate, and the results are shown in Fig. 4.
255	Under condition (ii), the ¹³⁷ Cs release rate from the KOI CsMP was 1.5×10^3 Bq·m ⁻² ·s ⁻¹ in
256	SLF (Fig. 3). The release rate is only one third of that for condition (i) (wet and dry), which clearly
257	indicates that the wet condition on the CsMP surface is a critical factor in addition to the sequence of
258	the alteration. There was no visible secondary precipitates over the CsMP surface. The effects of the
259	drying surface can be explained by the increasing solute concentration due to the evaporation of the
260	water layer on the CsMP surface. For the SLF, pH change upon evaporation was also possible. Thus,
261	the SLF after the experiments (seq. 1 in case of KOI) was further used for the evaporation test, in
262	which the SLFs for KOI and OTZ were condensed at 15 and 9.1 times by evaporation under air,
263	respectively. The pHs of SLF for KOI and OTZ changed from 7.4 to 5.7 and 5.9, respectively. Thus,
264	the further condensation of water results in lower pH conditions in the SLF under condition (i). The
265	lowered pH in the condensed SLF is most likely the major factor accelerating the dissolution rate;
266	indeed, several previous studies have reported faster dissolution at acid pH as well as alkaline pH
267	(Abraitis et al., 2000; Gislason and Oelkers, 2003a). In addition to the pH decrease, the evaporation
268	increases the ionic strength, which can affect the dissolution rate by influencing the surface potential

269	(Icenhower and Dove, 2000; Vogelsberger et al., 1999). However, the dissolution in ASW is no faster
270	than that in UPW, indicating that the ionic strength has little effect on the dissolution rate. Indeed,
271	previous studies have pointed out minimal effects of ionic strength on glass dissolution in the case of
272	saline brines (Braithwaite, 1980; Grambow, 1990). Thus, the slow dissolution under condition (ii)
273	without evaporation can be explained by pH decrease due to the evaporation. Rapid initial release
274	of Cs was also recognized in the sequence $1 - 3$. There are some factors that can potentially cause this
275	rapid release, such as cation exchange at initial stage of glass dissolution; however, the most plausible
276	reason in the case of this experiment was sample treatment before starting the sequence as revealed in
277	Fig. 3. Here, the CsMP was dried after seq. 1 and 2 followed by the immediate use in the subsequent
278	experiment, whilst the CsMP was thoroughly rinsed after seq. 3. Thus, relatively high concentrations
279	of Cs that remained on the dried surface likely account for the rapid increase at the initial stage.
280	For the OTZ sample, the ^{137}Cs release rate R_{Cs} , at 25 °C, was determined to be $5.5{\times}10^2$ Bq
281	$m^{-2}s^{-1}$ for UPW, while the Cs release did not reach the steady state in case of SLF after 10 days. Thus,
282	only the maximum dissolution rate was estimated for SLF; $<1.0\times10^3$ Bq·m ⁻² ·s ⁻¹ (Fig. 5, Table 2).
283	Dissolution in SLF can be accelerated compared with that in UPW due to the effects of organic matter
284	and other ions in the SLF, since previous studies have reported that silica dissolution is enhanced by
285	organic matter through the formation of carboxylate-Si complexes and the nucleophilic attack onto the
286	Si in the Si–O network (Braun et al., 2016; McMahon et al., 1995). The time course of radioactivity

287 calculated for OTZ based on the 137 Cs release rate is plotted in Fig. 6.

288	Note also that secondary phases precipitated onto the surface of OTZ after 10 days in SLF,
289	whereas such precipitates were scarcely present in the dissolution experiment of KOI up to 30 days.
290	The precipitates were characterized by SEM-EDX to be mainly Ca phosphate (Fig. 7). The
291	precipitation of Ca phosphate is consistent with the results of calculation for the saturation index of
292	the SLF solution using the thermodynamic calculation code, the Geochemist's workbench version 7
293	and the thermodynamic database of thermo.com.v8.r6+ (Table S2). Thermodynamically, the initial
294	SLF solution is supersaturated with respect to hydroxylapatite and whitlockite. As described above,
295	the amounts of leached constituents from the CsMP are extremely low, in the order of $10^{-13} - 10^{-12}$
296	mol/L. Hence, the effects on the ionic strength and saturation index of the solution are negligible in
297	the present experiment; that is, intrinsic Cs phase cannot precipitate on the surface during the
298	dissolution experiment.
299	Regarding the timing of Ca phosphate formation, OTZ should contain a higher Si
300	concentration, because CsMP with low Cs content typically contains high Si content (Furuki et al.,
301	2017). The difference in timing of phosphate formation may be attributed to the different amount of
302	SiO ₂ gel layer, as a previous study suggested that the hydrate silica provides favorable sites for the
303	apatite nucleation (Ohtsuki et al., 1992). In the present study, the dissolution experiment was stopped
304	at the onset of precipitation so that the dissolution rate was not significantly affected by the reaction

305	progress for either KOI or OTZ. Experiments for longer periods than reported herein would likely lead
306	to complete coverage of the CsMP surface with Ca phosphate. Such a process is highly probable in an
307	actual alveolar region, depending on the flow-rate of fluid in contact with the CsMP. The Ca-phosphate
308	coating may serve as a passive layer, leading to a slower dissolution rate as compared with that
309	determined in the present study. Indeed, a previous study reports that the formation of a Ca-phosphate
310	coating slowed the dissolution of core materials in simulated body fluid (Cabrini et al., 1997; Wen et
311	al., 2009).

313 **3.3. Possible mechanisms of CsMP dissolution**

Table 3 summarizes the ¹³⁷Cs release rates for all conditions. First, we assume the simplified model; a constant Cs/Si concentration ratio in the glass as well as congruent dissolution at the scale of the present experiment. Then, the rates can be converted to Si release rates, $R_{Si} = R_{Cs} \times (M_{Cs20} / M_{Si02}) \times (W_{Si02} / W_{Cs20}) / 2$, (2) where R_i is the release rate of ¹³⁷Cs or Si (mol m⁻² d⁻¹), M_i is the molecular weight, and W_i is the mass fraction of species i (wt.%). Dividing the release rate of Cs in Bq·m⁻²·d⁻¹ by the Cs inventory in the

glass in $Bq \cdot g^{-1}$ and assuming homogeneous distribution of Cs in the glass gives overall glass dissolution rates in $g \cdot m^{-2} \cdot d^{-1}$. The composition of OTZ is required for the conversion; however, the composition of OTZ was difficult to determine precisely using SEM-EDX because of the X-ray signals

323	emitted from the surrounding particles and the Al substrate. Thus, the composition of OTZ is assumed
324	to be similar to that of the other CsMP, which has a similar radioactivity. OTZ22 (KU archive label)
325	is the other CsMP, which contains 65 wt.% SiO ₂ , 13 wt.% Cs ₂ O, and 7.9 wt.% ZnO. (See Table S3 for
326	a full list of chemical compositions determined by TEM-EDX and the radioactivity with the associated
327	parameters. Figure S4 provides further TEM results). OTZ22 has a radioactivity per unit mass
328	$(3.38 \times 10^{11} \text{ Bq} \cdot \text{g}^{-1})$ similar to that of OTZ $(3.15 \times 10^{11} \text{ Bq} \cdot \text{g}^{-1})$ (Table 1). Note that the conversion from
329	$Bq \cdot g^{-1}$ to Cs wt% was not straightforward because of unknown composition of the other Cs isotopes.
330	The inner structure of CsMP generally exhibits numerous heterogeneities, such as nanoscale
331	inclusions of various fission products and pores (Furuki et al., 2017). The nanoscale texture inside
332	CsMPs is schematically illustrated in Fig. 8. In most cases, Cs is distributed by association with Fe-
333	Zn-oxide nanoparticles (Furuki et al., 2017; Imoto et al., 2017a). The high radioactivity per unit mass
334	such as in KOI is generally ascribed to intrinsic Cs-nanoparticle inclusions. These nanoparticles
335	become embedded in the SiO_2 glass matrix. In these models, the Cs initially exposed to the surface of
336	the CsMP rapidly dissolves, and the Cs inside the particle is released as the surrounding SiO_2 glass
337	matrix dissolves, which proceeds through hydrolysis of Si-O-Si bonds (Xiao and Lasaga, 1994). The
338	hydrolysis of Si-O bonds is expected to be the rate-limiting process in this case. At high concentrations
339	of dissolved orthosilicic acid in solution, glass dissolution rates are expected to drop (Grambow, 2011);
340	however, such conditions are not expected in the present experiments. The dissolution properties of

341	the other constituents of CsMP, Fe-Zn-oxide nanoparticles, are unknown, although the dissolution of
342	the SiO_2 glass matrix is expected to release nanoparticles associated with Cs. A previous study reported
343	that Cs leaching from CsMP may occur at acidic pH (Yamaguchi et al., 2016). Although glass
344	dissolution proceeds by cation release at low pH, a previous study reported a congruent dissolution at
345	high pH (Abraitis et al., 2000). In the present study, the Cs leach rate is constrained by the dissolution
346	of SiO ₂ glass matrix, which allows to approximate as an apparent congruent dissolution at "macro-
347	scale". Hence, we use equation (2) to deduce the approximate dissolution rate of the microparticle for
348	roughly comparing the order of dissolution rate with that of other glasses. The dissolution rate (i.e.,
349	the Si release rate) is determined to be 1.26×10^{-6} and $< 2.39 \times 10^{-6}$ mol m ⁻² d ⁻¹ for OTZ immersed in
350	UPW and SLF, respectively. This may be compared with results of dissolution rates of various glasses
351	and the effects of glass composition on glass dissolution rates have been described extensively in the
352	literature (Grambow, 2011). Using the reported linear rate terms and activation energies, we obtain the
353	dissolution rates: 0.036 g·m ⁻² d ⁻¹ for Corning soda lime glass, 0.016 g·m ⁻² d ⁻¹ for PPG soda lime glass,
354	1.8×10^{-4} g·m ⁻² d ⁻¹ for Kimble R6 soda lime glass, and 6×10^{-6} g·m ⁻² d ⁻¹ for obsidian. Kimble RG soda
355	lime glass has the composition of 74 wt.% SiO ₂ , 12.9 wt.% Na ₂ O and 8.3 wt.% CaO, and obsidian has
356	the highest Si concentration (76 wt.%) and the lowest alkali content (8.6 wt.%). Thus, the dissolution
357	rate of the CsMP is close to pure silica glasses or low alkali glasses rather than to that of more complex
358	high alkali glasses. Indeed, the Cs content of the glasses of 13.5 wt.% is rather low compared with that

359	in the above mentioned glasses, if presented in molar fraction. Dissolution of silica glass fibers at
360	37 °C in physiological gamble solution gave dissolution rates 1.1 nm·d ⁻¹ or 4.2×10^{-5} g·m ⁻² ·d ⁻¹ (Scholze,
361	1991). Dissolution rates of SiO ₂ (62 wt.%)-Al ₂ O ₃ (2-4 wt.%)-B ₂ O ₃ (6-8wt.%)-CaO(8 wt.%)-MgO(3.5-
362	4 wt.%)-Na ₂ O(14-16 wt.%) glasses fibers in physiological solutions at 37 °C and pH 7.5 were much
363	higher, varying between 0.03 and 0.18 g·m ⁻² ·d ⁻¹ (Potter and Mattson, 1991). Dissolution rates varied
364	as function of fiber diameter between 2 and 10 μm by as much as 27%. In vivo (rat lung tissue or
365	macrophages) dissolution rates of a glass fiber of similar composition varied between 0.0005 and
366	$0.003 \text{ g} \cdot \text{m}^{-2} \cdot \text{d}^{-1}$. For comparison, the dissolution rates of Si-based glasses (Abraitis et al., 2000;
367	Crovisier et al., 1987; Gislason and Oelkers, 2003b; Hamilton et al., 2000; Oelkers and Gislason,
368	2001) and amorphous silica (Icenhower and Dove, 2000; Seidel et al., 1997) at near room temperature
369	(25 °C) are plotted in Fig. 9. Although the dissolution rate estimated for OTZ is greater than that of
370	amorphous silica, it is within the range of the dissolution rates of Si-based glasses reported in previous
371	studies. Thus, the kinetics of CsMP dissolution is similar to that of glass dissolution. Higher dissolution
372	rates may also be explained by the formation of a Cs silicate glass but we have too little information
373	to forward this interpretation.
374	

- 3.4. Estimation of residence time of inhaled CsMPs 375
- As mentioned in the introduction, the size of CsMPs transported from the FDNPP over long 376

377	distances were small (< a few μ m); however, these CsMPs were mainly comprised of silicate glass, as
378	per the larger CsMPs found closer to the FDNPP. Hence, it is reasonable to assume that the dissolution
379	processes occurring in inhaled CsMPs follow the mechanisms described above. To estimate the
380	residence time and the radioactivity transition of the potentially inhaled CsMPs, we assumed the
381	maximum dissolution rate of OTZ because the Cs concentration (based on the radioactivity per unit
382	mass) of KOI is too high and likely contains inclusions of intrinsic Cs nanoparticles. The maximum
383	release rate of 137 Cs, R_{Cs} , for OTZ is normalized based on the 137 Cs concentration (mole per m ³ per
384	second). The typical size of the CsMPs ranges from ~0.5 to ~3 μm and the Cs concentration ranges
385	from a few wt.% to ~30 wt.% (Furuki et al., 2017; Ikehara et al., 2018). According to Schlesinger,
386	microparticles in the same size range can potentially deposit in pulmonary region at $\sim 20-40$ %
387	(Schlesinger, 1989). It is noted that the microparticles are subject to several clearance pathways. Some
388	microparticles can be translocated to the lymphatic system, and the half-time of eliminating the
389	microparticles from lymph nodes was estimated to be tens of years (Roy, 1989).
390	In the following calculation, the size and $^{137}\mbox{Cs}$ concentration of a CsMP are set to 2 μm and
391	1.09 Bq, respectively, as obtained from a previous study (Imoto et al., 2017a). The isotope ratio of
392	¹³⁴ Cs to ¹³⁷ Cs is set to 1.0, and we assume that inhalation occurs on March 15, 2011. Consequently,
393	$t_{total}\ and\ t_{100nm}$ for the CsMP in the SLF are calculated to be 38.6 and 34.9 year, respectively, for
394	condition (i) (wet and dry), indicating that the CsMPs can persist to the present time (Fig. 10).

399	The dissolution rate under condition (ii) (wet only) may be a somewhat slower than that
396	under condition (i). Uncertainty in the condition surrounding CsMPs in the alveolar region exists over
397	longer periods. Whether the CsMPs remain in the lung depends on the surrounding aqueous
398	conditions; humid in ordinary case, while often wet in case of pneumonia. In addition, the Ca-
399	phosphate coating should precipitate over the CsMPs and potentially slow the dissolution, which
400	would lead to a longer residence time than that estimated based on the simple dissolution experiments
401	discussed herein. Note also that, when CsMPs contain a high Zn concentration, their dissolution and
402	the precipitation of the Ca-phosphate may be retarded by soluble Zn (Ma et al., 2018). In case of
403	phagocytosis, the pH can be slightly acidic, 4.5, which may promote the dissolution of CsMPs.
404	
404 405	4. Conclusions
404 405 406	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were
404 405 406 407	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were considered heretofore to be insoluble (Adachi et al., 2013), can dissolve in a manner similar to that of
 404 405 406 407 408 	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were considered heretofore to be insoluble (Adachi et al., 2013), can dissolve in a manner similar to that of a silicate glass. Although the number of CsMPs in the present dissolution experiments was limited due
 404 405 406 407 408 409 	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were considered heretofore to be insoluble (Adachi et al., 2013), can dissolve in a manner similar to that of a silicate glass. Although the number of CsMPs in the present dissolution experiments was limited due to the scarcity of highly radioactive CsMPs (>100 Bq), this first experimental study provides crucial
 404 405 406 407 408 409 410 	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were considered heretofore to be insoluble (Adachi et al., 2013), can dissolve in a manner similar to that of a silicate glass. Although the number of CsMPs in the present dissolution experiments was limited due to the scarcity of highly radioactive CsMPs (>100 Bq), this first experimental study provides crucial insights into the dissolution behavior of CsMPs. Based on the present experiment, the dissolution rate
 404 405 406 407 408 409 410 411 	4. Conclusions Based on the present experimental study, we conclude that the CsMPs, which were considered heretofore to be insoluble (Adachi et al., 2013), can dissolve in a manner similar to that of a silicate glass. Although the number of CsMPs in the present dissolution experiments was limited due to the scarcity of highly radioactive CsMPs (>100 Bq), this first experimental study provides crucial insights into the dissolution behavior of CsMPs. Based on the present experiment, the dissolution rate is controlled by various factors, such as (i) the CsMP composition, (ii) the wet and dry condition of

413	strength of seawater does not significantly affect the dissolution rate. Note also that a passive Ca-
414	phosphate layer may form upon extended contact with SLF, which may decrease the dissolution rate.
415	Consequently, when inhaled, CsMPs as small as $\sim 2\mu m$ can potentially be deposited in the alveolar
416	region, and these particles are expected to be durable to chemical alterations in SLF for several decades.
417	In addition, CsMPs can potentially remain in various environments beyond several decades, which is
418	consistent with the fact that numerous CsMPs have been discovered under natural weather conditions
419	in the environment seven years after the nuclear disaster. CsMPs are readily transportable in river
420	water and the sedimentation in the ocean is expected to be slow due to their small size (Earle, 2015).
421	Considering the high radioactivity of CsMPs, their migration is one of the key processes governing
422	the dynamics of radioactive Cs in the contaminated environments around Fukushima Daiichi.

423

424 Acknowledgments

425	The authors are grateful to Dr. Watanabe for her assistance on SEM analyses at the Center of

- 426 Advanced Instrumental Analysis, Kyushu University. This study is partially supported by JST
- 427 Initiatives for Atomic Energy Basic and Generic Strategic Research and by a Grant-in-Aid for
- 428 Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (16K12585,
- 429 16H04634, No. JP26257402). S.U. is also supported by the Mitsubishi Foundation/Research Grants
- 430 in the Natural Sciences and by ESPEC Foundation for Global Environment Research and
- 431 Technology (Charitable Trust) (ESPEC Prize for the Encouragement of Environmental Studies). The
- 432 findings and conclusions of the authors of this paper do not necessarily state or reflect those of the
- 433 JST.
- 434

436 REFERENCES

437	Abraitis, P.K., Livens, F.R., Monteith, J.E., Small, J.S., Trivedi, D.P., Vaughan, D.J., Wogelius, R.A.,
438	2000. The kinetics and mechanisms of simulated British Magnox waste glass dissolution as a
439	function of pH, silicic acid activity and time in low temperature aqueous systems. Appl.
440	Geochemistry 15, 1399-1416. https://doi.org/10.1016/S0883-2927(99)00118-3
441	Adachi, K., Kajino, M., Zaizen, Y., Igarashi, Y., 2013. Emission of spherical cesium-bearing particles
442	from an early stage of the Fukushima nuclear accident. Sci. Rep. 3, 2554.
443	https://doi.org/10.1038/srep02554
444	Braithwaite, J.W., 1980. Brine chemistry effects on the durability of a simulated nuclear waste glass, in:
445	Northrup, C.J.M. (Ed.), Scientific Basis for Nuclear Waste Management. Plenum Press, New York,
446	pp. 199–206.
447	Braun, K., Pochert, A., Beck, M., Fiedler, R., Gruber, J., Lindén, M., 2016. Dissolution kinetics of
448	mesoporous silica nanoparticles in different simulated body fluids. J. Sol-Gel Sci. Technol. 79,
449	319-327. https://doi.org/10.1007/s10971-016-4053-9
450	Buesseler, K., Dai, M., Aoyama, M., Benitez-Nelson, C., Charmasson, S., Higley, K., Maderich, V.,
451	Masqué, P., Morris, P.J., Oughton, D., Smith, J.N., 2017. Fukushima Daiichi-derived radionuclides
452	in the ocean: transport, fate, and impacts. Ann. Rev. Mar. Sci., Annual Review of Marine Science 9,
453	173-203. https://doi.org/10.1146/annurev-marine-010816-060733

454	Cabrini, M., Cigada, A., Rondell, G., Vicentini, B., 1997. Effect of different surface finishing and of
455	hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated
456	physiological solution. Biomaterials 18, 783-787. https://doi.org/10.1016/S0142-9612(96)00205-0
457	Crovisier, J.L., Honnorez, J., Eberhart, J.P., 1987. Dissolution of basaltic glass in seawater: Mechanism
458	and rate. Geochim. Cosmochim. Acta 51, 2977-2990. https://doi.org/10.1016/0016-7037(87)90371-
459	1
460	Earle, S., 2015. Physical Geology, Creative C. ed. BC Open Campus Project.
461	Furuki, G., Imoto, J., Ochiai, A., Yamasaki, S., Nanba, K., Ohnuki, T., Grambow, B., Ewing, R.C.,
462	Utsunomiya, S., 2017. Caesium-rich micro-particles: A window into the meltdown events at the
463	Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 7, 42731. https://doi.org/10.1038/srep42731
464	Gislason, S.R., Oelkers, E.H., 2003a. Mechanism, rates, and consequences of basaltic glass dissolution:
465	II. An experimental study of the dissolution rates of basaltic glass as a function of pH and
466	temperature. Geochim. Cosmochim. Acta 67, 3817-3832. https://doi.org/10.1016/S0016-
467	7037(03)00176-5
468	Gislason, S.R., Oelkers, E.H., 2003b. Mechanism, rates, and consequences of basaltic glass dissolution:
469	II. An experimental study of the dissolution rates of basaltic glass as a function of pH and
470	temperature. Geochim. Cosmochim. Acta 67, 3817-3832. https://doi.org/10.1016/S0016-
471	7037(03)00176-5

- 472 Grambow, B., 2011. Corrosion of Glass, in: Revie, R.W. (Ed.), Uhlig's Corrosion Handbook. John Wiley
- 473 & Sons, New Jersey, pp. 399–420.
- 474 Grambow, B., 1990. Chemistry of glass corrosion in high saline brines, in: Oversby, V.M., Brown, P.W.
- 475 (Eds.), Scientific Basis for Nuclear Waste Management. Plenum Press, Pittsburgh, PA, pp. 229–
 476 240.
- 477 Hamilton, J.P., Pantano, C.G., Brantley, S.L., 2000. Dissolution of albite glass and crystal. Geochim.
- 478 Cosmochim. Acta 64, 2603–2615. https://doi.org/10.1016/S0016-7037(00)00388-4
- 479 Haynes, W.M., Lide, D.R., Bruno, T.J. (Eds.), 2014. CRC Handbook of Chemistry and Physics, 95th
- 480 Edition. CRC Press, Taylor & Francis Group, Boca Raton, FL.
- 481 Icenhower, J.P., Dove, P.M., 2000. The dissolution kinetics of amorphous silica into sodium chloride
- 482 solutions: effects of temperature and ionic strength. Geochim. Cosmochim. Acta 64, 4193–4203.
- 483 https://doi.org/10.1016/S0016-7037(00)00487-7
- 484 ICRP, 2012. Compendium of Dose Coefficients based on ICRP Publication 60. Ann. ICRP ICRP Publi.
- 485 ICRP, 1993. Age-dependent doses to members of the public from intake of radionuclides: Part 2.
- 486 Ingestion dose coefficients. Ann. ICRP 23, 1–167.
- 487 Ikehara, R., Suetake, M., Komiya, T., Furuki, G., Ochiai, A., Yamasaki, S., Bower, W.R., Law, G.T.W.,
- 488 Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S., 2018. Novel Method of Quantifying
- 489 Radioactive Cesium-Rich Microparticles (CsMPs) in the Environment from the Fukushima Daiichi

490	Nuclear Power Plant. Environ. Sci. Technol. 52. https://doi.org/10.1021/acs.est.7b06693
491	Imoto, J., Furuki, G., Ochiai, A., Yamasaki, S., Nanba, K., Ohnuki, T., Grambow, B., Ewing, R.C.,
492	Utsunomiya, S., 2017a. Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly
493	radioactive, caesium-rich microparticles. Sci. Rep. In press. https://doi.org/10.1038/srep42118
494	Imoto, J., Ochiai, A., Furuki, G., Suetake, M., Ikehara, R., Horie, K., Takehara, M., Yamasaki, S., Nanba,
495	K., Ohnuki, T., Law, G.T.W., Grambow, B., Ewing, R.C., Utsunomiya, S., 2017b. Isotopic
496	signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products
497	from the Fukushima Daiichi Nuclear Power Plant. Sci. Rep. 7, 5409.
498	https://doi.org/10.1038/s41598-017-05910-z
499	Kaneko, M., Iwata, H., Shiotsu, H., Masaki, S., Kawamoto, Y., Yamasaki, S., Nakamatsu, Y., Imoto, J.,
500	Furuki, G., Ochiai, A., Nanba, K., Ohnuki, T., Ewing, R.C., Utsunomiya, S., 2015. Radioactive Cs
501	in the Severely Contaminated Soils Near the Fukushima Daiichi Nuclear Power Plant. Front.
502	Energy Res. 3, 37. https://doi.org/10.3389/fenrg.2015.00037
503	Ma, J., Huang, B.X., Zhao, X.C., Ban, C.L., Hao, X.H., Wang, C.Z., 2018. Substitutions of zinc in
504	mesoporous silicate-based glasses and their physicochemical and biological properties. J. Non.
505	Cryst. Solids 491, 98–105. https://doi.org/10.1016/J.JNONCRYSOL.2018.04.002
506	Marques, M.R.C., Loebenberg, R., Almukainzi, M., 2011. Simulated Biological Fluids with Possible
507	Application in Dissolution Testing. Dissolution Technol. 18, 15–28.

508 https://doi.org/10.14227/DT180311P15

```
509 McMahon, P.B., Vroblesky, D.A., Bradley, P.M., Chapelle, F.H., Gullett, C.D., 1995. Evidence for
```

- 510 Enhanced Mineral Dissolution in Organic Acid-Rich Shallow Ground Water. Ground Water 33,
- 511 207–216. https://doi.org/10.1111/j.1745-6584.1995.tb00275.x
- 512 Ochiai, A., Imoto, J., Suetake, M., Komiya, T., Furuki, G., Ikehara, R., Yamasaki, S., Law, G.T.W.,
- 513 Ohnuki, T., Grambow, B., Ewing, R.C., Utsunomiya, S., 2018. Uranium Dioxides and Debris
- 514 Fragments Released to the Environment with Cesium-Rich Microparticles from the Fukushima
- 515 Daiichi Nuclear Power Plant. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b06309
- 516 Oelkers, E.H., Gislason, S.R., 2001. The mechanism, rates and consequences of basaltic glass dissolution:
- 517 I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si
- and oxalic acid concentration at 25°C and pH = 3 and 11. Geochim. Cosmochim. Acta 65, 3671–
- 519 3681. https://doi.org/10.1016/S0016-7037(01)00664-0
- 520 Ohtsuki, C., Kokubo, T., Yamamuro, T., 1992. Mechanism of apatite formation on CaOSiO2P2O5
- 521 glasses in a simulated body fluid. J. Non. Cryst. Solids 143, 84–92. https://doi.org/10.1016/S0022-
- 522 3093(05)80556-3
- 523 Okumura, T., Yamaguchi, N., Dohi, T., Iijima, K., Kogure, T., 2019. Dissolution behaviour of
- 524 radiocaesium-bearing microparticles released from the Fukushima nuclear plant. Sci. Rep. 9, 3520.
- 525 https://doi.org/10.1038/s41598-019-40423-x

- 526 Potter, R., Mattson, S.M., 1991. Glass fiber dissolution in a physiological saline solution. Glas. Ber 64,
- 527 16–28.
- 528 Roy, M., 1989. Lung Clearance Modeling on the Basis of Physiological and Biological Parameters.
- 529 Health Phys. 57, 255–262. https://doi.org/10.1097/00004032-198907001-00033
- 530 Schlesinger, R.B., 1989. Deposition and clearance of inhaled particles., in: McClellan, R.O., Henderson,
- 531 R.F. (Eds.), Concepts in Inhalation Toxicology. Hemisphere, New York, pp. 163–192.
- 532 Scholze, H., 1991. Statement on chemical stability of silicate glass fibers. WaBoLu-Hefte.
- 533 Seidel, A., Löbbus, M., Vogelsberger, W., Sonnefeld, J., 1997. The kinetics of dissolution of silica
- 534 "Monospher" into water at different concentrations of background electrolyte. Solid State Ionics
- 535 101–103, 713–719. https://doi.org/10.1016/S0167-2738(97)00289-0
- 536 Stohl, A., Seibert, P., Wotawa, G., Arnold, D., Burkhart, J.F., Eckhardt, S., Tapia, C., Vargas, A.,
- 537 Yasunari, T.J., 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima
- 538 Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and
- 539 deposition. Atmos. Chem. Phys. 12, 2313–2343. https://doi.org/10.5194/acp-12-2313-2012
- 540 Stumm, W., 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water Interface in
- 541 Natural Systems. John Wiley & Sons, Inc.
- 542 Tanaka, K., Sakaguchi, A., Kanai, Y., Tsuruta, H., Shinohara, A., Takahashi, Y., 2013. Heterogeneous
- 543 distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima

- 544 Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration
- of radiocesium from the air into ground and rive. J. Radioanal. Nucl. Chem. 295, 1927–1937.
- 546 https://doi.org/10.1007/s10967-012-2160-9
- 547 Vogelsberger, W., Löbbus, M., Sonnefeld, J., Seidel, A., 1999. The influence of ionic strength on the
- 548 dissolution process of silica. Colloids Surfaces A Physicochem. Eng. Asp. 159, 311–319.
- 549 https://doi.org/10.1016/S0927-7757(99)00268-X
- 550 Wen, C., Guan, S., Peng, L., Ren, C., Wang, X., Hu, Z., 2009. Characterization and degradation behavior
- 551 of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl. Surf.
- 552 Sci. 255, 6433–6438. https://doi.org/10.1016/j.apsusc.2008.09.078
- 553 Xiao, Y., Lasaga, A.C., 1994. Ab initio quantum mechanical studies of the kinetics and mechanisms of
- 554 silicate dissolution: H+(H3O+) catalysis. Geochim. Cosmochim. Acta 58, 5379–5400.
- 555 https://doi.org/10.1016/0016-7037(94)90237-2
- 556 Yamaguchi, N., Mitome, M., Kotone, A.-H., Asano, M., Adachi, K., Kogure, T., 2016. Internal structure
- 557 of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Sci.
- 558 Rep. 6, 20548. https://doi.org/10.1038/srep20548
- 559 Yamasaki, S., Imoto, J., Furuki, G., Ochiai, A., Ohnuki, T., Sueki, K., Nanba, K., Ewing, R.C.,
- 560 Utsunomiya, S., 2016. Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear
- 561 Power Plant. Sci. Total Environ. 551–552, 155–162. https://doi.org/10.1016/j.scitotenv.2016.01.155

562 Figure captions

- 563 Fig. 1. Scanning electron microscopy analysis of CsMPs used for dissolution experiments in the
- 564 present study. (a) Secondary-electron image of KOI CsMP associated with elemental maps. (b)

565 Secondary-electron image of OTZ CsMP and elemental maps.

566

- 567 Fig. 2. (a) A diagram showing the sequence of solutions used in the present dissolution experiment.
- 568 (b) A diagram illustrates the difference between two interval conditions: condition (i) and condition
- 569 (ii) during the interval for gamma measurement.
- 570
- 571

572	Fig. 3. Release of 137 Cs from KOI CsMP in various solutions (Seq. 1 – 5) as a function of time under
573	either wet and dry condition (i) or wet-only condition (ii). The CsMP was immersed in a sequence of
574	various solutions; simulated lung fluid at 25 °C under condition (i) (Seq. 1), ultrapure water at 25 °C
575	under condition (i) (Seq. 2), simulated lung fluid at 37 °C under condition (i) (Seq. 3), artificial
576	seawater at 25 °C under condition (i) (Seq. 4), and simulated lung fluid at 25 °C under condition (ii)
577	(Seq. 5).
578	

579 **Fig. 4.** Results of time course of ¹³⁷Cs radioactivity of KOI CsMP at 25 °C in various solutions under

580	wet and dry condition (i) or wet-only condition (ii) calculated based on ¹³⁷ Cs release rate: (a) in SLF
581	under condition (i); (b) in UPW under condition (i); (c) in ASW under condition (i); (d) in SLF under
582	condition (ii). t_{100nm} and t_{total} represent the time required to reach 100 nm diameter and complete
583	dissolution, respectively.
584	
585	Fig. 5. Release of ¹³⁷ Cs from OTZ CsMP in various solutions as a function of time under wet and dry
586	condition (i). The CsMP was sequentially immersed in ultrapure water at 25 °C and simulated lung
587	fluid at 25 °C.
588	
589	Fig. 6. Results of time course of ¹³⁷ Cs radioactivity of OTZ CsMP at 25 °C in solutions under wet and
590	dry condition (i) calculated based on $^{137}\mbox{Cs}$ release rate: (a) in UPW and (b) in SLF. t_{100nm} and t_{total}
591	represent the time required to reach 100 nm diameter and complete dissolution, respectively. Note that
592	the case for SLF solution (b) reveals the minimum period because the maximum release rate was used
593	for calculation.
594	
595	Fig. 7. (a) SEM image of OTZ before immersing in SLF associated with elemental maps of area
596	indicated by red square. (b) SEM image of the same OTZ particle after ten days of immersion, with
597	the elemental maps of the same area. (c) SEM-EDX spectrum of secondary precipitate indicated by

598 red square in panel (b).

599

600	Fig. 8. Schematic illustration of dissolution mechanisms for OTZ and KOI CsMPs. Illustration is based
601	on the inner texture of CsMPs with low and high Cs concentrations (Furuki et al., 2017; Imoto et al.,
602	2017a, 2017b).

603

604	Fig. 9.	Comparison	of	dissolution	rate	calculated	for	OTZ	with	that	of	the	other	Si-based	glasses
-----	---------	------------	----	-------------	------	------------	-----	-----	------	------	----	-----	-------	----------	---------

605 (Abraitis et al., 2000; Crovisier et al., 1987; Gislason and Oelkers, 2003b; Hamilton et al., 2000;

606 Icenhower and Dove, 2000; Oelkers and Gislason, 2001; Seidel et al., 1997) near room temperature.

607 As described in text, the rate for SLF at 25 °C is the maximum value and depicted by the arrow.

608

609	Fig. 10. Results of time course of Cs radioactivity for a potentially inhaled CsMP (2 μ m in size) in
610	SLF under wet and dry condition (i) calculated assuming the maximum ¹³⁷ Cs release rate of OTZ after
611	normalization by the composition. t_{100nm} and t_{total} represent the time required to reach 100 nm diameter
612	and complete dissolution, respectively.
613	

615	Table 1. Radioactivity and associated parameters of CsMPs used for dissolution experiments.* The
616	radioactivity of Cs isotopes was decay-corrected to 15:36 on March 12, 2011. **Radioactivity per
617	unit mass was calculated assuming the spherical shape and a density of SiO ₂ glass; 2.6 g/cm ³
618	(Haynes et al., 2014).
619	
620	

			Radioactiv	vity (Bq)		¹³⁴⁺¹³⁷ Cs
		Particle size			¹³⁴ Cs/ ¹³⁷ Cs	Radioactivity
		(µm)	¹³⁴ Cs	¹³⁷ Cs	radioactivity ratio	per unit mass
_						$(Bq \cdot g^{-1})^{**}$
	OTZ	4.20	63.5 (±1.0)*	57.8 (±0.3)*	1.10	5.75×10 ¹¹
	KOI	5.64	110 (±1)*	108 (±0)*	1.02	4.47×10 ¹¹

627 Table 2. ¹³⁷Cs radioactivity (Bq) released from CsMPs into various solutions as a function of time.

628 Errors are given in parentheses. The notation (i) indicates wet and dry condition and (ii) indicates

629 wet-only condition.

630

Duration			KOI			0	ΓZ
(day)	UPW	25°C SLF(i)	37°C SLF(i)	25°C SLF(ii)	ASW	UPW	SLF
1	1.18	0.493	0.259	0.0585	0.0682	0.0235	0.0673
1	(±0.02)	(±0.01)	(± 0.006)	(± 0.0048)	(± 0.0069)	(± 0.0055)	(±0.0060)
2	1.49	0.660	0.576	0.0785	0.105	0.0358	0.0937
3	(±0.03)	(±0.02)	(±0.009)	(± 0.0048)	(± 0.006)	(± 0.0043)	(± 0.0053)
10	1.59	0.969	1.03	0.167	0.168	0.0501	0.129
10	(±0.02)	(±0.02)	(±0.02)	(±0.005)	(± 0.005)	(± 0.0042)	(± 0.006)
20	1.80		1.49	0.449	0.400	0.106	
30	(±0.04)	-	(±0.03)	(± 0.008)	(± 0.009)	(± 0.005)	-
21		1.79					
51	-	(±0.04)	-	-	-	-	-
42	1.96						
43	(±0.03)	-	-	-	-	-	-
62			1.91				
63	-	-	(±0.04)		-	-	-

Table 3. Summary of ¹³⁷Cs release rate R_{Cs} from KOI and OTZ CsMPs at 25 °C. SLF (i) stands for immersion in SLF under condition (i) (wet and dry cycle). Condition (ii) is wet only. t_{total} and t_{100nm} are the time for the complete dissolution and the time to reach 100 nm diameter. *"n.a." in the table means that the data are not available. Note that the release rate from OTZ in SLF reveals the

636 maximum value.

		SLF (i)	SLF (ii)	ASW	637 UPW
					638
	$R_{Cs} (\times 10^3 \text{ Bq} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$	4.68	1.54	1.29	1.33
					639
KOI	t _{total} (year)	19.1	58.1	69.5	67.6
					640
	t _{100nm} (year)	18.5	56.0	67.0	65.2
					641
					642
	$R_{Cs} (\times 10^3 \text{ Bq} \cdot \text{m}^2 \cdot \text{s}^{-1})$	<1.04	n.a.*	n.a.*	0.549
OTZ					643
	t _{total} (year)	>81.6	n.a.*	n.a.*	154
					644
	t _{100nm} (year)	>77.7	n.a.*	n.a.*	147
					643

646

647

648

Si-based glass

- [2] SiO₂:68.6%; 25 °C; deionized water; pH 5.6 (Hamilton et al., 2000)
 - \fboxigen_3 SiO₂: 47.5% B₂O₃:16.9% ;18 °C, Tris(hydroxymethyl)-Methylamine,HNO₃,KOH; pH 7 (Abraitis et al., 2000)
 - 4 SiO₂: 48.1%; 25 °C; HCl, NaOH,C₂H₂O₄; pH 7 (Oelker and Gislason., 2001)
 - 5 SiO₂: 49.8%; 29 °C; HCI, NH₄CI, and NH₃; pH 7.0 (Gislason and Oelker, 2003)
- 6 SiO₂: 50.76%; 25 °C; seawater; pH 8.0 (Crovisier et al., 1987)
- OTZ; 25 °C; SiO₂: 65.1%; UPW; pH 7 (This study)
- 8 OTZ; 25 °C; SiO₂: 65.1%; SLF; pH 7.4 (This study)

Supplementary Material Click here to download Supplementary Material: Suetake2019Chemosphere revision 1 Supplementary Materials.pdf