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 Abstract 
Computing complex phenomena into models providing information of the causalities 
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ecosystem services models combining ecological and societal data offer an extensive 
overview of modern environmental modelling. In addition to modelling, the science-
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are identified (e.g. van der Sluijs, 2005). Characteristics of useful models and other 
forms of scientific information are recognized (e.g. Saltelli et al., 2020). Usefulness 
can be achieved when models are fit for purpose, accessible and solution-oriented, 
and sufficient interaction and trust is established between the model users and 
developers. Climate change and ecosystem services are analyzed as case studies 
throughout the thesis.  
 
The relationship of science and policy is an important discussion especially important 
when solving the sustainability crisis. Because modelling is a boundary object (Duncan 
et al., 2020), the role of boundary work in managing and communicating the 
uncertainties and ensuring the usefulness of models is at the center of the analysis.  
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1 Introduction 
During 2020, COVID-19 made the general public evermore familiar with scientific 

models, projections and other forms of computed representation of information 

(Stevens, 2020). Charts representing the number of confirmed cases and projec-

tions of possible scenarios became a daily content of media. Despite the increas-

ing use of modelling, interpreting the model remains challenging (Saltelli et al., 

2020). For example, understanding the uncertainties related to a model is often 

demanding even for scientists, let alone to decision makers or citizens (Larocque 

et al., 2011; Saltelli et al., 2020). This can partially be explained by the ontological 

aim of science and policy to remain separate; science should not create policy 

nor should policy influence science (McNie, 2007; Stevens, 2020).  

 

In the era of sustainability crisis successful science-policy interaction is more im-

portant and pressing than ever (see Meah, 2019). The accelerating pace of bio-

diversity loss and anthropogenic climate change point out that social and ecolog-

ical systems need to be understood and managed as a complex, dynamic whole 

with a number of feedback mechanisms (Chaffin, Gosnell, & Cosens, 2014). 

Many claim models to be the best available tool to provide decision making with 

information about near-future scenarios and the action needed to take today 

(Meah, 2019; Schirpke et al., 2020).  

 

Models are created on a wide variety of subjects; economics, societal welfare, 

ecosystems, climate and so forth. However, science does not automatically trans-

fer into applicable models (Funtowicz & Ravetz, 2003) and uncertainty is an es-

sential part of modelling. There is no consensus on how models should be as-

sessed or how to decide whether they are fit for the purpose (Hipsey et al., 2020; 

Larocque et al., 2011). The need for standards and protocols for modelling or 

mapping is identified in multiple papers (e.g. Crossman et al., 2013). While cre-

ating more accurate models and better data is important, knowledge alone is not 

enough to solve the sustainability crisis. Action is needed, and that cannot be 

sparked with mere knowledge (Funtowicz & Ravetz, 2003; Meah, 2019; 

Wesselink, Buchanan, Georgiadou, & Turnhout, 2013).  
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Action can be sparked at the science-policy boundary, and therefore the im-

portance of boundary work should not be underestimated. After all, ³JHWWLQJ WKLQJV 

done in the policy arena involves more than providing the right science: it involves 

doing politics, WKaW LV, XVLQJ SRZHU aQG LQIOXHQFH VWUaWHJLFaOO\´ (WHVVHOLQN & 

Hoppe 2011). Various approaches (see McNie, 2007; van Kerkhoff & Pilbeam, 

2017) studying the boundary seek to better integrate scientific knowledge and 

societal action. Simply producing more and better science does not fix the issues 

in science-policy boundary (van der Sluijs, 2005). 

 

Models are one way to present and communicate scientific information. Modelling 

has long traditions and a central role in environmental questions. The focus of 

this thesis is on the modelling of climate change and ecosystem services (ES). 

Climate models are important in the historical development of modelling (see 

chapter 2.1) and they have taken part in the discussion of defining climate change 

and sustainability crisis (Hoppe, Wesselink, & Cairns, 2013). Whereas climate 

models are global, based on biophysical data and have long traditions, ES mod-

elling is a newer concept focusing on local scale modelling (see chapter 2.1.2) 

combining ecological and social data.  

 

Other environmental models exist, but due to the differences and similarities be-

tween climate and ES models, they offer a rather comprehensive overview to 

current environmental modelling. Diversity of scale, data, policy-relevance, mod-

elling practices and ways to do boundary work can be analyzed with these two 

cases. Due to complexity, uncertainty and its management are essential for mod-

elling. For knowledge to spark action, the models need to be useful and policy-

relevant. Therefore, uncertainty and usefulness of models is at the core of this 

thesis.  

 

1.1 Importance of the topic 
Regardless of the overwhelming amount of information of the cause and effects 

of climate change, the societal action is still lacking (Meah, 2019). Hence it is 

important to understand how information should be produced, communicated and 

presented for it to be applicable, societally relevant and to create action. Getting 
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things done in the policy sphere is not just about information and knowledge 

(Wesselink et al., 2013), but a rather complicated process including also value 

judgement (Christl, 2018). Science is our most important epistemic tool 

(Potochnik, 2017) yet paradoxically science-led public policy often fails to reach 

consensus (Meah, 2019).  

 

Science-based policy is a priority for the Finnish government (Valtioneuvosto, 

2019), as it is in many other countries. Simultaneously, the integration of scientific 

information to decision making is lacking. Forum for Environmental Information1  

studied science-policy cooperation in Finland. They identified opportunities for 

improvement: researchers and politicians should be more strongly connected and 

the need for facilitated interaction is great. Especially the connection between 

universities and decision making is weak and the need for synthesized infor-

mation pressing (Silfverberg, Huotari, & Kolehmainen, 2018). Reports and arti-

cles are not automatically scientifically or societally relevant (Lyytimäki, 2020). 

 

Stakeholders recognized the opportunities of alternative means of communi-

cating scientific information, mainly other than written reports, and are eager to 

participate in facilitated discussions. Challenges for politicians include lack of syn-

thesized information and difficulties separating scientific information from other 

types of information. TKH VHOHFWLYH XVH RI LQIRUPaWLRQ WR VXSSRUW RQH¶V RZQ FOaLPV 

is also recognized as a problem. (Silfverberg et al., 2018.) These issues have 

been recognized in many other articles and reports.  

 

Knowledge and information might not be the core motives when making decisions 

relating to climate change mitigation or adaptation (see. Saltelli et al., 2020; 

Wesselink et al., 2013). Modelling provides an alternative for some written reports 

and articles. As a communicational tool, modelling is a promising alternative, but 

the process still needs to be perfected (Hipsey et al., 2020; Larocque et al., 2011; 

van der Sluijs, 2005). It is commonly used to communicate ecological, economic, 

social and other information to decision makers. While common, modelling as a 

communicational tool is not without its challenges (Duncan, 2008; Saltelli et al., 

                                            
1 Ympäristötiedon foorumi in Finnish 
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2020) such as misinterpretation due to the complexity or uncertainty related to 

modelling. This is further analyzed in chapter 4. However, by better communi-

cating the stakes at hand, possible routes of action as well as the urgency of the 

situation it is possible to impact decision making (Lemos & Rood, 2010). Improv-

ing models and especially the integration of models into decision making is a way 

to do this.  

 

CLWL]HQV¶ WUXVW LQ VFLHQFH aQG WKH JRYHUQPHQW aUH LQGLFaWRUV RI KRZ UaSLGO\ SROLWLFaO 

decisions are made towards climate mitigation (Jasanoff, 2005 according to van 

Kerkhoff & Pilbeam, 2017; Wesselink et al., 2013). By improving the trust and 

understanding between scientists, decision makers and the rest of society, action 

will simultaneously be sparked. Science-policy boundary is where models are put 

in action. Boundary work offers tools and approaches to study and further im-

prove the process. Therefore, analyzing the modelling practices of climate and 

ES models as well as the process of knowledge transfer between models and 

decision making is highly topical and important.  

 

1.2 Research questions and the aim of thesis 
The aim of this thesis is twofold. Firstly, an overview of the phenomenon of mod-

elling and its relevant historical development is created. Climate modelling and 

ES modelling are explained separately. Since the usefulness of models is the 

focus of this thesis, science-policy boundary and boundary work are also intro-

duced. Based on the literature, definitions for complex, digital modelling as well 

as science-policy boundary are created. The aim is not to focus on the technical 

aspects of modelling but rather provide a synthesized overview of the multidisci-

plinary phenomenon (see chapter 2). Since the focus is on modelling as a phe-

nomenon, no individual models are analyzed in detail. 

 

Secondly, literature is analyzed regarding the uncertainty and usefulness of mod-

els. Chapter 4 offers analysis of the usefulness and uncertainty of models and 

reflection on how boundary work can be used to ensure the usefulness of the 

models. Types of uncertainty as well as strategies for uncertainty management 

are identified from the literature. Usefulness of models is analyzed by mirroring 
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literature on both modelling and science-policy boundary. The two case studies, 

climate and ES modelling, are analyzed throughout the thesis. 

 

My research questions are:  

1. How do climate and ecosystem services models differ?  

2. What is the role of uncertainty in climate and ecosystem services mod-

els in the literature? 

3. How is usefulness of climate and ecosystem services models ap-

proached in the literature? 

4. How can boundary work manage the uncertainties and improve the use-

fulness of models?  

 

The overall aim is to create a comprehensive overview of useful and societally-

relevant climate and ES modelling. The thesis is conducted as a commission for 

the Finnish Environmental Institute SYKE. However, ensuring that scientific infor-

mation impacts decision making is important to all researchers, decision makers 

and even the general public.   

 

2 Theoretical background 
Creating mathematical forms and calculations in order to make nature measura-

ble, understandable and predictable is not a new phenomenon at all but rather 

one of the foundations of science (Berry & Houston, 1995; Potochnik, 2017). 

However, models used today are significantly different from those of even a hun-

dred years ago (Lahsen, 2005). The impact of digital technology has been ex-

treme. For example, traditionally forests are analyzed from the viewpoint of for-

estry, with growth and yield tables and linear models (Blanco, Ameztegui, & 

Rodríguez, 2020). Currently hydrological factors, harvest area, ecological factors, 

vegetation, carbon cycles and timber volume are included in most forest models 

(Forsell et al., 2019). Global climate models are also an example of complex 

modelling including many uncertainties that could not be done without the help of 

computers.  
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Modelling has developed drastically with technological development, but for the 

aim of the thesis, it is not useful to provide a detailed overview of the historical 

development. The basic idea of quantitative science relies on statistically analyz-

ing the data to find patterns, exceptions and correlations (Berry & Houston, 1995). 

By recognizing past patterns and trends, theories can be developed. On the basis 

of the theories, projections of the future development can be made (Berry & 

Houston, 1995). These projections are always uncertain, since it is impossible to 

know the factors affecting the parameters in the future. It is important to identify 

risks and projections are a good tool for that (Berry & Houston, 1995). With more 

data and quantitative analysis, the models started to comprehend a larger or 

more complex system.  

 

Global systems, such as the climate, are so complex, that we cannot accurately 

model even the current state of them (Oppenheimer, O'Neill, Webster, & 

Agrawala, 2007). Regardless of the lack of certainty, these models are societally 

relevant. The ability to identify risks and causality is valuable for adaption and 

development (Berry & Houston, 1995; de Nijs, de Niet, & Crommentuijn, 2004; 

Hoppe et al., 2013).  

 

The world cannot be understood with merely one lens but rather a comprehen-

sive, broad view is needed. There is growing emphasis on including and as-

sessing the influence social factors in the creation and content of science 

(Jasanoff, 2012). Approaches such as ecosystem services, cost-benefit analysis, 

life-cycle assessment and evident-based policy take a stand on normative values 

and should not hide their choices regarding modelling (Saltelli et al., 2020). They 

are also taking a step towards interdisciplinary, more comprehensive science that 

is not only based on absolute objectivity.  

 

The role and responsibility of scientists ensuring usability and societal relevance 

of information and models is a common topic in the literature (e.g. Dilling & 

Lemos, 2011; Hoppe & Wesselink, 2014; Hoppe et al., 2013; Jasanoff, 2015; 

Lemos & Rood, 2010; Meah, 2019; Silfverberg et al., 2018; van der Sluijs, 2005; 

van Kerkhoff & Pilbeam, 2017). The traditional pipe-line model does not describe 
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the interaction science and decision making have (Wesselink et al., 2013) and 

hence the discussion on how boundary work should be done is important.   

 
2.1 The phenomenon of modelling  
In this thesis, maps refer to geographically bound models that project the devel-

opment of a phenomenon in the future. They can present e.g. land use change 

or the development of climate change on a certain area or the whole Earth. Both 

climate change and ES models are typically representations of a certain area, 

and hence maps. Models in this thesis refers to complex computations of a cer-

tain phenomenon. Static models are not included, since the ability to create pro-

jections is essential for both case studies.  

 

Models aim to be (simplified) representations of reality (Hipsey et al., 2020) used 

to increase understanding of real-world phenomena, their behavior and functions 

(Brunet et al., 2018; Pohjola, Pohjola, Tainio, & Tuomisto, 2013). Scientific 

knowledge has shed light to many environmental problems (Hoppe et al., 2013). 

IQVWHaG RI aVVHVVLQJ ZKHWKHU WKH PRGHO SURYLGHV WKH µWUXWK¶, LW PLJKW RIWHQ bH PRUH 

relevant to consider if it reSUHVHQWV ³a µJRRG HQRXJK¶ aSSUR[LPaWLRQ RI WKH WUXWK´ 

(Jasanoff, 2012; see also Lee et al., 2018). Theories and models are a common 

Za\ WR WU\ WR UHaFK WKLV µJRRG HQRXJK¶ WUXWK.  

 

Models represent complex, synthesized and, hence policy-relevant, information 

(Brunet et al., 2018). Literature emphasizes complexity and future-orientation, 

and hence they can be perceived as the most important qualities of modelling for 

decision making.  

 

Modelling requires making assumptions which affect the political reality produced 

(Knol, 2011) and the results of the model (Forsell et al., 2019). Predictive com-

puter modelling is a system represented by assumptions derived from theory or 

idealized representations (Duncan, 2008). Models are also a way to make uncer-

tainty understandable with quantification or outsourcing the subjective, uncertain 

or value-loaded aspects into scenarios (van der Sluijs, 2005). Due to the chaotic 

dynamic of climate system and modelling, reproducing the exact climate model 
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is impossible (Lahsen, 2005). I will further study models and uncertainty in chap-

ter 4.1.  

 

Computer modelling is often essential to the legality of a decision making since 

models and their results justify made decisions (Lee et al. 2018). Legal texts, 

strategies and agreements often create the need for knowledge production and 

define what the model represents (Lee, Natarajan, Lock, & Rydin, 2018) but mod-

els are also occasionally requested by decision makers (Duncan et al., 2020). 

Science answers these questions by creating a model, that decision makers then 

validate, misinterpret or refuse  (Lee et al., 2018). Therefore, maps symbolize 

order and hierarchies, either consciously or unconsciously, and are bearers of 

information taking on constitutive and transformative roles (Knol, 2011). They vis-

ualize ecological value and vulnerability spatially, and as such, the ecosystem 

was made legible, measurable and manageable.  

 

The increasing amount of data available due to technological development, e.g. 

satellite data, creates opportunities for better assessment of models. Remote 

data collecting is becoming more and more common (Blanco et al., 2020), since 

it saves time and money but also creates consistent data. For example, forest 

cover classifications, forest attributes, detection of changes and spatial modelling 

are usual outcomes from remote sensing (Blanco et al., 2020) and can reduce 

uncertainty in models. More and better data helps especially with describing un-

certainty in ES and CC models (Hipsey et al., 2020) but due to complexity of the 

phenomenon in question, no amount of data can erase all uncertainty (van der 

Sluijs, 2005). CRPSUHKHQVLYH, FRQWLQXRXV LQIRUPaWLRQ FaQ LPSURYH PRGHO¶s ac-

curacy and especially identify known unknowns within the model (Meah, 2019). 

Given that models are simplifications of reality, used parameters are averaged 

values that are very unlikely to be represented by fixed constants in reality 

(Hipsey et al., 2020). 

 

Models can be static or dynamic (Duncan, 2008). The projection of causal, con-

sistent scenarios that take future transitions into consideration is an important 

function in both climate and ES models (de Nijs et al., 2004). A very famous ex-

ample is the IPCC (the Intergovernmental Panel on Climate Change) and their 
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warming scenarios (see IPCC, 2014). IPBES (the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services) has also had an expert 

group for modelling and scenarios since 2016 (IPBES, n.d.). I will study boundary 

organizations further in chapter 4.3. The ability to project future scenarios makes 

modelling highly relevant for decision making. Previously advances in technology 

have participated in the development of governing practices (Knol, 2011).   

 

While modelling has certain advantages, if not properly explained to users, mod-

els can be misused, misunderstood and create lack of trust between decision 

makers and scientists (Saltelli et al., 2020). The importance of facilitated meet-

ings between model developers and users, as well as other boundary work, is 

well represented in literature (see Blanco et al., 2020; Brunet et al., 2018; Duncan 

et al., 2020; Frantzeskaki & Kabisch, 2016).  

 

There are no shared rules or guidelines on what to include in or exclude from 

models (Crossman et al., 2013; Hipsey et al., 2020; van der Sluijs, 2005). This is 

especially problematic for the transparency and legitimacy of modelling. For ex-

aPSOH, µWKH FOLPaWHJaWH¶ FKaOOHQJLQJ IPCC¶V FUHGLbLOLW\ LQ 2009 (Hoppe et al., 

2013) clearly states the importance of public trust in sufficient transparency and 

legitimacy. Additionally, this trust indicates the speed of climate mitigation actions 

(van Kerkhoff & Pilbeam, 2017; Wesselink et al., 2013). 

 

Climate change and ecosystem services are quite different and hence cannot be 

compared without challenges. Even though both are real-life phenomena, ES is 

mainly a concept created to communicate the importance of ecological factors 

and nature to policy making (Müller & Burkhard, 2012). ES aim to quantify the 

value of nature for human life. Climate change is altering the biogeochemical pro-

cesses of the Earth and hence threatening our current way of life. Climate change 

can be seen either as an impact of human activities, or a driver of global change. 

Ecosystem services are typically understood as an impact of human activities 

reflecting the state of ecosystems (Müller & Burkhard, 2012). 

 

Another way to understand the relationship of climate models and ES models is 

the global ± local scale. Global climate models aim to create understanding of the 
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whole phenomenon and identify synergies and interconnectedness within (Hoppe 

et al., 2013; IPCC, 2014). ES models, however, aim to bring this information on 

a local scale, where it becomes manageable (Blanco et al., 2020; Pohjola et al., 

2013). This separation is not perfect, since ES modelling often includes the im-

pact of climate change, but however, not always (Forsell et al., 2019). Another 

important difference is, that climate models rely on more objective, biophysical 

data, whereas ecosystem service models aim to integrate biophysical data to so-

cietally relevant factors (Blanco et al., 2020).  

 

Modelling both phenomena usually focuses on causalities and projections. Future 

projections, or forecasts, can be divided in two types: deterministic ones that es-

timate what will happen, and probabilistic ones that asses the range of what is to 

be expected in the future (Lemos & Rood, 2010). Climate projections are typically 

the latter. Weather forecast is an example of a deterministic forecast, or predic-

tion. Providing information of the causalities and possible future is essential in 

environmental models and the very feature that makes them policy-relevant.  

 

2.1.1 Climate modelling  
 
The history of climate modelling can be traced back as far as the 3rd century BCE 

when the first connections between climate and the inclination of the sun were 

made, and the role of heat-trapping gases in the geophysical cycles causing cli-

matic changes was identified in 1861.  (Edwards, 2011). Typically the first dec-

ades of modern climate modelling are placed between the 1960s and 1980s 

(Lahsen, 2005). Three types of models have played an important role in the de-

velopment of climate modelling: conceptual models, analog models and energy 

balance and radiative-convective models. They are also the foundation of modern 

climatic modelling. The simplest ones do not need computers to be calculated 

but computers become necessary when complexity increases. (Edwards, 2011.) 

 

The first modern climate model a computerized General circulation model (GCM) 

by Norman Phillips in 1950s, providing the basis for current climate models 

(Edwards, 2011). After this the development and the amount competing models 

increases as more institutions and researchers tackle the challenge (Edwards, 
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2011, fig. 5; Lahsen, 2005). Since the 1990s other processes with significant cli-

matic impacts have been modelled too. These include Atmosphere-ocean GCM, 

Earth system model and Integrated Assessment models (Edwards, 2011).  

 

GCMs are grid-based mathematical computations used in climate dynamics mod-

elling (Edwards, 2011; Lahsen, 2005). TKH\ ³VLPXOaWH FRPSOH[ LQWHUaFWLRQV bH-

tween the components of the earth system; time-dependent three-dimensional 

IORZV RI PaVV, KHaW, aQG RWKHU IOXLG SURSHUWLHV´ (Lahsen, 2005). The more com-

plex the model, the more anthropogenic effects such as oceanic, atmospheric 

and land-surface processes are included. Atmospheric flows and processes are 

the basis of climate modelling but with the development of models more factors, 

such as land surface and albedo, sulphates, aerosols and other chemical pro-

cesses and carbon cycle, have been included (Edwards, 2011). However, e.g. 

migration and emission scenarios include social data as well (Oppenheimer et 

al., 2007). 

 

One of the main uncertainties in climate models are the parameters of physical 

climate (Lemos & Rood, 2010). In GCM the three-dimensional grids make it im-

possible for the parameters to be accurate. Depending on the complexity of the 

model, the parameters included vary. Also, parameterization requires fully under-

standing the phenomena, which is rarely the case (Lahsen, 2005). Another un-

certain parameter is for example, the amount and relation proportions of green-

house gases in the atmosphere (Lemos & Rood, 2010) 

 

The IPCC is the main international organization responsible of assessing and 

disseminating scientific climate projections (Lemos & Rood, 2010) but there are 

many other ways to assess models and their accuracy (Edwards, 2011). The 

IPCC does not conduct their own research but produces synthesized, consensus-

based information based on scientific knowledge, including models (IPCC, 2014). 

In Assessment Report 5 (AR5) projected changes in climate system are based 

on over 30 individual models (IPCC, 2014). Even while consensus-based science 

has its benefits and challenges (Meah, 2019; Oppenheimer et al., 2007; Pearce 

et al., 2017), the political importance of IPCC has been and continues to be sig-

nificant.  
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Scale issues are a common problem whilst integrating climate models and deci-

sion making. Since climate change was originally defined as a global issue 

(Hoppe et al., 2013) most of the models reinforce the narrative with their global 

scale. The global scale has been essential for climate models since GCMs were 

developed (Edwards, 2011). Understanding future climate trajectories is neces-

sary for policy, and currently climate models are the best tool available (Meah, 

2019). Although global climate models are important and useful, they are less 

applicable for national or regional decision making and planning. Regional and 

local models, such as the ES models, support decision making on regional and 

local scales. However, the information science and models offer on climate 

change is not utilized to its full potential (Dilling & Lemos, 2011).  

 

As mentioned earlier, separating climate and ES models is not always simple. 

Modelling provides essential information for adaptation strategies, and they are 

also a science-based rationale for decision making (Machar et al., 2017). Since 

adaptation strategies are especially relevant on a national level, the models 

should focus on national and regional impacts. Modelling climate change effects 

on forestry and agriculture in Europe have unveiled the risk of drastic climatic 

changes with detrimental impacts on agricultural and forestry activities (Machar 

et al., 2017). Hence both global climate modelling as well as regional modelling 

on the effects of climate change are important.  

 
2.1.2. Ecosystem services modelling  
 
The difference between modelling ecosystems and ecosystem services is that 

the latter includes social and/or economic factors in addition to ecological data 

(Turnhout, Hisschemöller, & Eijsackers, 2007). Ecological indicators simplify 

complex human-environmental systems, and they are used managing said sys-

tems (Müller & Burkhard, 2012). Ecological indicators aim to provide measurable 

information for quality assessment of nature, which is essential for political deci-

sion making (Knol, 2011; Turnhout et al., 2007). Biophysical data of ecosystem 

properties and data of the functions of ecosystem or ecosystem integrity are the 
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basis for the assessment of ecosystem services (Müller & Burkhard, 2012). Eco-

system services are built on the idea of combining ecosystem indicators and so-

cial indicators in a policy-relevant way.   

 

The basis for ES modelling, similar to climate modelling, is in biophysical func-

tions. ES modelling is a much younger tradition and hence a historical overview 

of the phenomenon cannot be established. The epistemological aim for ES mod-

els is to quantify and make the value of nature understandable (Knol, 2011; Müller 

& Burkhard, 2012; Turnhout et al., 2007), whereas the tradition of climate models 

starts from a more objective standpoint of gaining knowledge (Edwards, 2011). 

The trend of combining disciplines to create useful, applicable models from 2000 

onwards, according to Edwards (2011), could hence play a role in the develop-

ment of ES modelling too.  

 

ES modelling is considered to be the most promising approach on creating maps 

to support decision making (Schirpke et al., 2020). Especially land use planning 

utilizes ES models (Castellazzi, Joannon, Brown, Gimona, & Poggio, 2010; 

Forsell et al., 2019; Machar et al., 2017). Policies aiming to conserve biodiversity 

through commodification of ES production, e.g. payments, biodiversity and wet-

land banking, carbon offset and trading, conservation auctions, often require ES 

modelling to support them (Crossman et al., 2013; see also Mazziotta et al., 

2016). ES modelling is hence a topical and societally-relevant way to produce 

scientific information.  

 

Since ES models are map-based models, it is essential for spatial units to include 

both ecological and socio-economic parameters (Schirpke et al., 2020). Mapped 

ES usually include provisioning ES such as water supply, amount of wood, food 

production and regulating ES such as carbon sequestration, provision of water, 

water quality, pollination, cultural values, erosion control and climate regulation 

(Crossman et al., 2013; Orsi, Ciolli, Primmer, Varumo, & Geneletti, 2020). ES 

mapping can be grid-based and deciding on the level of resolution is one of the 

key challenges when creating applicable maps (Brunet et al., 2018).  
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There are simultaneous and occasionally contradictory pressures to increase the 

production of wood and protect ecosystem services and biodiversity (Heinonen 

et al., 2017). Since forests are often managed by individuals or companies, the 

main motivation for management is income and profit, more specifically the kind 

that is traded on markets (Zanchi & Brady, 2019). More information on the im-

pacts of different forestry practices is needed to achieve environmental and sus-

tainability goals, and especially decision makers need more information regarding 

the effects ecosystem services have on the welfare of different groups (Zanchi & 

Brady, 2019). The importance of ES modelling can also be observed in the anal-

ysis based on these models, since similar analysis could not be done with mere 

biophysical data. Forests are a common topic in ES modelling. The understand-

ing of ecological processes in forests at multiple scales is supported with the co-

existence of empirical and process-based models (Blanco et al. 2020).  

 

The societal perspective can be included and transformed into monetary value 

with Benefit-Cost Analysis (BCA) (Zanchi & Brady, 2019). By using BCA, trade-

offs between wood production and public-good services can be quantified. This 

essentially means that continuous-cover forestry provides the highest contribu-

tion to societal welfare (Zanchi & Brady, 2019). Even while translation to mone-

tary value is not the same as measuring welfare, it is a useful tool to support 

decision making.   

 
 
2.2 Science- policy boundary  
ES are an example of framing a societal problem, destruction of ecosystems and 

their functions, into a societally-relevant language. The predominant framing of 

environmental problems as scientific also transfers the responsibility of solving 

them on science (Wesselink et al., 2013). Scientific consensus is often used to 

communicate the certainty and urgency for action regarding climate change (see 

Meah, 2019). However, consensus and using it as validation has received criti-

cism (Oppenheimer et al., 2007; Pearce et al., 2017). The need for longer and 

deeper discussion is clear.  
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Since both science and policy are needed to solve these societal problems, the 

importance of boundary work becomes irreplaceable. To better analyze the role 

of boundary work when assessing the usefulness of climate and ES models, stud-

ying the boundary is necessary. The boundary can be understood to separate 

three territories: science, technology and society. Gieryn (1995). However, since 

especially with modelling, science and technology are deeply intertwined, this 

thesis views the boundary between science and policy.  

 

The boundary is both ideological and structural. The boundary is not stable or 

clear, and often difficult to draw. On the contrary to earlier understanding, 

knowledge transfer is not one-directional, one-dimensional or linear from science 

to policy, but rather a system of multiple levels and interactive processes 

(Wesselink et al., 2013). The boundary is constructed by both overlapping ele-

ments and gaps. In practice this means, that sometimes drawing the boundary 

between science and policy is almost impossible, because they are too inter-

twined and overlapping, whilst occasionally active knowledge transfer and inte-

gration is needed to bridge the gap between the two (Duncan et al., 2020; McNie, 

2007; Wesselink & Hoppe, 2010).  

 

The structural boundary is upheld by the separation of institutions, that are scien-

tific or political. Redesigning these structures is one of the strategies to uncer-

tainty management mentioned in chapter 4.1. Universities and other research in-

stitutes are, or at least aim to be,  politically independent, which ensures the qual-

ity of research (Wesselink et al., 2013) and the authority of science (Jasanoff, 

2012). This structural separation is also the key to succeed in the aim of the 

boundary to protect the integrity of both; ³science from becoming politicized and 

politics from becoming scientified´ (McNie, 2007). The reality, however, is not as 

simple. 

 

The boundary is also a result of discourses and practices given the interactive 

nature of science and policy (Duncan et al., 2020). Boundary can be drawn by 

the separation of the nature of information and issues in science and policy. Sci-

entists tackle uncertainty while decision makers need solution-oriented infor-
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mation (Dilling & Lemos, 2011; McNie, 2007; Silfverberg et al., 2018). The infor-

mation relevant for scientists and decision makers is not always the same (Lemos 

& Rood, 2010). The lack of integration, or the gap, between science and policy 

can be noticed as, e.g., scaling issues with models and the academic awarding 

systems not encouraging scientists to produce usable information (McNie, 2007). 

 

The involvement of scientists in decision making is inevitable when aiming for 

science-based decision making. Science and policy are co-produced (Duncan et 

al., 2020) b\ WKH RQJRLQJ SURFHVV RI ³VFLHQWL]aWLRQ RI SROLWLFV aQG WKH SROLWLFL]aWLRQ 

RI VFLHQFH´ (Weingart, 1999 according to Wesselink et al., 2013). Therefore, the 

aim of keeping science and policy completely separated by the boundary, cannot 

be achieved. This especially problematic with modelling. When a scientist creates 

a model for political reasons, for example since it is legally mandated, is the 

model science or policy? The need for support tools and structures linking models 

and decision making has been identified (Larocque et al., 2011) 

 

Like the boundary itself, boundary work (see Gieryn, 1995) LV FRPSOH[, ³IXOO RI 

SaUaGR[HV aQG GLOHPPaV´ (Hoppe et al., 2013). Boundary work needs to be able 

to both open up new discussions as close down policy debates (Wesselink et al., 

2013). PoliWLFLaQV FaQ SHUFHLYH VFLHQWLVWV WR SURYLGH PRUaO ZHLJKW WR GHILQH µWKH 

ULJKW¶ RSLQLRQV RU YLHZV (Machen, 2018). This, however, is not the aim of boundary 

work but rather increase understanding of all parties.  

 

Interaction aims to create connections where previously there were none (Jahn, 

Bergmann, & Keil, 2012). It is not merely science and policy that need to be con-

vinced of the authority and legitimacy of boundary work but the general public 

too. One way towards this is coproducing a linear knowledge transfer story of the 

relationship of science and policy as the dominant narrative to assure legitimacy 

of boundary work (Hoppe et al., 2013). However, as stated earlier, there are many 

challenges with the idea of linear knowledge transfer that has historically been 

deemed as the only way to do boundary work. Other practical challenges identi-

fied regarding boundary work are lack of time, trust and/or synthesized infor-

mation, and tendentious use of information (Silfverberg et al., 2018).  
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Boundary work is done by a diverse group of actors, including stakeholders and 

boundary organizations (Guston, 2001). Boundary organizations aim to act be-

tween science and policy facilitating the interaction on a specific matter, e.g. cli-

mate change or biodiversity. BRXQGaU\ RUJaQL]aWLRQV UHVROYH ³demands for polit-

ical relevance, the integration and representation of diverse and distributed 

knowledge and calls for public accountability and participation´2 (Beck et al., 

2014) Boundary organizations hold significant power in setting the topics and 

views for discussion and defining whose voice gets to be heard (Hoppe et al., 

2013). IPCC and IPBES are both UN-lead boundary organizations, the first one 

focusing on climate change and the latter on biodiversity and ecosystem services 

(Beck et al., 2014).  

 

A boundary objects aUH ³VFLHQWLILF RbMHFWV ZKLFK bRWK LQKabLW VHYHUaO LQWHUVHFWLQJ 

VRFLaO ZRUOGV « aQG VaWLVI\ WKH LQIRUPaWLRQaO UHTXLUHPHQWV RI HaFK RI WKHP´ (Star 

& Griesemer, 1989). They are material or immaterial artefacts that adapt to the 

context at hand without losing their indistinct identities (Star & Griesemer, 1989). 

Hence, boundary objects can be models (Duncan et al., 2020), organizations 

(Guston, 2001) or societal problems (Jahn et al., 2012).  

³OQH H[aPSOH RI aQ abVWUaFW bRXQGaU\ RbMHFW LV a FRQFHSW OLNH µbLRGLYHU-

VLW\¶; a FRQFUHWH bRXQGaU\ RbMHFW, LQ FRQWUaVW, FaQ bH, IRU H[aPSOH, a PaS 

of a specific nature conservation area. In the second step boundary ob-

jects are transformed into epistemic objects by means of developing or 

applying theories or concepts. These epistemic objects are, in turn, the 

basis from which research questions are deriveG. ³ Jahn et al. (2012.) 

 

In this thesis, models are perceived as boundary objects that aim to solve societal 

problems such as climate change. Therefore, analyzing literature on the process 

is important, especially when analyzing the usefulness of models, or in other 

words, the success of boundary work.  

 

                                            
2 original formatting of the source text. 
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3 Materials and methods 
The literature regarding climate and ecosystem services modeling is inherently 

multidisciplinary (Clark & Harley, 2020). Merely studying the modelling practices 

requires studies from a variety of disciplines. Maps predicting past, present and 

the future created with species distribution models (also known as habitat mod-

els, niche-based models, habitat suitability models or climate envelope models) 

are used explaining the influences bioclimatic variables have on plants and pest 

distribution. Other promising approaches with a special interest in providing use-

ful information for decision making include hierarchical niche models, evolution-

ary algorithms and the Bayesian meta-modelling framework. (Blanco et al., 

2020.) 

 

Natural sciences, e.g. biology, ecology, geology, physics, study how nature func-

tions and how and what can be measured and projected. Computer sciences 

have an essential role in the development of digital modelling and other technical 

aspects relating to models. Science and Technology Studies (STS) and legal 

studies analyze the role and nature of facts (Jasanoff, 2012). Sustainability sci-

ence studies and develops actionable, policy-relevant research and transdiscipli-

narity. Many other disciplines are relevant for the topic, since studying science-

policy boundary inherently studies science as a whole. Especially political and 

social sciences have studied the boundary.   

 

The role of science and society regarding sustainability is often perceived as sci-

ence as a service for society (Wittmayer & Schäpke, 2014). Researchers are re-

VSRQVLbOH RI SURYLGLQJ HYLGHQFH, ³WUaQVIRUPLQJ Ueality and putting sustainability 

LQWR aFWLRQ´ (Wittmayer & Schäpke, 2014). The same is not expected of conven-

tional researchers. Because the expectations are fundamentally different, sus-

tainability research should also be done differently (van Kerkhoff, 2014).   

 

Sustainability science is action-oriented, transdisciplinary and complex. This the-

sis is a rather typical topic for sustainability research; it is transdisciplinary, soci-

etally relevant, action-oriented, complex and involves several uncertainties 

(Funtowicz & Ravetz, 2003; van Kerkhoff, 2014). Among the key approaches 
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emerging in sustainability science research are integrative methods (see Clark & 

Harley, 2020; van Kerkhoff, 2014; Wittmayer & Schäpke, 2014). van Kerkhoff 

(2014) GHVFULbHV LQWHJUaWLYH UHVHaUFK LQ VXVWaLQabLOLW\ VFLHQFH WR bH ³UHVHaUFK LQ 

WKH FRQWH[W RI FRPSOH[LW\, ZLWK aQ aFWLRQ LPSHUaWLYH´. AQ LQWHJUaWLYH aSSURaFK ILWV 

the topic of this thesis well and takes part in the trend of further developing inte-

grative methods in sustainability science.  

 

3.1 Method: Integrative literature review 
The main characteristics separating sustainability science from conventional re-

search are complexity, problem-orientation to spark action and the need for inte-

gration. Therefore, the methods for sustainability science are also different from 

conventional science (Wittmayer & Schäpke, 2014). van Kerkhoff (2014) pre-

sents an approach for integrative research in sustainability science that is based 

on four principles:  

1. Embracing uncertainty 

2. Engaging stakeholders 

3. Transdisciplinarity 

4. Learning. 

 
The core idea is to address all of the criteria during the study rather than use them 

as a formula for the process (van Kerkhoff, 2014). This approach does not have 

systematic steps or hierarchy for conducting research. The process resembles a 

hermeneutic circle (see Mantzavinos, 2020).   

 
Clark and Harley (2020) approach integration through viewing Anthropocene as 

a Complex Adaptive System. Analyzing and identifying nature-society interac-

tions, governance, complexity and context dependence is essential for this ap-

proach. Based on this analysis they create a framework for sustainability science. 

The framework is dynamic and complex, but distinctive sub-processes are rec-

ognized.    

 

AQ LQWHJUaWLYH OLWHUaWXUH UHYLHZ  LV ³a VSHFLILF UHYLHZ PHWKRG WKaW VXPPaUL]HV SaVW 

empirical or theoretical literature to provide a more comprehensive understanding 

RI a SaUWLFXOaU SKHQRPHQRQ´ (Whittemore & Knafl, 2005). Because it also allows 
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different methodologies to be included and is more flexible than a systemic review 

or meta-analysis (Whittemore & Knafl, 2005), it is a suitable method for this the-

sis. Integrative literature review has a defined structure and it is constructed with 

the following steps:   

1. Problem identification 

2. Literature search 

3. Data evaluation 

4. Data analysis 

5. Presentation (Whittemore & Knafl, 2005).  

 

Synthesized scientific reviews are important and societally relevant. At its best, 

an integrative literature review can develop theory and be applicable to policy 

(Whittemore & Knafl, 2005). Every evidence synthesis should be based on four 

principles: inclusiveness, rigorousness, transparency and accessibility (Christl, 

2018). Especially in medicine, evidence-based practices have been increasing 

(Whittemore & Knafl, 2005). Evidence synthesis is often targeting also non-sci-

entists, mainly decision makers and stakeholders.  

 
The aim of this thesis is to create a comprehensive overview of the role of mod-

elling as a tool to integrate scientific knowledge and decision making. Ecosystem 

services and climate change are analyzed as case studies. Literature from a va-

riety of fields and subjects is included in order to gain a broad understanding of 

related viewpoints.  

 

The main method for this thesis is integrative literature review (see Whittemore & 

Knafl, 2005). However, given the characteristics of sustainability science, I will 

also include features of other methods designed for sustainability research. The 

four principles (embracing uncertainty, engaging stakeholders, transdisciplinarity 

and learning) by van Kerkhoff (2014) are considered throughout the thesis. I will 

tackle uncertainty and its role for the topic throughout the thesis but especially in 

chapter 4.1. Stakeholder engagement and transdisciplinarity are not at the core 

of the thesis but play a part in chapters 4.2 and 4.3. Learning and gaining under-

standing is the main motivation for the thesis.  
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3.2 Material  
The material analyzed for this literature review consists of 56 scientific articles 

and 2 scientific books, n=58. In addition to these, there are 5 are political docu-

ments included. The reference list includes more articles (e.g. Chaffin et al., 2014; 

Gieryn, 1995; Guston, 2001; Mantzavinos, 2020; Star & Griesemer, 1989; 

Whittemore & Knafl, 2005) than Table 1 because the literature used for methods 

and other necessary references is not included in the literature review.  

 

Since the topic, especially modelling, is developing with a rapid speed (Lahsen, 

2005), literature published after 2010 was prioritized. Especially climate model-

ling has become increasingly standardized and organized and cooperation be-

tween disciplines increased since 2000 (Edwards, 2011). The material is pub-

lished between 1992-2020. One scientific article and two political documents are 

published prior to 2000. Majority of the material, total of 48 of the scientific articles 

were published between 2010-2020.  

 

The literature search has been done using two data bases: Helka-online library 

aQG GRRJOH SFKROaU. SHaUFK ZaV LQLWLaOO\ FRQGXFWHG ZLWK WKH IROORZLQJ WHUPV: ³Fli-

PaWH PRGHOOLQJ´, ³HFRV\VWHP VHUYLFHV PRGHOOLQJ´, ³PRGHOOLQJ AND bRXQGaU\ 

ZRUN´, ³PRGHOV AND GHFLVLRQ PaNLQJ´ ³VFLHQFH-SROLF\ bRXQGaU\´. HRZHYHU, VRPH 

articles were searched for with a specific interest to confirm a finding of the anal-

ysis (see chapter 3.3). Majority of the material was identified in the initial literature 

search, but some complementary articles were included to improve the quality 

and coherence of the material.  Additionally, some articles were included from 

the references of articles found through literature search. No systematic inclusion 

or exclusion criteria was established. Literature was chosen based on the rele-

vance of the content. For the most part this could be done based on the abstract. 

The material has been chosen after careful consideration and after extensive 

background research on the subject.  

 

Almost all the material is in English, with the following Finnish exceptions: 

Silfverberg et al. (2018), Lyytimäki (2020) and Valtioneuvosto (2019). Geograph-

ical distribution of the articles is challenging to define, since many of them have 
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authors from multiple institutions and/or countries. By only observing the lead 

authors, literature can be placed on 5 continents and 19 countries; 38 from Eu-

rope, 12 from North-America, 6 from Oceania, 1 from South America and 1 from 

Asia. Therefore, the literature can be described as Western. Given the hegemonic 

Western narrative in climate questions (Machen, 2018; Wesselink et al., 2013), it 

can hardly be avoided in scientific literature either. Several articles are critical 

towards the dominant Western culture, but the lack of other views is a major dis-

advantage of the material. However, the material provides a rather vast geo-

graphical distribution of Western countries. 

 

Since creating a comprehensive overview on the research question is a priority, 

efforts to include diverse views and disciplines were made. Due to the multidisci-

plinary nature of the topic, defining the disciplines the literature represents is chal-

lenging. However, the journals they are published in can give some indication. 

The 60 articles are published in 42 journals. The most common journals of the 

material are represented in Figure 1. 
 
Figure 1 

Material of the literature review organized by the publishing journal. 

 
Note: The table includes 26 articles out of the total n=56. The remaining 30 articles are 

published in 30 different journals.    

 

Another way to describe the material is according to the topic of the article. Table 

1 present the literature thematically organized into four themes: climate change, 
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Science, Technology & Human Values
Ecological Modelling

Environmental Modelling & Software
Global Environmental Change

Land use policy
Nature

Ecosystem Services
WIREs Climate Change

Environmental Science & Policy

Most common journals



 23 

ecosystem services, general (not climate or ES focused) modelling, and science-

policy boundary. Many of the topics are overlapping and hence the list only indic-

ative. Literature is only mentioned once even if it would be suited for another 

theme too.  

 
Table 1 

Analyzed literature grouped by topic of the content. 

Topic Literature 

Climate 
change 

11  

Dilling and Lemos (2011); Edwards (2011); Hoppe and Wesselink 
(2014); Lahsen (2005); Lemos and Rood (2010); Machar et al. (2017); 
Machen (2018); Meah (2019); Norman, Read, Bar-Yam, and Taleb 
(2015); Oppenheimer et al. (2007); Pearce et al. (2017)  

Ecosystem 
service 

12 

Blanco et al. (2020); Brunet et al. (2018); Castellazzi et al. (2010); 
Collalti et al. (2014); Crossman et al. (2013); de Nijs et al. (2004); Díaz 
et al. (2015); Larocque et al. (2011); Müller and Burkhard (2012); Orsi 
et al. (2020); Schirpke et al. (2020); Zanchi and Brady (2019) 

General 
modelling 
literature 

14 

Berry and Houston (1995); Duncan (2008); Forsell et al. (2019); 
Gilliland and Laffoley (2008); Heinonen et al. (2017); Hipsey et al. 
(2020); Knol (2011); Lee et al. (2018); Mazziotta et al. (2016); Pohjola 
et al. (2013); Saltelli et al. (2020); Turnhout et al. (2007); van der Sluijs 
(2005); Vardas and Xepapadeas (2010) 

Science ± 
policy nter-

face or 
boundary 

21 

Beck et al. (2014); Christl (2018); Duncan et al. (2020); Dunn and 
Laing (2017); Frantzeskaki and Kabisch (2016); Funtowicz and 
Ravetz (2003); Hoppe et al. (2013); Jahn et al. (2012); Jasanoff (2012, 
2015); Lyytimäki (2020); McNie (2007); Potochnik (2017); Sarewitz 
and Pielke (2007); Silfverberg et al. (2018); van der Hel (2016); van 
Kerkhoff and Pilbeam (2017); Weichselgartner and Kasperson (2010); 
Wesselink et al. (2013); Wesselink and Hoppe (2010); Wittmayer and 
Schäpke (2014) 

Cited policy 
documents 

5 

"Consolidated version of the Treaty on the Functioning of the 
European Union " (2016); IPCC (2014; UN (1992a, 1992b); 
Valtioneuvosto (2019) 
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Note: While many are applicable to multiple topics, they only appear once.  The total of 

literature sources is stated underneath the topic. N= 63. 

 
 

The overview of the topic is based on phenomena rather than individual disci-

plines. Efforts to include both natural and social sciences were made. Both inter-

disciplinary and monodisciplinary views are represented. Additionally, research 

on the different actors, scientists, decision makers, knowledge brokers and other 

stakeholders, was included in the overview.  

 

3.3 Conducting the analysis 
The first steps of integrative literature review are problem identification and liter-

ature search (Whittemore & Knafl, 2005). For this thesis that meant defining the 

topic and aim of research. In the beginning three topics to study were identified: 

climate modelling, ES modelling, and models in the science-policy boundary. As 

already mentioned, the literature search was conducted using search terms (see 

chapter 3.2.). By analyzing the material, the importance and relevance of uncer-

tainty and its management became evident, and therefore it was also included as 

a part of the thesis (see. grounded theory by Glaser and Strauss (1967)). Given 

the relevance of uncertainty for integrative literature reviews in sustainability sci-

ence (van Kerkhoff, 2014), defining it as one distinct object of analysis is justified. 

 

Evaluating and analyzing the data are the next steps in an integrative literature 

review (Whittemore & Knafl, 2005). Reading and summarizing the articles ena-

bled the thematic categorization of the material (see Table 1.), as well as analyz-

ing the content of them. Identification of similarities, differences, key arguments, 

connections and synergies is at the core of the analysis. When identifying con-

nections or gaps, further literature search to confirm these findings was con-

ducted. This is one of the efforts towards as coherent and relevant material as 

possible. However, the restrictions of the material need to be evaluated in order 

to ensure the legitimacy of the findings. These are better explained in chapter 

3.2.  
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The final step of an integrative literature research is to present the findings 

(Whittemore & Knafl, 2005). Chapters 2, 4, 5 and 6 all analyze the material. The 

main integrative presentations are Tables 2, 3 and 4. Categorizing and separating 

the views of different disciplines is not the focus of an integrative literature review 

and hence the analysis focuses on synthesizing literature. Since the usefulness 

and impact of research is one of the main focuses of this thesis, ensuring the 

usefulness of the results was a factor when deciding on presentation style. Es-

sential findings are presented in tables because this allows the reader to compare 

the material and possibly identify need for further research. 

 
 
4 Results  
 
4.1 Uncertainty and its management in models 
Uncertainty, its management, communication and understanding in models are 

essential for successful decision making (van der Sluijs, 2005). For example, sen-

sitivity and uncertainty analyzes can be used to numerically assess the uncer-

tainties and errors in the outputs of the model (Larocque et al., 2011).  Uncertainty 

is a key aspect in climate and ES modelling. Due to the complexity of these sys-

tems it is virtually impossible to remove all uncertainties, evermore so when using 

models to create projections (Lahsen, 2005). Especially the model users often 

struggle understanding the uncertainties related to models (Larocque et al., 

2011).  

 

There are many ways to describe and classify uncertainty (internal ± external, 

structured-unstructured, known-unknown etc.) and many are present in literature. 

Understanding the source or reason for uncertainty is essential for the analysis 

and hence these types are identified and categorized. Managing uncertainty has 

also been studied from a variety of view points and categorized in many ways. 

Synthesizing both the types of uncertainty as well as the strategies for managing 

uncertainty is the focus of this chapter.  

 

Uncertainties related to the parameters and structure of the model are the most 

commonly mentioned issues in the literature. By adjusting, including or excluding 

the parameters, the outcome can significantly change (Larocque et al., 2011). 
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This is an essential part of the models and hence the issue cannot be fixed en-

tirely (Lahsen, 2005). In addition to the known unknowns, complex phenomenon 

include unknown unknowns (Saltelli et al., 2020). It also provides opportunities 

for intentional or unintentional misuse of the model since by adjusting the param-

eters one can aim for a output optimal for their motives (Saltelli et al., 2020). In 

addition to better communicating the logic behind chosen parameters, more ac-

curate data is seen as a possible answer (Blanco et al., 2020).  

 

Like in climate models, modelling choices and estimates made effect the results 

of ES models significantly (Forsell et al., 2019). Indicators are usually defined by 

scientists which steers the discussion merely on which indicators to include rather 

than analyzing the cause and effect relations of said indicators in the observed 

system (Turnhout et al., 2007). FXUWKHUPRUH, ³HVSHFLaOO\ aPRQJ HFRORJLVWV, WKHUH 

seems to be a fundamental and moral resistance against the entire concept of 

HFRORJLFaO LQGLFaWRUV aQG HFRORJLFaO TXaOLW\ aVVHVVPHQWV´ (Turnhout et al., 2007). 

Majority of this criticism is aimed at uncertainty of indicators trying to capture the 

essence of complex nature. However, when combining these ecological indica-

tors with social or economic factors, the complexity and uncertainties increase 

(uncertainty cascade, see table 2).  

 

The scale issues often refer to a situation, where the model is created on a scale 

that is not applicable to decision making. The scale can refer to temporal or spa-

tial scale, but also systems, or to the complexity and accuracy of the model 

(Lemos & Rood, 2010). Scale issues are often caused by lack of understanding 

of both what decision makers need, and what scientists can produce. However, 

other reasons such as a disagreement between scientists solved by adapting 

resolution of the model (Brunet et al., 2018) can be responsible for scale issues. 

The importance of communication and boundary work is again pointed out. 

 

The uncertainty cascade refers to a situation, where a parameter, or model, is 

used as a basis for other parameters accumulating the uncertainty. The Basslink 

project in Tasmania (Duncan, 2008) points out the problems of using another 

PRGHO aV WKH baVLV IRU aQRWKHU¶V SaUaPHWHUV. MXOWLSOH aVVHssments regarding a 

variety of environmental and economic impacts were created before the approval 
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of the project. However, all the assessments were based on a single predictive 

economic model that turned out not to provide an accurate projection of the fu-

ture. (Duncan, 2008.) 

 

Modelling natural phenomenon is based on the idea that nature is quantifiable 

and predictable (Lahsen, 2005). While most scientists believe that certain predic-

tions are possible, the climate system is agreed to be chaotic. Critical views re-

garding the predictability of climate change emerge from the literature (Lahsen, 

2005; van der Sluijs, 2005).  

 

This implies, that uncertainties play a key role in climate modelling. Especially 

uncertainty related to the parameters and models themselves are essential. In 

GCMs, grids contain averaged values. The models created by the IPCC are av-

eraged from multiple different models (IPCC, 2014). As more parameters are in-

cluded to create a more complex model, also the uncertainty accumulates into an 

uncertainty cascade (Saltelli et al., 2020). 

 

The uncertainties within the model are also important for the accuracy of climate 

models. The global climate system is so complex, that not even the current state 

can be accurately modelled (Oppenheimer et al., 2007). With increasing temporal 

scale, the projections are also increasingly uncertain (Lahsen, 2005). Since there 

is a lack of guidelines for what to include or exclude from models (van der Sluijs, 

2005), models are not always comparable with one another.  

 

Similar uncertainties are a challenge for ES models too. Parameters are aver-

aged values that are likely never to exist in nature (Hipsey et al., 2020). Also, the 

parameters included and excluded from the models play an important role for the 

outputs. LULUCF (land use, land use change and forestry) is an emission ac-

counting practice of the EU. It requires all member countries to calculate a forest 

reference level to be able to calculate the change in emissions during the next 

years. Modelling choices impact the estimation of reference level significantly 

(Forsell et al., 2019). Yet again the importance of transparent documentation is 

made obvious.   
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ES models aim to present the projected natural values in a societally-relevant 

way. Since translating natural value into e.g. monetary value is problematic 

(Zanchi & Brady, 2019), it will increase the uncertainty of the results. Especially 

ES models often aim to quantify phenomenon that is difficult to measure. This 

can lead to the buildup of uncertainty, the uncertainty cascade (Saltelli et al., 

2020). Quantifying nature has been criticized by especially ecologists due to the 

complexity and uncertainty related to it (Turnhout et al., 2007; see also van der 

Sluijs, 2005, monster-embracement). Additionally, when combined with societal 

data, estimates on rather unpredictable factors, such as the future development 

of citizens behavior, might provide the basis for the model (Saltelli et al., 2020). 

 
 
The literature recognizes uncertainty as an essential part of modelling. Table 2 

categorizes the types of uncertainty recognized in the analyzed literature. The list 

is not comprehensive but synthesizes the most important and common uncertain-

ties mentioned in the material of this thesis. The literature is organized into topics 

by the same logic as in Table 1. While similar observations can be identified from 

OLWHUaWXUH LQ WKH µVFLHQFH-SROLF\ bRXQGaU\¶ WRSLF LQ TabOH 1, LW LV H[FOXGHG LQ TabOH 

2. This is in order to offer a purely modelling focused analysis of uncertainty. The 

connection and synergies of the modelling and science-policy boundary are an-

alyzed in chapters 4.2, 5 and 6.  
 

Table 2 

Types of uncertainty in models identified from the literature. 

 
Type of un-

certainty 

Literature that recognizes the type in 

climate models ecosystem ser-
vices models 

models in gen-
eral 

Uncertainty 
within the 

model 
24 

Dilling and Lemos 
(2011); Edwards 
(2011); Lahsen 
(2005); Lemos and 
Rood (2010); 
Machar et al. (2017); 
Meah (2019); 

Blanco et al. (2020); 
Brunet et al. (2018); 
Collalti et al. (2014); 
Crossman et al. 
(2013); de Nijs et al. 
(2004); Larocque et 
al. (2011); Müller 

Berry and Houston 
(1995); Duncan 
(2008); Forsell et al. 
(2019); Hipsey et al. 
(2020); Lee et al. 
(2018); Mazziotta et 
al. (2016); Pohjola et 
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Norman et al. 
(2015); 
Oppenheimer et al. 
(2007)  

and Burkhard 
(2012); Schirpke et 
al. (2020) 

al. (2013); Vardas 
and Xepapadeas 
(2010) 

Uncertainty of 
the parame-

ters 
22 

Edwards (2011); 
Lahsen (2005); 
Lemos and Rood 
(2010); Machar et al. 
(2017); 
Oppenheimer et al. 
(2007) 

Brunet et al. (2018); 
Collalti et al. (2014); 
Crossman et al. 
(2013); Díaz et al. 
(2015); Larocque et 
al. (2011); Orsi et al. 
(2020); Schirpke et 
al. (2020); Zanchi 
and Brady (2019) 

Berry and Houston 
(1995); Duncan 
(2008); Forsell et al. 
(2019); Heinonen et 
al. (2017); Hipsey et 
al. (2020); Mazziotta 
et al. (2016); Pohjola 
et al. (2013); 
Turnhout et al. 
(2007); Vardas and 
Xepapadeas (2010) 

Uncertainty 
caused by 

scale issues 
11 

Dilling and Lemos 
(2011); Hoppe and 
Wesselink (2014); 
Lahsen (2005); 
Lemos and Rood 
(2010)  

Blanco et al. (2020); 
Brunet et al. (2018); 
Crossman et al. 
(2013); Larocque et 
al. (2011); Schirpke 
et al. (2020); Zanchi 
and Brady (2019) 

Duncan (2008) 

Accumulation 
of uncertainty, 
the uncertainty 

cascade 
6 

Lahsen (2005); 
Lemos and Rood 
(2010); Meah (2019) 

Larocque et al. 
(2011) 

Duncan (2008); 
Saltelli et al. (2020) 

Note: This list is based on the material of this thesis and is therefore not comprehensive. 
Table 2 synthesizes and presents the views and points of the material. The number of 
articles where the type is mentioned is stated underneath the type. n=37. 

 

Uncertainty is an essential part of modelling and does not stand in the way of 

usefulness. Efforts to minimize and manage uncertainty are common and distinct 

strategies can be identified. The most common ones in the literature are analyzed 

next. 

  

Managing uncertainty is a way to ensure the usefulness of the information, re-

gardless the lack of certainty (Hoppe & Wesselink, 2014). The traditional strategy, 

so called uncertainty fallacy, is the one relying on more and better research to 
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increase accuracy. This is often the case with climate and ES models, since no 

amount of objective research can erase all uncertainties (Lahsen, 2005). Like 

simpler weather forecasts, climate and ES can never be modelled and predicted 

with absolute certainty (Lemos & Rood, 2010; Oppenheimer et al., 2007), nor 

should this be the aim (Jasanoff, 2012). However, the role of satellite data im-

proving the accuracy and capabilities of models should not be forgotten 

(Edwards, 2011). While often aimed for the complexity of the model is no guar-

antee of the accuracy of it (Saltelli et al., 2020).  

 

Another common strategy is to assess, quantify or outsource the uncertainty of 

models to better understand it. Uncertainty assessments are becoming a stand-

ard part of climate modelling (IPCC, 2014; Lahsen, 2005) and efforts to imple-

ment them in ES modelling are also taking place (IPBES, n.d.). However, quan-

tifying the range of uncertainty might not provide the necessary explanation for 

model users trying to develop understanding of it. Communicating the uncertainty 

is an important part of this strategy. Drawing boundaries between science and 

policy is related to this strategy (van der Sluijs, 2005). Creating various scenarios 

of the future can be understood as one way to both outsource the uncertainties 

and stress the causality of actions taken today. 

 

An opposing strategy is to try to hide uncertainty in the model. It is typical, that 

uncertainty and its assessment is explained in the technical reports but not in the 

impact assessment statements or final determinations (Duncan, 2008). Since all 

uncertainty cannot be excluded from the model, efforts to hide the remaining un-

certainties are sometimes made (Lahsen, 2005). Uncertainty does not support 

the idea of science providing objective knowledge and it is hence efforts to delete 

uncertainty are made. Main motivations for hiding uncertainty are usually related 

to political agendas or avoiding disputes. (van der Sluijs, 2005.) Hidden uncer-

tainty has been described as a Russian doll with not just one black box but many 

inside the other (MacKenzie, 1990 according to Duncan, 2008).  

 

Using complexity of the phenomenon to explain the uncertainties in models is a 

strategy that can be implemented in two ways; either embracing complexity with 

uncertainty as its essential character or deny the existence of the phenomenon 
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due to the complexity and uncertainties related to it (van der Sluijs, 2005). The 

latter strategy has been mainly used by climate sceptics to undermine the exist-

ence of the risks (van der Sluijs, 2005). This strategy was not evident in ES liter-

ature, which could be an indication that it is no longer as relevant. Embracing the 

complexity is a more commonly mentioned strategy in the literature, although it 

is often complemented with other strategies. It is often used as an argument for  

 

why the remaining uncertainties in the models do not make it unusable or irrele-

vant.  

 

The last strategy, redesigning the structures, is a rather popular one in the bound-

ary literature (see e.g. McNie, 2007) but can also be identified from modelling 

literature.  It is related to the boundary between science and policy and redefining 

that boundary, and often executed by redefining science and/or policy. Even 

though these theories are not analyzed by name, many of them are included in 

the literature. Chapter 4.2 analyzes literature and offers synthesized information 

on the characteristics of usefulness of information.  

 

The literature recognizes uncertainty as an essential part of modelling. Table 3 

categorizes the strategies for managing uncertainty recognized in the analyzed 

literature. Classification is applied from the list provided by van der Sluijs (2005) 

but  also supported by the literature. The list is not comprehensive but synthe-

sizes the most important and common strategies mentioned in the material of this 

thesis. Due to the differences between climate and ES models as well as the 

restrictions of material, all these qualities could not be recognized from ES litera-

ture. This can be a result of various factors; newer practices and traditions, more 

technically focused literature, different level of interaction between model users 

and developers, scale of the models, learning from previous efforts in modelling 

etc. All strategies that were recognized in at least climate or ES modelling and 

the general modelling literature are included. This provides information about the 

similarities and differences between the two case studies, climate and ES mod-

els. The literature is organized into topics by the same logic as in Table 1. 

 

 



 32 

 
Table 3 

Strategies for managing uncertainty identified from the analyzed literature.  

 
 

Strategy for man-
aging uncertainty 

 
Literature that recognizes the strategy in 

climate model-
ling 

ecosystem ser-
vices modelling 

modelling in 
general 

Assessing, quantify-
ing and outsourcing 
the uncertainty to 

make it understand-
able  
22 

Dilling and 
Lemos (2011); 
Edwards 
(2011); Lahsen 
(2005); Lemos 
and Rood 
(2010); Machar 
et al. (2017); 
Meah (2019); 
Oppenheimer et 
al. (2007) 

Brunet et al. 
(2018); 
Castellazzi et al. 
(2010); Collalti et 
al. (2014); 
Crossman et al. 
(2013); de Nijs et 
al. (2004); Díaz et 
al. (2015); 
Larocque et al. 
(2011) 

Duncan (2008); 
Forsell et al. 
(2019); Hipsey et 
al. (2020); 
Mazziotta et al. 
(2016); Pohjola et 
al. (2013); Saltelli 
et al. (2020); van 
der Sluijs (2005); 
Vardas and 
Xepapadeas 
(2010) 

Embracement of 
complexity 

9 

Lahsen (2005); 
Lemos and 
Rood (2010); 
Meah (2019) 

Blanco et al. 
(2020); Crossman 
et al. (2013); 
Larocque et al. 
(2011) 

Saltelli et al. 
(2020); Turnhout 
et al. (2007); van 
der Sluijs (2005) 

Uncertainty is re-
duced by more ob-

jective research, the 
uncertainty fallacy 

9 

Dilling and 
Lemos (2011); 
Edwards 
(2011); Lahsen 
(2005); Lemos 
and Rood 
(2010); Meah 
(2019) 

Blanco et al. 
(2020) 

Hipsey et al. 
(2020); Lee et al. 
(2018); van der 
Sluijs (2005) 

Denying the exist-
ence of complexity 

due to the uncertain-
ties related to it 

6 

Lahsen (2005); 
Meah (2019); 
Oppenheimer et 
al. (2007) 

 Saltelli et al. 
(2020); Turnhout 
et al. (2007); van 
der Sluijs (2005) 
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Redesigning the 
structures support-
ing complexity and 

uncertainty 
5 

Lemos and 
Rood (2010); 
Machen (2018); 
Pearce et al. 
(2017) 

 van der Sluijs 
(2005) 

Uncertainty is man-
aged by hiding or 

downplaying it 
5 

Lahsen (2005)  Duncan (2008); 
Pohjola et al. 
(2013); Saltelli et 
al. (2020); van 
der Sluijs (2005) 

Note: These strategies have previously been listed by van der Sluijs (2005) and this 
classification provided the frame for the analysis, but it has been applied to fit this pur-
pose, and hence table 3 offers a synthesis of the literature. The number of articles where 
the strategy is identified is stated underneath the strategy. n=37. 

 
 

4.1.1 The implications and relevancy of uncertainty  
While uncertainty is an important part of modelling, it does not stand in the way 

of usefulness. Information provided by modelling can be useful and policy-rele-

YaQW, RU µJRRG HQRXJK¶, HYHQ LI LW LV XQFHUWaLQ. Uncertainty should also not stand 

in the way of action or demine the message of these model. One of the legal 

grounds the literature mentions is the precautionary principle (Hoppe & 

Wesselink, 2014; Vardas & Xepapadeas, 2010).  

 

The precautionary principle was first in the Rio Declaration in 1992:  

³WKHUH WKHUH aUH WKUHaWV RI VHULRXV RU LUUHYHUVLbOH GaPaJH, OaFN RI IXOO VFL-

entific certainty shall not be used as reason for postponing cost-effective 

PHaVXUHV WR SUHYHQW HQYLURQPHQWaO GHJUaGaWLRQ´ (UN, 1992a).  

By 1993, 166 countries had signed the Framework Convention on Climate 

Change and currently3 there are 197 Parties on it  (UN, 1992b). The EU has also 

adopted this principle into their legislation to prevent taking unnecessary and ir-

reversible risks to human and environmental health ("Treaty on the Functioning 

of the European Union ", 2016). According to the precautionary principle, harmful 

                                            
3 Refers to 10/2020.  
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activities should be prohibited and reconsidered after sufficient scientific infor-

mation is available. The uncertainties related to climate and ecosystem services 

models concern the scale of the impacts, not whether there will be harmful con-

sequences. In conclusion, there are legal grounds to prevent further advance-

ment of these harmful activities, and models rather support than resign this claim  

(Norman et al., 2015).  

 

The precautionary principle has historically been an inadequate tool to prevent 

harmful activities even when the risk they pose has been known to be significant. 

The lack of scientific certainty has historically been used to undermine the mes-

sage and legitimacy of science (Meah, 2019; Oppenheimer et al., 2007; van der 

Sluijs, 2005). Paradoxically, it is typical that the decisions with huge error potential 

need to be made before science is conclusive (van der Sluijs, 2005). Assessing 

the uncertainty or certainty of science is important but to successfully do so, one 

needs to fully understand what the uncertainties are and why they exist. While 

development of legal measures is also needed, many scientists have tackled this 

issue (see Tables 2 & 3).    

 

Boundary organizations and models have had a great role in understanding and 

acknowledging phenomenon such as climate change and biodiversity loss. In ad-

dition to better understanding, managing uncertainty is important in order to main-

tain legitimacy (see also Table 4). Historically, sceptics have denied the infor-

mation in the models based on uncertainty and due to the urgency of sustainabil-

ity crisis, time can no longer be wasted on misinterpreting the models that se-

verely. There are connections between the uncertainty, its management and use-

fulness of models, and the next chapter will analyze these relationships in more 

detail.  

 
4.2 Usefulness and models  
Given that models are boundary objects, analyzing the process of information 

flow from the viewpoint of usefulness of the models to decision making is im-

portant. There are many concepts that aim to redefine the boundary between 

science and policy, e.g. new social contract of science, mode 2, socially robust 
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science, well-ordered science, use-inspired research, post-normal science, sus-

tainability science, adaptive governance and social-ecological systems analysis 

(McNie, 2007; van Kerkhoff & Pilbeam, 2017). These concepts are one of the 

mentioned strategies for managing uncertainty. Additionally, various other ways 

to identify and assess the usefulness of science have been established. Typically, 

the assessment of models focuses on improving technical features and modelling 

practices. Literature on useful science often emphasizes the importance of 

boundary work and the integration of the producers and users of information. In-

stead of going into detail describing these concepts and classification, I will syn-

thesize literature on the characteristics that useful information has.  

 

Societally-relevant information in solution-oriented (Dunn & Laing, 2017). Model-

ling can identify and analyze causalities and create scenarios to be solution-ori-

ented. Especially the ability to explore outcomes of decisions is beneficial for de-

cision makers (Brunet et al., 2018). Solution-orientation and actionable research 

are typical for sustainability science (van Kerkhoff, 2014).  

 

To be accessible and applicable, information needs to be available when decision 

making needs it (Duncan et al., 2020; Dunn & Laing, 2017). Time is also essential 

for successful boundary work: time to have discussions and do boundary work 

(Duncan et al., 2020). To be aSSOLFabOH, WKH XVHUV¶ QHHG WR bH LGHQWLILHG aQG ORFaO 

context taken into consideration, and adjustments made throughout the research 

(Brunet et al., 2018).  

 

The need for scientists to understand decision makers needs was recognized in 

many of the articles. Producers and users need different things (Lemos & Rood, 

2010). Therefore, identifying WKH XVHUV¶ QHHGV VKRXOG bH WKH ILUVW VWHS RI FUHaWLQJ 

models (Brunet et al., 2018). This also needs to be done case-by-case, since no 

³RQH-size-fits-aOO PRGHO´ H[LVWV (Beck et al., 2014).  

 

Successful framing is another way to emphasize the importance of mutual under-

standing and cooperation. Model producers and users need to agree on the same 

scale and context of its use (McNie, 2007). Users also need to understand, what 

the model presents, since e.g. climate models cannot predict weather (Lahsen, 
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2005). Transparency on the normative choices made is also important (Saltelli et 

al., 2020). Framing can also refer to participation and inclusion; for examplH ³IP-

BES plenary discusses the relevance and credibility of different forms and 

VRXUFHV RI NQRZOHGJH aQG H[SHULHQFH´ (Beck et al., 2014). Framing can be one 

way to define authority and legitimacy. As mentioned in chapter 4.1.1, uncertain-

ties can be the enemy of legitimacy, and therefore managing them is important. 

 

Iterative information can be communicated without jargon to minimize misunder-

standings (Dunn & Laing, 2017). Prevention of misuse or tendentious use of in-

formation is at the heart of iterativity (Dilling & Lemos, 2011). However, commu-

nication of information is not always simple. Knowledge brokers have to make 

difficult decision on what is communicated and what is let out: often many tech-

nical details are left out while they would make the broker seem more honest and 

legitimate (Duncan et al., 2020). Iterativity and legitimacy on information are often 

connected.  

 

Authority plays an important role when assessing legitimacy, credibility or integ-

rity. Lee et al. (2018) identify legal, scientific and political authority, that are all 

mutually reinforcing. All three are relevant for the topic for modelling and their use 

in decision making. Legitimacy is especially important for the impact of research 

since ³Whe uptake of facts and data in policy discourses depends on who provides 

them´ (Wesselink et al., 2013). This indicates that the information provider has a 

central role to the perceived legality of it (see Silfverberg et al., 2018). Usefulness 

and legitimacy are subjective and should therefore be better communicated and 

discussed. Providing all necessary information still does not guarantee political 

action (Wesselink & Hoppe, 2010) and hence dialogue between model develop-

ers and users is important (Larocque et al., 2011). 

 

Cooperation between scientists and decision makers is important for improve-

ment of the perceived legitimacy of research, but it can also create trust, respect 

and means for cooperation (Frantzeskaki & Kabisch, 2016). Science cannot tell 

us what we ought to do but rather offer information of the possibilities at hand 

(Jasanoff, 2015). Useful science-policy interaction offers decision makers the in-

formation they need to consider when addressing the issue at hand (Meah, 2019). 
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Adjustment, discussion and learning have been identified increase the success 

of boundary work (Brunet et al., 2018). Deciding who is included in policy-making 

might be at its center (Wesselink & Hoppe, 2010). Co-production of knowledge, 

transdisciplinarity and stakeholder participation are examples of attempts to in-

clude more people and views into decision making.  

 

One of the main expectations and key differences to other forms of scientific in-

IRUPaWLRQ, LV PRGHOV¶ abLOLW\ WR SUHVHQW FRmprehensive and integrated information 

(Brunet et al., 2018). As already explained, synthesizing and creating compre-

hensive information is not without its challenges. Integrating information is an act 

of power. There is always has a risk of epistemological hierarchy regarding the 

types or sources of information. In the case of climate change, geophysical sci-

ences and economics are often promoted while other types of knowledge mar-

ginalized (Hoppe et al., 2013). 

 

The literature recognizes uncertainty as an essential part of modelling. Table 3 

categorizes the strategies for managing uncertainty recognized in the analyzed 

literature. Classification is applied from the list provided by van der Sluijs (2005) 

but  also supported by the literature. The list is not comprehensive but synthe-

sizes the most important and common strategies mentioned in the material of this 

thesis. Due to the differences between climate and ES models as well as the 

restrictions of material, all these qualities could not be recognized from ES litera-

ture. This can be a result of various factors; newer practices and traditions, more 

technically focused literature, different level of interaction between model users 

and developers, scale of the models, learning from previous efforts in modelling 

etc. All strategies that were recognized in at least climate or ES modelling and 

the general modelling literature are included. This provides information about the 

similarities and differences between the two case studies, climate and ES mod-

els. The literature is organized into topics by the same logic as in Table 1. 

 

Table 4 presents the aforementioned characteristics of usefulness in both mod-

elling literature and boundary literature. The classification is based on the char-

acteristics identified from the analyzed literature. The list is not comprehensive 

but synthesizes the most important and common characteristics mentioned in the 
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material. The literature is organized into topics by the same logic as in Table 1, 

modelling literature including the topics of climate change, ecosystem services 

and general modelling literature.  

 

Table 4 

Characteristics of societally useful science and/or models identified from the literature.  

Characteristic Modelling literature that 
recognizes the charac-

teristic 

Science ± policy boundary 
literature that recognizes the 

characteristic 

Applicable and 
accessible 

26 

Brunet et al. (2018); 
Castellazzi et al. (2010); 
Collalti et al. (2014); Dilling 
and Lemos (2011); Hipsey et 
al. (2020); Lee et al. (2018); 
Lemos and Rood (2010); 
Machar et al. (2017); Orsi et 
al. (2020); Saltelli et al. 
(2020); Turnhout et al. (2007) 

Beck et al. (2014); Christl (2018); 
Duncan et al. (2020); Dunn and 
Laing (2017); Frantzeskaki and 
Kabisch (2016); Hoppe et al. 
(2013); Jasanoff (2012); Lyytimäki 
(2020); McNie (2007); Sarewitz 
and Pielke (2007); Silfverberg et 
al. (2018); van der Hel (2016); van 
Kerkhoff (2014); Weichselgartner 
and Kasperson (2010); Wesselink 
et al. (2013) 

Trust, respect 
and coopera-
tion between 
model devel-

opers and 
model users 

21 

Brunet et al. (2018); Dilling 
and Lemos (2011); Gilliland 
and Laffoley (2008); Larocque 
et al. (2011); Lemos and Rood 
(2010); Müller and Burkhard 
(2012); Oppenheimer et al. 
(2007); Pohjola et al. (2013); 
Saltelli et al. (2020) 

Beck et al. (2014); Christl (2018); 
Duncan et al. (2020); Dunn and 
Laing (2017); Frantzeskaki and 
Kabisch (2016); Hoppe et al. 
(2013); McNie (2007); Sarewitz 
and Pielke (2007); Silfverberg et 
al. (2018); Turnhout et al. (2007); 
van der Hel (2016); 
Weichselgartner and Kasperson 
(2010) 

Comprehen-
sive and inte-
grated infor-

mation 
19 

Blanco et al. (2020); Brunet et 
al. (2018); Castellazzi et al. 
(2010); de Nijs et al. (2004); 
Díaz et al. (2015); Dunn and 
Laing (2017); Forsell et al. 
(2019); Knol (2011); Lemos 
and Rood (2010) 

Christl (2018); Dunn and Laing 
(2017); Frantzeskaki and Kabisch 
(2016); Funtowicz and Ravetz 
(2003); Hoppe et al. (2013); McNie 
(2007); Silfverberg et al. (2018); 
van der Hel (2016); van Kerkhoff 
(2014); Weichselgartner and 
Kasperson (2010) 
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Successful 
framing 

18 

Brunet et al. (2018); 
Crossman et al. (2013); Dilling 
and Lemos (2011); Gilliland 
and Laffoley (2008); Hoppe 
and Wesselink (2014); Lee et 
al. (2018); Lemos and Rood 
(2010); Müller and Burkhard 
(2012); Saltelli et al. (2020) 

Beck et al. (2014); Dunn and Laing 
(2017); Funtowicz and Ravetz 
(2003); Hoppe et al. (2013); McNie 
(2007); Sarewitz and Pielke 
(2007); Silfverberg et al. (2018); 
van der Hel (2016); Wesselink and 
Hoppe (2010) 

Legitimate 
17 

Dilling and Lemos (2011); 
Hoppe and Wesselink (2014); 
Knol (2011); Lee et al. (2018); 
Lemos and Rood (2010) 

Duncan et al. (2020); Dunn and 
Laing (2017); Frantzeskaki and 
Kabisch (2016); Hoppe et al. 
(2013); Jahn et al. (2012); 
Jasanoff (2015); McNie (2007); 
Pearce et al. (2017); Silfverberg et 
al. (2018); van der Hel (2016); van 
Kerkhoff and Pilbeam (2017); 
Wesselink et al. (2013) 

Iterative 
14 

 

Dilling and Lemos (2011); 
Larocque et al. (2011); Lemos 
and Rood (2010); Müller and 
Burkhard (2012); Saltelli et al. 
(2020); Zanchi and Brady 
(2019) 

Christl (2018); Duncan et al. 
(2020); Dunn and Laing (2017); 
McNie (2007); Sarewitz and Pielke 
(2007); Silfverberg et al. (2018); 
van Kerkhoff (2014); Wittmayer 
and Schäpke (2014) 

Solution-ori-
ented; Intro-

ducing options 
for action 

13 

Brunet et al. (2018); de Nijs et 
al. (2004); Dilling and Lemos 
(2011); Lemos and Rood 
(2010); Pearce et al. (2017) 

Duncan et al. (2020); Dunn and 
Laing (2017); Frantzeskaki and 
Kabisch (2016); Hoppe et al. 
(2013); McNie (2007); Silfverberg 
et al. (2018); van Kerkhoff (2014); 
Wittmayer and Schäpke (2014) 

Scientists un-
derstand deci-
VLRQ PaNHUV¶ 

needs 
10 

Duncan (2008); Larocque et 
al. (2011); Lemos and Rood 
(2010) 

Christl (2018); Duncan et al. 
(2020); Dunn and Laing (2017); 
McNie (2007); Sarewitz and Pielke 
(2007); Silfverberg et al. (2018); 
Weichselgartner and Kasperson 
(2010) 

Note: These are the qualities ensuring the societal impact and usefulness of scientific 
information, both in models and other forms of information. Many classifications already 
exist, and Table 4 provides a synthesis of the key views in the material of this thesis. The 
number of articles where the character is identified is stated underneath the name. n=58. 
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Useful, impactful and societally-relevant model can be described with the same 

characteristics as other forms of scientific information. The main difference is the 

ability to present comprehensive, synthesized information and the following role 

of uncertainty and its management. Chapter 4.1 analyzed the ways uncertainty 

can be identified, communicated and managed. Essential for all forms of useful 

science is to understand what the users want or even can utilize (e.g. Dunn & 

Laing, 2017; Larocque et al., 2011), and how to successfully communicate the 

NH\ SRLQWV RI UHVHaUFK WR FUHaWH WUXVW aQG OHJLWLPaF\. SLQFH PRGHO XVHUV LV a ³GL-

verse group that includes stakeholders, environmental managers, decision mak-

HUV, aFaGHPLFV aQG WKH JHQHUaO SXbOLF´ (Larocque et al., 2011) successful devel-

opment, presentation and communication has its challenges. This is where 

boundary work can be useful. 

 

4.3 Negotiating uncertainty and usefulness in science-policy 
boundary  
The interaction of science and decision making has been studied through the idea 

of science-policy boundary (see chapter 2.2). Since modelling is a boundary ob-

ject integrating science and decision making, analyzing what literature says about 

the process is important. The role of both decision makers and model developers 

is critical for the quality of the decisions (Larocque et al., 2011). As already stated, 

models are complex and often challenging to understand and interpret. There-

fore, boundary work is important for ensuring the usefulness of models.  

 

Boundary work can be done by a knowledge broker. Quite often knowledge bro-

kers are scientists, but also boundary organizations can act as knowledge bro-

kers.  

³TKH bURNHU QHHGV WR bH abOH WR GR bRXQGaU\ ZRUN KRUL]RQWaOO\ aQG YHUWL-

cally, i.e., horizontal between disciplines, knowledge sources, values and 

audiences and vertical to orient decision-makers not only into the depths 

of the technical work and the uncertainties and unknowns but back out and 

VN\ZaUG´ Duncan et al. (2020.) 
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In other words, knowledge brokers are expected to do the boundary work and the 

receivers to remain passive. Successful boundary work requires more than pack-

aging the information. 

 

The outdated idea of one-way information flow from science to policy (Wesselink 

et al., 2013) is still visible in knowledge brokering practices. Knowledge brokers 

are expected to act as objective and unbiased merely translating the information 

without advocating their views (Duncan et al., 2020). The same unrealistic re-

quirement of objectivity is often cast on research. After all, translation is an act of 

power and defines the hegemonic claim silencing alternative and critical dis-

courses (Machen, 2018). TKH LGHa RI µJRRG HQRXJK¶ WUXWK (Jasanoff, 2012) is ap-

plicable for knowledge brokering too: instead of expecting knowledge brokers to 

RIIHU µWKH WUXWK¶, WKH aLP VKRXOG bH RIIHULQJ XQGHUVWaQGable, useful and usable 

information (Dilling & Lemos, 2011).  

 

Knowledge brokers have been successful with climate science (Dilling & Lemos, 

2011), and the role of boundary organizations in discussion is great (Hoppe et 

al., 2013). Boundary organizations tackling climate change are, for example, are 

the IPCC (Hoppe et al., 2013; IPCC, 2014) and ClimateXChange (Machen, 

2018). The IPCC relies heavily on consensus producing comprehensive, global 

reports at a relatively slow pace. Being an international organization operating 

under the UN, they aim to create global cooperation and climate action. Clima-

teXChange operates on a national scale, producing nationally-relevant infor-

mation. 

 

IPBES is the equivalent for IPCC in biodiversity and ES matters, founded in 2012. 

The goal is to ensure the conservation of biodiversity by improving science-policy 

interaction and to develop policy-relevance assessments. As a boundary organi-

zation IPBES implements a rather transdisciplinary approach: transparency and 

inclusiveness combined with a multitude of knowledge systems are essential. 

The IPBES framework is based on six elements (nature, Anthropogenic assets, 

QaWXUH¶V bHQHILWV WR SHRSOH, LQVWLWXWLRQV aQG governance systems, direct drivers, 

and good quality of life) and their interactions. (Díaz et al., 2015.)   
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Forum for Environmental Information (Silfverberg et al., 2018) is an example of a 

boundary organization that does not further specify its topic, but aims to be the 

knowledge broker for all environmental information. On a global scale this would 

be quite demanding, but the Forum only aims to bridge Finnish policy and sci-

ence. Since they only aim to impact on a national scale, boundary work is done 

differently too, e.g. organizing facilitated discussions. 

 

There is a need for interaction but also integration (Dilling & Lemos, 2011). 

Boundary work can increase understanding of both model creators and users of 

HaFK RWKHU¶V QHHGV. B\ bHWWHU aFNQRZOHGJLQJ WKH VXSSO\ aQG GHPaQG of infor-

mation, scale issues could be solved, and successful framing and applicability 

achieved. Case-by-case solutions (Beck et al., 2014) regarding both modelling 

and boundary work are needed. Since climate models are often global, the im-

portance of boundary organizations is highlighted, since model developers and 

users have no means to interact with one another.  

 

Models have unique opportunities for doing boundary work too. Because maps 

and scenarios can be created, techniques for boundary work arise. Data of the 

ecosystem and its functions can be quantified presenting the areal differences of 

the state of ES (Orsi et al., 2020), or synthesized bundles (Brunet et al., 2018). 

Maps can provide legitimacy for decision making but they can also be difficult to 

interpret. Scale and resolution need to be appropriate, and the interconnected-

ness of areas explained to avoid ranking the areas based on the amount of ES 

they provide (Brunet et al., 2018). Other forms of visualizing, such as photos or 

impact-assessment reports can also be useful for planners and decision makers. 

Photos are considered a good way to make models tangible, while impact-as-

sessments help categorize the results. These alternatives are important, since 

text-format is not always the best way to communicate large amounts of infor-

mation. (Brunet et al., 2018.) By building trust, the legitimacy of produced models 

can improve. 

 

Scenarios can be used for the outsourcing of either uncertainty of values but also 

to frame uncertainty in an understandable way (van der Sluijs, 2005). However, 

scenarios can be useful in identifying trade-offs and bundles while they do not 
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always replace other forms of stakeholder inclusion (Brunet et al., 2018; 

Silfverberg et al., 2018). Gamification of models can be used as a pedagogic tool 

to spark discussion and create collective culture among decision makers and 

other stakeholders (Brunet et al., 2018). 

 

However, not all the issues can be solved with boundary work. Boundary work 

benefits from interaction within the domains, so within science and within policy 

(Dilling & Lemos, 2011; Duncan et al., 2020).  

 

5 Discussion  
Models are often seen as the best available tool for knowledge transfer between 

science and policy (Meah, 2019; Schirpke et al., 2020). Modelling is a promising 

alternative to written reports, and it has potential to produce actionable research 

and integrate science and decision making, as chapter 4 points out. Even if mod-

els and their uncertainty are now more widely accepted, the necessary action is 

still lacking. 

 

Because modelling is a boundary object, the actions towards useful science need 

to happen in both institutions. Therefore, no universal instruction can be estab-

lished on how to create a useful model. This also explains, why the importance 

of trust, respect and cooperation between model developers and users was em-

phasized in the literature (e.g. Frantzeskaki & Kabisch, 2016). As a boundary 

object, modelling is inherently rooted in both sides of the boundary. Therefore, 

the importance of boundary work in translating and bringing together these two 

institutions cannot be downplayed. This requires model developers and users to 

understand each other; users to understand the outputs of the model, and devel-

opers to understand what the users need.     

 

The boundary between institutions of science and policy is established to protect 

them from one another. Science is supposed to have an objective stand and pro-

vide facts whereas policy offers value judgement (see Jasanoff, 2012). There is 

an ongoing discussion of the relationship and boundary of science and policy, 

that is ever more relevant in the era of sustainability crisis. There is no consensus 
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over what sustainability entails nor for it being a priority in our societies 

(Silfverberg et al., 2018; Wesselink & Hoppe, 2010). Even if scientific evidence is 

accepted, it still does not create a consensus on what should be done (Meah, 

2019). Science studies what is whereas policy defines what should be, and there-

fore the role of boundary work is central in sustainability questions. 

 

For example, the framing of climate change has resulted in political challenges to 

solve it. Emphasizing the globality of climate change instantaneously results in 

challenges of defining who is responsible of mitigation actions. Combining social, 

environmental and economic concerns into the discourse of sustainable develop-

ment and creating an illusion of an easy techno-fix to be possible is very appeal-

ing and has hence become the dominant discourse (Wesselink et al., 2013). This 

global, technical framing of climate change takes part in maintaining the exclusive 

discourse favoring the Northern policy makers (Hoppe et al., 2013). In reality the 

solutions are much more complex due to the wicked nature of the issues 

(Wesselink & Hoppe, 2010). Short-term solutions or techno-fixes are not enough 

to maintain a habitable planet.   

 

Authority is often separated in three, mutually reinforcing types: scientific, legal 

and political authority (e.g. Lee et al., 2018). The lack of action to solve sustain-

ability crisis cannot be explained by the lack of evidence or knowledge. Modelling 

has played an important role communicating science and increasing public un-

derstanding of the issue. The legal grounds, e.g. precautionary principle (UN, 

1992a), should also spark action towards sustainability. If scientific or legal au-

thorities cannot take the blame for inaction, policy must be responsible. While 

policy and societal action are widely studied, science has been unable to create 

a rigorous strategy to spark political action. This indicates, that the problem can-

not be solved with science, at least not science alone. This could further indicate 

that our political institutions are incapable of handling phenomena as complex, 

uncertain and urgent as sustainability crisis. The need for system level change is 

well recognized in sustainability science: 

³in order to develop robust sustainability learning feedbacks between 

knowledge and action we need the coupling of Human Information and 
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Knowledge Systems (HIKS) with social± ecological systems (SES) dy-

namics´ (Tàbara & Chabay, 2013).  

 
The need for more interaction and cooperation is emphasized both in the litera-

ture on modelling and science-policy boundary. Systemic change is not a solitary 

effort but requires the participation of the surrounding and supporting systems 

too. Therefore, it is important to create that action in all sub-systems, including 

science. Further research regarding the role and possibilities of science to nudge 

policy towards necessary change is needed, even while science alone cannot 

provide the solutions. A variety of participatory methods and transdisciplinary ap-

proaches provide promising alternatives to be studied.  

 
6 Conclusions  
The main differences of climate and ES modelling relate to the technical aspects 

and the aim of the models. Technical differences relate to the data used and the 

scale of the model. Climate models tend to be global and include more objective 

data on the functions of the climate system (Edwards, 2011) whereas ES models 

focus on local or regional scale and combine ecological and social data (Brunet 

et al., 2018). This separation is only indicative, since ES models can include the 

impact of climate change too (Forsell et al., 2019), and likewise global ES models 

could be created. Climate models rely on environmental data (Lahsen, 2005), 

whereas ES models integrate environmental and social data (Blanco et al., 2020).  

 

The ontological aim of climate models is originally to identify synergies, trade-offs 

and connections within the climate system (Hoppe et al., 2013), or in other words, 

understand the phenomenon of anthropogenic climate change. During the 21st 

century, the aim is increasing shifting towards societally-relevant, actionable in-

formation (Edwards, 2011). ES modelling aims to create societally relevant and 

useful information for regional or local decision making (Blanco et al., 2020). The 

ways to utilize ES models are various, e.g. wetland banking, carbon offset or 

conservation auctions (Crossman et al., 2013). The aim of both models is increas-

ingly similar regardless of the historical differences. 
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Modelling traditionally approaches uncertainty from a technical view point; the 

source, scope and impact of the uncertainty (e.g. Hipsey et al., 2020). Assessing 

and decreasing uncertainty has been an essential part of the development of 

modelling and its practices. Essential in the uncertainty of climate and ES mod-

elling is whether it stands in the way of applying and utilizing the information pro-

vided the model. Uncertainty and its management affect the legitimacy and fur-

thermore the societal usefulness of the model. Especially with climate change, 

uncertainty and complexity related to the phenomenon itself has historically been 

misinterpret as uncertainty of whether climate change is real (Hoppe et al., 2013; 

Oppenheimer et al., 2007). Since communicating the uncertainties and re-

strictions of the models is crucial for the usefulness of them, ignoring or burying 

uncertainty is unlikely a suitable tactic for managing uncertainty in models. The 

importance of identifying, managing and communicating the uncertainties is evi-

dent in the literature. Scenarios are one way to communicate causality and need 

for action, while understanding and explaining the uncertainty involved. Scenario-

making is unique for models and further development and research on the pos-

sibilities should be conducted to improve the practices of managing and com-

municating uncertainty. 

 

The characteristics of societally useful scientific information are similar between 

models and other forms of information. Science that is available and accessible, 

understandable and fit for the purpose, is often also useful. Useful modelling em-

phasizes the comprehensiveness and integration of information from different 

sources or disciplines, causality and solution-orientation, and cooperation and 

open discourse between model users and developers. Key difference between 

PRGHOV aQG RWKHU IRUPV RI VFLHQWLILF LQIRUPaWLRQ LV WKH PRGHOV¶ abLOLW\ WR UHSUHVHQW 

synthesized information and scenarios. Usefulness can be achieved when mod-

els are fit for purpose, accessible and solution-oriented, and sufficient interaction 

and trust is established between the model users and developers (e.g. Saltelli et 

al., 2020). While the technical and ontological features of climate and ES model-

ling vary, uncertainty and usefulness of these models has no significant differ-

ences.  
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The importance of facilitated meetings when presenting complex information has 

been widely acknowledged (Frantzeskaki & Kabisch, 2016). As boundary objects, 

climate and ES models require boundary work to be iterated and become appli-

cable for policy. Since the misuse of models is rather easy, whether it is inten-

tional or not, model-users should receive support on using and interpreting the 

model (Gilliland & Laffoley, 2008; Larocque et al., 2011). Ensuring that the model 

is fit for the purpose requires boundary work and is essential for the usefulness 

of the model. Weather cannot be forecasted from a climate model, and vice versa. 

While politics often urge for numerical answers, it is important to be able to com-

municate, when the results cannot or should not be quantified (Oppenheimer et 

al., 2007; Turnhout et al., 2007).  

 

van Kerkhoff (2014) named four principles that integrative research in sustaina-

bility science should be based on: embracing uncertainty, engaging stakeholders, 

transdisciplinarity and learning. While the material was not analyzed based on 

these principles, all of them can be found from the analysis. The importance of 

acknowledging and managing uncertainty and inclusion of stakeholders is very 

evident when studying the uncertainty and usefulness of models. By emphasizing 

the need for interaction between model creators and model users throughout the 

modelling process indicates the importance participatory methods. Climate and 

ES modelling are highly multidisciplinary processes. The principle of transdisci-

plinarity is analyzed through the participatory and multidisciplinary nature of these 

phenomena. Further transdisciplinary research as well as research on transdis-

ciplinarity should be conducted. Learning, continuous improvement and assess-

ment is the foundation of modelling, as well as the main aim of this integrative 

literature review.  

 

In conclusion, boundary work can improve and ensure the usefulness of the mod-

els. However, since the lack of information is not the main issue with sustainability 

crises, more and better models can only get us so far. Cooperation and systemic 

change are needed.  
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