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Abstract: Although word association measures are useful for deciphering the semantic nuances of long extinct 
languages, they are very sensitive to excessively formulaic narrative patterns and full or partial duplication 
caused by different copies, edits, or fragments of historical texts. This problem is apparent in the corpora of 
the ancient Mesopotamian languages such as Sumerian and Akkadian. When word associations are 
measured, vocabulary from repetitive passages tends to dominate the top-ranks and conceal more interesting 
and descriptive use of the language. We propose an algorithmic way to reduce the impact of repetitiveness 
by weighting the co-occurrence probabilities by a factor based on their contextual similarity. We 
demonstrate that the proposed approach does not only effectively reduce the impact of distortion in 
repetitive corpora, but that it also slightly improves the performance of several PMI-based association 
measures in word relatedness tasks in non-repetitive corpora. Additionally, we propose normalization for 
PMI2, a commonly-used association measure, and show that the normalized variant can outperform the base 
measure in both, repetitive and non-repetitive corpora. 

1 INTRODUCTION 

Collocation extraction is a central part of 
distributional semantics, an area of linguistics that 
studies meanings of words by observing their co-
occurrence patterns. The statistical significance of 
word co-occurrences can be measured in several 
different ways. A common idea is to first calculate a 
chance for some co-occurrence to be independent 
withing given constraints, and then to compare it 
with the actual observed co-occurrence probability. 
The more the observed probability exceeds chance, 
the stronger the lexical association likely is. 

A lot of work has been invested in developing 
and improving the association measures, especially 
to correct their bias toward low-frequency events. 
However, largely unaddressed issue of word 
association measures concerns their application to 
corpora with vast amount of repetition or 
duplication. This problem is apparent in some 
historical corpora containing very formulaic and 
repetitive language, as well as slightly diverging 
versions or editions of same texts. Naturally, for a 
history researcher it is essential to preserve all 
existing versions of the documents, but for 
computational semantic analysis, any full or partial 

duplicates may give too much weight to certain co-
occurrences. In this particular study, we use the 
ancient Akkadian language as an example, although 
the issue is also relevant in the Sumerian corpora. 

In this paper we propose a metric for measuring 
contextual similarity within collocation windows, 
which can be used to weight the co-occurrence 
probabilities of association measures in order to 
reduce the impact of repetition without removing 
any content from the corpus. Our evaluation shows, 
that the proposed method consistently improves the 
results in a word relatedness task not only in corpora 
with repetition, but that it is also slightly 
advantageous in corpora without noticiable amount 
of repetition. 

We begin this paper with a summary of related 
work and a short description of the Akkadian 
language and its resources. Then we give a short 
review on the different association measures and 
propose some modifications, which are better 
compatible with our context similarity weighting 
(CSW). The last part of the paper will be dedicated 
to evaluation and discussion. 
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2 RELATED WORK 

Identification of duplicated or reused text has been 
addressed in multiple publications, especially in the 
context of file systems (Manber, 1993), web pages 
(Broder et al., 1997), newspapers (Clough et al., 
2002; Smith et al., 2013), plagiarism detection 
(Gipp, 2014; Citron & Gingsparg, 2015) and 
historical corpora (Lee, 2007), but to our knowledge, 
only one paper has addressed the effect of 
duplication on distributional semantics. Schofield et 
al. (2017) measured the effect of duplication on 
topic-modeling methods, namely LSA (Deerwester 
et al., 1990) and LDA (Blei et al., 2003). They 
discovered that LDA is more resistant to duplication 
if the model is trained with an increased number of 
topics, and that both models tend to sequester 
repeated text templates, unless there is not heavy 
overlapping with topics of interest. Nonetheless, 
they also suggested that using different 
deduplication methods such as n-gram removal 
should have positive impact on the models’ 
performance if the data contains lots of repetition. 

Methods of duplicate detection have been widely 
discussed. Some well-known approaches include 
approximate fingerprinting (Manber, 1994), Greedy 
String-Tiling (Wise, 1993) used in plagiarism 
detection and biology, n-gram overlap (Clough et 
al., 2002), and w-shingling (Broder et al., 1997), that 
divides documents or their parts into sequences and 
measure their resemblance by using Jaccard 
similarity coefficient. Motivation for our work 
comes from shingling and n-gram overlap methods. 

3 AKKADIAN AND ITS 
RESOURCES 

Akkadian was an East-Semitic language documented 
in hundreds of thousands of cuneiform clay tablets 
and their fragments excavated from the modern day 
Iraq and the surrounding regions. Although the 
earliest attested written sources are dated back to the 
Old Akkadian Period (2350–2150 BCE), the largest 
mass of texts and inscriptions were written between 
1900 BCE and 500 BCE by the Babylonians and the 
Assyrians, which both spoke dialects of the 
Akkadian language. The latest exemplars of 
Akkadian are dated around 100 CE, after which the 
cuneiform writing tradition disappeared and the 
language was forgotten until its rediscovery in the 
middle of the 19th century CE. (Kouwenberg, 2011)  

The cultural-historical importance of Akkadian is 
significant in many respects. First, it was one of the 
earliest written languages alongside Sumerian, 
Elamite and Ancient Egyptian. Second, it enjoyed a 
prestigious status in the ancient Middle-East, and 
was studied and used in certain contexts by the 
Hittites, Elamites and the Persians. It was also used 
as a lingua franca during the Middle-Babylonian 
period (1590–1100 BCE), for example in Amarna 
correspondence between Egyptian administration 
and its representatives in Levant (Streck, 2011). 
Third, the Akkadian corpus comprises a vast 
diversity of texts representing many different genres: 
astronomical texts, administrative and legal 
documents and law codes, wisdom literature, epics 
and myths, letters, mathematical texts, lexical and 
grammatical texts, royal inscriptions, omens, 
medical texts, as well as several others 
(Huehnergard & Woods, 2008).  Thus, the Akkadian 
text material opens an interesting and concrete 
window to the distant past for a wide range of topics. 

Despite being a language that became extinct 
two millennia ago and studied only by a handful of 
people, Akkadian is fairly well resourced. Some 
important digital resources of Akkadian texts are 
Archives babyloniennes (ARCHIBAB), Cuneiform 
Digital  Library Initiative (CDLI), Sources of Early 
Akkadian Literature (SEAL), SAAo (State-Archives 
of Assyria Online) and Open Richly Annotated 
Cuneiform Corpus (Oracc). Currently only Oracc 
provides extensive annotation. About 1.5M tokens 
of the corpus has been POS-tagged and lemmatized. 
However, as the corpus covers a time-span of almost 
2500 years, it is often not advisable to use it as a 
whole for linguistic analysis. Instead it is more 
fruitful to limit the scope to a certain time period or 
dialect. This limits the size of useable data for 
studying distributional semantics. 

4 CHALLENGES OF AKKADIAN 
DATA  

4.1 Repetition and Repetitiveness 

A challenge concerning the Akkadian text data is its 
high degree of repetition and repetitiveness. In 
literary texts, repetition is used as a stylistic feature 
within single pieces (Groneberg, 1996). Well-known 
examples can be found in the epic of Gilgameš, for 
instance, in the description of Gilgameš’s travel 
through the subterranean path of the sun (George, 
2003), and the Babylonian creation myth Enūma 



Eliš (Lambert, 2013), where a vizier repeats his 
master’s 53 line long message word by word, which 
is again almost a word to word repetition of an 
earlier description of their enemies gathering an 
army of monsters. Repetitiveness, on the other hand 
is a genre-defining feature encountered in Assyrian 
and Babylonian royal inscriptions, divinatory texts 
and astrological reports (Maul, 2013). Assyrian 
royal inscriptions, for example, were copied many 
times over the years with yearly updates and 
additions of new episodes of that year’s campaign. 
The older passages were often shortened, and the 
new ones were written closely following the earlier 
descriptions to promote the stability and prosperity 
of the Empire (Bach, 2020). Additionally, formulaic 
epithets contribute to the repetitiveness of the royal 
inscriptions (Cifola, 1995). Although the copies 
often show only a slight divergence from each other, 
Assyriologists consider them as different texts, and 
they are added into corpora as such.  

A part of the repetitiveness, or rather (semi-) 
duplication, in some Akkadian corpora is also 
caused by the fragmentary nature of texts. It is not 
very common that a single fully preserved copy of a 
text is ever found, especially of larger and 
linguistically more diverse works. Instead, the 
Assyriologists often work with small fragments of 
texts, which they later collate into composite texts. 
The fragments do not necessarily come from the 
same place or time period, nor contain the same 
wording, as copying texts was a central part of the 
ancient scribal curriculum (Gesche, 2001). Thus, 
parts of texts may exist in different versions. In 
Oracc, however, the fragments are not a significant 
issue, as it mostly consists of edited composites. 

When collocation extraction is performed on 
Akkadian corpora, the formulaic and report-like 
patterns, extended texts, and to some extent, 
fragments, tend to distort the association metrics. It 
is not very rare that even half of the co-occurrences 
of certain words (including those with rather high 
co-occurrence frequency) come from identical or 
almost identical passages. 

One option to tackle this issue would be pre-
processing the whole corpus as a whole and remove 
all the “almost duplicate” parts. The disadvantage of 
this approach would be the need to argue in every 
case why exactly this part was removed instead of 
some other. Additionally, drawing a line between 
too similar and acceptably similar would be 
arbitrary. Thus, a better and less troublesome 
approach is not to remove anything, but to reduce 
the significance of the repeating passages in an 
algorithmically consistent and reproducible way.  

Naturally, it is a valid methodological question to 
what extent the repetition should be reduced. It is 
much easier to justify reducing the duplication 
caused by the fragmentary nature of the corpus, than 
it is to argue in favor of reducing the impact of the 
formulaic way of expression. The first mentioned 
has nothing to do with the language itself, but it is 
rather a remnant of the scribal training curriculum, 
evolution of compositions, and unfortunate historical 
events where tablets or their parts have been 
damaged or destroyed. The latter, on the other hand, 
can be considered as a part of the language, at least 
in its written form. 

If we consider this question from the viewpoint 
of gathering new insights to the Akkadian lexicon, 
having a look on the freer use of the language by 
reducing the impact of very obvious associations 
may be justified. Assyriologists are already well 
aware of the vocabulary and concepts of the long 
formulaic litanies, but it is not necessarily obvious 
that one can see larger patterns in more varied and 
spread out use of words. 

4.2 Lack of Data 

As a low-resource language, applying machine 
learning methods such as word2vec (Mikolov et al., 
2013) or fastText (Bojanowski et al., 2017) do not 
necessarily provide outstanding results. Our 
previous experiments have shown, that in order to 
get useful results, machine learning approaches have 
to be applied hundreds of times on the data, and the 
conclusions must be drawn from the averages (Svärd 
et al. 2018). Thus it is often more convenient to use 
count-based approaches such as Pointwise Mutual 
Information (PMI) (Church & Hanks, 1990), the 
results of which can later be transformed into word 
embeddings by using matrix factorization. In fact, 
the matrix factorization approach has been shown to 
be on par (Levy et al. 2015), or even to outperform 
machine learning methods in low-resource settings, 
especially in word similarity tasks (Jungmaier, 
2020). 

Although only a limited number of PMI variants 
work well with matrix factorization (Levy et al., 
2014, 2015), the variety of useable measures is 
much greater for collocation analysis. For this 
reason, we will evaluate our method on several 
different variants of PMI. 

 



5 MEASURING CONTEXT 
SIMILARITY 

Our method for measuring context similarity 
involves stacking all the co-occurrence windows of 
the bigram (a;b) into a two-dimensional array and 
calculating the relative frequencies of all unique 
words vertically in each window position. The 
context similarity weight (CSW) is calculated as the 
average of these relative frequencies.  

To make each element of the array uniform, we 
pad the windows to equal length. This keeps the 
keywords aligned in case they occur near the 
beginning or end of a line, sentence, paragraph or 
whatever boundary is chosen to restrict the window 
span. All padding symbols (#), the keyword (a), and 
its potential collocate (b), are ignored from relative 
frequency counts, because they are expected to 
occur within the same window. Taking them into 
account would impose a penalty for all co-
occurrences. 

Formally, over all n co-occurrences of words a 
and b, let V be a set and W a bag or multiset of 
context words {x: x ∉ {a, b, #}} that occur at 
position i in a window of size w, and let m be the 
number of window positions where V ≠ {∅}. We 
define the context similarity weight (a;b) with a 
magnitude of k as 

 (a,b) = 1 | |max(| |,1)  

 

(1)

The context words x at position i are perfectly 
dissimilar if |Vi| = |Wi| and perfectly similar if |Vi| = 
1. Thus the bounds for φ are (1/n)k in the case of 
perfect similarity, and 1 in the case of perfect 
dissimilarity. The weight can be adjusted by raising 
it to the power of k. Our experiments show that k-
values of 2 and 3 have generally the best 
performance in word relatedness task, and that k-
values higher than 3 are typically detrimental, unless 
the amount of repetition is very low. 

The context similarity weight is applied as a 
multiplier to the co-occurrence frequency f(a,b), 
which causes some co-occurrences to be statistically 
removed from the counts. Thus, the context 
similarity weighted joint distribution p(a,b) is 
redefined for a corpus of N words as  
 ( , ) = (a,b) ∙ ( , )

 (2)
 

Applying CSW on the co-occurrence frequencies 
changes the base definition of PMI and related 

association measures: a perfect association is no 
longer determined by two words co-occurring only 
within a given window, but the context where the 
words co-occur must also be completely unique. In 
other words, their distribution is expected to convey 
previously unseen information. 

As the method operates oblivious to the adjacent 
window positions, it does not systematically take 
into account deletion or insertion. For this reason it 
may be useful to remove certain stop words such as 
articles and prepositions from the corpus altogether 
to improve the alignment of the windows. The 
blindness to adjacent positions is merely a safety 
feature to prevent changes in word order to be 
considered as exactly same expression. Naturally, 
attention is also not paid to morphological detail if 
the text has been lemmatized: for example in 
English the same sentence in the present and the past 
tense are considered to contain same information. 

One advantage of CSW is that it does not alter 
the bounds of the association measures, but rather 
changes their definition. Modifying the observed co-
occurrence frequencies can be considered a re-
ordering operation: if the co-occurrence does not 
include any new information, the words are not 
removed from the corpus but just considered to exist 
somewhere else than within the same window. If it 
provides only some new information, the 
significance of the co-occurrence is partially 
reduced. For this reason, the marginal probabilities 
and the corpus size are not modified. 

Calculating the CSW is very fast, as much of it 
can be done by set operations, which are usually 
well optimized in programming languages. In terms 
of space complexity, the method can get heavy if the 
window size and the corpus are both large. 
However, this can be reduced significantly by pre-
filtering stop words and using frequency thresholds. 

6 PMI VARIANTS USED IN 
EVALUATION 

In this chapter we briefly discuss the properties of 
common PMI variants we later use in the evaluation. 
Our aim is to cover variants used in collocation 
extraction and matrix factorization, as well as 
measures featuring different frequency biases.  

Pointwise mutual information (PMI) was 
introduced in lexicography by Church and Hanks 
(1990) by the name association ratio. They defined 
it as a logarithmic ratio of the observed probability a 
word co-occurrence within a given window size to 



the expected chance of this co-occurrence under the 
assumption of independence. The formula itself was 
based on an earlier definition of mutual information 
by Fano (1961), but Church and Hanks were the first 
to apply it on collocation extraction. 

 PMI( ; ) = log ( , )( ) ( ) (3)
 

After the introduction of PMI, several researchers 
have proposed various ways to enhance it. The 
proposed variants generally differ from each other in 
two respects: in terms of frequency bias and the way 
scores are bounded and oriented.  

Often acknowledged weaknesses of PMI are its 
sensitivity to low-frequency words (Daille, 1994; 
Bouma, 2009; Role & Nadif, 2011; Levy et al., 
2015), and its moving upper bound, which makes 
the scores somewhat unintuitive (Bouma, 2009). In 
the case of non-co-occurrence, independence and 
perfect dependence, PMI takes scores of ∞ < 0 <	 log ( , ). The issue of low-frequency bias and 
the moving upper bound are interrelated. The perfect 
dependence is achieved when the joint an marginal 
distributions are equal to each other: p(a,b) = p(a) = 
p(b), which translates to the denominator being the 
numerator squared. This means, that a decrease in 
word frequency increases the value of the upper 
bound log ( , ). 
Normalized PMI. Bouma (2009) proposed a variant 
called Normalized PMI (NPMI), which normalized 
the score orientation to 1 0 1 by dividing the 
score by its moving upper bound. 
 NPMI( ; ) = log ( , )( ) ( ) / log ( , ) (4)
 

In addition to providing a more intuitive score 
orientation, NPMI nullified the effect of an extreme 
score increase in the case of perfect dependence 
However, the low-frequency bias reduction of NPMI 
decreases in practical cases, where the score is not 
close to the maximum.  
PMIk. In terms of low-frequency bias correction, a 
more robust association measure called PMIk was 
proposed by Daille (1994). The core idea of this 
measure was to introduce a factor k, to which power 
the p(a,b) is raised to overcome the shrinking 
denominator problem. The most balanced measure 
in this family of measures is PMI2 (Evert, 2005), as 
it preserves the symmetry between the numerator 
and denominator and keeps the scores consistent 
regardless of word frequencies. 
 PMI ( ; ) = log ( , )( ) ( ) (5)
 

The orientation of PMI2 scores is negative: ∞ <log ( , ) < 0, which can be generalized for PMIk 
as ∞ < ( 1)	log ( , ) < ( 2)	log ( , ). 
This is somewhat problematic, as the score that 
defines the independence of the co-occurrence is not 
fixed and the scores are only ranked based on their 
difference to the perfect association.  For this reason, 
PMIk with k > 2 tends to give high scores for 
frequently occurring words, regardless if the co-
occurrences are statistically dependent or not. This 
feature makes PMI3 good for finding very general 
level associations, as demonstrated by Role & Nadif 
(2011). PMI2 is less biased toward high frequency 
words, and it is not very common to see independent 
co-occurrences in the top ranks if stop words have 
been removed from the corpus. 
Normalized (Positive) PMIk. From the viewpoint 
of CSW and general readability, it is often more 
intuitive if the measures feature a fixed threshold for 
independence as PMI and NPMI do. We propose the 
following general normalization for PMIk, which 
first involves removal of the logarithm and then 
aligning the threshold of independence with zero. 
We can fix the upper bound at 1 by following the 
example of Bouma (2009): 
 

NPMI ( ; ) = ( , )( ) ( ) ( , )( , ) ( , )  

 

(6)

 

This yields two bounds: 0 for non-co-occurring and 
independently co-occurring words, and 1 for perfect 
dependences. The disadvantage of the measure is 
that co-occurrences rarer than the assumption of 
independence become unsortable. In fact, co-
occurrences may get negative scores as well, but as 
they approach either the non-co-occurrence or 
independence, they get closer to 0. For this reason, it 
is advisable to use a max-operator as in the popular 
positive variant of PMI known as PPMI. Thus we 
define Normalized Positive PMIk as 
 NPPMI (a; b) = max(NPMI ( ; ), 0) (7)
 

Generally the normalization is useful only for PMI2 
due to the aforementioned characteristics of PMI3 
capturing very high frequency associations, which 
are not necessarily statistically dependent. For PMI2, 
the normalization yields slightly better performance 
in both, context similarity weighted and non-
weighted relatedness tasks, as will later be shown in 
the chapter 8.4. 

Some of the PMI variants introduce various 
constants or discount factors based on word 
frequencies to balance the frequency distribution. 



PMIδ (Pantel & Lin, 2002) weights the PMI by 
multiplying it with a discount factor δ defined as 
 δ( ; ) = 	 ( , )( , ) + 1 ∙ min ( ), ( )min ( ), ( ) + 1 (8)
 

The bounds of this variant can be shown to be the 
same as for the PMI, except for the upper bound at 
(f(a,b) / (f(a,b)+1))2 · –log2 p(a,b). The low-
frequency bias reduction provided by PMIδ falls 
between PMI2 and PMI3. 

Semi-Conditional Information weighted with 
significance of association (SCIsig) (Washtell & 
Markert, 2009) involves first weighing the 
occurrence probability of the collocate b and 
multiplying the score with an external factor to 
reduce the impact of low-frequency bias. 
 SCI ( ; ) 	= 	 min ( ), ( ) ∙ log ( , )( ) ( ) (9)
 

The bounds are not mentioned in the original 
research paper, but they can be shown to exist at 0 <( , ) < 1 if p(a) ≤ p(b) and 0 < ( ) < 1   if 

p(a) ≥ p(b) for non-co-occurring, independent and 
perfectly dependent events. Alongside PMI3, SCIsig 
has the highest frequency bias of the measures 
discussed in this chapter and is thus suitable for 
finding very general level associations. 

Context distribution smoothed PMI (PMIα) 
(Levy et al., 2015) is a variant of PMI inspired by 
negative sampling used in word2vec. This is 
achieved by raising the p(b) to power of α, which is 
normally set to 0.75 following Mikolov et al. (2013). 
This measure is among the state-of-art PMI variants 
for matrix factorization. 
 PMI ( ; ) = log ( , )( ) ( )  (10)
 

As an empirical demonstration of frequency 
distributions of different measures, we scored 1000 
random words from ten randomly extracted 10M 
token samples of the English Wikipedia corpus and 
plotted the average frequency of each top-100 
collocate  (Figure 1).  
PMI, NPMI and PMIα tend to have the highest bias 
for low-frequency words, whereas NPPMI2 and 
PMI2 are more balanced. PMIδ falls in the middle 
between balanced and high-frequency sensitive 
measures: PMI3 and SCIsig. 
 

 

Figure 1: Rank-wise average frequency distributions. 

7 OBSERVATIONS OF CSW ON 
THE AKKADIAN CORPUS 

Although the effect of CSW cannot be properly 
evaluated with the Akkadian data due to the lack of 
a gold standard, we can observe its effect on a very 
general and subjective level. For these examples we 
use a symmetric window of seven words and a 
selection of first millennium BCE texts of various 
genres comprising 900k tokens.  

At first, we examine the top ten ranks of the 
word nakru ‘enemy’ by using context similarity 
weighted PMIδ with k-values of 0 (no CSW), 1 and 
3. The purpose of this test is to demonstrate how the 
very top ranks are affected when CSW is used. For 
the sake of simplicity we use the English translations 
of the Akkadian words. 

Table 1: Top-10 collocates of ‘enemy’ in Akkadian using 
CSW with different k-values. 

 k = 0 k = 1 k = 3 
1 dangerous attack attack 
2 attack enemy to attack 
3 enemy army enemy 
4 army to attack army 
5 weapon downfall downfall 
6 *gall bladder *gall bladder *gall bladder 
7 *bright to kill to kill 
8 to overthrow to overthrow border (of land) 
9 *frost weapon stranger, outsider 
10 people *bright to bind 

 

The first observation is, that the number of 
collocates that seem intuitively strange (marked with 
asterisks) tend to decrease in this particular case. A 
closer examination of the corpus reveals that these 
words mainly come from very repetitive or 
formulaic contexts. Collocates ‘bright’ and ‘frost’ 
come from astrological reports, which predict an 
attack by the enemy if certain ominous signs such as 



bright Mars or frost are observed. Word ‘gall 
bladder’ comes as well from omen texts. It is, 
however, preserved because the ominous conditions 
are more diversely described than the astrological 
phenomena. 

We can also see that two collocates, ‘dangerous’ 
and ‘people’, disappear from the top ranks when the 
k-value is increased, and that the ranking of word 
‘weapon’ decreases. This is due to their appearance 
in almost identical contexts, as can be seen in the 
concordance view in Figure 2. We can observe all 
these words, nakru ‘enemy’ (here written as a 
Sumerian logogram LU2KUR2), bahūlātu ‘people’, 
akṣu ‘dangerous’ and GIŠTUKUL ‘weapon’ in this 
very context. 

 

Figure 2: Concordance view of repetition in Neo-Assyrian 
royal inscriptions. 

Another interesting detail is revealed if we examine 
the words associated with a very common word 
šarru ‘king’. If the CSW is not used, the top-10 
results are filled with words that have positive 
connotations: šulmu ‘well-being’, dannu ‘strong 
one’, karābu ‘to pray’ etc. However, when the k-
value is increased to 3, the positive words disappear 
from the list and collocations with more negative 
connotations appear to the top ranks. The first 
ranked collocate is now ḫamma’u ‘rebel’ and also a 
word bīšu ‘malicious’ appears to the eighth rank of 
the list. Here, reducing the impact of repetitiveness 
seems to switch the viewpoint from the Assyrians to 
their enemies. The reason for this is not very 
surprising: the Assyrian kings are practically always 
accompanied with a long litany of praise, and 
mentioned in very repetitive patterns in royal 
inscriptions, whereas the enemy kings are just 
mentioned here and there in more varying contexts. 

To experiment numerically how CSW balances 
the similarity distribution on different k-values, we 
sampled 1000 random words from Oracc, scored 
them by using PMIδ and plotted the average context 
similarity for each rank (Figure 3). 

 

Figure 3: Rank-wise average context similarity. 

The figure shows CSW’s effect on average context 
similarity on the top-50 ranks. From the viewpoint 
of the average context similarity over the whole 
corpus (0.265), a k-value of 2 seems to give the most 
balanced distribution. 

8 EVALUATION 

8.1 Test Settings and Parameters 

Because there is no word relatedness gold standard 
available for the Akkadian language, we 
experimented on the effect of CSW by generating 
repetitive versions the English Wikipedia corpus, 
which we first tokenized and lemmatized using the 
NLTK (Bird et al., 2009). To get some numerical 
estimate of general repetitiveness in the Akkadian 
texts, we sampled 1000 random words from Oracc 
and measured the average context similarity between 
them and their collocates in symmetric windows of 
3, 5 and 7 words. On average, this value was 0.265, 
which means that 26.5% of the context words of any 
given bigram spanning over an average window of 
5.0 are non-unique. For comparison, this figure for 
the English Wikipedia corpus is only 0.029. 

We generated test corpora featuring low, 
moderate and high degree of repetition, corres-
ponding to average context similarities of <0.1, 
<0.17 and <0.25 respectively. This process was done 
by duplicating random segments of the corpus. 

To ensure that the test setting was not either 
favorable or unfavorable by chance, we first 
extracted ten different random 2M and 10M word 
samples from the Wikipedia corpus. For each 
evaluation cycle, we generated ten different 
repetitive versions for each corpus randomly. Thus, 
for each sample corpus size, the CSW was evaluated 
on 100 different corpora.  



We scored the WS353 (Agirre et al., 2009) and 
the Mturk-771 (Halawi et al., 2012) word 
relatedness test sets using eight different association 
measures: PMI, NPMI, PMI2, PMI3, NPPMI2, SCIsig, 
PMIα and PMIδ with CSW k-values between 0 and 3 
in symmetric windows of 3, 5 and 7 words, and 
compared the rankings to the gold standard by using 
Spearman ρ-correlation. Our ρ-values represent the 
average correlation over the 100 evaluations for each 
test setting. 

We discarded out-of-vocabulary (OOV) words 
due to the small sizes of our test corpora. Thus, for 
the 2M and 10M settings, the task was to rank 
correctly about 30 and 80 words respectively for the 
WS353, and 35 and 215 words for the Mturk-771 
test set. This explains differences between ρ values 
in different test settings, and also makes the results 
incomparable between different window and corpus 
sizes. We did not consider this a problem, because 
the scope of the evaluation was only to observe, how 
much CSW contributes to the performance 
compared to results without it being used. 

Due to the large number of association measures 
included, we choose to discuss in detail only the 
results for PMIδ, as is had on average the best 
performance on the unmodified corpora without 
CSW. The best performance was measured as 
follows: we scored all our 2M and 10M token base 
corpora (20 in total) and ranked the measures by 
their average performance from 1 to 8. PMIδ had an 
average rank of 1.83, and the other measures 
NPPMI2 3.50, PMI2 4.0, NPMI 4.17, PMIα 5.0, 
SCIsig 5.33, PMI3 5.83 and PMI 6.33. We will 
discuss the other measures briefly in chapter 8.3. 

8.2 Overall Performance 

Using CSW generally improves association 
measures, but the degree of improvement is tied 
closely to window size and amount of repetition. 
The overall tendency is that when the window size 
and amount of repetition increases, the more CSW 
contributes to the result. This is expected, as larger 
windows offer a better sample of the surrounding 
context.  

Experiments with unmodified corpora show that 
CSW provides a slight improvement to the measures 
on larger windows even if the corpus does not have 
noticeable repetition. The results for PMIδ are 
summarized in Table 2.  

This observation supports our theoretical 
definition of context similarity weighted association 
measures mentioned in chapter 5: emphasizing 
previously unseen contexts over something that has 
 

Table 2: CSW on unmodified test corpora (WS353). 

 No CSW k = 1 k = 2 k = 3 
2M-3 0.55 0.55 0.54 0.54 
2M-5 0.61 0.61 0.62 0.62 
2M-7 0.63 0.64 0.64 0.65 
10M-3 0.40 0.40 0.40 0.40 
10M-5 0.51 0.51 0.52 0.52 
10M-7 0.54 0.55 0.55 0.56 

 

already been observed provides more significant 
information about the co-occurrence. This 
hypothesis seems to hold even with small amount of 
repetition (r < 0.03).  

Experiments with repetitive corpora show more 
noticeable improvement in performance. Table 3 
shows the improvement in different repetitiveness 
settings with different parameters. We set the best 
results from the unmodified corpora (Table 2) as our 
target scores. 

Table 3: CSW on modified test corpora PMIδ with 
different k-values (WS353). 

 No CSW k = 1 k = 2 k = 3 Target 
Low repetitiveness (< 0.1) 

2M-3 0.48 0.51 0.51 0.51 0.55 
2M-5 0.54 0.58 0.59 0.59 0.62 
2M-7 0.55 0.59 0.61 0.61 0.65 
10M-3 0.39 0.40 0.40 0.40 0.40 
10M-5 0.48 0.50 0.52 0.52 0.52 
10M-7 0.52 0.54 0.55 0.56 0.56 

Moderate repetitiveness (< 0.17) 
2M-3 0.44 0.48 0.48 0.46 0.55 
2M-5 0.48 0.53 0.55 0.55 0.62
2M-7 0.49 0.55 0.57 0.58 0.65
10M-3 0.37 0.38 0.39 0.39 0.40 
10M-5 0.46 0.50 0.51 0.52 0.52 
10M-7 0.50 0.53 0.55 0.56 0.56

High repetitiveness (< 0.25) 
2M-3 0.37 0.39 0.39 0.36 0.55 
2M-5 0.36 0.42 0.45 0.46 0.62
2M-7 0.39 0.45 0.49 0.51 0.65
10M-3 0.34 0.36 0.37 0.37 0.40 
10M-5 0.42 0.46 0.48 0.49 0.52
10M-7 0.45 0.50 0.53 0.54 0.56

 

Similarly to unmodified corpora, giving too much 
emphasis on contexts captured by very small 
windows may have negative impact on the results 
compared to lower k-values. This issue could be 
solved by using a secondary context window around 
the actual collocation window. 

The CSW is able to reach, or at least to get very 
close to the target scores in the 10M setting. This 
indicates that it effectively reduces or even nullifies 
the impact of the repetition. In the 2M setting the 
target scores are not reached, but the improvement is 



still noticeable in larger window sizes: in the 2M-7 
setting the ρ improves 0.09 and 0.12 points in the r < 
0.17 and r < 0.25 settings respectively.  

Evaluation using the Mturk-771 test set yields 
similar results. For reasons of space, the comparison 
in Table 4 is limited to the average of low, medium 
and high repetitiveness settings in windows of 5 and 
7 scored with PMIδ. 

Table 4: ρ-improvement compared to CSW not being 
used. 

 k = 1 k = 2 k = 3 
10M corpora (0.03 < r < 0.25) 

Mturk-771 +0.03 +0.04 +0.05 
WS353 +0.03 +0.05 +0.06 

2M corpora (0.03 < r < 0.25) 
Mturk-771 +0.03 +0.05 +0.07 

WS353 +0.05 +0.07 +0.08 

8.3 Measure Specific Improvement 

All measures except SCIsig show consistent 
improvement in performance in all test settings. The 
reason why CSW is detrimental to SCIsig lies likely 
in the sig-factor, as PMIα does not show similar 
performance decrease regardless of its very high 
similarity to Semi-Conditional Information: these 
measures are only distinguished from each other by 
the amount of weight that is given to p(b). 

Association measures with low-frequency bias 
benefit less of the CSW. This is, because low-
frequency bias corrected measures, such as PMI2, 
modify the weighted joint-distribution amplifying 
the CSW’s effect. Figure 4 summarizes the average 
improvement of different measures using window 
sizes of 5 and 7 in the 10M token corpora. SCIsig is 
excluded from the figure due to its negative 
performance. 

 

Figure 4: Measure-specific improvement (WS353). 

Results gained from the 2M corpora and Mturk-771 
test set follow similar distribution. 

8.4 Performance of NPPMI2 

Normalizing the PMI2 has positive impact on its 
performance in all non-repetitive and repetitive test 
settings. As seen in Figure 4, NPPMI2 gains slightly 
more advantage from CSW than PMI2 does. Table 5 
summarizes the difference in performance in the 
10M token corpora using the WS353 test set and a 
window size of 7. 

Table 5: Performance difference of PMI2 and NPPMI2.  

 k = 0 k = 1 k = 2 k = 3 Diff 
10M (r < 0.03) 

PMI2 0.51 0.52 0.52 0.52 +0.01 
NPPMI2 0.54 0.55 0.55 0.55 +0.01 

10M (r < 0.1) 
PMI2 0.48 0.50 0.51 0.52 +0.04 

NPPMI2 0.51 0.53 0.55 0.56 +0.05 
10M (r < 0.17) 

PMI2 0.46 0.49 0.51 0.51 +0.05 
NPPMI2 0.49 0.52 0.55 0.56 +0.07 

10M (r < 0.25) 
PMI2 0.41 0.44 0.47 0.48 +0.07 

NPPMI2 0.43 0.49 0.52 0.53 +0.10 
 

The better performance of NPPMI2 can be explained 
as a result of subtracting information from 
statistically less significant co-occurrences, which in 
conjunction with CSW becomes even less 
significant in repetitive contexts. 

9 CONCLUSIONS AND FUTURE 
PLANS 

We introduced a context similarity based weighting 
for word association measures, which was aimed to 
improve the results in repetitive corpora. Evaluation 
of the approach by using artificially repeated random 
extracts of the Wikipedia corpus indicated that the 
CSW can reduce the impact of repetitiveness and 
duplication effectively when larger window sizes are 
used. We also demonstrated, that CSW can slightly 
improve the results in a word relatedness task even 
in corpora which had no noticeable repetition. Thus 
it seems, that in general reducing the impact of 
previously seen context information about co-
occurrences can improve the performance of 
association measures. 

We also introduced a modification to PMI2, 
which better takes into account the statistical 



relevance of co-occurrences, and showed a small, 
yet consistent improvement over the original 
definition of PMI2.  

Although the results gained from CSW may 
seem very corpus specific, it is likely that there are 
other similar datasets that may benefit from it. Some 
examples may be other historical corpora, discussion 
forum data (consisting of quotes of previous 
messages) and movie subtitle collections. In general, 
the advantage of CSW is that it is more resistant to 
duplicate or semi-duplicate entries in case the corpus 
is poorly pre-processed. 

We only discussed collocation analysis in this 
paper, but an obvious path for future investigation 
would be to apply CSW to word embeddings. Our 
preliminary experiments indicate, that cleaning word 
vector representations with CSW do improve the 
results in word similarity tasks, but a more 
comprehensive evaluation and tests will be required 
before drawing further conclusions. 
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