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General introduction

1Childhood overweight and obesity are of major public health concern. The global prevalence 

of obesity in boys increased from 0.7% to 5.6% between 1975 and 2016, whereas in girls 

the prevalence increased from 0.9% to 7.8% in the same period (1). Childhood overweight 

and obesity have serious consequences for health. Children with obesity are at increased risk 

of obesity in adulthood (2). In addition, obesity is a strong risk factor for a range of other 

health problems, including cardio-metabolic disease (type 2 diabetes, dyslipidemia, hyperten-

sion, coronary heart disease, stroke), asthma, osteoarthritis, mental health problems and 

premature death (3). Overweight and obesity are defined by the World Health Organization 

(WHO) as “abnormal or excessive fat accumulation that may impair health” (4). Overweight 

and obesity are defined using the body mass index, which is a measure of body weight 

relative to height. In adults, overweight and obesity are defined as a body mass index of 

25.0-29.9 kg/m2 and ≥ 30 kg/m2, respectively (5). In children, the cut offs for overweight 

and obesity depend on the sex and age of the child and are defined according to reference 

charts for body mass index, such as those by Cole et al (6) and those by the WHO (7, 8). 

Body mass index is a simple and inexpensive measure of general adiposity. However, it is a 

suboptimal measure of fat mass, as it does not distinguish between fat mass and lean mass. 

Also, it does not provide any information on fat distribution. It has been suggested that an 

abdominal fat distribution, especially accumulation of visceral fat and liver fat, is strongly 

linked to metabolic disturbances and the risk of cardio-metabolic disease, independent of 

the total amount of body fat (9, 10).

The etiology of obesity and related cardio-metabolic diseases is complex and multifactorial. 

Risk factors include, but are not limited to, genetic predisposition, excess energy intake, 

sedentary behavior, lack of or excess of sleep, stress, and certain diseases. In addition, a 

large body of research suggests that obesity and other cardio-metabolic diseases might 

already originate in early life. The ‘Developmental Origins of Health and Disease (DOHaD) 

Hypothesis’ suggests that adverse exposures during fetal and early postnatal life may lead 

to developmental adaptations in organ structure or function, which may predispose these 

children to cardio-metabolic disease in later life (11). Early life adverse exposures suggested 

to influence offspring growth and development include for instance maternal pre-pregnancy 

obesity, unfavorable nutritional status, maternal smoking, gestational diabetes and gesta-

tional hypertensive disorders (11, 12). Studies assessing the early origins of adult disease 

often use birth weight, or its gestational age adjusted equivalent, as an indicator of subop-

timal intra-uterine environment and fetal growth. These studies consistently showed that 

children born with a low birth weight are at increased risk of developing cardio-metabolic 

disease in later life (11, 13, 14). On the other side of the spectrum, children born with a 

high birth weight are also at risk of these diseases (11, 13, 14). However, birth weight is the 

result of different fetal growth patterns and is the starting point of infant growth. It has been 

observed that both children born with a low or a high birthweight that grow rapidly in early 

childhood are at the highest risk of later obesity and cardio-metabolic disease (15-18).
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Thus, childhood obesity and more specifically an adverse body fat distribution are major 

health problems and important risk factors for other cardio-metabolic diseases. Susceptibility 

to these diseases might be partly established in early life, as reflected by different growth pat-

terns from fetal life onwards. Identifying the factors related to adverse growth patterns and 

body fat development as well as the underlying mechanisms will broaden the understanding 

of the early origins of disease and is vital to effectively target interventions aiming to reduce 

the burden of these diseases. Therefore, the studies in this thesis were designed to assess 

the associations of common maternal dietary factors and maternal adiposity with growth, 

body fat development and cardio-metabolic risk factors in children, as well as the metabolic 

mechanisms that might underlie these associations (Figure 1).

Figure 1. Overview of hypotheses assessed in this thesis
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1
maternal common dietary factors

Adequate nutrition during pregnancy is important for the health status of both the preg-

nant woman and her child (19). The Dutch Famine Study, a birth cohort study of men and 

women born around the Dutch famine of 1944-1945 provided important first evidence 

that prenatal undernutrition increases the risk of a variety of diseases in adulthood, such 

as obesity, diabetes and cardiovascular disease (12). Up until now, numerous studies have 

shown associations of maternal dietary factors during pregnancy, such as diet quality, dietary 

patterns, total energy intake and macro- and micronutrient intake with both short- and 

long-term offspring health outcomes (19, 20). Less studied but common components of the 

human diet, such as caffeine-containing beverages and cow’s milk, might also be important 

for offspring growth and development. Both caffeine-containing beverages and cow’s milk 

are frequently consumed among pregnant women and are associated with fetal growth and 

the risk of adverse birth outcomes (21-30). The long-term offspring health effects of these 

common dietary factors remain unclear.

Caffeine is a component of several food products, including coffee and tea. It has the 

ability to cross the placental barrier and freely enters the fetal circulation (31). The activity 

of the principal enzyme in caffeine metabolism, cytochrome CYP1A2, decreases progres-

sively during pregnancy and is absent in the placenta and fetus (32-34). Consequently, fetal 

exposure to caffeine is prolonged and might adversely affect fetal development. Previous 

research has suggested that caffeine intake by pregnant women is related to an increased 

risk of fetal death, impaired fetal growth and low birth weight (21-23). Based on the risks 

of adverse pregnancy and birth outcomes, the current recommendations for maximum caf-

feine intake range between 200-300 mg per day, equivalent to approximately 2-3 cups of 

coffee per day (35-37). In addition to these short-term outcomes, recent studies suggest 

that maternal caffeine intake might also affect offspring growth and body fat development, 

possibly by altering the development of the offspring hypothalamic-pituitary-adrenal (HPA) 

axis (38, 39). Also, studies in adult populations suggest that caffeine intake might affect body 

fat accumulation and the risks of several diseases (40-45).

Cow’s milk has a high bioavailability of nutrients important for growth and development, 

including protein, vitamins, calcium and other minerals. It has been suggested that maternal 

cow’s milk intake during pregnancy stimulates fetal growth (24-30). The current recommen-

dation of the Dutch Nutrition Centre for pregnant and non-pregnant women is 375 mg of 

milk and milk products a day, equivalent to approximately 2-3 glasses (46). Translational 

research has suggested that milk intake during pregnancy may activate the nutrient-sensitive 

kinase mechanistic target of rapamycin complex 1 (mTORC1) in the placenta, leading to an 

increased placental nutrient transfer and activated mTORC1 in the fetus (47, 48). mTORC1 

is involved in the regulation of cell growth and adipogenesis, and overactivation of mTORC1 

is related to a variety of diseases, including obesity, insulin resistance and cardiovascular 
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disease (47, 49, 50). This may suggest that maternal milk intake during pregnancy might also 

influence offspring cardio-metabolic development.

Thus, maternal caffeine intake during pregnancy and maternal milk intake during preg-

nancy might influence long-term body fat development and cardio-metabolic risk factors. 

Exploring these associations might provide insight in whether intake of these two commonly 

consumed beverages should be considered risks factors for offspring cardio-metabolic dis-

ease.

maternal adiPosity

Overweight and obesity in women of reproductive age are highly prevalent (51). Maternal 

pre-pregnancy obesity is an important and well-known risk factor for both short- and long-

term adverse outcomes for both the mother and the child, including gestational hypertensive 

and diabetic disorders, fetal death, pre-term birth, large-size for gestational age at birth 

(LGA) and childhood obesity (13, 51-55). Studies have shown that children of mothers with 

obesity have an 54% increased risk to be born prematurely, a 2-fold increased risk to be born 

LGA and a 3-fold increased risk of childhood obesity, as compared to children of mothers 

with a normal pre-pregnancy weight (13, 53). Next to maternal weight before pregnancy, 

maternal weight gain during pregnancy is also a risk factor of these short- and long-term 

maternal and offspring outcomes (56-59). Gestational weight gain is usually categorized 

into inadequate, adequate and excessive according to pre-pregnancy body mass index using 

the criteria of the US Institute of Medicine (IOM, currently known as the National Academy 

of Medicine (NAM)) (60). For instance, studies have shown that excessive gestational weight 

gain according to these criteria was associated with an 85% increased risk of LGA, a 30% 

increased risk of caesarian delivery and an 40% increased risk of childhood obesity (57, 58).

Maternal pre-pregnancy obesity and gestational weight gain reflect different components. 

Maternal pre-pregnancy obesity reflects maternal genetic predisposition, nutritional status, 

fat accumulation and low-grade inflammation. Gestational weight gain additionally reflects 

maternal and amniotic fluid expansion, and growth of the fetus, placenta and uterus (61, 

62). Intra-uterine programming mechanisms may, at least partly, underlie the associations of 

maternal pre-pregnancy obesity and gestational weight gain with offspring outcomes. In-

creased fetal exposure to nutrients in children from mothers with obesity has been suggested 

to lead to alterations in the structure and function of adipose tissue, appetite regulation, and 

energy metabolism (63, 64).

Thus, maternal pre-pregnancy BMI and gestational weight gain seem to be important 

modifiable risk factors of adverse maternal and offspring health outcomes. Despite the 

well-studied associations of maternal weight before and during pregnancy with offspring 

outcomes, refined and more in-depth understanding of the separate and combined relation-



15

General introduction

1ships of maternal pre-pregnancy body mass index and gestational weight gain with these 

outcomes is needed in order to effectively target future preventive strategies.

maternal and childhood metabolism

The mechanisms linking adverse exposures in early life to later obesity and cardio-metabolic 

disease are incompletely understood, but might involve alterations in maternal or offspring 

metabolic pathways. Maternal metabolite profiles in pregnancy may influence fetal growth 

and development by direct influences on fetal nutrient availability, or indirectly by influences 

on fetal metabolic processes resulting from adaptions in endocrine function or placental 

metabolism (65, 66). Thus far, studies mainly focused on conventional metabolites to char-

acterize maternal and offspring metabolic status. For instance, increased maternal glucose 

and lipid concentrations during pregnancy have been related to increased fetal and postnatal 

growth, and obesity, type 2 diabetes and the metabolic syndrome in the offspring (67-77). 

Detailed characterization of maternal and offspring metabolite profiles by metabolomics 

techniques may provide more in-depth insights in the metabolic mechanisms underlying the 

early origins of obesity and cardio-metabolic disease (78-80). Metabolomics is the study of 

a large number of small molecular weight metabolites in biological tissues and fluids. The 

metabolome is the most downstream component of the ‘omics technologies and is there-

fore closely linked to the phenotype. It carries information about gene-expression, but also 

about lifestyle- and environmental factors (79, 80). Metabolomics studies have already been 

successfully performed in adults for characterization of disease status, development and pro-

gression as well as the underlying mechanisms (81-83). In studies addressing the early origins 

of health and disease metabolomics has been used less extensively, and existing studies are 

often small and assessed cross-sectional relationships only. Exploring the interrelationships 

of detailed maternal and offspring metabolite profiles as well as their determinants and 

outcomes over time, will help to disentangle the mechanisms underlying the early origins of 

cardio-metabolic disease.

General objective

The general objective of this thesis was to assess the associations of common maternal 

dietary factors and maternal adiposity with offspring growth, body fat development and 

cardio-metabolic risk factors and its potential underlying metabolic mechanisms.
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General desiGn

The studies presented in this thesis were embedded in the Generation R Study and in the 

Lifecycle - Maternal Obesity and Childhood Outcomes (MOCO) collaboration.

The Generation R Study
The Generation R Study is a population-based prospective cohort study from fetal life on-

wards in the city of Rotterdam, the Netherlands (84). The Generation R Study is designed 

to identify early environmental and genetic determinants of normal and abnormal growth, 

development and health from fetal life and young adulthood. All pregnant women living 

in the study area with a delivery date between April 2002 and January 2006 were eligible 

for enrollment in the study. Enrolment was aimed at early pregnancy, but was possible until 

the birth of the child. In total, 9778 mothers were enrolled in the study, of whom 8879 

(91%) were included during pregnancy. Assessments were planned in early pregnancy (<18 

weeks of gestation), mid-pregnancy (18 - 25 weeks of gestation) and late pregnancy (≥ 25 

weeks of gestation), and included parental physical examinations, maternal blood and urine 

collection, fetal ultrasound examinations and self-administered questionnaires. Assessments 

of the newborn at birth included a physical examination and cord blood collection. In the 

preschool period, from birth to 4 years of age, data collection was performed in all children 

by questionnaires and visits to the routine child health care centers. At the ages of 6 and 10 

years, all children were invited to a dedicated research center in the Erasmus MC – Sophia 

Children’s Hospital to participate in detailed body composition and cardiovascular follow-up 

measurements. Measurements during these visits included anthropometrics, body composi-

tion, cardiovascular development and collection of blood and urine. Currently, the 13-years 

old follow-up examination has been finished and the 17-years follow-up examination is 

ongoing.

The Lifecycle - Maternal Obesity and Childhood Outcomes 
collaboration
The Lifecycle - Maternal Obesity and Childhood Outcomes (MOCO) collaboration is an 

international collaboration of pregnancy and birth cohort studies, aiming to assess the as-

sociations of maternal pre-pregnancy body mass index and gestational weight gain with 

maternal and offspring outcomes. The collaboration consists of a total of 39 pregnancy and 

birth cohort studies from Europe, North-America and Australia, including a total of 277042 

participants. Cohorts were selected based on existing collaborations on childhood health (the 

EarlyNutrition project, the CHICOS project and Birthcohorts.net assessed until July 2014). 

Inclusion criteria were the inclusion of mothers with singleton live-born children born from 

1989 onwards, available information on maternal pre- or early pregnancy body mass index 
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1and at least one offspring measurement (birth weight or childhood body mass index) and 

approval by the local ethical committee.

outline of this thesis

The general objective of this thesis is addressed in several studies presented in this the-

sis. Chapter 2 describes studies on the influence of common maternal dietary factors on 

childhood growth, adiposity and cardio-metabolic risk factors. In Chapter 2.1, we assessed 

the associations of maternal caffeine intake during pregnancy with childhood growth and 

general adiposity, whereas in Chapter 2.2 we assessed the association of maternal caffeine 

intake during pregnancy with detailed measures of abdominal and liver fat. In Chapter 2.3, 

we focused on the association of maternal milk intake during pregnancy with childhood 

general and organ fat mass and cardio-metabolic risk factors.

Chapter 3 describes studies on the influences of maternal adiposity before and during 

pregnancy on offspring adiposity at birth and in childhood. In Chapter 3.1, we examined 

the separate and combined associations of maternal body mass index and gestational weight 

gain with the risks of overweight and obesity across childhood. In Chapter 3.2, we estimated 

ranges of optimal gestational weight gain associated with adverse maternal and infant 

outcomes.

Chapter 4 describes studies on the potential metabolic mechanisms linking adverse ex-

posures in early life to later obesity and cardio-metabolic disease. Chapter 4.1 describes the 

associations of maternal glucose and insulin levels with childhood general and abdominal 

body fat and cardio-metabolic risk factors. In Chapter 4.2, we identified critical periods 

and longitudinal growth patterns from fetal life onwards associated with childhood insulin 

and c-peptide levels. In Chapter 4.3, we describe metabolite profiles in pregnant women, 

newborns and children as well as their interrelationships. In Chapter 4.4 we describe the 

associations of metabolite profiles in pregnant women and newborns with detailed measures 

of fetal growth and the risks of adverse birth outcomes.

Finally, Chapter 5 provides a general discussion in which the main findings and impli-

cations of studies described in this thesis are discussed. English and Dutch summaries are 

provided in Chapter 6.
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abstract

Objective: The associations of maternal caffeine intake during pregnancy with offspring 

growth patterns and body fat and insulin levels at school age were examined.

Methods: In a population-based birth cohort among 7,857 mothers and their children, 

maternal caffeine intake during pregnancy was assessed by questionnaires. Growth char-

acteristics were measured from birth onward. At 6 years, body fat and insulin levels were 

measured.

Results: Compared to children whose mothers consumed <2 units of caffeine per day during 

pregnancy (1 unit of caffeine is equivalent to 1 cup of coffee (90 mg caffeine)), those whose 

mothers consumed ≥6 units of caffeine per day tended to have a lower weight at birth, 

higher weight gain from birth to 6 years, and higher body mass index from 6 months to 6 

years. Both children whose mothers consumed 4-5.9 and ≥6 units of caffeine per day during 

pregnancy tended to have a higher childhood body mass index and total body fat mass. Only 

children whose mothers consumed ≥6 units of caffeine per day had a higher android/gynoid 

fat mass ratio.

Conclusions: These results suggest that high levels of maternal caffeine intake during 

pregnancy are associated with adverse offspring growth patterns and childhood body fat 

distribution.
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introduction

Caffeine is frequently consumed during pregnancy (1). Caffeine crosses the placenta and 

enters the fetal circulation freely (2). Fetal exposure to caffeine is prolonged as a result of a 

slow clearance of caffeine in pregnant women and slow fetal metabolism (3). Ours and other 

previous studies have reported associations of high levels of maternal caffeine intake during 

pregnancy with higher risks of low birth weight (4-7). High maternal caffeine intake during 

pregnancy also has been associated with impaired fetal length growth from the second 

trimester onward (7).

Although previous studies have consistently suggested that children born with a low 

birth weight are at higher risk of an adverse body fat distribution and insulin resistance in 

later life (8-12), not much is known about the direct long-term offspring consequences of 

maternal caffeine intake during pregnancy. A recent prospective cohort study in the United 

States among 615 mothers and children reported a higher overall risk of obesity before the 

age of 15 years in children exposed to any caffeine during pregnancy (13). Another recent 

study among 1,986 mothers and children in the United States did not observe consistent 

associations between maternal serum paraxanthine concentrations, the primary metabolite 

of caffeine, during pregnancy and childhood body mass index at the ages of 4 and 7 years 

(14). In addition, animal studies have shown a decreased expression of insulin-like growth 

factor-1 (IGF-1), IGF-1 receptors, and insulin receptors in the offspring of rats exposed to caf-

feine during pregnancy, suggesting that fetal exposure to caffeine may disturb early growth 

and glucose metabolism (15, 16). To the best of our knowledge, no previous studies have 

assessed the associations of maternal caffeine intake during pregnancy with early growth, 

detailed body fat outcomes, or insulin levels in childhood.

Therefore, in a population-based prospective cohort study from early pregnancy onward 

among 7,857 mothers and their children, we examined the associations of maternal caffeine 

intake from coffee and tea during pregnancy with repeatedly measured growth character-

istics from birth until the age of 6 years and detailed body fat measures and insulin and 

c-peptide levels at the age of 6 years.

methods

Study design
This study was embedded in the Generation R Study, a population-based prospective cohort 

study from fetal life until young adulthood performed in Rotterdam, the Netherlands (17, 

18). Pregnant women were enrolled between 2001 and 2005. Of all eligible children, 61% 

participated in the study at birth. The study was approved by the local Medical Ethical Com-

mittee (MEC 198.782/2001/31). Written informed consent was obtained from all mothers.
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In total, 8,879 mothers were enrolled during pregnancy, of whom 8,099 had informa-

tion available on maternal caffeine intake during pregnancy. Of their children, 7,902 were 

singleton and live-born, 7,857 had data available on infant or childhood growth, and 5,562 

participated in the follow-up measurements at 6 years and had data available on body mass 

index, body fat, insulin, or c-peptide levels (flow-chart is given in Figure 1).

Figure 1. Flow-chart of study participants 
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Excluded: 
No information on maternal caffeine 
intake during pregnancy (N= 780) 
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Maternal caffeine intake during pregnancy
Information on maternal caffeine intake during pregnancy was obtained by postal question-

naires in the first, second, and third trimester of pregnancy (7). Response rates for these 

questionnaires were 91%, 80%, and 77%, respectively (7). Mothers who reported to drink 

any coffee or tea were asked how many cups of coffee or tea on average they consumed per 

day and what type of coffee or tea they consumed (caffeinated, decaffeinated, or a combina-

tion of both). According to standard values for caffeine content, a regular coffee serving 

(125 mL) in the Netherlands contains ~90 mg caffeine, decaffeinated coffee contains ~3 mg, 

and tea contains ~45 mg (19). To calculate the total caffeine intake in each trimester, the 

type of coffee or tea was weighted according to its caffeine content (caffeinated coffee = 1, 

caffeinated and decaffeinated coffee = 0.5, decaffeinated coffee = 0, caffeinated tea = 0.5, 

caffeinated and decaffeinated tea = 0.25, decaffeinated tea = 0; herbal tea = 0, and green 

tea = 0.5) (7). Thus, in our analyses, each unit of caffeine intake reflects caffeine exposure 

based on 1 cup of caffeinated coffee (90 mg caffeine). Total maternal caffeine intake was 

subsequently categorized (<2, 2-3.9, 4-5.9, ≥6 units per day, equivalent to <180, 180-359, 

360-539, and ≥540 mg per day, respectively). The average maternal caffeine intake of the 

trimesters of pregnancy was used for further analyses. When we used maternal caffeine 

intake in each trimester separately, results were similar (results not shown).

Infant and childhood growth
Information about length and weight at birth was obtained from medical records. Infant and 

childhood height and weight were measured using standardized methods at the ages of 6, 

12, 24, 36, 48, and 72 months. We calculated body mass index (kg/m2) from the age of 6 

months onward. We created age- and sex-adjusted standard deviation scores (SDS) within 

our study population using North-European reference growth charts for birth measurements 

(20) and Dutch reference growth charts for infant and childhood measurements (Growth 

Analyzer 3.5, Dutch Growth Research Foundation) (21). We defined childhood overweight 

or obesity at the age of 72 months using the International Obesity Task Force cut offs (boys: 

body mass index ≥17.55 and ≥19.78, girls: body mass index ≥17.37 and ≥19.65 for over-

weight and obesity, respectively) (22).

Childhood body fat distribution
At the age of 6 years, we measured total and regional body fat mass using Dual-Energy X-ray 

absorptiometry (DXA) (iDXA, General Electrics-Lunar, 2008, Madison, WI) (23). Total body 

fat mass was calculated as a percentage of total body weight measured by DXA. Android/

gynoid fat mass ratio was calculated (23). Pre-peritoneal fat mass was used as a proxy for 

visceral fat and was measured using abdominal ultrasound examinations with ultrasound 

LOGIQ E9 (GE Medical System, Wauwatosa, WI) and ATL-Philips Model HDI 5000 (Seattle, 

WA), as described in detail previously (24). Briefly, a linear (L12-5 MHz) transducer was placed 
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perpendicular to the skin surface on the median upper abdomen (25). We scanned longitu-

dinally from the xiphoid process to the navel along the midline (linea alba). Pre-peritoneal fat 

mass was measured as areas of 2 cm length along the midline starting from the reference 

point in direction of the navel.

Childhood insulin and c-peptide levels
Childhood insulin (pmol/L) and c-peptide levels (nmol/L) were obtained enzymatically from 

30 min fasting venous blood samples at the age of 6 years using a Cobas 8000 analyzer 

(Roche, Almere, the Netherlands). Quality control samples demonstrated intra- and inter-

assay coefficients of variation of 1.39% and 2.40%, respectively.

Covariates
We assessed maternal age, pre-pregnancy body mass index, parity, ethnicity, educational 

level, and folic acid supplementation use by questionnaire at enrolment in the study. Smok-

ing and alcohol consumption during pregnancy were repeatedly assessed by questionnaire. 

We obtained information on gestational hypertensive disorders (gestational hypertension 

and pre-eclampsia) and gestational diabetes, date of birth, and the child’s sex from midwife 

and hospital registries. We obtained information on breastfeeding and the timing of intro-

duction to solid foods by questionnaire during infancy. Average television-watching time was 

assessed by questionnaire at the age of 6 years.

Statistical analysis
First, we used unbalanced repeated measurement regression models to examine the asso-

ciations of maternal caffeine intake during pregnancy with longitudinally measured growth 

characteristics. These models take the correlation between repeated measurements of the 

same subject into account and allow for incomplete outcome data. The models are described 

in more detail in Supplemental Methods 1.These models were adjusted for child’s sex, and 

maternal and childhood socio-demographic and lifestyle-related characteristics.

Second, we used multiple linear regression models to examine the associations of mater-

nal caffeine intake during pregnancy with childhood body fat distribution and insulin and 

c-peptide levels. These models were first adjusted for child’s sex, age at follow-up measure-

ment, and height at follow-up measurement (for fat mass outcomes only) and subsequently 

additionally adjusted for maternal and childhood socio-demographic and lifestyle-related 

characteristics. We included covariates in the models based on their associations with the 

outcomes of interest in previous studies, a significant association with the determinants and 

outcomes, or a change in effect estimates of >10%. To examine whether a dose–response 

relationship is present, we performed tests for trends by entering the categorized variable as 

a continuous term to the models. Finally, we used logistic regression models to examine the 
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associations of maternal caffeine intake during pregnancy with childhood overweight at the 

age of 6 years using similar adjustments.

In order to obtain normal distributions, we log transformed fat mass outcomes and square 

root transformed insulin and c-peptide levels. We constructed standard deviation scores (SDS) 

for all outcomes. Since no significant interaction between maternal caffeine intake during 

pregnancy and child’s sex was present (all P-values >0.05), we performed no sex-stratified 

analyses. We used Multiple Imputation for missing values of covariates, by generating five 

independent datasets using the Markov Chain Monte Carlo (MCMC) method (26). We 

included all covariates in the imputation model. In addition, childhood body mass index and 

insulin levels at the age of 6 years, maternal pre-pregnancy weight, maternal height, income, 

maternal caffeine intake, and paternal body mass index were used as predictors only, and 

were not imputed themselves. Percentages missing values in the population for analysis were 

all lower than 22%, except for timing of introduction of solid foods (37.6%). Pooled effect 

estimates were presented. The repeated measurement analysis was performed using the 

Statistical Analysis System version 9.3 (SAS, Institute Inc., Cary, NC). All other analyses were 

performed using the Statistical Package of Social Sciences version 22.0 for Windows (IBM 

Corp., Armonk, NY).

results

Study population
Table 1 shows that, as compared to mothers who consumed <2 units of caffeine per day 

during their pregnancy, those who consumed ≥6 units per day were more likely to be higher 

educated, nulliparous, and from European descent. Their children had a lower birth weight 

and a higher body mass index at the age of 6 years (P-values< 0.05). Supplemental Table 

1 shows infant and childhood growth characteristics. Supplemental Table 2 shows limited 

to moderate correlations between the outcome measures at 6 years. Non-response analyses 

at baseline (Supplemental Table 3) and at follow-up measurement (Supplemental Table 

4) showed that both mothers excluded because of missing data on caffeine intake during 

pregnancy and mothers lost to follow-up were lower educated and less often of European 

descent, compared to those included in the analysis. Their children had a lower birth weight. 

However, no large differences were observed between the caffeine intake during pregnancy 

of mothers of children not included in the analyses at 6 years and mothers of children in-

cluded in the analyses (median (95% range) caffeine intake: 1.3 units (0, 5.0) vs. 1.5 units 

(0, 5.0)).
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Infant and childhood growth patterns
Figure 2 A-C shows the associations of maternal caffeine intake during pregnancy with re-

peatedly measured growth characteristics from birth to 72 months, obtained from repeated 

measurement regression models. As compared to children whose mothers consumed <2 

units of caffeine per day during pregnancy, children whose mothers consumed ≥6 units 

of caffeine per day were shorter, but these differences decreased over time. At the age of 

6 years, children whose mothers consumed ≥6 units of caffeine per day still tended to be 

shorter. These children also had lower birth weights and had higher weight gain from birth 

to 72 months. Body mass index tended to be higher from 6 months to 72 months in children 

whose mothers consumed ≥6 units of caffeine per day during pregnancy, as compared to 

children whose mothers consumed <2 units of caffeine per day.

Childhood body fat distribution
Compared to children whose mothers consumed <2 units of caffeine per day during their 

pregnancy, both those whose mothers consumed 4-5.9 units and ≥6 units of caffeine per 

day tended to have a higher childhood body mass index (differences: 0.09 Standard devia-

tion score (SDS) (95% confidence interval (CI): -0.01, 0.19) and 0.16 SDS (95% CI: -0.03, 

0.36), respectively) and a higher childhood total body fat mass (differences: 0.10 SDS (95% 

CI: 0.01, 0.20) and 0.18 SDS (95% CI: -0.01, 0.37), respectively) (Table 2). Only children 

whose mothers consumed ≥6 units of caffeine per day during their pregnancy had a higher 

childhood android/gynoid fat mass ratio (difference: 0.27 SDS (95% CI: 0.05, 0.49)). Similar 

tendencies were present when we combined the upper two maternal caffeine intake cat-

egories into one category (results not shown). Supplemental Table 5 shows similar results 

from the basic models. Supplemental Table 6 shows that as compared to children whose 

mothers consumed <2 units of caffeine per day during pregnancy, those whose mothers 

consumed ≥6 units of caffeine per day tended to have higher risks of childhood overweight 

(odds ratio (OR): 1.25 (95% CI: 0.68, 2.30)) in the fully adjusted model.

Childhood insulin and c-peptide levels
Table 3 shows no consistent associations of maternal caffeine intake during pregnancy with 

childhood insulin and c-peptide levels in the fully adjusted models. Similar results were pres-

ent in the basic models (Supplemental Table 7).

discussion

We observed that, as compared to children whose mothers consumed no or less than 2 units 

of caffeine per day during their pregnancy, children whose mothers consumed 6 units of 

caffeine or more per day tended to have a lower weight at birth, higher weight gain from 
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Figure 2. Associations of maternal caffeine intake during pregnancy with longitudinally mea-
sured growth characteristics (N=7,857)
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Results are based on repeated linear regression models and reflect the differences in SDS of (A) height (based on 51,691 
measurements), (B) weight (based on 58,124 measurements) and (C) body mass index (based on 36,953 measure-
ments) growth in children whose mothers consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, 
respectively, as compared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake 
represents the equivalent of 1 cup of coffee (90 mg caffeine). The reference value is an SDS of 0. The models were 
adjusted for child’s sex, maternal age, pre-pregnancy body mass index, parity, ethnicity, educational level, folic acid 
supplementation use, smoking and alcohol consumption during pregnancy, pregnancy complications, breastfeeding 
and timing of introduction of solid foods. All p-values for interaction <0.05.
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birth to 6 years and a higher body mass index from 6 months to 6 years. Also, at the age of 

6 years, children of mothers with higher levels of caffeine intake during pregnancy tended to 

have a higher childhood total body fat mass and android/gynoid fat mass ratio. We did not 

observe differences for childhood insulin or c-peptide levels.

Strengths and limitations
We used a large population-based cohort followed from early pregnancy onward. In total, 

30% of the eligible participants with information on maternal caffeine intake during preg-

nancy were not participating in follow-up measurements at 6 years. This loss to follow-up 

could have reduced the statistical power of our study and could have led to biased effect 

estimates if associations of interest differ between children included and not included in 

the analysis. This seems unlikely, since only minor differences were observed between the 

caffeine intake during pregnancy of mothers of children not included in the analysis and the 

caffeine intake of mothers of children included in the analysis. Since maternal caffeine intake 

during pregnancy was self-reported, misclassification by underreporting may be present. In 

addition, in accordance with the Netherlands Nutrition Centre (27), we assumed that coffee 

Table 2. Maternal caffeine intake during pregnancy and childhood body fat distribution at 6 
years (fully adjusted models) (N=5,562)

Body mass index 
(SDS)

Total body fat 
mass (SDS)

Android/gynoid 
fat mass ratio 

(SDS)

Abdominal 
preperitoneal fat 

area (SDS)

N=5,562 N=5,407 N=5,405 N=4,508

Maternal caffeine intake categories

< 2 units Reference Reference Reference Reference

N=3,295 N= 3,199 N=3,197 N=2,658

2 – 3.9 units -0.03 (-0.08, 0.03) 0.02 (-0.03, 0.07) 0.04 (-0.02, 0.09) -0.05 (-0.11, 0.01)

N= 1,819 N=1,771 N=1,771 N= 1,475

4 – 5.9 units 0.09 (-0.01, 0.19) 0.10 (0.01, 0.20)* 0.02 (-0.09, 0.13) -0.04 (-0.15, 0.07)

N=368 N=357 N=357 N=306

≥ 6 units 0.16 (-0.03, 0.36) 0.18 (-0.01, 0.37) 0.27 (0.05, 0.49)* -0.15 (-0.37, 0.07)

N=80 N=80 N=80 N=69

P-value for trend 0.220 0.015 0.068 0.075

Values are regression coefficients (95% confidence interval) that reflect the difference in childhood outcomes in children 
whose mothers consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, respectively, as compared 
to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake represents the equivalent of 
1 cup of coffee (90 mg caffeine). The models were adjusted for child’s sex, age at follow-up measurement, height at 
follow-up measurement, maternal age, pre-pregnancy body mass index, parity, ethnicity, educational level, folic acid 
supplementation use, smoking and alcohol consumption during pregnancy, gestational diabetes, gestational hyperten-
sive disorders, birth weight, gestational age at birth, breastfeeding, introduction of solid foods and television-watching 
time. P-values for trend were obtained from models in which the categorized caffeine intake variable was entered as 
continuous variable. * P-value <0.05.
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was consumed in cups of 125 mL. However, this might have differed between participants, 

which may have led to some misclassification of the categories of maternal caffeine intake. 

We also assessed only caffeine intake from coffee and tea and not intake from other sources, 

such as soft drinks, chocolate, and medications. However, at the time of data collection 

(2002-2006), coffee and tea accounted for 70 and 26%, respectively, of all caffeine ingested 

(1). We categorized maternal caffeine intake during pregnancy in units of caffeine instead 

of calculating the exact milligrams of caffeine consumed per day. The highest category of 

maternal caffeine intake in our study (≥6 units) should be considered equivalent to a caffeine 

intake of ≥540 mg per day. However, since caffeine contents per unit of coffee might differ 

between countries, our results should be interpreted carefully with regard to other popula-

tions. We were able to adjust our analyses for many possible confounders. However, as in any 

observational study, residual confounding might still be an issue. For example, in our study 

we were unable to adjust the analyses for detailed maternal and childhood dietary habits.

Interpretation of main findings
Maternal caffeine intake during pregnancy may affect fetal growth and development. Among 

the same population as the present study and in line with other large observational studies 

Table 3. Maternal caffeine intake during pregnancy and childhood insulin and c-peptide levels 
at 6 years (fully adjusted models) (N=3,667)

Insulin (SDS) C-peptide (SDS)

N=3,654 N=3,667

Maternal caffeine intake categories

< 2 units Reference Reference

N= 2,116 N=2,128

2 -3.9 units -0.03 (-0.11, 0.04) -0.05 (-0.12, 0.03)

N= 1,239 N=1,237

4 – 5.9 units 0.14 (0.01, 0.28)* 0.10 (-0.03, 0.24)

N= 241 N=243

≥ 6 units -0.18 (-0.45, 0.08) -0.13 (-0.39, 0.14)

N= 58 N=59

P-value for trend 0.900 0.869

Values are regression coefficients (95% confidence interval) that reflect the difference in childhood outcomes in children 
whose mothers consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, respectively, as compared to 
those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake represents the equivalent of 1 
cup of coffee (90 mg caffeine). The models were adjusted for child’s sex, age at follow-up measurement, maternal age, 
pre-pregnancy body mass index, parity, ethnicity, educational level, folic acid supplementation use, smoking and alcohol 
consumption during pregnancy, gestational diabetes, gestational hypertensive disorders, birth weight, gestational age 
at birth, breastfeeding, introduction of solid foods and television-watching time. P-values for trend were obtained from 
models in which the categorized caffeine intake variable was entered as continuous variable. *P-value <0.05.



CHAPTER 2.1

40

(4-6), we previously reported that high levels of maternal caffeine intake during pregnancy 

are associated with impaired fetal growth and higher risks of low birth weight (7).

Not much is known about the long-term offspring consequences of maternal caffeine 

intake during pregnancy. A recent study in the United States among 615 mothers and their 

children suggested that any caffeine intake during pregnancy was associated with an 87% 

higher overall risk of childhood obesity before the age of 15 years. Also, a dose–response 

relation for maternal caffeine intake was observed (13). In contrast, another recent study 

among 1,986 mothers and their children in the United States did not observe consistent 

associations of maternal serum paraxanthine concentrations, caffeine’s primary metabolite, 

during pregnancy with childhood body mass index (14). We observed that children of moth-

ers with the highest caffeine intake during pregnancy were shorter and had lower weights 

at birth, as compared to children of mothers with low caffeine intake, but gained more 

weight from birth to 6 years. Also, they tended to have higher body mass indexes from 6 

months to 6 years. We observed a tendency to a higher risk of overweight at the age of 6 

years in children of mothers with the highest caffeine intake during pregnancy, although 

not statistically significant. This may be due to smaller numbers, since only 80 mothers in 

our study consumed 6 units of caffeine per day or more. Thus, these findings suggest that 

maternal caffeine intake during pregnancy might not only affect fetal development, but may 

have persistent consequences for childhood growth.

Although body mass index is a widely accepted measure of adiposity, previous studies have 

shown that more specific body fat measures, such as total fat mass, waist circumference, 

and waist to hip ratio, are predictors of cardiovascular risk factors and disease in children and 

adults, independent of body mass index (28-30). Thus, detailed body composition measures 

provide useful additional information in assessing adiposity and its consequences. To the best 

of our knowledge, no previous studies have been performed focused on the associations of 

maternal caffeine intake during pregnancy with detailed measures of childhood body fat 

distribution. We observed that high maternal caffeine intake during pregnancy tended to be 

associated with a higher childhood total body fat mass and an adverse childhood body fat 

distribution, as reflected by a higher android/gynoid fat mass ratio. We observed no effect of 

maternal caffeine intake during pregnancy on pre-peritoneal fat mass. This discrepancy could 

be attributed to a larger measurement error for preperitoneal fat mass measurements in 

childhood (31, 32). Thus, our results suggest that maternal caffeine intake during pregnancy 

may affect childhood total fat and body fat distribution, next to body mass index.

Studies in adults showed that coffee consumption is consistently associated with lower 

risks of insulin resistance and type 2 diabetes (33-35). However, associations with both caf-

feinated and decaffeinated coffee were observed, suggesting that next to caffeine, other 

coffee components may also play a role in the underlying mechanisms. In contrast to these 

findings in non-pregnant adults, animal studies suggest that maternal caffeine intake during 

pregnancy may increase insulin resistance and disturb glucose metabolism in the offspring 



41

Maternal caffeine intake and childhood adiposity

2.1

(15, 16). We did not observe consistent associations of maternal caffeine intake during 

pregnancy with childhood insulin and c-peptide levels. Our results should be interpreted 

carefully, since the fasting period before blood draw for the childhood insulin and c-peptide 

measurements was limited. This may have led to some non-differential misclassification and 

an underestimation of the observed effect estimates. This may especially affect childhood 

insulin levels, which are less stable and have a shorter half-life as compared to c-peptide 

levels. Further studies are needed to assess the detailed associations of maternal caffeine 

intake during pregnancy with offspring glucose and insulin metabolism.

The mechanisms by which maternal caffeine intake during pregnancy might influence 

childhood body fat distribution are not clear. It has been suggested that caffeine induces an 

increase in circulating maternal and fetal glucocorticoid concentrations (36, 37). Studies in 

rats suggest that fetal overexposure to glucocorticoids leads to an altered development of 

the hypothalamic–pituitary–adrenal axis (HPA-axis), impaired fetal growth, altered structure 

of the endocrine pancreas, insulin target-tissues and adipose depots, and increased HPA-axis 

activity (37-39). Whether this mechanism partly underlies the observed associations needs to 

be further studied.

Although the observed effect estimates are small and without direct individual clinical 

consequence, our results suggest that maternal caffeine intake during pregnancy is associ-

ated with infant and childhood growth and body fat distribution. As caffeine is frequently 

consumed during pregnancy and the prevalence of obesity is still rising (40), our results 

underline the need to study the long-term health consequences of maternal caffeine intake 

during pregnancy.

Conclusion
Our results suggest that high levels of maternal caffeine intake during pregnancy are associ-

ated with adverse offspring growth patterns and childhood body fat distribution, but not 

with childhood insulin and c-peptide levels. Further studies are needed to assess whether 

maternal caffeine intake during pregnancy affects long-term offspring health outcomes, as 

well as the causality and underlying mechanisms.
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suPPlemental material

Supplemental Methods 1. Unbalanced repeated measurement regression models

We used unbalanced repeated measurement regression models to analyze the infant and 

childhood growth patterns among children whose mothers consumed 2-3.9, 4-5.9 and ≥6 

units of caffeine per day during their pregnancy, as compared to children whose mothers 

consumed <2 units of caffeine per day. These models allow for incomplete outcome data and 

take the correlation between repeated measurements of the same subject into account by 

modelling the correlated errors of these measurements (1, 2). To model the correlated errors, 

a compound symmetry covariance structure was assumed. The models can be written as:

Height (SDS) = ß0 + ß1 × caffeine intake category + ß2 × age + ß3 × caffeine intake category 

× age

Weight (SDS) = ß0 + ß1 × caffeine intake category + ß2 × age + ß3 × caffeine intake category 

× age

Body mass index (SDS) = ß0 + ß1 × caffeine intake category + ß2 × age + ß3 × caffeine intake 

category × age

In these models, ‘ß0 + ß1 × caffeine intake category’ reflects the intercept. The intercept 

reflects the mean growth characteristic value in SDS for each caffeine intake category. The 

term ‘ß2 × age’ reflects the change in growth characteristics per month. The term ‘ß3 × 

caffeine intake category × age’, reflects the difference in change in growth characteristics per 

month between the different caffeine intake categories.

References
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Supplemental Table 2. Correlation coefficients between childhood body fat measures and in-
sulin and c-peptide levels (N=5,562) 1

Spearman rs Body mass
index

Total body
fat mass

Android/
gynoid fat
mass ratio

Preperitoneal
fat area

Insulin C-peptide

Body mass index 1 0.57
P<0.001

0.47
P<0.001

0.42
P<0.001

0.13
P<0.001

0.09
P<0.001

Total body fat mass 0.57
P<0.001

1 0.55
P<0.001

0.55
P<0.001

0.09
P<0.001

0.06
P=0.001

Android/gynoid fat mass 
ratio

0.47
P<0.001

0.55
P<0.001

1 0.40
P<0.001

0.09
P<0.001

0.08
P<0.001

Preperitoneal fat area 0.42
P<0.001

0.55
P<0.001

0.40
P<0.001

1 0.09
P<0.001

0.06
P=0.001

Insulin 0.13
P<0.001

0.09
P<0.001

0.09
P<0.001

0.09
P<0.001

1 0.88
P<0.001

C-peptide 0.09
P<0.001

0.06
P=0.001

0.08
P<0.001

0.06
P=0.001

0.88
P<0.001

1

1Values are correlation coefficients using Spearman’s rho tests for skewed variables.
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Supplemental Table 3. Non-response analysis at baseline (N=8,879)1

Maternal 
caffeine 

intake during 
pregnancy 
available

Excluded 
because 

of missing 
information 
on maternal 

caffeine 
intake during 

pregnancy

P-value2

N= 8,099 N= 780

Maternal characteristics

Age, median (95% range), years 30.4 (19.3, 39.3) 28.4 (18.7, 39.3) <0.001

Height, mean (SD), cm 167.4 (7.4) 164.3 (7.3) <0.001

Pre-pregnancy weight, median (95% range), kg 64.0 (48.0, 99.0) 63.0 (46.6, 100.0) 0.418

Pre-pregnancy body mass index, median (95% range), 
kg/m2

22.6 (17.9, 35.0) 23.3 (17.6, 35.6) 0.048

Education, No. (%)

Primary 436 (6.0) 47 (14.1) <0.001

Secondary 3160 (43.2) 179 (53.6)

Higher 3712(50.8) 108 (32.3)

Parity, No. nulliparous (%) 4536 (56.4) 386 (54.3) 0.001

Ethnicity, No. European (%) 4618 (58.4) 150 (31.5) <0.001

Folic acid supplementation use, No. Yes (%) 4504 (71.2) 128 (53.8) <0.001

Smoking during pregnancy, No. Yes (%) 1381 (18.6) 59 (18.6) 0.997

Alcohol consumption during pregnancy, No. Yes (%) 2737 (37.3) 49 (16.1) <0.001

Gestational diabetes, No. Yes (%) 82 (1.1) 9 (1.3) 0.600

Pre-eclampsia, No. Yes (%) 169 (2.3) 18 (2.5) 0.633

Gestational hypertension, No. Yes (%) 301 (4.0) 17 (2.4) 0.039

Child characteristics

Males, No. (%) 4024 (50.4) 377 (51.3) 0.627

Birth weight, median (95% range), g 3425 (2200, 4482) 3340 (1948, 4460) <0.001

Gestational age at birth, median (95% range), weeks 40.1 (35.4, 42.3) 40.0 (32.3, 42.4) <0.001

Ever breastfeeding, No. Yes (%) 5336 (91.9) 275 (95.5) 0.028

Introduction of solid foods, No. before 6 months (%) 3899 (89.4) 123 (89.8) 0.900

1Values represent means (SD), median (95% range) or number of subjects (valid %). 2Differences in subject character-
istics between the groups were tested using Independent Samples T-tests for continuous variables and Chi-square tests 
for proportions.
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Supplemental Table 4. Non-response analysis at follow-up measurement (N=7,902)1

Follow-up at 6 
years

Lost to follow-up 
at 6 years

P-value2

N= 5,562 N= 2,340

Maternal characteristics

Age, median (95% range), years 30.9 (19.8, 39.4) 28.8 (18.5, 38.5) <0.001

Height, mean (SD), cm 167.7 (7.4) 166.6 (7.3) <0.001

Pre-pregnancy weight, median (95% range), kg 64.0 (49.0, 98.0) 63.0 (47.0, 100.0) 0.145

Pre-pregnancy body mass index, median (95% range), 
kg/m2

22.6 (18.1, 34.6) 22.6 (17.7, 35.6) 0.300

Caffeine intake during pregnancy, median (95% 
range), units

1.5 (0, 5.0) 1.3 (0, 5.0) <0.001

Caffeine intake during pregnancy, No. (%)

<2 units 3,295 (59.2) 1,545 (66.0) <0.001

2 – 3.9 units 1,819 (32.7) 635 (27.1)

4 – 5.9 units 368 (6.6) 130 (5.6)

≥ 6 units 80 (1.4) 30 (1.3)

Education, No. (%)

Primary 272 (5.4) 152 (7.2) <0.001

Secondary 1,976 (39.3) 1,116 (53.1)

Higher 2,780(55.3) 833 (39.6)

Parity, No. nulliparous (%) 3,195 (57.7) 1,238 (53.5) 0.001

Ethnicity, No. European (%) 3,412 (62.1) 1,091 (49.2) <0.001

Folic acid supplementation use, No. Yes (%) 3,287(75.2) 1,105 (61.6) <0.001

Smoking during pregnancy, No. Yes (%) 871 (17.1) 478 (22.2) <0.001

Alcohol consumption during pregnancy, No. Yes (%) 2,056 (40.9) 630 (29.6) <0.001

Gestational diabetes, No. Yes (%) 55 (1.0) 25 (1.1) 0.679

Pre-eclampsia, No. Yes (%) 99 (1.9) 55 (2.6) 0.082

Gestational hypertension, No. Yes (%) 228 (4.3) 66 (3.1) 0.012

Child characteristics

Males, No. (%) 2,772 (49.8) 1,207 (51.6) 0.147

Birth weight, median (95% range), g 3,450 (2260, 4460) 3,400 (2205, 4528) 0.002

Gestational age at birth, median (95% range), weeks 40.1 (35.9, 42.3) 40.0 (35.0, 42.4) <0.001

Ever breastfeeding, No. Yes (%) 4,114 (92.5) 1,168 (90.1) 0.005

Introduction of solid foods, No. before 6 months (%) 3,105 (89.4) 755 (89.8) 0.754

1Values represent means (SD), median (95% range) or number of subjects (valid %). 2Differences in subject character-
istics between the groups were tested using Independent Samples T-tests for continuous variables and Chi-square tests 
for proportions.
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Supplemental Table 5. Maternal caffeine intake during pregnancy and childhood body fat dis-
tribution at 6 years (basic models) (N=5,562)

Body mass index 
(SDS)

Total body fat 
mass (SDS)

Android/gynoid 
fat mass ratio 

(SDS)

Abdominal 
preperitoneal fat 

area (SDS)

N=5,562 N=5,407 N=5,405 N=4,508

Maternal caffeine intake categories

< 2 units Reference Reference Reference Reference

N=3,295 N=3,199 N=3,197 N=2,658

2 -3.9 units -0.10 (-0.15, -0.04)* -0.08 (-0.13, -0.03)* -0.02 (-0.08, 0.04) -0.12 (-0.18, -0.06)*

N=1,819 N= 1,771 N=1,771 N=1,475

4- 5.9 units 0.03 (-0.08, 0.13) -0.01 (-0.11, 0.09) -0.04 (-0.15, 0.07) -0.13 (-0.24, -0.02)*

N= 368 N=357 N=357 N=306

≥ 6 units 0.08 (-0.13, 0.29) 0.09 (-0.11, 0.29) 0.24 (0.02, 0.46)* -0.23 (-0.45, 0)*

N=80 N=80 N=80 N=69

P-value for trend 0.245 0.202 0.852 <0.001

Values are regression coefficients (95% confidence interval) that reflect the difference in childhood outcomes in chil-
dren whose mothers consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, respectively, as com-
pared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake represents the equiva-
lent of 1 cup of coffee (90 mg caffeine).The models were adjusted for child’s sex, age at follow-up measurement and 
height at follow-up measurement (fat mass outcomes only). P-values for trend were obtained from models in which the 
categorized caffeine intake variable was entered as continuous variable. *P-value <0.05.

Supplemental Table 6. Maternal caffeine intake during pregnancy and childhood overweight 
at 6 years (N=5,562)

Odds Ratio (95% Confidence Interval)

Maternal caffeine intake categories

< 2 units Reference

N=3,295

2 -3.9 units 0.91 (0.77, 1.08)

N=1,819

4 – 5.9 units 1.09 (0.80, 1.49)

N=368

≥ 6 units 1.25 (0.68, 2.30)

N=80

P-value for trend 0.937

Values are Odds Ratio’s (95% confidence interval) that reflect the risk of overweight/obesity in children whose mothers 
consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, respectively, as compared to those whose 
mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake represents the equivalent of 1 cup of cof-
fee (90 mg caffeine).The model was adjusted for the child’s sex, age at follow-up measurement, maternal age, pre-
pregnancy body mass index, parity, ethnicity, educational level, folic acid supplementation use, smoking and alcohol 
consumption during pregnancy, gestational diabetes, gestational hypertensive disorders, birth weight, gestational age 
at birth, breastfeeding, timing of introduction of solid foods and television-watching time. P-values for trend were ob-
tained from models in which the categorized caffeine intake variable was entered as continuous variable.
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Supplemental Table 7. Maternal caffeine intake during pregnancy and childhood insulin and 
c-peptide levels at 6 years (basic models) (N=3,667)

Insulin (SDS) C-peptide (SDS)

N=3,654 N=3,667

Maternal caffeine intake categories

< 2 units Reference Reference

N=2,116 N=2,128

2 – 3.9 units -0.02 (-0.09, 0.05) 0.01 (-0.09, 0.06)

N= 1,239 N=1,237

4 – 5.9 units 0.16 (0.02, 0.29)* 0.16 (0.03, 0.29)*

N=241 N=244

≥ 6 units -0.19 (-0.45, 0.07) -0.10 (-0.36, 0.16)

N=58 N=59

P-value for trend 0.738 0.415

Values are regression coefficients (95% confidence interval) that reflect the difference in childhood outcomes in chil-
dren whose mothers consumed  2-3.9, 4-5.9 and ≥6 units of caffeine per day during pregnancy, respectively, as 
compared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine intake represents the 
equivalent of 1 cup of coffee (90 mg caffeine).The models were adjusted for child’s sex and age at follow-up measure-
ment. P-values for trend were obtained from models in which the categorized caffeine intake variable was entered as 
continuous variable. *P-value <0.05.
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abstract

Background: Maternal caffeine intake during pregnancy is associated with an increased risk 

of childhood obesity. Studies in adults suggest that caffeine intake might also directly affect 

visceral and liver fat deposition, which are strong risk factors for cardio-metabolic disease.

Objective: To assess the associations of maternal caffeine intake during pregnancy with 

childhood general, abdominal, and liver fat mass at 10 years of age.

Methods: In a population-based cohort from early pregnancy onwards among 4770 moth-

ers and children, we assessed maternal caffeine intake during pregnancy and childhood fat 

mass at age 10 years.

Results: Compared with children whose mothers consumed <2 units of caffeine per day 

during pregnancy, those whose mothers consumed 4-5.9 and ≥6 units of caffeine per day 

had a higher body mass index, total body fat mass index, android/gynoid fat mass ratio, and 

abdominal subcutaneous and visceral fat mass indices. Children whose mothers consumed 

4-5.9 units of caffeine per day had a higher liver fat fraction. The associations with abdominal 

visceral fat and liver fat persisted after taking childhood total body fat mass into account.

Conclusions: High maternal caffeine intake during pregnancy was associated with higher 

childhood body mass index, total body fat, abdominal visceral fat, and liver fat. The as-

sociations with childhood abdominal visceral fat and liver fat fraction were independent of 

childhood total body fat. This suggests differential fat accumulation in these depots, which 

may increase susceptibility to cardio-metabolic disease in later life.



55

Maternal caffeine intake and childhood abdominal and liver fat deposition

2.2

introduction

Caffeine is a methylxantine that occurs naturally in several food products. Caffeine-containing 

beverages, including coffee and tea, are widely consumed by pregnant women. Caffeine 

crosses the placenta and enters the fetal circulation freely (1). The activity of the principal 

enzyme in caffeine metabolism, cytochrome CYP1A2, decreases progressively during preg-

nancy and is absent in placenta and fetus (2-4). As a consequence, fetal exposure to caffeine 

is prolonged and might adversely influence the development of organ systems. Consumption 

of caffeine-containing beverages during pregnancy has been related to an increased risk of 

fetal death, impaired fetal growth, and low birth weight (5-9). In addition to these short-term 

outcomes, maternal caffeine intake during pregnancy may also influence long-term offspring 

body fat development. We previously observed among 7857 mothers and their children 

from the Netherlands that high maternal caffeine intake during pregnancy was associated 

with a higher childhood body mass index and total body fat mass at the age of 6 years 

(10). Similarly, studies among 615, 50 943, and 558 mothers and children from the United 

States, Norway, and Ireland, respectively, observed that any maternal caffeine intake during 

pregnancy was associated with an increased risk of obesity in childhood (11-13).

In contrast, consumption of caffeine-containing beverages by non-pregnant adults seems 

to have beneficial effects on body fat accumulation and the risks of several diseases (14-19). 

Previous studies suggest that consumption of caffeine-containing beverages is associated with 

lower visceral fat accumulation and lower risks of non-alcoholic fatty liver disease (NAFLD), 

possibly by influencing blood concentrations of adiponectin and pro-inflammatory cytokines 

(15-19). Previous research suggests that blood concentrations of adipokines and cytokines 

in pregnant women are related to childhood body fat development (20-22). However, it is 

not known whether maternal caffeine intake during pregnancy is also related to offspring 

abdominal and liver fat accumulation. Thus far, only animal studies have shown that in utero 

exposure to caffeine increases intra-hepatic fat content and the susceptibility to NAFLD (23, 

24). As visceral and liver fat accumulation are related to the development of hypertension, 

type 2 diabetes, NAFLD, and the metabolic syndrome independent of excess body fat per se 

(25, 26), it is important to obtain further insight into whether maternal caffeine intake during 

pregnancy differentially affects offspring visceral and liver fat deposition.

Therefore, in a population-based cohort among 4770 mothers and children from early 

pregnancy onwards, we assessed the associations of maternal caffeine intake during preg-

nancy with childhood general, abdominal, and liver fat at the age of 10 years, with the main 

focus on abdominal and liver fat.
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methods

Study design
This study was embedded in the Generation R Study, a prospective population-based cohort 

study from early pregnancy onwards performed in Rotterdam, the Netherlands (27). The 

study was approved by the Medical Ethical Committee of the Erasmus Medical Center, Uni-

versity Medical Center, Rotterdam (MEC 198.782/2001/31). Written informed consent was 

obtained from all mothers at enrolment in the study. The response rate at birth was 61%. Of 

the 8879 mothers that were prenatally included in the study, 8097 had information available 

on caffeine intake during pregnancy. Of their children, 7900 were singleton and live born. Of 

these children, 4770 participated in body composition follow-up measurements at 10 years 

of age and were included in the analyses (Supplemental Figure 1).

Maternal caffeine intake during pregnancy
As described previously, information on maternal caffeine intake from coffee and tea during 

pregnancy was obtained by postal questionnaires in the first, second, and third trimesters 

of pregnancy (7, 10). Response rates for these questionnaires were 91%, 80%, and 77%, 

respectively (7, 10). Mothers who reported to drink any coffee or tea were asked how many 

cups of coffee or tea they consumed on average per day and what type of coffee or tea they 

consumed (caffeinated, decaffeinated, or a combination of both). According to standard 

values for caffeine content, a regular coffee serving (125 mL) in the Netherlands contains 

~90 mg caffeine, decaffeinated coffee contains ~3 mg, and black tea contains ~45 mg (28).

To calculate the total caffeine intake in each trimester, the type of coffee or tea was weighted 

according to its caffeine content (caffeinated coffee = 1, caffeinated and decaffeinated cof-

fee = 0.5, decaffeinated coffee = 0, caffeinated tea = 0.5, caffeinated and decaffeinated tea 

= 0.25, decaffeinated tea = 0, herbal tea = 0, and green tea = 0.5) (7). Thus, in our analyses, 

each unit of caffeine intake reflects caffeine exposure based on one cup of caffeinated coffee 

(90 mg caffeine) (10). Based on data availability, total caffeine intake was categorized into 

categories of <2, 2-3.9, 4-5.9, and ≥6 units per day (equivalent to <180, 180-359, 360-539, 

and ≥540 mg per day, respectively). For the main analyses using caffeine intake during the 

full pregnancy, caffeine intake of the trimesters was averaged.

Childhood body fat mass
At the age of 10 years, we measured height and weight without shoes and heavy clothing 

and calculated body mass index (kg/m2). We created age- and sex-adjusted standard devia-

tion scores (SDS) of body mass index using a Dutch reference chart (29). In addition, we de-

fined childhood overweight/obesity according to the International Obesity Task Force cut-offs 

(30). We measured total and regional body fat mass using dual-energy X-ray absorptiometry 

(DXA) (iDXA, General Electrics–Lunar, 2008, Madison, Wisconsin) (31). Android/gynoid fat 
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mass ratio was calculated and used as a measure of body fat distribution comparable with 

waist/hip ratio (31). Abdominal and organ fat were measured in a subgroup by magnetic 

resonance imaging (MRI), as described previously (27). Briefly, all children were scanned using 

a 3.0 Tesla MRI (Discovery MR750w, General Electric Healthcare, Milwaukee, Wisconsin). The 

MRI protocol included an axial 3-point Dixon sequence for fat and water separation (IDEAL 

IQ) for liver fat measurements. This technique also enables the generation of liver fat fraction 

images (32). An axial abdominal scan from lower liver to pelvis and a coronal scan centred at 

the head of the femurs were also performed with a 2-point Dixon acquisition (LavaFlex). The 

obtained fat scans were analysed by the Precision Image Analysis company (PIA, Kirkland, 

Washington), using the sliceOmatic (TomoVision, Magog, Canada) software package. All 

extraneous structures and any image artefacts were removed manually (33). Total subcutane-

ous and visceral fat volumes ranged from the dome of the liver to the superior part of the 

femoral head. Fat masses were obtained by multiplying the total volumes by the specific 

gravity of adipose tissue, 0.9 g/mL. Liver fat fraction was determined by defining four regions 

of interest of at least 4 cm2 in the central portion of the hepatic volume. Subsequently, 

the mean signal intensities were averaged to generate an overall mean liver fat fraction 

estimation. To create fat measures independent of child’s height, we estimated the optimal 

adjustment by log-log regression analyses and subsequently divided total and subcutaneous 

fat mass by height4 and visceral fat mass by height3 (Supplemental Methods 1) (34, 35).

Covariates
Information on maternal age, pre-pregnancy body mass index, parity, ethnicity, educational 

level, and folic acid supplementation use was obtained by questionnaire at enrolment in the 

study. Smoking and alcohol intake during pregnancy were repeatedly assessed by question-

naire. Information on gestational diabetes, gestational hypertensive disorders (gestational 

hypertension and pre-eclampsia), date of birth, child’s sex, and birth weight was obtained 

from midwife and hospital registries. Average television watching time was assessed by 

questionnaire at the age of 10 years.

Statistical analysis
First, we performed a non-response analysis comparing participants included the analysis with 

those lost to follow up at the age of 10 years. Second, we assessed the associations of ma-

ternal caffeine intake during pregnancy with childhood general fat measures and the risk of 

overweight/obesity at age 10, using linear and logistic regression models. Third, we assessed 

the associations of maternal caffeine intake during pregnancy with childhood abdominal sub-

cutaneous and visceral fat mass indices and liver fat fraction, using linear regression models. 

Non-normally distributed outcome variables were log-transformed. To enable comparison of 

effect estimates across the different outcomes, we calculated SDS for each of the outcomes. 

The models were first adjusted for child’s age and sex only (basic models). Next, we addition-
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ally adjusted the models for maternal ethnicity, education, smoking during pregnancy, alcohol 

consumption during pregnancy, folic acid supplementation use, and childhood television 

watching time (confounder models). These confounders were selected based on existing liter-

ature, associations with the exposure and outcome in the study sample, and a change in effect 

estimates of >10%. Maternal age, pre-pregnancy body mass index, parity, and gestational 

hypertensive disorders were also considered, but were not associated with either the exposure 

or the outcome or did not change the effect estimates with >10% and were therefore not 

included in the models. To explore whether any observed associations of caffeine intake during 

pregnancy with the outcomes were mediated by gestational age at birth and birth weight, we 

added these variables to the confounder models (mediator models). We performed tests for 

trend by adding the categorized caffeine intake variable to the models as continuous variable. 

Fourth, to further explore whether maternal caffeine intake during pregnancy was specifically 

associated with childhood abdominal fat mass and liver fat fraction, independent from total 

body fat mass, we used conditional regression analyses. We created measures of childhood 

abdominal subcutaneous fat mass, abdominal visceral fat mass, and liver fat fraction that are 

independent of total body fat mass by regressing these detailed childhood fat measures on 

childhood total body fat mass index. The standardized residuals from these models were used 

as an outcome for the regression models focused on the associations of maternal caffeine 

intake during pregnancy with conditional childhood abdominal and liver fat measures (36). 

Fifth, to identify potential critical periods, we assessed the associations of trimester-specific 

maternal caffeine intake with childhood general, abdominal, and liver fat using linear regres-

sion models. As sex differences in childhood body fat development have been reported (37, 

38), we tested for interactions between maternal caffeine intake during pregnancy and child’s 

sex, but these interaction terms were not statistically significant (P values > .05). Missing values 

of covariates (maximum percentage of missing values: 20.8%) were imputed using Multiple 

Imputation, and pooled results from five imputed datasets were reported. All statistical tests 

were two-sided, with a significance threshold of 0.05. The analyses were performed using the 

Statistical Package for the Social Sciences version 24.0 (IBM Corp, Armonk, New York, USA) 

and R version 3.3.4 (R Foundation for Statistical Computing).

results

Participants’ characteristics
Table 1 shows that, of the 4770 women included, 2780 (58.3%), 1583 (33.2%), 329 

(6.9%), and 78 (1.6%) consumed <2 units, 2-3.9 units, 4-5.9 units, and ≥6 units of caf-

feine per day, respectively, during pregnancy. Women who had higher caffeine intakes were 

older and were more likely to be higher educated, multiparous, and from European descent. 

They used less often folic acid supplementation and smoked and consumed alcohol more 
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often during pregnancy. Supplemental Table 1 shows that, as compared with women 

included in the analyses, those lost to follow up had slightly lower caffeine intakes and a 

lower pre-pregnancy BMI, were younger, were more often multiparous, and were less often 

from European descent. These women used folic supplementation less often, smoked more 

often, and consumed alcohol less often during pregnancy.

Maternal caffeine intake during pregnancy and childhood general 
body fat mass
Figure 1 shows that in the confounder model, as compared with children whose mothers 

consumed <2 units of caffeine per day during pregnancy, those whose mothers consumed 

4-5.9 and ≥6 units of caffeine per day during pregnancy had a higher body mass index 

(differences: 0.12 standard deviation [SD] [95% confidence interval (CI), 0.01-0.24] and 0.24 

[95% CI, 0.01-0.47], respectively), total body fat mass index (differences: 0.14 SD [95% CI, 

0.04-0.25] and 0.22 [95% CI, 0.02-0.43], respectively), and android/gynoid fat mass ratio 

(differences: 0.16 SD [95% CI, 0.05-0.27] and 0.22 [95% CI, 0.01-0.44], respectively) at the 

age of 10 years (exact differences are given in Supplemental Table 2). A dose-response 

relationship was present for each of these outcomes (P-values for trend < .05). Children 

whose mothers consumed ≥6 units of caffeine per day also tended to have a higher risk of 

overweight/obesity (odds ratio: 1.59 [95% CI, 0.92-2.75], Figure 2). Results from the basic 

model were similar (Supplemental Table 3). Additional adjustment for gestational age at 

birth and birth weight did not change the results (Supplemental Table 4). Supplemental 

Figure 1. Associations of maternal caffeine intake during pregnancy with childhood general 
body fat mass

P for trend: 0.048
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Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference 
in childhood body mass index, total body fat mass index, android/gynoid fat mass ratio in children of mothers who 
consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those whose mothers consumed <2 units of 
caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for 
child’s sex, child’s age at follow-up measurement, maternal ethnicity, maternal education, maternal smoking, maternal 
alcohol use, folic acid supplementation and television watching time. P-values for trend were obtained from models 
in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.
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Table 5 shows that no trimester-specific associations were present, but rather that associa-

tions were similar across pregnancy.

Maternal caffeine intake during pregnancy and childhood 
abdominal fat mass and liver fat fraction
Figure 3A shows that in the confounder model, as compared with children whose mothers 

consumed <2 units of caffeine per day during pregnancy, those whose mothers consumed 

4-5.9 and ≥6 units of caffeine per day during pregnancy had a higher abdominal subcu-

taneous fat mass index (differences: 0.15 SD [95% CI, −0.01 to 0.30] and 0.35 SD [95% 

CI, 0.04-0.65], respectively) and a higher abdominal visceral fat mass index (differences: 

0.14 SD [95% CI, −0.03 to 0.30] and 0.43 SD [95% CI, 0.11-0.76], respectively). Children 

whose mothers consumed 4-5.9 units of caffeine per day also had a higher liver fat frac-

tion, as compared with those whose mothers consumed <2 units per day during pregnancy 

(difference: 0.20 SD [95% CI, 0.04-0.36]); exact differences are given in Supplemental 

Table 6). A dose-response relationship was present for each of the outcomes (P values for 

trend < .05). Results from the basic model were similar (Supplemental Table 7). Additional 

adjustment for gestational age at birth and birth weight did not influence the observed 

estimates (Supplemental Table 8). Supplemental Table 9 shows that the associations for 

each trimester separately were comparable with those for the full pregnancy.

Figure 3B shows that after conditioning on total body fat mass index to assess the effects 

of maternal caffeine intake during pregnancy on childhood abdominal fat and liver fat frac-

tion independent of childhood total body fat, maternal caffeine intake during pregnancy 

Figure 2. Associations of maternal caffeine intake during pregnancy with the risk of childhood 
overweight/obesity

P for trend: 0.996

N=2,565 N=1,476 N=306 N=74

Overweight/obesity (N=4,421)
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Values are odds ratios (95% confidence intervals) from the confounder models that reflect the risk of overweight/
obesity in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those 
whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup of coffee 
(90 mg). The models are adjusted for child’s sex, child’s age at follow-up measurement, maternal ethnicity, maternal 
education, maternal smoking, maternal alcohol use, folic acid supplementation and television watching time. P-values 
for trend were obtained from models in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) 
was entered as continuous variable.
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of ≥6 units and 4-5.9 units per day remained associated with abdominal visceral fat mass 

index and liver fat fraction, respectively (differences: 0.32 SD [95% CI, 0.00-0.64] and 0.20 

SD [95% CI, 0.04-0.36]). A significant dose-response relationship remained also present for 

these outcomes (P values for trend < .05). No associations were present with childhood 

abdominal subcutaneous fat mass index conditioned on childhood total body fat mass index.

discussion

In this population-based prospective cohort study, high maternal caffeine intake during 

pregnancy was associated with higher childhood general body fat mass, abdominal fat mass, 

and liver fat fraction at the age of 10 years. The associations of high maternal caffeine intake 

with childhood abdominal visceral fat mass and liver fat fraction seemed to be independent 

from childhood total body fat mass.

Figure 3. Associations of maternal caffeine intake during pregnancy with childhood abdominal 
fat mass and liver fat fraction
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Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference 
in (A) childhood outcomes in SDS and (B) childhood outcomes in standardized residuals in children of mothers who 
consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those whose mothers consumed <2 units of 
caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for 
child’s sex, child’s age at follow-up measurement, maternal ethnicity, maternal education, maternal smoking, maternal 
alcohol use, folic acid supplementation and television watching time. P-values for trend were obtained from models 
in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.
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Interpretation of main findings
Caffeine-containing beverages are frequently consumed during pregnancy. Increasing evi-

dence suggests that maternal caffeine intake during pregnancy might be related to long-term 

offspring body fat development (10-12, 39). We previously showed among 7857 6-year-old 

children from the same cohort as the current study that maternal caffeine intake during 

pregnancy of ≥4 units per day was associated with a higher body mass index and total body 

fat mass. Maternal caffeine intake during pregnancy of ≥6 units per day was also associated 

with a higher android/gynoid fat mass ratio, reflecting a central body fat accumulation (10). 

A study among 272 mother-child pairs from Brazil observed that any caffeine intake by 

women with an uncomplicated pregnancy was associated with a higher offspring sum of 

skinfold thicknesses at age 3 months (39). A study among 50 943 participants from Norway 

showed that any caffeine intake during pregnancy was associated with an increased risk of 

childhood overweight at ages 3 and 5, whereas at 8 years, this association was only present 

for high caffeine intakes (12). In an Irish study among 558 mother-child pairs, higher mater-

nal caffeine intake during pregnancy was associated with higher risks of overall and central 

obesity at the ages of 5 and 9 years (13). In line with these previous studies, we observed in 

the current study that higher maternal caffeine intake during pregnancy was associated with 

higher body mass index, total body fat mass, and android/gynoid fat mass ratio at the age 

of 10 years, as indicated by significant tests for trend. The strongest effects were present for 

maternal caffeine intake during pregnancy 4 or more units per day. For instance, as com-

pared with children whose mothers consumed <2 units of caffeine per day, children whose 

mothers consumed ≥6 units of caffeine per day during their pregnancy had a 0.24 SD higher 

body mass index, corresponding to a difference of approximately 0.7 kg/m2. These effect 

sizes are comparable with those observed for well-known determinants of childhood body 

mass index, such as maternal pre-pregnancy overweight and smoking during pregnancy 

(40-42). These associations were similar across the trimesters of pregnancy. Mothers with 

high caffeine intakes during pregnancy also had higher alcohol intakes and smoked more 

often during their pregnancies. However, associations were present across the full range of 

maternal caffeine intake, and adjusting the models for these lifestyle-related factors did not 

influence the results. We therefore do not consider it likely that the observed associations can 

be fully explained by differences in these factors. Thus, these findings suggest that maternal 

caffeine intake throughout pregnancy has long-term consequences for offspring body fat 

development, as reflected by higher total body fat mass and a central body fat distribution.

Studies in adults suggest that consumption of caffeine-containing beverages might also 

be associated with abdominal and ectopic fat deposition, although the direction of these 

associations might be different from the direction of the associations of maternal caffeine 

intake during pregnancy with offspring body fat development (15-17). A study among 364 

Japanese men showed inverse associations of coffee consumption with visceral fat mass and 

visceral to subcutaneous fat mass ratio (15). A meta-analysis of five studies showed that 
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the risk of NAFLD was 30% lower in participants who consumed coffee as compared with 

those who did not (18). It is not known whether caffeine intake by pregnant women is also 

related to offspring fat deposition in these specific fat depots. Only one study, among 7857 

participants from our cohort from the Netherlands, showed that maternal caffeine intake 

during pregnancy was not associated with pre-peritoneal fat mass measured by abdominal 

ultrasound at age 6, which was used as proxy of visceral fat (10). In the current study, we 

observed that higher maternal caffeine intake during pregnancy was associated with higher 

childhood abdominal subcutaneous fat mass, abdominal visceral fat mass, and liver fat frac-

tion measured by MRI at age 10. This inconsistency might be explained by differences in 

measures of abdominal visceral fat mass. Pre-peritoneal fat mass provides an estimation 

of abdominal visceral fat mass, while MRI provides more precise measures and is the gold 

standard for the measurement of intra-abdominal and organ fat deposition (33). Also, the 

associations of maternal caffeine intake during pregnancy might only become apparent at 

older childhood ages. The results for each of the trimesters separately were comparable with 

those for the full pregnancy. The associations with abdominal visceral fat mass and liver fat 

fraction persisted after taking total body fat mass into account. This suggests that maternal 

caffeine intake throughout pregnancy might differentially affect fat deposition in these de-

pots in the offspring, independent of their total body fat development. As visceral and liver 

fat accumulation are related to the development of cardio-metabolic disease independently 

of total body fat, these children might be at risk of later cardio-metabolic disease (25, 26). 

The associations with abdominal subcutaneous fat mass were not independent from total 

body fat mass. This might be explained by subcutaneous fat being the main compartment 

of fat storage across the full body. Thus, maternal caffeine intake throughout pregnancy 

might affect offspring visceral and liver fat deposition, independent from their total amount 

of body fat.

The mechanisms underlying the observed associations are not well known. Studies in 

adults have suggested that consumption of caffeine-containing beverages might increase 

adiponectin concentrations and decrease concentrations of pro-inflammatory cytokines, 

subsequently influencing visceral and liver fat masses (15, 19). Although high maternal 

adiponectin concentrations during pregnancy have been related to a higher risk of childhood 

obesity (20), the role of adipokines and cytokines in the association of maternal caffeine in-

take during pregnancy with offspring fat deposition is unknown. We speculate that caffeine 

intake by pregnant women may affect adiponectin concentrations and the pro-inflammatory 

state, which may affect fetal nutrient supply and subsequently lead to developmental adap-

tations in adipose tissue. Alternatively, animal studies have suggested that in utero exposure 

to caffeine may overexpose the developing fetus to glucocorticoids, leading to an altered 

development of the HPA-axis (43, 44). High glucocorticoid concentrations have been related 

to increased central obesity. In addition, the concentration of glucocorticoid receptors is 

higher in visceral adipose tissue as compared with other fat depots, possibly resulting in dif-
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ferential fat deposition in these depots (45). Rats exposed to caffeine in utero had increased 

intra-hepatic fat concentrations and increased susceptibility to NAFLD (23, 33), possibly by 

similar mechanisms. Finally, the associations might be explained by confounding by un-

healthy lifestyle factors that are shared within families. However, a negative control analysis 

among 50 943 participants showed stronger associations for maternal caffeine intake during 

pregnancy with the risk of childhood overweight at the age of 3 years, as compared with 

those for paternal caffeine intake at the time of their partners pregnancy (12). Similarly, 

in another recent negative control analysis among 558 participants, maternal caffeine in-

take, but not paternal caffeine intake, was associated with childhood body mass index and 

waist circumference at ages 5 and 10 years (13). These results suggest that an intra-uterine 

programming mechanism might at least partly underlie these associations. Further studies 

are needed to disentangle the mechanisms underlying the associations of maternal caffeine 

intake and childhood abdominal and liver fat deposition.

Our results are consistent with those of previous studies and further highlight the importance 

of limiting maternal caffeine intake during pregnancy with respect to its potential adverse ef-

fects on long-term body fat development in the offspring. The current recommendations for 

maternal caffeine intake during pregnancy range between 200 and 300 mg per day and are 

based on the risks of adverse pregnancy and birth outcomes (46-48). The most pronounced 

effects observed in our study were for caffeine intakes above these guidelines. However, the 

dose-response relationship in our and previous studies (5, 6, 8-13) suggest that the adverse 

effects of maternal caffeine intake with respect to both pregnancy outcomes and long-term 

body fat development are not restricted to high caffeine intakes, but increase across the 

range of maternal caffeine intake. A review of randomized controlled trials had insufficient 

evidence to confirm that avoiding caffeine consumption during pregnancy is beneficial with 

respect to adverse pregnancy outcomes (49). Based on our findings and findings from other 

observational studies, further adequately powered randomized controlled trials are needed to 

assess whether avoiding caffeine consumption during pregnancy improves both pregnancy 

and long-term offspring health outcomes, as compared with current recommendations. Our 

findings and findings from other observational studies need to be incorporated in future 

guidelines regarding maternal caffeine consumption during pregnancy, and these guidelines 

need to further emphasize potential beneficial effects on offspring health outcomes by 

further reducing caffeine intake during pregnancy below the current recommendations.

Strengths and limitations
This study was embedded in a large population-based cohort from early pregnancy onwards, 

enabling us to prospectively study the associations of interest. Of all participants with in-

formation on maternal caffeine intake during pregnancy, 39.6% did not participate in the 

follow-up measurements at age 10. This non-response might have led to biased estimates if 

the associations of interest differ between participants included and lost to follow up. This 
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seems unlikely as only a minor difference in maternal caffeine intake was observed between 

these groups. However, the selection towards a higher educated, healthier population might 

have affected the generalizability of our results. Maternal caffeine intake might have been 

underreported, possibly leading to misclassification of the caffeine intake categories and 

underestimation of the effect estimates. In accordance with the Dutch Nutrition Centre, 

we assumed that coffee and tea were consumed in cups of 125 mL (46). This might have 

differed between participants, which may have led to some misclassification of maternal 

caffeine intake. We only had data available about caffeine intake from coffee and tea and 

not from other sources, such as soft drinks, energy drinks, chocolate, and medications. 

However, at the time of data collection (2002-2006), coffee and tea accounted for 70% and 

26%, respectively, of all caffeine consumed (50). We had data available on many possible 

confounders. However, residual confounding might still be present, for example, by maternal 

and child’s physical activity and dietary habits.

Conclusions
Our results suggest that high maternal caffeine intake during pregnancy is associated with 

higher general body fat, abdominal subcutaneous and visceral fat mass and liver fat fraction 

in childhood. The associations of maternal caffeine intake during pregnancy with childhood 

visceral fat mass and liver fat seem to be largely independent from childhood total body 

fat mass. This suggests differential fat accumulation in these depots, which may increase 

susceptibility to cardio-metabolic disease.
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Supplemental Methods 1. Log-log regression analyses

As adiposity is highly dependent on the current height of the child, we created measures 

of adiposity that are independent of height using log-log regression analyses. We log-

transformed total fat mass, abdominal subcutaneous fat mass, abdominal visceral fat mass, 

and height, using natural logs. We subsequently regressed the log-adiposity measures on 

log-height. The regression slope corresponds to the power by which height should be raised 

in order to calculate an index of the adiposity measure that is uncorrelated with height. Thus, 

we divided total fat mass by height4, abdominal subcutaneous fat mass by height4, and 

abdominal visceral fat mass by height3.
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Supplemental Table 1. Non-response analysis

Follow-up
at 10 years

Lost to follow-up
at 10 years

P-value

N= 4,770 N= 3,130

Maternal characteristics

Caffeine intake during pregnancy, median (95% 
range), units

1.6 (0.0, 5.2) 1.3 (0.0, 5.0) <0.001

Caffeine intake during pregnancy, N (%)

<2 units 2,780 (58.3) 2,059 (65.8) <0.001

2-3.9 units 1,583 (33.2) 870 (27.8)

4-5.9 units 329 (6.9) 169 (5.4)

≥6 units 78 (1.6) 32 (1.0)

Age, median (95% range), years 31.2 (20.4, 39.6) 28.6 (18.5, 38.5) <0.001

Pre-pregnancy BMI, median (95% range), kg/m2 22.6 (18.1, 34.5) 22.7 (17.7, 35.6) <0.001

Education, N (%) <0.001

Primary 340 (7.4) 481 (16.7)

Secondary 1,944 (42.2) 1,520 (52.8)

Higher 2,324 (50.4) 876 (30.4)

Parity, nulliparous (%) 2,793 (58.8) 1,640 (52.9) <0.001

Ethnicity, European (%) 3,113 (65.8) 1,389 (46.6) <0.001

Folic acid supplementation use, Yes (%) 2,955 (78.2) 1,437 (60.2) <0.001

Smoking during pregnancy, Yes (%) 1,065 (24.3) 908 (31.8) <0.001

Alcohol consumption during pregnancy, Yes (%) 2,495 (57.5) 1,152 (41.0) <0.001

Gestational hypertensive disorders, Yes (%) 272 (5.9) 176 (5.9) 0.999

Gestational diabetes, Yes (%) 46 (1.0) 34 (1.1) 0.614

Child characteristics

Males, No. (%) 2,361 (49.5) 1,618 (51.7) 0.057

Gestational age at birth, median (95% range), weeks 40.1 (35.9, 42.3) 40.0 (35.3, 42.3) <0.001

Birth weight, median (95% range), g 3,460 (2,261, 4,479) 3,390 (2,200, 4,490) <0.001

Gestational age adjusted birth weight, mean (SD) -0.1 (1.0) -0.1 (1.0) <0.001

Ever breastfeeding, Yes (%) 3,627 (92.6) 1,655 (90.4) 0.004

Introduction of solid foods, before 6 months (%) 2,800 (89.1) 1,059 (90.4) 0.271

Values represent mean (SD), median (95% range) or number of participants (valid %).
1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg of caffeine).
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Supplemental Table 3. Associations of maternal caffeine intake during pregnancy with child-
hood general body fat mass

Body mass index 
(SDS)

Total body fat 
mass index (SDS)

Android/gynoid fat 
mass ratio (SDS)

Overweight/
obesity (OR)

N=4,754 N=4,696 N=4,708 N=4,421

Maternal caffeine intake

<2 units Reference Reference Reference Reference

2-3.9 units -0.11 (-0.17, -0.04) -0.12 (-0.18, -0.06) -0.06 (-0.13, 0.00) 0.66 (0.55, 0.78)

4-5.9 units 0.02 (-0.10, 0.14) 0.00 (-0.11, 0.11) 0.06 (-0.05, 0.18) 0.91 (0.69, 1.19)

≥6 units 0.24 (0.00, 0.47) 0.20 (-0.02, 0.42) 0.24 (0.01, 0.46) 1.49 (1.28, 1.74)

P-value for trend 0.575 0.242 0.563 0.009

Values are regression coefficients (95% confidence intervals) from the basic models that reflect the difference in child-
hood body mass index, total body fat mass index, android/gynoid fat mass ratio or odds ratios (95% confidence 
intervals) reflecting the risk of overweight/obesity in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units 
of caffeine per day, as compared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine 
represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for child’s sex and child’s age at follow-
up measurement. P-values for trend were obtained from models in which the categorized caffeine intake variable (<2, 
2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.

Supplemental Table 2. Associations of maternal caffeine intake during pregnancy with child-
hood general body fat mass

Body mass index 
(SDS)

Total body fat 
mass index (SDS)

Android/gynoid 
fat mass ratio 
(SDS)

Overweight/
obesity
(OR)

N=4,754 N=4,696 N=4,708 N=4,421

Maternal caffeine intake

<2 units Reference Reference Reference Reference

2-3.9 units -0.01 (-0.07, 0.05) 0.01 (-0.05, 0.06) 0.03 (-0.03, 0.09) 0.82 (0.69, 0.99)

4-5.9 units 0.12 (0.01, 0.24) 0.14 (0.04, 0.25) 0.16 (0.05, 0.27) 1.06 (0.76, 1.47)

≥6 units 0.24 (0.01, 0.47) 0.22 (0.02, 0.43) 0.22 (0.01, 0.44) 1.59 (0.92, 2.75)

P-value for trend 0.048 0.008 0.003 0.996

Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference in 
childhood body mass index, total body fat mass index, android/gynoid fat mass ratio or odds ratios (95% confidence 
intervals) reflecting the risk of overweight/obesity in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units 
of caffeine per day, as compared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine 
represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for child’s sex, child’s age at follow-up 
measurement, maternal ethnicity, maternal education, maternal smoking, maternal alcohol use, folic acid supplemen-
tation and television watching time. P-values for trend were obtained from models in which the categorized caffeine 
intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable
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Supplemental Table 4. Associations of maternal caffeine intake during pregnancy with child-
hood general body fat mass

Body mass index 
(SDS)

Total body fat 
mass index (SDS)

Android/gynoid 
fat mass ratio 
(SDS)

Overweight/
obesity (OR)

N=4,754 N=4,696 N=4,708 N=4,421

Maternal caffeine intake

<2 units Reference Reference Reference Reference

2-3.9 units -0.01 (-0.08, 0.05) 0.01 (-0.05, 0.07) 0.03 (-0.03, 0.09) 0.82 (0.68, 0.98)

4-5.9 units 0.11 (-0.01, 0.23) 0.14 (0.04, 0.25) 0.16 (0.05, 0.27) 1.03 (0.74, 1.44)

≥6 units 0.27 (0.04, 0.49) 0.23 (0.02, 0.43) 0.23 (0.01, 0.45) 1.63 (0.94, 2.83)

P-value for trend 0.053 0.007 0.002 0.929

Values are regression coefficients (95% confidence intervals) from the mediator models that reflect the difference in 
childhood body mass index, total body fat mass index, android/gynoid fat mass ratio or odds ratios (95% confidence in-
tervals) reflecting the risk of overweight/obesity in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units of caf-
feine per day, as compared to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine represents 
the equivalent of 1 cup of coffee (90 mg). The models are adjusted for child’s sex, child’s age at follow-up measurement, 
maternal ethnicity, maternal education, maternal smoking, maternal alcohol use, folic acid supplementation, television 
watching time, gestational age at birth weight and birth weight. P-values for trend were obtained from models in which 
the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.
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Supplemental Table 5. Associations of trimester-specific maternal caffeine intake with child-
hood general body fat mass

Body mass index (SDS) Total body fat mass 
index (SDS)

Android/gynoid fat 
mass ratio (SDS)

Maternal caffeine intake

First trimester N=3,629 N=3,587 N=3,595

<2 units Reference Reference Reference

2-3.9 units -0.04 (-0.12, 0.03) -0.02 (-0.08, 0.05) 0.02 (-0.05, 0.09)

4-5.9 units 0.08 (-0.05, 0.20) 0.08 (-0.03, 0.19) 0.07 (-0.04, 0.19)

≥6 units 0.30 (0.10, 0.50) 0.26 (0.08, 0.43) 0.31 (0.12, 0.49)

P-value for trend 0.053 0.023 0.006

Second trimester N=4,035 N=3,985 N=3,995

<2 units Reference Reference Reference

2-3.9 units -0.01 (-0.07, 0.06) 0.01 (-0.05, 0.07) 0.03 (-0.03, 0.10)

4-5.9 units 0.00 (-0.11, 0.11) 0.03 (-0.07, 0.12) 0.04 (-0.06, 0.14)

≥6 units 0.16 (-0.04, 0.36) 0.18 (0.00, 0.36) 0.18 (-0.02, 0.37)

P-value for trend 0.437 0.144 0.082

Third trimester N=3,834 N=3,792 N=3,801

<2 units Reference Reference Reference

2-3.9 units 0.04 (-0.03, 0.11) 0.04 (-0.03, 0.10) 0.03 (-0.04, 0.09)

4-5.9 units 0.07 (-0.05, 0.19) 0.07 (-0.03, 0.18) 0.11 (0.00, 0.22)

≥6 units 0.29 (0.07, 0.50) 0.27 (0.08, 0.46) 0.34 (0.14, 0.54)

P-value for trend 0.014 0.008 0.002

Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference in 
childhood outcomes in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared 
to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup 
of coffee (90 mg). The models are adjusted for child’s sex, child’s age at follow-up measurement, maternal ethnicity, 
maternal education, maternal smoking, maternal alcohol use, folic acid supplementation and television watching time. 
P-values for trend were obtained from models in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and 
≥6 units) was entered as continuous variable.
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Supplemental Table 6. Associations of maternal caffeine intake during pregnancy with child-
hood abdominal fat mass and liver fat fraction

Abdominal 
subcutaneous fat mass 
index (SDS)

Abdominal visceral fat 
mass index (SDS)

Liver fat fraction (SDS)

Maternal caffeine intake

A. Abdominal and organ-specific fat measure

N=2,391 N=2,392 N=2,703

<2 units Reference Reference Reference

2-3.9 units 0.01 (-0.07, 0.09) 0.08 (-0.01, 0.16) 0.08 (0.00, 0.16)

4-5.9 units 0.15 (-0.01, 0.30) 0.14 (-0.03, 0.30) 0.24 (0.08, 0.40)

≥6 units 0.35 (0.04, 0.65) 0.43 (0.11, 0.76) 0.09 (-0.23, 0.40)

P-value for trend 0.023 0.003 0.004

B. Abdominal or liver fat measure, conditional on total fat mass index

N=2,378 N=2,379 N=2,681

<2 units Reference Reference Reference

2-3.9 units -0.07 (-0.16, 0.02) 0.08 (-0.01, 0.16) 0.08 (0.00, 0.16)

4-5.9 units -0.01 (-0.18, 0.15) 0.04 (-0.13, 0.20) 0.20 (0.04, 0.36)

≥6 units 0.21 (-0.12, 0.54) 0.32 (0.00, 0.64) -0.04 (-0.36, 0.27)

P-value for trend 0.774 0.044 0.023

Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference 
in (A) childhood outcomes in SDS and (B) childhood outcomes in standardized residuals in children of mothers who 
consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those whose mothers consumed <2 units of 
caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for 
child’s sex, child’s age at follow-up measurement, maternal ethnicity, maternal education, maternal smoking, maternal 
alcohol use, folic acid supplementation and television watching time. P-values for trend were obtained from models 
in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.
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Supplemental Table 7. Associations of maternal caffeine intake during pregnancy with child-
hood abdominal fat mass and liver fat fraction

Abdominal 
subcutaneous fat mass 
index (SDS)

Abdominal visceral fat 
mass index (SDS)

Liver fat fraction (SDS)

Maternal caffeine intake

A. Abdominal and organ-specific fat measure

N=2,391 N=2,392 N=2,703

<2 units Reference Reference Reference

2-3.9 units -0.09 (-0.18, -0.01) 0.04 (-0.05, 0.13) 0.02 (-0.06, 0.10)

4-5.9 units 0.03 (-0.13, 0.19) 0.11 (-0.05, 0.28) 0.18 (0.02, 0.33)

≥6 units 0.36 (0.04, 0.67) 0.48 (0.15, 0.81) 0.09 (-0.22, 0.41)

P-value for trend 0.910 0.011 0.070

B. Abdominal or liver fat measure, conditional on total fat mass index

N=2,378 N=2,379 N=2,681

<2 units Reference Reference Reference

2-3.9 units -0.05 (-0.13, 0.04) 0.14 (0.06, 0.23) 0.07 (-0.01, 0.16)

4-5.9 units 0.03 (-0.14, 0.20) 0.14 (-0.03, 0.30) 0.20 (0.04, 0.36)

≥6 units 0.26 (-0.07, 0.59) 0.39 (0.06, 0.72) -0.02 (-0.34, 0.29)

P-value for trend 0.707 <0.001 0.021

Values are regression coefficients (95% confidence intervals) from the basic models that reflect the difference in (A) 
childhood outcomes in SDS and (B) childhood outcomes in standardized residuals in children of mothers who consumed 
2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those whose mothers consumed <2 units of caffeine per 
day. 1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for child’s sex and 
child’s age at follow-up measurement. P-values for trend were obtained from models in which the categorized caffeine 
intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) was entered as continuous variable.
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Supplemental Table 8. Associations of maternal caffeine intake during pregnancy with child-
hood abdominal fat mass and liver fat fraction

Abdominal 
subcutaneous fat mass 
index (SDS)

Abdominal visceral fat 
mass index (SDS)

Liver fat fraction (SDS)

Maternal caffeine intake

A. Abdominal and organ-specific fat measure

N=2,391 N=2,392 N=2,703

<2 units Reference Reference Reference

2-3.9 units 0.02 (-0.07, 0.10) 0.08 (-0.01, 0.17) 0.08 (0.00, 0.16)

4-5.9 units 0.15 (0.00, 0.30) 0.14 (-0.03, 0.3) 0.25 (0.09, 0.40)

≥6 units 0.35 (0.05, 0.66) 0.44 (0.11, 0.76) 0.08 (-0.23, 0.39)

P-value for trend 0.020 0.002 0.003

B. Abdominal or liver fat measure, conditional on total fat mass index

N=2,378 N=2,379 N=2,681

<2 units Reference Reference Reference

2-3.9 units -0.07 (-0.16, 0.02) 0.08 (-0.01, 0.17) 0.08 (0.00, 0.17)

4-5.9 units -0.01 (-0.18, 0.16) 0.04 (-0.12, 0.20) 0.21 (0.05, 0.37)

≥6 units 0.21 (-0.12, 0.55) 0.32 (0.00, 0.64) -0.05 (-0.36, 0.27)

P-value for trend 0.806 0.041 0.020

Values are regression coefficients (95% confidence intervals) from the mediator models that reflect the difference in (A) 
childhood outcomes in SDS and (B) childhood outcomes in standardized residuals in children of mothers who consumed 
2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared to those whose mothers consumed <2 units of caffeine per 
day. 1 unit of caffeine represents the equivalent of 1 cup of coffee (90 mg). The models are adjusted for child’s sex, 
child’s age at follow-up measurement, maternal ethnicity, maternal education, maternal smoking, maternal alcohol 
use, folic acid supplementation, television watching time, gestational age at birth weight and birth weight. P-values 
for trend were obtained from models in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and ≥6 units) 
was entered as continuous variable.
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Supplemental Table 9. Associations of trimester-specific maternal caffeine intake with child-
hood abdominal fat mass and liver fat fraction

Abdominal 
subcutaneous fat mass 
index (SDS)

Abdominal visceral fat 
mass index (SDS)

Liver fat fraction (SDS)

Maternal caffeine intake

First trimester N=1,790 N=1,790 N=2,016

<2 units Reference Reference Reference

2-3.9 units -0.03 (-0.12, 0.06) 0.03 (-0.07, 0.13) 0.01 (-0.08, 0.11)

4-5.9 units 0.03 (-0.12, 0.19) 0.00 (-0.17, 0.17) 0.12 (-0.04, 0.28)

≥6 units 0.24 (-0.04, 0.51) 0.46 (0.17, 0.76) 0.13 (-0.15, 0.40)

P-value for trend 0.383 0.066 0.159

Second trimester N=2,064 N=2,065 N=2,325

<2 units Reference Reference Reference

2-3.9 units 0.03 (-0.06, 0.12) 0.10 (0.01, 0.19) 0.08 (-0.01, 0.17)

4-5.9 units 0.06 (-0.07, 0.20) 0.04 (-0.11, 0.19) 0.15 (0.01, 0.29)

≥6 units 0.18 (-0.08, 0.44) 0.29 (0.02, 0.57) 0.16 (-0.11, 0.43)

P-value for trend 0.133 0.034 0.011

Third trimester N=1,938 N=1,939 N=2,184

<2 units Reference Reference Reference

2-3.9 units 0.02 (-0.07, 0.11) 0.10 (0.00, 0.19) 0.04 (-0.04, 0.13)

4-5.9 units 0.03 (-0.12, 0.19) 0.05 (-0.11, 0.22) 0.06 (-0.10, 0.21)

≥6 units 0.40 (0.14, 0.67) 0.41 (0.13, 0.69) 0.21 (-0.07, 0.48)

P-value for trend 0.050 0.008 0.114

Values are regression coefficients (95% confidence intervals) from the confounder models that reflect the difference in 
childhood outcomes in children of mothers who consumed 2-3.9, 4-5.9 and ≥6 units of caffeine per day, as compared 
to those whose mothers consumed <2 units of caffeine per day. 1 unit of caffeine represents the equivalent of 1 cup 
of coffee (90 mg). The models are adjusted for child’s sex, child’s age at follow-up measurement, maternal ethnicity, 
maternal education, maternal smoking, maternal alcohol use, folic acid supplementation and television watching time. 
P-values for trend were obtained from models in which the categorized caffeine intake variable (<2, 2-3.9, 4-5.9 and 
≥6 units) was entered as continuous variable.
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abstract

Background: Maternal obesity and excessive gestational weight gain may have persistent 

effects on offspring fat development. However, it remains unclear whether these effects 

differ by severity of obesity, and whether these effects are restricted to the extremes of ma-

ternal body mass index (BMI) and gestational weight gain. We aimed to assess the separate 

and combined associations of maternal BMI and gestational weight gain with the risk of 

overweight/obesity throughout childhood, and their population impact.

Methods and findings: We conducted an individual participant data meta-analysis of data 

from 162,129 mothers and their children from 37 pregnancy and birth cohort studies from 

Europe, North America, and Australia. We assessed the individual and combined associations 

of maternal pre-pregnancy BMI and gestational weight gain, both in clinical categories and 

across their full ranges, with the risks of overweight/obesity in early (2.0–5.0 years), mid 

(5.0–10.0 years) and late childhood (10.0–18.0 years), using multilevel binary logistic regres-

sion models with a random intercept at cohort level adjusted for maternal sociodemographic 

and lifestyle related characteristics. We observed that higher maternal pre-pregnancy BMI 

and gestational weight gain both in clinical categories and across their full ranges were 

associated with higher risks of childhood overweight/obesity, with the strongest effects in 

late childhood (odds ratios [ORs] for overweight/obesity in early, mid, and late childhood, 

respectively: OR 1.66 [95% CI: 1.56, 1.78], OR 1.91 [95% CI: 1.85, 1.98], and OR 2.28 [95% 

CI: 2.08, 2.50] for maternal overweight; OR 2.43 [95% CI: 2.24, 2.64], OR 3.12 [95% CI: 

2.98, 3.27], and OR 4.47 [95% CI: 3.99, 5.23] for maternal obesity; and OR 1.39 [95% CI: 

1.30, 1.49], OR 1.55 [95% CI: 1.49, 1.60], and OR 1.72 [95% CI: 1.56, 1.91] for excessive 

gestational weight gain). The proportions of childhood overweight/obesity prevalence at-

tributable to maternal overweight, maternal obesity, and excessive gestational weight gain 

ranged from 10.2% to 21.6%. Relative to the effect of maternal BMI, excessive gestational 

weight gain only slightly increased the risk of childhood overweight/obesity within each clini-

cal BMI category (p-values for interactions of maternal BMI with gestational weight gain: p = 

0.038, p < 0.001, and p = 0.637 in early, mid, and late childhood, respectively). Limitations 

of this study include the self-report of maternal BMI and gestational weight gain for some 

of the cohorts, and the potential of residual confounding. Also, as this study only included 

participants from Europe, North America, and Australia, results need to be interpreted with 

caution with respect to other populations.

Conclusions: In this study, higher maternal pre-pregnancy BMI and gestational weight gain 

were associated with an increased risk of childhood overweight/obesity, with the strongest 

effects at later ages. The additional effect of gestational weight gain in women who are over-

weight or obese before pregnancy is small. Given the large population impact, future interven-

tion trials aiming to reduce the prevalence of childhood overweight and obesity should focus 

on maternal weight status before pregnancy, in addition to weight gain during pregnancy.
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introduction

Maternal pre-pregnancy obesity and excessive gestational weight gain are major public 

health problems. Maternal obesity is an important risk factor of gestational hypertensive 

and diabetic disorders, fetal death, pre-term birth, and macrosomia (1, 2). An accumulating 

body of evidence suggests that maternal obesity also has persistent effects on long-term 

health in offspring (3). A meta-analysis of published studies showed a 3-fold increased risk 

of overweight in children of mothers with pre-pregnancy obesity, as compared to those of 

mothers with a normal pre-pregnancy weight (4). It remains unclear whether these risks 

differ by severity of obesity, and whether these effects are restricted to the extremes of 

maternal BMI or are present across the full range. In addition to maternal pre-pregnancy 

obesity, excessive gestational weight gain also seems to be associated with increased risks of 

childhood overweight and obesity (2). Previous meta-analyses of published studies showed a 

30%–40% increased risk of childhood overweight in children of mothers with excessive ges-

tational weight gain (5-7). From a prevention perspective, insight into the combined effects 

of maternal BMI and gestational weight gain on offspring obesity risk and their population 

impact in different geographical regions is needed.

We conducted an individual participant data (IPD) meta-analysis among 162,129 mothers 

and their children from 37 pregnancy and birth cohorts from Europe, North America, and 

Australia, to assess the separate and combined associations of maternal pre-pregnancy body 

mass index (BMI) and gestational weight gain with the risk of overweight/obesity throughout 

childhood, and their population impact.

methods

Inclusion criteria and participating cohorts
This study was embedded in the international Maternal Obesity and Childhood Outcomes 

(MOCO) collaboration (8, 9). Pregnancy and birth cohort studies were eligible to participate if 

they included mothers with singleton live-born children born from January 1, 1989, onwards, 

had information available on maternal pre- or early pregnancy BMI and at least 1 offspring 

measurement (birth weight or childhood BMI), and were approved by their local institutional 

review boards. We invited 50 Western cohorts from Europe, North America, and Austra-

lia, selected from existing collaborations on childhood health (the EarlyNutrition project, 

the CHICOS project, and Birthcohorts.net assessed until July 2014), of which 39 agreed 

to participate. In total, 37 cohorts had data available on childhood BMI, corresponding to 

162,129 mothers and their children eligible for analyses (Figure 1). All cohorts included were 

approved by their local institutional review boards, and all participants gave written informed 

consent. The plan for analyses given to the cohorts when inviting them to participate in the 
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MOCO collaboration is provided in Supplemental Text 1. Based on data availability and 

additional research questions, it was decided among the collaborators to refine the existing 

questions and to extend the project with additional questions to be addressed. Statistical 

analyses were adapted to these questions. Anonymized datasets were stored on a single 

central secured data server with access for the main analysts (EV, SS).

Figure 1. Flow chart of the cohorts and participants
 

n = 50 cohorts 
Invited 

n = 39 cohorts  
n = 39 signed agreements 
n = 39 datasets received 
 
n = 277,042 participants suitable for analysis 
 

n = 8 cohorts 
No response (n = 4) 
Not able to share data (n = 4) 
  
 n = 42 cohorts 

Agreed to participate 

n = 37 cohorts 
n = 162,129 participants 
Population for analysis: Information on maternal 
pre- or early pregnancy BMI and childhood BMI in 
at least one age interval available 
 
Early childhood (2.0-5.0 years)  n=85,813 
Mid childhood (5.0-10.0 years)  n=121,803 
Late childhood (10.0-18.0 years) n=18,477 
 

n = 3 cohorts 
No signed agreement returned (n = 2) 
No dataset received (n = 1) 
  
 

n = 2 cohorts 
n = 105,409 participants 
No childhood BMI data available 
  
 

n = 39 cohorts 
n = 267,538 participants 
Information on maternal pre- or early pregnancy 
BMI available 
 

n = 9,504 participants 
No information on maternal pre- or early 
pregnancy BMI available 
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Maternal pre-pregnancy BMI and gestational weight gain
Maternal BMI (kg/m2) was measured, derived from clinical records, or self-reported (cohort-

specific information in Supplemental Table 1). If available, we used information on maternal 

pre-pregnancy BMI for analyses. For participants without information on pre-pregnancy BMI 

(4.8% of the study population), we used BMI measured before 20 weeks of gestation. Maternal 

pre-pregnancy BMI was categorized into clinical categories according to World Health Organiza-

tion (WHO) cutoffs (underweight [<18.5 kg/m2], normal weight [18.5–24.9 kg/m2], overweight 

[25.0–29.9 kg/m2], and obesity [≥ 30.0 kg/m2]). The obesity category was further stratified into 

obesity grade 1 (30.0–34.9 kg/m2), grade 2 (35.0–39.9 kg/m2), and grade 3 (≥ 40.0 kg/m2) (10). 

Maternal pre-pregnancy BMI was also categorized into 11 groups with a range of 2.5 kg/m2 

each. Data on gestational weight gain (kg), defined as the difference between the latest weight 

before delivery and pre-pregnancy weight, was provided by the cohorts, and was categorized 

as inadequate, adequate, or excessive weight gain in relation to maternal pre-pregnancy BMI 

according to the guidelines of the US Institute of Medicine (IOM) (11). We calculated z-scores 

of gestational weight gain based on maternal pre-pregnancy BMI-category-specific reference 

charts for gestational weight gain by gestational age created using the data of the cohorts 

participating in this collaboration (8), and categorized them into 6 categories (<−2.0 SD, −2.0 

to −1.0 SD, −1.0 to −0.0 SD, 0.0 to 1.0 SD, 1.0 to 2.0 SD, and ≥2.0 SD).

Childhood overweight/obesity
Childhood BMI (kg/m2) was measured, derived from clinical records, or reported by parents/ 

caregivers or the child itself (cohort-specific information in Supplemental Table 1). BMI mea-

surements were available in 3 age intervals: early childhood (≥ 2 to <5 years), mid childhood (≥ 5 

to <10 years), and late childhood (≥ 10 to <18 years), hereafter referred to as 2.0–5.0, 5.0–10.0, 

and 10.0–18.0 years, respectively. If there were multiple measurements of a child available 

within the same age interval, we used the measurement at the highest age for our analyses. We 

calculated the sex- and age-adjusted standard deviation score (SDS) of childhood BMI based on 

WHO reference growth charts (Growth Analyser 4.0, Dutch Growth Research Foundation) (12, 

13). We categorized childhood BMI into underweight, normal weight, overweight, and obesity, 

using WHO cutoffs (12, 13). For models focused on the risk of overweight/obesity, children with 

underweight were excluded, and overweight and obesity were combined. For models focused 

on the risk of underweight, children with overweight and obesity were excluded.

Covariates
Information on covariates was mostly assessed by questionnaires. We included as con-

founders the following: maternal age (<25.0 years, 25.0–30.0 years, 30–35.0 years, ≥35.0 

years), maternal educational level (low, medium, high), maternal ethnicity (European/white, 

non-European/ non-white), parity (nulliparous, multiparous), and maternal smoking during 

pregnancy (yes, no).
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Statistical analysis
We conducted 1-stage meta-analyses, analyzing IPD from all cohorts simultaneously in 

multilevel linear or binary logistic regression models, accounting for clustering of participants 

within cohorts (14). In these models, we included a random intercept at the cohort level, 

allowing intercepts to differ between cohorts. First, we examined the separate associations 

of maternal pre-pregnancy BMI and gestational weight gain, across their full ranges and in 

clinical categories, with BMI SDS, the risk of childhood underweight, and the risk of child-

hood overweight/ obesity in early, mid, and late childhood. Second, we calculated, both for 

the total study population and per country, the population attributable risk fraction (PAR), 

indicating the proportion of childhood underweight and childhood overweight/obesity at-

tributable to each maternal BMI or gestational weight gain category. For these analyses, we 

used the adjusted odds ratio (OR) and the prevalence of the exposure in the study population 

(15). Country-specific analyses were performed for mid childhood only, based on available 

data. Third, we assessed the associations of the combinations of maternal pre-pregnancy 

BMI and gestational weight gain clinical categories with the outcomes. To assess whether 

the combined effects of maternal BMI and gestational weight gain on the outcomes were 

different from the separate effects, we tested for interaction between these 2 exposures.

Models were adjusted for maternal age, educational level, ethnicity, parity, and smoking 

during pregnancy. Models concerning gestational weight gain z-scores were additionally 

adjusted for maternal pre-pregnancy BMI. To examine whether any associations of mater-

nal pre-pregnancy BMI with the risk of childhood overweight/obesity were explained by 

gestational diabetes, gestational hypertensive disorders, or gestational-age-adjusted birth 

weight, we added this information to the models. Covariates in the analyses were selected 

based on existing literature and data availability in participating cohorts. Findings from the 

unadjusted models were similar to the findings from the adjusted models and therefore are 

not presented separately. We did not observe consistent significant interactions of maternal 

pre-pregnancy BMI and gestational weight gain with child’s sex. As sensitivity analyses, we 

conducted 2-stage random effects meta-analyses to study the associations of maternal pre-

pregnancy BMI and gestational weight gain with the risk of childhood overweight/obesity 

in each cohort and to test for heterogeneity between estimates (14). All covariates were 

categorized. To deal with missing values of covariates, we used the missing values as an ad-

ditional category, to prevent exclusion of non-complete cases. Exposures and outcomes were 

not imputed. If information on a covariate was available for less than 50% of the cohort 

sample used for each analysis, available information was not used and the corresponding 

data for that full cohort sample was assigned to the missing category. We also conducted a 

sensitivity analysis with complete cases only.

The statistical analyses were performed using the IBM SPSS Statistics version 21.0 for Win-

dows (IBM, Armonk, NY, US), RevMan version 5.3 (Nordic Cochrane Centre, Copenhagen, 

Denmark), and R statistical software version 3.3.3.
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3.1

results

Participants’ characteristics
Table 1 shows that the median maternal pre-pregnancy BMI was 22.7 kg/m2 (95% range: 

18.1, 34.3) and the median gestational weight gain was 14.0 kg (95% range: 4.0, 26.0). 

Of all children, 6.5%, 20.1%, and 22.2% were overweight/obese in early, mid, and late 

childhood, respectively. The country-specific prevalences of maternal overweight and 

obesity, excessive gestational weight gain, and mid childhood overweight/obesity ranged 

12.9%–53.1%, 22.2%–57.0%, and 10.6%–43.1%, respectively (Supplemental Figure 1). 

Supplemental Table 2 shows cohort-specific information on covariates.

Maternal pre-pregnancy BMI and gestational weight gain clinical 
categories
Table 2 shows that, as compared to maternal normal weight, maternal underweight was 

associated with lower risks of overweight/obesity throughout childhood (p-values < 0.05). 

As compared to maternal normal weight, maternal overweight and obesity were associated 

with higher risks of overweight/obesity throughout childhood, with stronger associations at 

later ages (ORs for overweight/obesity in late childhood: 2.28 [95% CI: 2.08, 2.50] and 4.47 

[95% CI: 3.99, 5.23] for maternal overweight and obesity, respectively). Among women 

with obesity, the risk of offspring overweight/obesity increased further for higher classes 

of maternal obesity (ORs for overweight/obesity in late childhood: 4.16 [95% CI: 3.56, 

4.87], 5.98 [95% CI: 4.50, 7.94], and 5.55 [95% CI: 3.25, 9.45] for obesity grade 1, grade 

2, and grade 3, respectively, as compared to normal weight; Table 2). These associations 

were not explained by gestational diabetes or gestational hypertensive disorders (Supple-

mental Tables 3 and 4). Additional adjustment for gestational-age-adjusted birth weight 

attenuated the associations only slightly (Supplemental Table 5). As compared to adequate 

gestational weight gain, inadequate gestational weight gain was associated with a lower risk 

of overweight/obesity in early and mid childhood (p-values < 0.05), but not in late childhood. 

As compared to adequate gestational weight gain, excessive gestational weight gain was 

associated with a higher risk of childhood overweight/obesity in early, mid, and late child-

hood (ORs 1.39 [95% CI: 1.30, 1.49], 1.55 [95% CI: 1.49, 1.60], and 1.72 [95% CI: 1.56, 

1.91], respectively). Supplemental Table 6 shows that, as compared to maternal normal 

weight, maternal underweight was associated with a higher risk of childhood underweight, 

whereas maternal overweight and obesity were associated with a lower risk of childhood 

underweight in early, mid, and late childhood. Similarly, as compared to adequate gestational 

weight gain, inadequate gestational weight gain was associated with higher risks of child-

hood underweight, and excessive gestational weight gain with lower risks. The associations 

of maternal BMI and gestational weight gain clinical categories with childhood BMI SDS are 

presented in Table 3.
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Table 1. Cohort-specific description of exposures and outcomes

Cohort name,
number of participants,
birth years (country)

Maternal 
characteristics

Early childhood characteristics
(2.0-5.0 years)

Mid childhood characteristics
(5.0-10.0 years)

Late childhood characteristics
(10.0-18.0 years)

Pr
e-

/e
ar

ly
 

p
re

g
n

an
cy

 B
M

I 
(k

g
/m

2 )

G
es

ta
ti

o
n

al
 

w
ei

g
h

t 
g

ai
n

 
(k

g
)

A
g

e 
(m

o
n

th
s)

B
M

I (
SD

S)

O
ve

rw
ei

g
h

t/
O

b
es

it
y 

(n
 (

%
))

A
g

e 
(m

o
n

th
s)

B
M

I (
SD

S)

O
ve

rw
ei

g
h

t/
o

b
es

it
y 

(n
(%

))

A
g

e 
(m

o
n

th
s)

B
M

I (
SD

S)

O
ve

rw
ei

g
h

t/
o

b
es

it
y 

(n
(%

))

ABCD, n=5,494, 2003-2004 (The Netherlands)
22.2

(17.9, 33.9)
NA

47.2
(25.5, 54.3)

0.28
(-1.52, 2.37)

212
(4.4)

68.2
(61.6, 82.2)

0.10
(-1.69, 2.38)

766
(17.1)

NA NA NA

ALSPAC, n=8,435,1991-1992 (United Kingdom)
22.3

(18.0, 33.6)
12.5

(4.0, 22.0)
48.7

(30.8, 49.7)
0.61

(-1.00, 2.45)
71

(6.4)
115.0

(88.0, 119.0)
0.24

(-1.60, 2.68)
2,001
(26.5)

165.0
(126.0, 171.0)

0.23
(-1.85, 2.53)

1,908
(26.0)

AOB/F, n=1,653, 2008-2010 (Canada)
23.0

(18.0, 38.2)
NA

36.0
(35.0, 42.0)

0.23
(-2.27, 2.65)

94
(5.7)

NA NA NA NA NA NA

BAMSE, n=2,930, 1994-1996 (Sweden)
22.3

(18.2, 31.6)a
13.0

(5.6, 25.0)
51.3

(48.2, 57.6)
0.57

(-0.94, 2.47)
152
(6.0)

100.0
(89.0, 109.0)

0.51
(-1.19, 2.63)

695
(31.0)

201.2
(191.7, 210.2)

0.09
(-1.73, 2.03)

373
(16.9)

BIB, n=887, 2007-2010 (United Kingdom)
24.8

(17.6, 39.4)a
10.0

(0.0, 20.5)
36.8

(35.8, 39.3)
0.49

(-1.40, 2.54)
64

(7.2)
NA NA NA NA NA NA

CHOP, n=905, 2002-2004 (Multiple)
22.4

(17.6, 33.7)
NA

48.6
(24.0, 60.0)

0.26
(-1.58, 2.51)

24
(5.8)

96.1
(65.9, 99.2)

0.32
(-1.72, 2.92)

201
(27.8)

NA NA NA

Co.N.ER, n=522, 2004-2005 (Italy)
21.2

(17.7, 30.4)
13.0

(6.0, 22.1)
43.9

(34.8, 54.8)
0.27

(-2.28, 2.92)
47

(9.8)
94.9

(86.6, 111.2)
0.69

(-1.29, 2.82)
100

(35.3)
NA NA NA

DNBC, n=39,637, 1996-2002 (Denmark)
22.5

(18.1, 33.6)
15.0

(5.0, 28.0)
NA NA NA

85.0
(75,6, 89.5)

0.01
(-1.95, 2.08)

6,138
(15.5)

NA NA NA

EDEN, n=1,331,2003-2005 (France)
22.1

(17.4, 35.0)
13.0

(4.0, 23.0)
38.0

(36.9, 40.0)
0.29

(-1.46, 1.96)
26

(2.2)
67.6

(65.0, 72.4)
-0.02

(-1.52, 1.92)
140

(12.5)
NA NA NA

FCOU, n=2,107, 1993-1996 (Ukraine)
21.8

(17.3, 32.1)
12.0

(3.5, 21.0)
35.0

(24.0, 40.0)
0.55

(-1.93, 3.14)
134

(11.1)
84.0

(75.0, 93.4)
-0.02

(-2.01, 2.06)
111

(12.6)
194.0

(183.0, 209.0)
-0.09

(-2.06, 1.82)
70

(9.1)

GASPII, n=568, 2003-2004 (Italy)
21.3

(17.6, 31.1)
13.0

(6.0, 24.0)
50.0

(43.0, 53.0)
0.71

(-1.06, 2.94)
52

(9.7)
104.0

(98.0, 113.0)
0.70

(-1.37, 2.66)
171

(37.1)
NA NA NA

GECKO Drenthe, n=1,963, 2006-2007 (The Netherlands)
23.7

(18.6, 36.8)
13.0

(4.0, 25.0)
NA NA NA

70.4
(62.6, 78.6)

0.39
(-1.16, 2.43)

426
(21.7)

NA NA NA

GENERATION R, n=6,716, 2002-2006 (The Netherlands)
22.8

(18.1, 34.9)
13.0

(1.0, 25.0)
45.8

(44.4, 48.6)
0.30

(-1.44, 2.48)
186
(4.9)

115.3
(69.4, 119.4)

0.36
(-1.52, 2.70)

1,661
(27.5)

122.1
(120.1, 137.8)

0.36
(-1.51, 2.62)

144
(29.8)

GENERATION XXI, n=5,940, 2005-2006 (Portugal)
23.0

(18.2, 34.7)
13.0

(3.0, 26.0)
50.0

(46.0, 58.0)
0.52

(-1.27, 3.07)
483

(10.3)
85.0

(83.0, 95.0)
0.63

(-1.38, 3.23)
2,015
(37.9)

NA NA NA

GENESIS, n=1,898, 2003-2004 (Greece)
21.8

(17.6, 30.9)
13.0

(3.0, 28.6)
43.6

(26.1, 57.8)
0.83

(-1.17, 3.57)
257

(14.2)
62.0

(60.1. 71.9)
0.93

(-1.44, 4.13)
38

(43.2)
NA NA NA

GINIplus, n=2,326, 1995-1998 (Germany)
22.1

(18.0, 31.4)
13.0

(5.0, 25.0)
48.0

(44.0, 52.0)
0.08

(-1.72, 2.00)
54

(2.5)
62.9

(60.2, 75.0)
0.01

(-1.77, 1.94)
231

(10.7)
182.0

(177.0, 191.0)
0.01

(-1.88, 2.08)
366

(15.9)

HUMIS, n=945, 2003-2008 (Norway)
23.3

(18.4, 35.0)
14.0

(5.0, 27.0)
25.7

(24.0, 37.4)
0.33

(-1.83, 2.39)
52

(6.1)
84.0

(60.0, 92.0)
0.04

(-2.02, 2.35)
62

(17.6)
NA NA NA

INMA, n=1,916, 1997-2008 (Spain)
22.5

(18.0, 34.6)
13.5

(4.2, 24.4)
52.9

(49.0, 56.5)
0.50

(-1.21, 2.82)
142
(8.2)

83.8
(74.8, 94.5)

0.58
(-1.34, 3.32)

498
(37.7)

174.5
(172.0, 181.5)

0.32
(-1.59, 2.47)

76
(25.3)

KOALA, n=2,051, 2000-2002 (The Netherlands)
22.8

(18.5, 33.5)
14.0

(4.0, 25.0)
55.5

(48.1, 59.7)
-0.07

(-2.00, 1.83)
16

(1.6)
106.0

(61.5, 119.3)
-0.17

(-2.16, 1.77)
198

(11.3)
121.4

(120.0, 126.7)
-0.16

(-2.06, 2.22)
19

(18.1)

Krakow Cohort, n=422, 2000-2003 (Poland)
21.1

(17.3, 28.0)
15.0

(7.0, 28.0)
48.0

(36.0, 51.3)
-0.06

(-2.24, 2.28)
11

(4.1)
108.0

(60.0, 111.0)
0.18

(-1.86, 2.56)
90

(26.5)
NA NA NA
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Table 1. Cohort-specific description of exposures and outcomes

Cohort name,
number of participants,
birth years (country)
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characteristics

Early childhood characteristics
(2.0-5.0 years)

Mid childhood characteristics
(5.0-10.0 years)

Late childhood characteristics
(10.0-18.0 years)
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ABCD, n=5,494, 2003-2004 (The Netherlands)
22.2

(17.9, 33.9)
NA

47.2
(25.5, 54.3)

0.28
(-1.52, 2.37)

212
(4.4)

68.2
(61.6, 82.2)

0.10
(-1.69, 2.38)

766
(17.1)

NA NA NA

ALSPAC, n=8,435,1991-1992 (United Kingdom)
22.3

(18.0, 33.6)
12.5

(4.0, 22.0)
48.7

(30.8, 49.7)
0.61

(-1.00, 2.45)
71

(6.4)
115.0

(88.0, 119.0)
0.24

(-1.60, 2.68)
2,001
(26.5)

165.0
(126.0, 171.0)

0.23
(-1.85, 2.53)

1,908
(26.0)

AOB/F, n=1,653, 2008-2010 (Canada)
23.0

(18.0, 38.2)
NA

36.0
(35.0, 42.0)

0.23
(-2.27, 2.65)

94
(5.7)

NA NA NA NA NA NA

BAMSE, n=2,930, 1994-1996 (Sweden)
22.3

(18.2, 31.6)a
13.0

(5.6, 25.0)
51.3

(48.2, 57.6)
0.57

(-0.94, 2.47)
152
(6.0)

100.0
(89.0, 109.0)

0.51
(-1.19, 2.63)

695
(31.0)

201.2
(191.7, 210.2)

0.09
(-1.73, 2.03)

373
(16.9)

BIB, n=887, 2007-2010 (United Kingdom)
24.8

(17.6, 39.4)a
10.0

(0.0, 20.5)
36.8

(35.8, 39.3)
0.49

(-1.40, 2.54)
64

(7.2)
NA NA NA NA NA NA

CHOP, n=905, 2002-2004 (Multiple)
22.4

(17.6, 33.7)
NA

48.6
(24.0, 60.0)

0.26
(-1.58, 2.51)

24
(5.8)

96.1
(65.9, 99.2)

0.32
(-1.72, 2.92)

201
(27.8)

NA NA NA

Co.N.ER, n=522, 2004-2005 (Italy)
21.2

(17.7, 30.4)
13.0

(6.0, 22.1)
43.9

(34.8, 54.8)
0.27

(-2.28, 2.92)
47

(9.8)
94.9

(86.6, 111.2)
0.69

(-1.29, 2.82)
100

(35.3)
NA NA NA

DNBC, n=39,637, 1996-2002 (Denmark)
22.5

(18.1, 33.6)
15.0

(5.0, 28.0)
NA NA NA

85.0
(75,6, 89.5)

0.01
(-1.95, 2.08)

6,138
(15.5)

NA NA NA

EDEN, n=1,331,2003-2005 (France)
22.1

(17.4, 35.0)
13.0

(4.0, 23.0)
38.0

(36.9, 40.0)
0.29

(-1.46, 1.96)
26

(2.2)
67.6

(65.0, 72.4)
-0.02

(-1.52, 1.92)
140

(12.5)
NA NA NA

FCOU, n=2,107, 1993-1996 (Ukraine)
21.8

(17.3, 32.1)
12.0

(3.5, 21.0)
35.0

(24.0, 40.0)
0.55

(-1.93, 3.14)
134

(11.1)
84.0

(75.0, 93.4)
-0.02

(-2.01, 2.06)
111

(12.6)
194.0

(183.0, 209.0)
-0.09

(-2.06, 1.82)
70

(9.1)

GASPII, n=568, 2003-2004 (Italy)
21.3

(17.6, 31.1)
13.0

(6.0, 24.0)
50.0

(43.0, 53.0)
0.71

(-1.06, 2.94)
52

(9.7)
104.0

(98.0, 113.0)
0.70

(-1.37, 2.66)
171

(37.1)
NA NA NA

GECKO Drenthe, n=1,963, 2006-2007 (The Netherlands)
23.7

(18.6, 36.8)
13.0

(4.0, 25.0)
NA NA NA

70.4
(62.6, 78.6)

0.39
(-1.16, 2.43)

426
(21.7)

NA NA NA

GENERATION R, n=6,716, 2002-2006 (The Netherlands)
22.8

(18.1, 34.9)
13.0

(1.0, 25.0)
45.8

(44.4, 48.6)
0.30

(-1.44, 2.48)
186
(4.9)

115.3
(69.4, 119.4)

0.36
(-1.52, 2.70)

1,661
(27.5)

122.1
(120.1, 137.8)

0.36
(-1.51, 2.62)

144
(29.8)

GENERATION XXI, n=5,940, 2005-2006 (Portugal)
23.0

(18.2, 34.7)
13.0

(3.0, 26.0)
50.0

(46.0, 58.0)
0.52

(-1.27, 3.07)
483

(10.3)
85.0

(83.0, 95.0)
0.63

(-1.38, 3.23)
2,015
(37.9)

NA NA NA

GENESIS, n=1,898, 2003-2004 (Greece)
21.8

(17.6, 30.9)
13.0

(3.0, 28.6)
43.6

(26.1, 57.8)
0.83

(-1.17, 3.57)
257

(14.2)
62.0

(60.1. 71.9)
0.93

(-1.44, 4.13)
38

(43.2)
NA NA NA

GINIplus, n=2,326, 1995-1998 (Germany)
22.1

(18.0, 31.4)
13.0

(5.0, 25.0)
48.0

(44.0, 52.0)
0.08

(-1.72, 2.00)
54

(2.5)
62.9

(60.2, 75.0)
0.01

(-1.77, 1.94)
231

(10.7)
182.0

(177.0, 191.0)
0.01

(-1.88, 2.08)
366

(15.9)

HUMIS, n=945, 2003-2008 (Norway)
23.3

(18.4, 35.0)
14.0

(5.0, 27.0)
25.7

(24.0, 37.4)
0.33

(-1.83, 2.39)
52

(6.1)
84.0

(60.0, 92.0)
0.04

(-2.02, 2.35)
62

(17.6)
NA NA NA

INMA, n=1,916, 1997-2008 (Spain)
22.5

(18.0, 34.6)
13.5

(4.2, 24.4)
52.9

(49.0, 56.5)
0.50

(-1.21, 2.82)
142
(8.2)

83.8
(74.8, 94.5)

0.58
(-1.34, 3.32)

498
(37.7)

174.5
(172.0, 181.5)

0.32
(-1.59, 2.47)

76
(25.3)

KOALA, n=2,051, 2000-2002 (The Netherlands)
22.8

(18.5, 33.5)
14.0

(4.0, 25.0)
55.5

(48.1, 59.7)
-0.07

(-2.00, 1.83)
16

(1.6)
106.0

(61.5, 119.3)
-0.17

(-2.16, 1.77)
198

(11.3)
121.4

(120.0, 126.7)
-0.16

(-2.06, 2.22)
19

(18.1)

Krakow Cohort, n=422, 2000-2003 (Poland)
21.1

(17.3, 28.0)
15.0

(7.0, 28.0)
48.0

(36.0, 51.3)
-0.06

(-2.24, 2.28)
11

(4.1)
108.0

(60.0, 111.0)
0.18

(-1.86, 2.56)
90

(26.5)
NA NA NA
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Table 1. Cohort-specific description of exposures and outcomes (continued)

Cohort name,
number of participants,
birth years (country)

Maternal 
characteristics

Early childhood characteristics
(2.0-5.0 years)

Mid childhood characteristics
(5.0-10.0 years)

Late childhood characteristics
(10.0-18.0 years)
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LISAplus, n=2,334, 1997-1999 (Germany)
21.7

(17.9, 32.9)
14.0

(6.0, 24.5)
48.0

(44.0, 52.0)
0.07

(-1.83, 1.98)
53

(2.5)
62.7

(60.2, 74.0)
-0.09

(-1.92, 1.91)
207

(10.4)
181.0

(121.0, 191.0)
-0.02

(-1.88, 2.08)
293

(15.9)

LUKAS, n=379, 2002-2005 (Finland)
24.0

(18.5, 36.6)
13.9

(3.9, 25.1)
48.2

(46.2, 50.0)
0.52

(-1.28, 2.81)
30

(7.9)
73.2

(68.6, 76.0)
0.52

(-1.08, 3.34)
112

(31.0)
NA NA NA

MoBa, n=54,910, 1999-2009 (Norway)
23.1

(18.4, 34.7)
14.5

(4.0, 27.0)
36.4

(25.5, 60.0)
0.37

(-1.84, 2.46)
2,447
(6.1)

86.9
(61.0, 100.9)

0.14
(-2.06, 2.30)

6,774
(19.4)

NA NA NA

NINFEA, n=1,753, 2005-2010 (Italy)b
21.4

(17.4, 31.9)
12.0

(3.0, 22.0)
49.7

(48.2, 57.1)
0.09

(-2.33, 2.52)
88

(5.1)
86.1

(84.8, 93.0)
-0.03

(-2.17, 2.43)
91

(21.0)
NA NA NA

PÉLAGIE, n=738, 2002-2005 (France)
21.7

(17.5, 32.4)
NA

24.4
(24.0, 26.5)

0.12
(-1.84, 1.95)

16
(2.2)

NA NA NA NA NA NA

PIAMA, n=2,324, 1996-1997 (The Netherlands)
22.2

(18.4, 31.5)
13.0

(5.0, 25.0)
49.3

(44.2, 54.5)
0.69

(-1.20, 2.58)
105
(9.3)

97.5
(90.9, 110.6)

0.15
(-1.68, 2.35)

417
(20.5)

195.9
(192.5, 203.4)

-0.16
(-1.74, 1.80)

72
(9.5)

Piccolipiù, n=687, 2011-2015 (Italy)
21.6

(17.6, 31.8)
13.0

(6.0, 21.2)
24.0

(24.0, 28.0)
0.36

(-2.16, 2.55)
40

(5.8)
NA NA NA NA NA NA

Project Viva, n=1,382, 1999-2002 (United States)
23.5

(18.3, 38.2)
15.5

(5.0, 27.3)
37.9

(36.1, 50.2)
0.66

(-1.01, 2.69)
86

(7.0)
92.2

(82.5, 116.6)
0.44

(-1.43, 3.05)
326

(30.7)
123.8

(120.6, 131.1)
0.38

(-1.50, 3.76)
8

(25.8)

Raine Study, n=2,092, 1989-1992 (Australia)
21.3

(17.1, 34.0)
NA NA NA NA

71.0
(66.8, 77.1)

0.15
(-1.57, 2.75)

384
(20.0)

126.9
(125.0, 133.3)

0.45
(-1.62, 2.84)

566
(33.3)

REPRO_PL, n=283, 2007-2011 (Poland)
21.6

(17.2, 32.8)
12.5

(2.3, 23.0)
25.0

(24.0, 31.0)
0.31

(-2.13, 2.51)
19

(7.1)
88.0

(84.3, 94.0)
0.64

(-1.55, 3.64)
19

(38.8)
NA NA NA

RHEA, n=748, 2007-2008 (Greece)
23.4

(18.1, 36.4)
13.0

(4.0, 26.0)
49.8

(48.0, 57.5)
0.60

(-1.13, 3.58)
92

(12.3)
NA NA NA NA NA NA

ROLO, n=290, 2007-2011 (Ireland)
25.3

(20.1, 38.7)a
12.1

(2.1, 22.7)
24.7

(24.0, 34.0)
0.20

(-1.75, 2.62)
19

(6.6)
NA NA NA NA NA NA

SCOPE BASELINE, n=1,045, 2008-2011 (Ireland)
24.0

(19.3, 34.8)a
14.3

(7.3, 23.3)
25.5

(24.5, 28.9)
0.65

(-1.02, 2.32)
62

(5.9)
NA NA NA NA NA NA

SEATON, n=933, 1998-1999 (United Kingdom)
24.0

(18.8, 37.9)a
NA

58.6
(55.9, 59.9)

0.65
(-0.89, 2.68)

37
(7.8)

61.2
(60.0, 119.7)

0.59
(-1.10, 2.73)

58
(19.8)

180.1
(121.5, 186.0)

0.43
(-1.61, 2.60)

199
(31.6)

Slovak PCB study, n=480, 2002-2004 (Slovakia)
21.2

(16.7, 31.6)
14.0

(4.1, 24.8)
45.4

(44.8, 49.9)
1.95

(-2.46, 5.29)
212

(48.7)
93.0

(85.0, 100.0)
0.32

(-1.73, 3.22)
117

(32.1)
NA NA NA

STEPS, n=484, 2008-2010 (Finland)
22.8

(18.3, 36.9)
14.1

(1.6, 25.5)
36.8

(35.6, 38.4)
0.56

(-1.09, 2.18)
20

(4.1)
NA NA NA NA NA NA

SWS, n=2,621, 1998-2007 (United Kingdom)
24.2

(18.9, 37.4)
11.9

(0.4, 25.2)
38.4

(35.6, 50.7)
0.49

(-1.27, 2.57)
155
(6.1)

80.4
(74.7, 87.2)

0.21
(-1.52, 2.54)

392
(22.0)

NA NA NA

Total group
22.7

(18.1, 34.3)
14.0

(4.0, 26.0)
38.2

(24.5, 60.0)
0.39

(-1.69, 2.58)
5,558
(6.5)

85.3
(61.0, 117.4)

0.14
(-1.85, 2.44)

24,439
(20.1)

168.0
(121.8, 203.7)

0.14
(-1.81, 2.41)

4,094
(22.2)

Values are expressed as medians (95% range) or numbers of participants (valid %). NA: Not available. SDS: Standard 
Deviation Score. aOnly information available on BMI assessed in early pregnancy (<20 weeks of gestation).bSubset of 
participants with 4-years follow-up completed.
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Table 1. Cohort-specific description of exposures and outcomes (continued)

Cohort name,
number of participants,
birth years (country)

Maternal 
characteristics

Early childhood characteristics
(2.0-5.0 years)

Mid childhood characteristics
(5.0-10.0 years)
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(10.0-18.0 years)
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LISAplus, n=2,334, 1997-1999 (Germany)
21.7

(17.9, 32.9)
14.0

(6.0, 24.5)
48.0

(44.0, 52.0)
0.07

(-1.83, 1.98)
53

(2.5)
62.7

(60.2, 74.0)
-0.09

(-1.92, 1.91)
207

(10.4)
181.0

(121.0, 191.0)
-0.02

(-1.88, 2.08)
293

(15.9)

LUKAS, n=379, 2002-2005 (Finland)
24.0

(18.5, 36.6)
13.9

(3.9, 25.1)
48.2

(46.2, 50.0)
0.52

(-1.28, 2.81)
30

(7.9)
73.2

(68.6, 76.0)
0.52

(-1.08, 3.34)
112

(31.0)
NA NA NA

MoBa, n=54,910, 1999-2009 (Norway)
23.1

(18.4, 34.7)
14.5

(4.0, 27.0)
36.4

(25.5, 60.0)
0.37

(-1.84, 2.46)
2,447
(6.1)

86.9
(61.0, 100.9)

0.14
(-2.06, 2.30)

6,774
(19.4)

NA NA NA

NINFEA, n=1,753, 2005-2010 (Italy)b
21.4

(17.4, 31.9)
12.0

(3.0, 22.0)
49.7

(48.2, 57.1)
0.09

(-2.33, 2.52)
88

(5.1)
86.1

(84.8, 93.0)
-0.03

(-2.17, 2.43)
91

(21.0)
NA NA NA

PÉLAGIE, n=738, 2002-2005 (France)
21.7

(17.5, 32.4)
NA

24.4
(24.0, 26.5)

0.12
(-1.84, 1.95)

16
(2.2)

NA NA NA NA NA NA

PIAMA, n=2,324, 1996-1997 (The Netherlands)
22.2

(18.4, 31.5)
13.0

(5.0, 25.0)
49.3

(44.2, 54.5)
0.69

(-1.20, 2.58)
105
(9.3)

97.5
(90.9, 110.6)

0.15
(-1.68, 2.35)

417
(20.5)

195.9
(192.5, 203.4)

-0.16
(-1.74, 1.80)

72
(9.5)

Piccolipiù, n=687, 2011-2015 (Italy)
21.6

(17.6, 31.8)
13.0

(6.0, 21.2)
24.0

(24.0, 28.0)
0.36

(-2.16, 2.55)
40

(5.8)
NA NA NA NA NA NA

Project Viva, n=1,382, 1999-2002 (United States)
23.5

(18.3, 38.2)
15.5

(5.0, 27.3)
37.9

(36.1, 50.2)
0.66

(-1.01, 2.69)
86

(7.0)
92.2

(82.5, 116.6)
0.44

(-1.43, 3.05)
326

(30.7)
123.8

(120.6, 131.1)
0.38

(-1.50, 3.76)
8

(25.8)

Raine Study, n=2,092, 1989-1992 (Australia)
21.3

(17.1, 34.0)
NA NA NA NA

71.0
(66.8, 77.1)

0.15
(-1.57, 2.75)

384
(20.0)

126.9
(125.0, 133.3)

0.45
(-1.62, 2.84)

566
(33.3)

REPRO_PL, n=283, 2007-2011 (Poland)
21.6

(17.2, 32.8)
12.5

(2.3, 23.0)
25.0

(24.0, 31.0)
0.31

(-2.13, 2.51)
19

(7.1)
88.0

(84.3, 94.0)
0.64

(-1.55, 3.64)
19

(38.8)
NA NA NA

RHEA, n=748, 2007-2008 (Greece)
23.4

(18.1, 36.4)
13.0

(4.0, 26.0)
49.8

(48.0, 57.5)
0.60

(-1.13, 3.58)
92

(12.3)
NA NA NA NA NA NA

ROLO, n=290, 2007-2011 (Ireland)
25.3

(20.1, 38.7)a
12.1

(2.1, 22.7)
24.7

(24.0, 34.0)
0.20

(-1.75, 2.62)
19

(6.6)
NA NA NA NA NA NA

SCOPE BASELINE, n=1,045, 2008-2011 (Ireland)
24.0

(19.3, 34.8)a
14.3

(7.3, 23.3)
25.5

(24.5, 28.9)
0.65

(-1.02, 2.32)
62

(5.9)
NA NA NA NA NA NA

SEATON, n=933, 1998-1999 (United Kingdom)
24.0

(18.8, 37.9)a
NA

58.6
(55.9, 59.9)

0.65
(-0.89, 2.68)

37
(7.8)

61.2
(60.0, 119.7)

0.59
(-1.10, 2.73)

58
(19.8)

180.1
(121.5, 186.0)

0.43
(-1.61, 2.60)

199
(31.6)

Slovak PCB study, n=480, 2002-2004 (Slovakia)
21.2

(16.7, 31.6)
14.0

(4.1, 24.8)
45.4

(44.8, 49.9)
1.95

(-2.46, 5.29)
212

(48.7)
93.0

(85.0, 100.0)
0.32

(-1.73, 3.22)
117

(32.1)
NA NA NA

STEPS, n=484, 2008-2010 (Finland)
22.8

(18.3, 36.9)
14.1

(1.6, 25.5)
36.8

(35.6, 38.4)
0.56

(-1.09, 2.18)
20

(4.1)
NA NA NA NA NA NA

SWS, n=2,621, 1998-2007 (United Kingdom)
24.2

(18.9, 37.4)
11.9

(0.4, 25.2)
38.4

(35.6, 50.7)
0.49

(-1.27, 2.57)
155
(6.1)

80.4
(74.7, 87.2)

0.21
(-1.52, 2.54)

392
(22.0)

NA NA NA

Total group
22.7

(18.1, 34.3)
14.0

(4.0, 26.0)
38.2

(24.5, 60.0)
0.39

(-1.69, 2.58)
5,558
(6.5)

85.3
(61.0, 117.4)

0.14
(-1.85, 2.44)

24,439
(20.1)

168.0
(121.8, 203.7)

0.14
(-1.81, 2.41)

4,094
(22.2)

Values are expressed as medians (95% range) or numbers of participants (valid %). NA: Not available. SDS: Standard 
Deviation Score. aOnly information available on BMI assessed in early pregnancy (<20 weeks of gestation).bSubset of 
participants with 4-years follow-up completed.
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The estimated proportions of childhood overweight/obesity attributable to maternal pre-

pregnancy overweight and obesity were respectively 11.5% and 10.2% in early childhood, 

15.1% and 14.4% in mid childhood, and 20.1% and 21.6% in late childhood (Table 2). The 

estimated proportions of childhood overweight/obesity attributable to excessive gestational 

weight gain were 11.4%, 15.4%, and 19.2%, in early, mid, and late childhood, respectively 

(Table 2). The country-specific proportions of mid childhood overweight/obesity are given in 

Supplemental Figure 2.

Table 3. Associations of maternal pre-pregnancy BMI and gestational weight gain clinical cat-
egories with childhood BMI SDS

Childhood BMI (SDS)

Early childhood Mid childhood Late childhood

2.0-5.0 years 5.0-10.0 years 10.0-18.0 years

Maternal pre-pregnancy BMI

Underweight (<18.5 kg/m2) -0.29 (-0.33, -0.26) -0.41 (-0.45, -0.38) -0.48 (-0.54, -0.41)

n =3,240 n =4,673 n=917

Normal weight (18.5-24.9 kg/m2) Reference Reference Reference

n =58,177 n =84,119 n=13,737

Overweight (25.0-29.9 kg/m2) 0.19 (0.17, 0.21) 0.33 (0.32, 0.35) 0.45 (0.41, 0.49)

n=17,258 n =23,671 n=2,819

Obesity (≥30.0 kg/m2) 0.34 (0.32, 0.37) 0.62 (0.60, 0.64) 0.92 (0.86, 0.99)

n =7,138 n =9,340 n=1,004

Obesity grade 1 (30.0-34.9 kg/m2) 0.32 (0.29, 0.35) 0.57 (0.54, 0.59) 0.85 (0.76, 0.93)

n =5,197 n =6,944 n =730

Obesity grade 2 (35.0-39.9 kg/m2) 0.39 (0.33, 0.44) 0.72 (0.67, 0.77) 1.09 (0.96, 1.23)

n =1,509 n =1,854 n =215

Obesity grade 3 (≥40.0 kg/m2) 0.45 (0.35, 0.55) 0.94 (0.85, 1.03) 1.18 (0.92, 1.44)

n =343 n =542 n =59

Gestational weight gain

Inadequate weight gain -0.10 (-0.12, -0.08) -0.09 (-0.11, -0.07) -0.09 (-0.13, -0.05)

n =15,782 n =21,094 n=3,998

Adequate weight gain Reference Reference Reference

n =25,829 n =37,142 n=5,247

Excessive weight gain 0.14 (0.12, 0.16) 0.22 (0.21, 0.24) 0.28 (0.24, 0.32)

n=27,965 n =40,879 n=3,742

Values are regression coefficients (95% confidence intervals) from multilevel linear regression models that reflect differ-
ences in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood (10.0-18.0 years) in children 
of mothers in the different pre-pregnancy BMI groups or gestational weight gain groups, as compared with the refer-
ence group (normal weight for pre-pregnancy BMI and adequate weight gain for gestational weight gain). The models 
are adjusted for maternal age, education level, ethnicity, parity, and smoking during pregnancy.
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Maternal pre-pregnancy BMI and gestational weight gain across 
their full ranges
Figures 2A and 2B show that higher maternal pre-pregnancy BMI was across the full range 

associated with higher risk of offspring overweight/obesity and higher offspring BMI SDS 

throughout childhood. The ORs for childhood overweight/obesity per kg/m2 increase in 

maternal pre-pregnancy BMI were 1.08 (95% CI: 1.07, 1.09), 1.12 (95% CI: 1.11, 1.12), 

and 1.16 (95% CI: 1.15, 1.17), in early, mid, and late childhood, respectively. Similarly, higher 

maternal gestational weight gain across its full range was associated with a higher risk of 

overweight/obesity and higher childhood BMI in early, mid, and late childhood (Figures 2C 

and 2D). The ORs for childhood overweight/obesity per SD increase in gestational weight 

gain were 1.14 (95% CI: 1.11, 1.17), 1.16 (95% CI: 1.14, 1.18), and 1.14 (95% CI: 1.09, 

1.20), in early, mid, and late childhood, respectively. Similar results were observed when 

performing 2-stage random effects meta-analyses, with low to moderate heterogeneity 

(Supplemental Figures 3 and 4).

Combined effects of maternal pre-pregnancy BMI and gestational 
weight gain clinical categories
Table 4 shows the combined effect of clinical categories of maternal pre-pregnancy BMI 

and gestational weight gain on childhood overweight/obesity. Regardless of their mothers’ 

gestational weight gain, children of mothers with underweight tended to have a lower risk 

of overweight/ obesity, whereas children of mothers with overweight or obesity had a higher 

risk of overweight/obesity, as compared to children whose mothers had normal weight and 

adequate gestational weight gain. Within each maternal BMI category, excessive gestational 

weight gain tended to increase the risk of overweight/obesity in early and mid childhood only 

slightly. The combined associations of clinical categories of maternal pre-pregnancy BMI and 

gestational weight gain with childhood BMI SDS are given in Table 5.

discussion

In this IPD meta-analysis, we observed that higher maternal pre-pregnancy BMI and ges-

tational weight gain were across their full ranges associated with higher risks of offspring 

overweight/ obesity throughout childhood. The effects tended to be stronger at older ages. 

However, the effect of gestational weight gain in addition to that of pre-pregnancy BMI was 

small. At the population level, 21.7% to 41.7% of childhood overweight/obesity prevalence 

was estimated to be attributable to maternal overweight and obesity together, whereas 

11.4% to 19.2% was estimated to be attributable to excessive gestational weight gain.
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Table 4. Combined associations of maternal pre-pregnancy BMI and gestational weight gain 
clinical categories with the risk of childhood overweight/obesity

 Childhood overweight/obesity (OR (95% CI))

Maternal pre-pregnancy BMI Early childhood Mid childhood Late childhood

2.0-5.0 years 5.0-10.0 years 10.0-18.0 years

Underweight (<18.5 kg/m2)

Inadequate weight gain 0.58 (0.42, 0.81) 0.39 (0.31, 0.48) 0.36 (0.22, 0.58)

ncases/total =40/970 ncases/total =97/1,284 ncases/total =19/266

Adequate weight gain 0.58 (0.42, 0.80) 0.46 (0.38, 0.56) 0.37 (0.22, 0.62)

ncases/total =44/1,087 ncases/total =126/1,538 ncases/total =16/226

Excessive weight gain 0.75 (0.49, 1.15) 0.75 (0.60, 0.95) 1.28 (0.67, 2.42)

ncases/total=25/455 ncases/total=85/635 ncases/total=13/56

Normal weight (18.5-24.9 kg/m2)

Inadequate weight gain 0.87 (0.78, 0.96) 0.91 (0.86, 0.96) 0.95 (0.84, 1.08)

ncases/total =583/12,027 ncases/total =2,462/16,163 ncases/total =536/3,255

Adequate weight gain Reference Reference Reference

ncases/total =1,032/19,502 ncases/total =4,326/28,316 ncases/total =677/4,173

Excessive weight gain 1.28 (1.17, 1.41) 1.36 (1.30, 1.43) 1.30 (1.14, 1.49)

ncases/total =1,010/14,927 ncases/total =4,381/22,400 ncases/total =446/2,162

Overweight (25-29.9 kg/m2)

Inadequate weight gain 1.49 (1.21, 1.82) 1.61 (1.44, 1.81) 2.04 (1.52, 2.74)

ncases/total =118/1,417 ncases/total =447/1,767 ncases/total =74/239

Adequate weight gain 1.62 (1.41, 1.86) 1.87 (1.73, 2.01) 1.94 (1.58, 2.38)

ncases/total=295/3,451 ncases/total=1,224/4,656 ncases/total=163/574

Excessive weight gain 1.85 (1.68, 2.04) 2.25 (2.13, 2.37) 2.65 (2.28, 3.08)

ncases/total=828/9,010 ncases/total=3,660/12,786 ncases/total=395/1,119

Obesity (≥30 kg/m2)

Inadequate weight gain 2.04 (1.66, 2.52) 2.95 (2.62, 3.31) 5.62 (3.94, 8.02)

ncases/total =112/1,070 ncases/total =509/1,382 ncases/total =76/137

Adequate weight gain 2.49 (2.09, 2.97) 3.45 (3.12, 3.82) 4.64 (3.39, 6.34)

ncases/total =171/1,378 ncases/total =728/1,881 ncases/total =88/179

Excessive weight gain 2.63 (2.32, 2.98) 3.70 (3.44, 3.97) 6.02 (4.79, 7.56)

 ncases/total =402/3,198 ncases/total =1,758/4,380 ncases/total =207/366

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models that reflect the risk 
of childhood overweight/obesity in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood 
(10.0-18.0 years) in children of mothers in the different BMI and gestational weight gain categories, as compared to the 
reference group (normal weight mothers with adequate gestational weight gain). The models are adjusted for maternal 
age, education level, ethnicity, parity, and smoking during pregnancy. P-values for interaction between maternal BMI 
and gestational weight gain for the risk of childhood overweight/obesity: p=0.038, p<0.001 and p=0.637, in early-, 
mid- and late childhood, respectively.
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Table 5. Combined associations of maternal pre-pregnancy BMI and gestational weight gain 
clinical categories with childhood BMI SDS

 Childhood BMI (SDS (95%CI))

Maternal pre-pregnancy BMI Early childhood Mid childhood Late childhood

 2.0-5.0 years 5.0-10.0 years 10.0-18.0 years

Underweight (<18.5 kg/m2)

Inadequate weight gain -0.32 (-0.39, -0.25) -0.52 (-0.58, -0.47) -0.53 (-0.65, -0.41)

n =991 n =1,351 n= 280

Adequate weight gain -0.27 (-0.34, -0.21) -0.37 (-0.42, -0.31) -0.43 (-0.57, -0.30)

n =1,118 n =1598 n= 236

Excessive weight gain -0.14 (-0.24, -0.05) -0.19 (-0.26, -0.11) -0.21 (-0.47, 0.04)

n =469 n =666 n =60

Normal weight (18.5-24.9 kg/m2)

Inadequate weight gain -0.10 (-0.12, -0.07) -0.07 (-0.09, -0.05) -0.06 (-0.11, -0.01)

n =12,264 n =16,549 n= 3,340

Adequate weight gain Reference Reference Reference

n =19,815 n =28,928 n =4,249

Excessive weight gain 0.10 (0.08, 0.13) 0.14 (0.13, 0.16) 0.12 (0.06, 0.17)

n =15,121 n =22,825 n =2,187

Overweight (25-29.9 kg/m2)

Inadequate weight gain 0.06 (0.00, 0.12) 0.22 (0.17, 0.27) 0.32 (0.19, 0.45)

n = 1,445 n =1,803 n =241

Adequate weight gain 0.13 (0.09, 0.17) 0.29 (0.26, 0.32) 0.34 (0.25, 0.43)

n =3,501 n=4,715 n=581

Excessive weight gain 0.23 (0.20, 0.25) 0.41 (0.39, 0.43) 0.55 (0.49, 0.62)

n =9,137 n =12,962 n =1,127

Obesity (≥30 kg/m2)

Inadequate weight gain 0.26 (0.20, 0.26) 0.58 (0.52, 0.63) 0.94 (0.77, 1.11)

n =1,082 n =1,391 n =137

Adequate weight gain 0.36 (0.30, 0.41) 0.64 (0.59, 0.69) 0.88 (0.73, 1.03)

n=1,395 n =1,901 n =181

Excessive weight gain 0.36 (0.33, 0.40) 0.69 (0.66, 0.72) 1.01 (0.90, 1.11)

n =3,238 n =4,426 n=368

Values are regression coefficients (95% confidence intervals) from multilevel linear regression models that reflect dif-
ferences in early childhood (2.0 – 5.0 years), mid childhood (5.0 – 10.0 years) and late childhood (10.0 – 18.0 years) 
BMI SDS between children of mothers in the different BMI and total gestational weight gain groups compared with 
the reference group (normal weight and adequate gestational weight gain). The models are adjusted for maternal age, 
education level, ethnicity, parity, and smoking during pregnancy. P-values for interaction between maternal BMI and 
gestational weight gain for childhood BMI SDS: p=0.016, p=0.002 and p=0.406, in early-, mid- and late childhood, 
respectively.
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Interpretation of main findings
Maternal obesity does not only affect pregnancy outcomes, but may also have persistent 

effects on offspring fat development. Previous studies showed consistently that maternal 

overweight and obesity were positively associated with offspring BMI (2-4). In this IPD meta-

analysis, we observed not only that maternal overweight and obesity were associated with 

higher risks of childhood overweight/obesity, but that these risks were progressively higher 

among children of mothers with grade 1, grade 2, and grade 3 obesity, respectively. In 

addition, we observed that this association was not limited to the extremes of maternal BMI, 

but was present across the full range. We observed a stronger association of maternal BMI 

with the risk of childhood overweight/obesity at later ages. Although we used a different 

reference chart in early childhood and did not correct for correlations between BMI measure-

ments due to the large sample size, the observed association is unlikely to be explained by 

methodological issues as the observed risk also increased between mid and late childhood, 

where we used the same reference charts. Also, 2 recent studies among 1,494 Australian 

and 3,805 Dutch participants observed stronger associations of maternal BMI with child-

hood growth and obesity risk with increasing age, while accounting for correlated repeated 

measures (16, 17). This increasing strength of the association with age might reflect an 

intra-uterine programming mechanism becoming more apparent when children get older, 

or might be explained by a stronger influence of lifestyle characteristics of the child at later 

ages. We estimated that about 10% to 20% of overweight/obesity cases throughout child-

hood are attributable to maternal pre-pregnancy overweight and obesity, with the highest 

proportions explained by maternal overweight. Thus, our results suggest that high maternal 

BMI has a considerable population impact, and can be used as a target for preventive strate-

gies. Importantly, the risk of childhood overweight and obesity is not confined to maternal 

obesity, but increases gradually over the full range of maternal pre-pregnancy BMI.

In addition to pre-pregnancy BMI, the amount of weight gain during pregnancy also seems 

to be associated with offspring obesity (18, 19). Previous meta-analyses of published studies 

showed a 33% to 40% increased risk of overweight or obesity in children of mothers with 

excessive gestational weight gain (6, 7). In line with these studies, we observed that excessive 

gestational weight gain was related to a 39%–72% higher risk of overweight throughout 

childhood. On a population level, 11% to 19% of childhood overweight/obesity could be at-

tributed to excessive gestational weight gain. Also, gestational weight gain z-scores (specific 

for maternal BMI and gestational age) across the full range tended to be associated with an 

increased risk of offspring overweight/obesity. Thus, higher gestational weight gain across 

the full range, rather than only lower or higher gestational weight gain than recommended 

by the IOM, seems to be related to offspring weight status.

For the prevention of childhood overweight and obesity, insight into the combined ef-

fects of maternal BMI and gestational weight gain is important. Only 2 previous studies 

assessed the combined associations of maternal pre-pregnancy BMI and gestational weight 
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gain with childhood adiposity (20, 21). A study among 100,612 participants from China 

reported that, compared to normal maternal weight and adequate weight gain, normal 

weight or overweight/ obesity and excessive gestational weight gain was associated with 

an increased risk of overweight at 3–6 years of age in children (20). In a study in the US 

among 4,436 participants describing trajectories of maternal weight from pre-pregnancy 

until the postpartum period, the trajectory with the highest risk of offspring obesity at ages 

6–11 and 12–19 years consisted almost entirely of women who were overweight or obese 

at the start of pregnancy, but only half of this group had excessive gestational weight gain 

(21). We observed that, compared to children of women with normal weight and adequate 

gestational weight gain, children of overweight and obese mothers had a higher risk of 

overweight/obesity, regardless of gestational weight gain. Within the BMI categories, there 

was only a small effect of gestational weight gain on offspring overweight/obesity. These 

findings suggest that the effects of gestational weight gain add only to a limited extent to 

the effects of maternal pre-pregnancy BMI.

Our results strongly suggest that maternal pre-pregnancy BMI and gestational weight 

gain are associated with increased risk of overweight and obesity throughout childhood. It 

remains unclear whether these associations are causal and which mechanisms are underlying 

these associations. Maternal pre-pregnancy obesity and excessive gestational weight gain are 

complex traits, which reflect multiple components. Maternal pre-pregnancy obesity reflects 

maternal genetic predisposition, nutritional status, fat accumulation, and low-grade inflam-

mation, whereas maternal weight gain during pregnancy also reflects fluid expansion and 

growth of the fetus, placenta, and uterus (22, 23). Both may, at least partly, be explained 

by intra-uterine programming mechanisms. The fetal over-nutrition hypothesis suggests that 

increased fetal exposure to nutrients may lead to persistent adaptations in the structure 

and function of adipose tissue, appetite regulation, and energy metabolism, leading to an 

increased susceptibility to later obesity (24, 25). Epigenetic processes may play an impor-

tant role in these adaptations (26). The associations may also reflect genetic predisposition 

to obesity (27, 28) or sociodemographic or lifestyle factors shared by mother and child. 

Common pregnancy disorders, including gestational diabetes and gestational hypertensive 

disorders, have also been related to offspring obesity risk (29-31). However, using data from 

the same studies as our current analyses, we previously reported that these associations were 

not independent of maternal BMI (9). In the current analysis, the associations of maternal 

BMI with the risk of childhood overweight/ obesity were independent of gestational diabetes 

and gestational hypertensive disorders. Unfortunately, no information on maternal glucose 

concentrations was available to assess the role of maternal glycemic status in further detail. 

Previous research has shown that there are sex differences in weight and body fat develop-

ment in childhood (32, 33). We hypothesized that maternal BMI and gestational weight gain 

would influence the risk of childhood overweight/obesity differently or with a different timing 

in boys and girls. However, we did not observe sex differences in the observed associations, 
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possibly due to the fact that BMI does not distinguish between fat and lean mass. Further 

research is needed into the causality and underlying mechanisms of these associations (22).

Maternal pre-pregnancy BMI and, to a smaller extent, gestational weight gain are im-

portant modifiable risk factors of childhood weight status with a considerable population 

impact. Thus far, intervention trials have been focused on maternal weight during mid or late 

pregnancy, mostly showing reductions in gestational weight gain, but not showing any effect 

on birth outcomes or infant body composition (34-36). Only 1 small Swedish study including 

a lifestyle intervention reported results on childhood adiposity and showed no difference in 

BMI at age 5 years (37). We observed that the effect of excessive gestational weight gain 

was small in women with pre-pregnancy overweight and obesity. We also observed that the 

highest proportion of childhood overweight/obesity on a population level could be attributed 

to maternal pre-pregnancy overweight. Future intervention studies should shift their focus 

to preconceptional weight management, targeting women of reproductive age to achieve a 

normal weight.

Strengths and limitations
We meta-analyzed original data of different pregnancy and birth cohorts, limiting the poten-

tial of publication bias and enabling a consistent definition of exposures and outcomes and 

adjustment for potential confounders. Due to the large sample size, we were able to study 

effects in people with relatively rare conditions, such as severely obese women. We had data 

available at different childhood ages, enabling us to study the effects throughout childhood. 

We did not assess the associations of maternal BMI and gestational weight gain with the risk 

of childhood overweight/obesity over time in longitudinal analyses, as the data needed for 

such analyses were only available in a small subgroup of children and cohorts. Further stud-

ies are needed specifically exploring the development of childhood overweight and obesity 

over time in response to maternal BMI and gestational weight gain. Cohorts were initiated 

between 1989 and 2011. Given the rise in obesity prevalence in the past decades (38), it 

is likely that the current obesity prevalence and consequently the proportions of childhood 

overweight/obesity attributable to maternal overweight and obesity are underestimated. In 

our study, fewer cohorts reached the age for the late childhood analyses than for the early or 

mid childhood analyses. Our results for the late childhood analyses may be biased by cohort 

effects. We consider that the bias would most likely lead to an underestimation of the age 

differences because of the higher prevalences of childhood obesity in more recently started 

cohorts with younger children. As this study only included cohorts from Europe, North 

America, and Australia, and demographic characteristics in other continents may be differ-

ent, results can only be generalized to participants from these continents. Further studies are 

needed to address similar research questions in other populations. We performed sensitivity 

analyses based on 2-stage random effects meta-analyses, which gave similar results with 

low to moderate heterogeneity between the cohorts. We used a missing value category to 
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deal with missing data for covariates. Due to data availability and the size of the dataset, 

we were not able to apply more advanced imputation strategies. We observed similar results 

when we conducted a complete case analysis (Supplemental Tables 7 and 8). Because 

maternal BMI was self-reported in some cohorts, some misclassification and underestimation 

of the effect estimates might be present. For the cohorts with no information on maternal 

pre-pregnancy BMI available, we used BMI measured in early pregnancy, which might have 

led to an overestimation of BMI as a result of gestational weight gain. For the country-

specific analyses, it is important to note that countries are represented by 1 to 5 cohorts of 

different sample sizes per country and that not all cohorts are population-based, affecting 

the representativeness of the results for the full country. Although we adjusted the models 

for potential confounders, residual confounding by, for example, physical activity and dietary 

intake might still be an issue.

Conclusions
Higher maternal pre-pregnancy BMI and gestational weight gain are across their full ranges 

associated with an increased risk of offspring overweight/obesity throughout childhood and 

have a considerable population impact. The effect of gestational weight gain in addition 

to the effect of maternal pre-pregnancy BMI was small. Future intervention trials aiming to 

reduce childhood overweight and obesity should focus on maternal weight status before 

pregnancy, in addition to weight gain during pregnancy.
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Supplemental Table 1. Cohort-specific methods of data collection

Cohort name 
(country)

Maternal height
Maternal pre-/
early pregnancy 
weight

Maternal latest 
weight before 
delivery or 
gestational 
weight gain

Childhood weight 
and height

ABCD (The 
Netherlands)

Self-reported Self-reported NA Measured

ALSPAC (United 
Kingdom)

Self-reported Self-reported Clinical records Measured

AOB/F (Canada) Self-reported Self-reported NA Reported

BAMSE (Sweden) Medical Birth 
Registry

Medical Birth 
Registry

Medical Birth 
Registry

Measured

BIB (United 
Kingdom)

Measured Measured Clinical records Measured

CHOP (Multiple) Measured Self-reported NA Measured

Co.N.ER (Italy) Self-reported Self-reported Self-reported Reported

DNBC (Denmark) Self-reported Self-reported Self-reported Reported or 
measured

EDEN (France) Measured Self-reported Clinical records Measured or clinical 
records

FCOU (Ukraine) Clinical records Clinical records Clinical records Clinical records

GASPII (Italy) Self-reported Self-reported Self-reported Measured

GECKO Drenthe 
(The Netherlands)

Self-reported Self-reported Self-reported Measured

GENERATION R
(The Netherlands)

Measured Self-reported Self-reported Measured

GENERATION XXI 
(Portugal)

Measured or ID card Self-reported Self-reported Measured

GENESIS (Greece) Self-reported Self-reported Self-reported Measured

GINIplus (Germany) Self-reported Self-reported Self-reported Clinical records at 
4y, measured and 
reported at 10 and 
15y

HUMIS (Norway) Self-reported Self-reported Self-reported Reported

INMA (Spain) Measured or self-
reported

Self-reported Clinical records Measured

KOALA (The 
Netherlands)

Self-reported Self-reported Self-reported Reported

Krakow Cohort 
(Poland)

Self-reported Self-reported Self-reported Measured

LISAplus (Germany) Self-reported Self-reported Self-reported Clinical records at 
4y, measured and 
reported at 10 and 
15y



149

Maternal adiposity and childhood overweight and obesity

3.1

Supplemental Table 1. Cohort-specific methods of data collection (continued)

Cohort name 
(country)

Maternal height
Maternal pre-/
early pregnancy 
weight

Maternal latest 
weight before 
delivery or 
gestational 
weight gain

Childhood weight 
and height

LUKAS (Finland) Self-reported Self-reported Self-reported or 
clinical records

Reported

MoBa (Norway) Self-reported Self-reported Self-reported Reported

NINFEA (Italy) Self-reported Self-reported Self-reported Reported

PÉLAGIE (France) Self-reported Self-reported NA Reported

PIAMA (The 
Netherlands)

Self-reported Self-reported Self-reported Reported and 
measured (4 and 
8y)

Piccolipiù (Italy) Self-reported Self-reported Self-reported Measured

Project Viva (United 
States)

Self-reported Self-reported Clinical records Measured

Raine Study 
(Australia)

Measured Self-reported NA Measured

REPRO_PL (Poland) Measured Self-reported Measured Measured

RHEA (Greece) Measured Self-reported Measured Clinical records or 
measured

ROLO (Ireland) Measured Measured Measured Measured

SCOPE BASELINE 
(Ireland)

Measured Measured Measured Measured

SEATON (United 
Kingdom)

Measured Measured NA Measured

Slovak PCB study 
(Slovakia)

Self-reported Self-reported Self-reported Measured

STEPS (Finland) Self-reported Self-reported Self-reported Measured

SWS (United 
Kingdom)

Measured Measured Measured Measured

NA: Not available or not applicable
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Supplemental Figure 1. Country-specific description of exposures and outcomes

Values are valid percentages. The CHOP cohort was excluded from the country-specific analyses, as participants come 
from multiple countries.
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Supplemental Table 3. Associations of maternal pre-pregnancy BMI clinical categories with the 
risk of childhood overweight/obesity, additionally adjusted for gestational diabetes

Early childhood
2.0-5.0 years

Mid childhood
5.0-10.0 years

Late childhood
10-18.0 years

Overweight/obesity Overweight/obesity Overweight/obesity

OR (95% CI) OR (95% CI) OR (95% CI)

Maternal pre-pregnancy BMI

Underweight
(<18.5 kg/m2)

0.57 (0.47, 0.69) 0.44 (0.40, 0.49) 0.44 (0.35, 0.55)

ncases/total =126/3,162 ncases/total =401/4,485 ncases/total =93/877

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

ncases/total =3,092/57,293 ncases/total =13,870/82,438 ncases/total =2,505/13,497

Overweight
(25.0-29.9 kg/m2)

1.66 (1.55, 1.77) 1.91 (1.84, 1.98) 2.28 (2.08, 2.50)

ncases/total =1,476/17,013 ncases/total =6,556/23,359 ncases/total =968/2,799

Obesity
(≥30.0 kg/m2)

2.40 (2.21, 2.61) 3.11 (2.97, 3.26) 4.57 (3.99, 5.24)

ncases/total =864/7,058 ncases/total =3,612/9,248 ncases/total =528/1,000

 Obesity grade 1
 (30.0-34.9 kg/m2)

2.33 (2.12, 2.56) 2.88 (2.73, 3.04) 4.17 (3.56, 4.87)

ncases/total =613/5,142 ncases/total =2,552/6,874 ncases/total =363/726

 Obesity grade 2
 (35.0-39.9  kg/m2)

2.53 (2.16, 2.97) 3.55 (3.23, 3.91) 5.98 (4.50, 7.95)

ncases/total =190/1,489 ncases/total =782/1,836 ncases/total =129/215

 Obesity grade 3
 (≥40.0 kg/m2)

2.85 (2.16, 3.77) 5.14 (4.32, 6.12) 5.54 (3.25, 9.45)

ncases/total =61/427 ncases/total =278/538 ncases/total =36/59

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models that reflect the risk of 
childhood overweight in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood (10.0-18.0 
years) in children of mothers in the different pre-pregnancy BMI groups, as compared with the reference group (normal 
weight). The models are adjusted for maternal age, education level, ethnicity, parity, smoking during pregnancy, and 
gestational diabetes.
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Supplemental Table 4. Associations of maternal pre-pregnancy BMI clinical categories with 
the risk of childhood overweight/obesity, additionally adjusted for gestational hypertensive 
disorders

Early childhood
2.0-5.0 years

Mid childhood
5.0-10.0 years

Late childhood
10-18.0 years

Overweight/obesity Overweight/obesity Overweight/obesity

OR (95% CI) OR (95% CI) OR (95% CI)

Maternal pre-pregnancy 
BMI

Underweight
(<18.5 kg/m2)

0.57 (0.47, 0.69) 0.44 (0.40, 0.49) 0.44 (0.35, 0.55)

ncases/total =126/3,162 ncases/total =401/4,485 ncases/total =93/877

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

ncases/total =3,092/57,293 ncases/total =13,870/82,438 ncases/total =2,505/13,497

Overweight
(25.0-29.9 kg/m2)

1.66 (1.56, 1.78) 1.91 (1.84, 1.98) 2.26 (2.06, 2.48)

ncases/total =1,476/17,013 ncases/total =6,556/23,359 ncases/total =968/2,799

Obesity
(≥30.0 kg/m2)

2.45 (2.25, 2.66) 3.12 (2.98, 3.26) 4.46 (3.89, 5.11)

ncases/total =864/7,058 ncases/total =3,612/9,248 ncases/total =528/1,000

 Obesity grade 1
 (30.0-34.9 kg/m2)

2.37 (2.15, 2.60) 2.89 (2.74, 3.05) 4.08 (3.49, 4.77)

ncases/total =613/5,142 ncases/total =2,552/6,874 ncases/total =363/726

 Obesity grade 2
 (35.0-39.9 kg/m2)

2.59 (2.21, 3.04) 3.56 (3.24, 3.93) 5.82 (4.37, 7.73)

ncases/total =190/1,489 ncases/total =782/1,836 ncases/total =129/215

 Obesity grade 3
 (≥40.0 kg/m2)

2.96 (2.24, 3.91) 5.16 (4.34, 6.14) 5.27 (3.09, 9.00)

ncases/total =61/427 ncases/total =278/538 ncases/total =36/59

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models that reflect the risk of 
childhood overweight in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood (10.0-18.0 
years) in children of mothers in the different pre-pregnancy BMI groups, as compared with the reference group (normal 
weight). The models are adjusted for maternal age, education level, ethnicity, parity, smoking during pregnancy, and 
gestational hypertensive disorders (gestational hypertension and pre-eclampsia).
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Supplemental Table 5. Associations of maternal pre-pregnancy BMI clinical categories with 
the risk of childhood overweight/obesity, additionally adjusted for gestational-age-adjusted 
birth weight

Early childhood
2.0-5.0 years

Mid childhood
5.0-10.0 years

Late childhood
10-18.0 years

Overweight/obesity Overweight/obesity Overweight/obesity

OR (95% CI) OR (95% CI) OR (95% CI)

Maternal pre-pregnancy 
BMI

Underweight
(<18.5 kg/m2)

0.60 (0.49, 0.72) 0.46 (0.42, 0.51) 0.45 (0.36, 0.56)

ncases/total =126/3,162 ncases/total =401/4,485 ncases/total =93/877

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

ncases/total =3,092/57,293 ncases/total =13,870/82,438 ncases/total =2,505/13,497

Overweight
(25.0-29.9 kg/m2)

1.61 (1.50, 1.72) 1.86 (1.80, 1.93) 2.25 (2.05, 2.46)

ncases/total =1,476/17,013 ncases/total =6,556/23,359 ncases/total =968/2,799

Obesity
(≥30.0 kg/m2)

2.29 (2.11, 2.49) 2.98 (2.84, 3.12) 4.42 (3.86, 5.07)

ncases/total =864/7,058 ncases/total =3,612/9,248 ncases/total =528/1,000

 Obesity grade 1
 (30.0-34.9 kg/m2)

2.23 (2.03, 2.45) 2.77 (2.62, 2.92) 4.02 (3.44, 4.71)

ncases/total =613/5,142 ncases/total =2,552/6,874 ncases/total =363/726

 Obesity grade 2
 (35.0-39.9 kg/m2)

2.40 (2.05, 2.82) 3.37 (3.06, 3.72) 5.82 (4.38, 7.74)

ncases/total =190/1,489 ncases/total =782/1,836 ncases/total =129/215

 Obesity grade 3
 (≥40.0 kg/m2)

2.69 (2.04, 3.55) 4.85 (4.07, 5.77) 5.35 (3.13, 9.13)

ncases/total =61/427 ncases/total =278/538 ncases/total =36/59

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models that reflect the risk of 
childhood overweight in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood (10.0-18.0 
years) in children of mothers in the different pre-pregnancy BMI groups, as compared with the reference group (normal 
weight). The models are adjusted for maternal age, education level, ethnicity, parity, smoking during pregnancy, and 
gestational-age-adjusted birth weight.



CHAPTER 3.1

158

Supplemental Table 6. Associations of maternal pre-pregnancy BMI and gestational weight 
gain clinical categories with the risk of childhood underweight

Early childhood
2.0-5.0 years

Mid childhood
5.0-10.0 years

Late childhood
10-18.0 years

Underweight Underweight Underweight

OR (95% CI)
PAR
(%)

OR (95% CI)
PAR
(%)

OR (95% CI)
PAR
(%)

Maternal pre-pregnancy BMI

Underweight
(<18.5 kg/m2)

1.46 (1.15, 1.86) 1.8 1.94 (1.66, 2.27) 3.5 2.40 (1.69, 3.39) 5.2

ncases/total =78/3,114 ncases/total =188/4,272 ncases/total =40/824

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

ncases/total =884/55,085 ncases/total =1,681/70,249 ncases/total =240/11,232

Overweight
(25.0-29.9 kg/m2)

0.93 (0.81, 1.08) NA 0.71 (0.63, 0.81) NA 0.49 (0.31, 0.78) NA

ncases/total =245/15,782 ncases/total =6,556/23,359 ncases/total =20/1,851

Obesity
(≥30.0 kg/m2)

0.74 (0.58. 0.93) NA 0.60 (0.49, 0.75) NA 0.38 (0.14, 1.03) NA

ncases/total =80/6,274 ncases/total =312/17,115 ncases/total =4/367

 Obesity grade 1
 (30.0-34.9 kg/m2)

0.69 (0.53, 0.91) NA 0.60 (0.47, 0.76) NA 0.49 (0.18, 1.34) NA

ncases/total =55/4,584 ncases/total =70/4,392 ncases/total =4/476

 Obesity grade 2
 (35.0-39.9 kg/m2)

0.88 (0.56, 1.38) NA 0.64 (0.40, 1.03) NA NA NA

ncases/total =20/1,319 ncases/total =18/1,072 ncases/total =0/86

 Obesity grade 3
 (≥40.0 kg/m2)

0.77 (0.32, 1.88) NA 0.55 (0.20, 1.47) NA NA NA

ncases/total =5/371 ncases/total =4/264 ncases/total =0/23

Gestational weight gain

Inadequate weight 
gain

1.24 (1.06, 1.44) 4.1 1.25 (1.11, 1.40) 4.2 1.15 (0.92, 1.43) 2.6

ncases/total =298/14,929 ncases/total=489/17,579 ncases/total=101/3,293

Adequate weight 
gain

Reference Reference Reference

ncases/total =411/24,287 ncases/total=751/30,738 ncases/total=95/4,303

Excessive weight 
gain

0.84 (0.73, 0.97) NA 0.83 (0.74, 0.92) NA 0.88 (0.69, 1.14) NA

ncases/total=375/25,700 ncases/total=678/30,995 ncases/total=39/2,681

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models that reflect the risk of 
childhood underweight in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood (10.0-18.0 
years) in children of mothers in the different pre-pregnancy BMI groups or gestational weight gain groups, as compared 
with the reference group (normal weight for pre-pregnancy BMI and adequate weight gain for gestational weight gain) 
or population attributable risk fractions (PAR), indicating the proportion of childhood underweight cases attributable 
to each maternal BMI or gestational weight gain category. The models are adjusted for maternal age, education level, 
ethnicity, parity, and smoking during pregnancy. NA: not applicable.
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Supplemental Figure 2. Overall and country-specific population attributable risk fractions of 
maternal overweight, obesity and excessive gestational weight gain for mid childhood over-
weight/obesity

Values are population attributable risk fractions (PAR) indicating the proportion of mid childhood overweight/obesity 
cases attributable to (A) maternal overweight, (B) maternal obesity and (C) excessive gestational weight gain. The CHOP 
cohort was excluded from the country-specific analyses, as participants come from multiple countries.
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Supplemental Table 7. Associations of maternal pre-pregnancy BMI and gestational weight 
gain clinical categories with the risk of childhood overweight/obesity, complete case analysis

Early childhood
2.0-5.0 years

Mid childhood
5.0-10.0 years

Late childhood
10-18.0 years

overweight/obesity overweight/obesity overweight/obesity

OR (95% CI) OR (95% CI) OR (95% CI)

Maternal pre-pregnancy BMI

Underweight
(<18.5 kg/m2)

0.65 (0.49, 0.85) 0.42 (0.35, 0.51) 0.48 (0.37, 0.61)

ncases/total =68/1,266 ncases/total =146/1,356 ncases/total =73/601

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

ncases/total =1,055/19,057 ncases/total =4,625/22,872 ncases/total =1,791/9,176

Overweight
(25.0-29.9 kg/m2)

1.73 (1.54, 1.95) 2.07 (1.94, 2.21) 2.36 (2.12, 2.64)

ncases/total =469/5,289 ncases/total =1,997/5,832 ncases/total = 691/1,908

Obesity
(≥30.0 kg/m2)

2.82 (2.43, 3.26) 3.72 (3.40, 4.08) 4.84 (4.09, 5.72)

ncases/total =295/2,197 ncases/total =1,115/2,325 ncases/total =359/649

 Obesity grade 1
 (30.0-34.9 kg/m2)

2.66 (2.27, 3.18) 3.53 (3.18, 3.92) 4.47 (3.69, 5.42)

ncases/total =204/1,568 ncases/total =785/1,689 ncases/total =252/476

 Obesity grade 2
 (35.0-39.9 kg/m2)

3.29 (2.52, 4.30) 3.92 (3.26, 4.72) 5.50 (3.85, 7.87)

ncases/total =71/477 ncases/total =243/491 ncases/total =79/134

 Obesity grade 3
 (≥40.0 kg/m2)

2.77 (1.71, 4.48) 5.88 (4.18, 8.28) 8.56 (4.22, 17.36)

ncases/total =20/152 ncases/total =87/145 ncases/total =28/39

Gestational weight gain

Inadequate weight gain 0.84 (0.72, 0.98) 0.84 (0.78, 0.91) 0.92 (0.80, 1.05)

ncases/total = 303/4,974 ncases/total= 1,315/6,355 ncases/total= 511/2,614

Adequate weight gain Reference Reference Reference

ncases/total = 475/6,676 ncases/total= 1,938/8,425 ncases/total= 646/3,207

Excessive weight gain 1.49 (1.30, 1.70) 1.53 (1.42, 1.64) 1.75 (1.55, 1.99)

ncases/total= 567/5,939 ncases/total= 2,341/7,471 ncases/total= 731/2,321

Values are odds ratios (95% confidence intervals) from multilevel binary logistic regression models with complete cases 
that reflect the risk of childhood overweight/obesity in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) 
and late childhood (10.0-18.0 years) in children of mothers in the different pre-pregnancy BMI groups or gestational 
weight gain groups, as compared with the reference group (normal weight for pre-pregnancy BMI and adequate 
weight gain for gestational weight gain). The models are adjusted for maternal age, education level, ethnicity, parity, 
and smoking during pregnancy.
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Supplemental Table 8. Associations of maternal pre-pregnancy BMI and gestational weight 
gain clinical categories with childhood BMI SDS, complete case analysis

 
 

Childhood BMI (SDS)

Early childhood Mid childhood Late childhood

2.0-5.0 years 5.0-10.0 years 10.0-18.0 years

Maternal pre-pregnancy BMI

Underweight
(<18.5 kg/m2)

-0.29 (-0.34, -0.23) -0.43 (-0.34, -0.23) -0.45 (-0.53, -0.37)

n =1,272 n =1,370 n=619

Normal weight
(18.5-24.9 kg/m2)

Reference Reference Reference

n =19,127 n =23,007 n=9,280

Overweight
(25.0-29.9 kg/m2)

0.22 (0.19, 0.25) 0.39 (0.36, 0.42) 0.47 (0.42, 0.52)

n=5,303 n =5,852 n=1,918

Obesity
(≥30.0 kg/m2)

0.34 (0.36, 0.45) 0.76 (0.72, 0.80) 0.94 (0.86, 1.02)

n =2,200 n =2,330 n=653

 Obesity grade 1
 (30.0-34.9 kg/m2)

0.38 (0.33, 0.43) 0.71 (0.66, 0.76) 0.88 (0.78, 0.97)

n =1,570 n =1,693 n=480

 Obesity grade 2
 (35.0-39.9 kg/m2)

0.45 (0.36, 0.54) 0.81 (0.72, 0.90) 1.05 (0.88, 1.23)

n =478 n =492 n =134

 Obesity grade 3
 (≥40.0 kg/m2)

0.453 (0.38, 0.69) 1.15 (0.98, 1.31) 1.38 (1.06, 1.70)

n =152 n =145 n =39

Gestational weight gain

Inadequate weight gain -0.10 (-0.14, -0.06) -0.12 (-0.16, -0.09) -0.10 (-0.15, -0.04)

n =5,064 n =6,447 n=2,676

Adequate weight gain Reference Reference Reference

n =6,768 n =8,515 n=3,264

Excessive weight gain 0.18 (0.14, 0.21) 0.24 (0.21, 0.27) 0.30 (0.25, 0.36)

n=5,981 n =7,526 n=2,345

Values are regression coefficients (95% confidence intervals) from multilevel linear regression models with complete 
cases that reflect differences in early childhood (2.0-5.0 years), mid childhood (5.0-10.0 years) and late childhood 
(10.0-18.0 years) in children of mothers in the different pre-pregnancy BMI groups or gestational weight gain groups, 
as compared with the reference group (normal weight for pre-pregnancy BMI and adequate weight gain for gesta-
tional weight gain). The models are adjusted for maternal age, education level, ethnicity, parity, and smoking during 
pregnancy.
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abstract

Importance: Both low and high gestational weight gain have been associated with adverse 

maternal and infant outcomes, but optimal gestational weight gain remains uncertain and 

not well defined for all prepregnancy weight ranges.

Objectives: To examine the association of ranges of gestational weight gain with risk of 

adverse maternal and infant outcomes and estimate optimal gestational weight gain ranges 

across prepregnancy body mass index categories.

Design, setting and participants: Individual participant-level meta-analysis using data from 

196 670 participants within 25 cohort studies from Europe and North America (main study 

sample). Optimal gestational weight gain ranges were estimated for each prepregnancy 

body mass index (BMI) category by selecting the range of gestational weight gain that was 

associated with lower risk for any adverse outcome. Individual participant-level data from 

3505 participants within 4 separate hospital-based cohorts were used as a validation sample. 

Data were collected between 1989 and 2015. The final date of follow-up was December 

2015.

Exposures: Gestational weight gain.

Main outcomes and measures: The main outcome termed any adverse outcome was 

defined as the presence of 1 or more of the following outcomes: preeclampsia, gestational 

hypertension, gestational diabetes, cesarean delivery, preterm birth, and small or large size 

for gestational age at birth.

Results: Of the 196 670 women (median age, 30.0 years [quartile 1 and 3, 27.0 and 33.0 

years] and 40 937 were white) included in the main sample, 7809 (4.0%) were categorized 

at baseline as underweight (BMI <18.5); 133 788 (68.0%), normal weight (BMI, 18.5-24.9); 

38 828 (19.7%), overweight (BMI, 25.0-29.9); 11 992 (6.1%), obesity grade 1 (BMI, 30.0-

34.9); 3284 (1.7%), obesity grade 2 (BMI, 35.0-39.9); and 969 (0.5%), obesity grade 3 (BMI, 

≥40.0). Overall, any adverse outcome occurred in 37.2% (n = 73 161) of women, ranging 

from 34.7%(2706 of 7809) among women categorized as underweight to 61.1%(592 of 

969) among women categorized as obesity grade 3. Optimal gestational weight gain ranges 

were 14.0 kg to less than 16.0 kg for women categorized as underweight; 10.0 kg to less 

than 18.0 kg for normal weight; 2.0 kg to less than 16.0 kg for overweight; 2.0 kg to less 

than 6.0 kg for obesity grade 1; weight loss or gain of 0 kg to less than 4.0 kg for obesity 

grade 2; and weight gain of 0 kg to less than 6.0 kg for obesity grade 3. These gestational 

weight gain ranges were associated with low to moderate discrimination between those 

with and those without adverse outcomes (range for area under the receiver operating char-

acteristic curve, 0.55-0.76). Results for discriminative performance in the validation sample 

were similar to the corresponding results in the main study sample (range for area under the 

receiver operating characteristic curve, 0.51-0.79).
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Conclusions and relevance: In this meta-analysis of pooled individual participant data from 

25 cohort studies, the risk for adverse maternal and infant outcomes varied by gestational 

weight gain and across the range of prepregnancy weights. The estimates of optimal gesta-

tional weight gain may inform prenatal counseling; however, the optimal gestational weight 

gain ranges had limited predictive value for the outcomes assessed.
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introduction

Gestational weight gain has been found to be related to the risk of pregnancy complications, 

maternal postpartum weight retention, and obesity in offspring (1-3). Gestational weight 

gain reflects multiple characteristics, including maternal fat accumulation, fluid expansion, 

and the growth of the fetus, placenta, and uterus (4). Gestational weight gain is necessary 

to ensure a healthy fetus, but excessive gestational weight gain has been associated with 

adverse outcomes.

Higher prepregnancy body mass index (BMI; calculated as weight in kilograms divided 

by height in meters squared) also has been associated with lower gestational weight gain 

and increased risk for adverse maternal and infant outcomes. Therefore, optimal gestational 

weight gain ranges should account for prepregnancy BMI (5, 6). Existing guidelines for ges-

tational weight gain from the US National Academy of Medicine (NAM; formerly the Institute 

of Medicine) have limitations such as the reliance on a limited number of observational 

studies relating gestational weight gain to 5 maternal and offspring outcomes and insuf-

ficient information about important pregnancy outcomes (eg, gestational hypertension and 

gestational diabetes) (7). In addition, the NAM guidelines do not include recommendations 

for obesity grade 1, 2, and 3 separately even though the prevalence of extreme obesity is 

increasing in Western populations. Information regarding optimal gestational weight gain 

across a range of maternal BMI categories is important for the identification of groups at 

increased risk.

This study pooled individual participant data from 25 pregnancy and birth cohorts from 

Europe and North America to assess associations of the amount of gestational weight gain 

with maternal and infant outcomes according to baseline weight status of underweight, 

normal weight, overweight, obesity grade 1, obesity grade 2, and obesity grade 3.

methods

Inclusion criteria and participating cohorts
This study was part of an international LifeCycle Project collaboration on maternal obesity 

and childhood outcomes (8, 9). A pregnancy or birth cohort study was eligible for inclusion 

if it included mothers with singleton live-born children who were born between 1989 and 

2015, had information on maternal prepregnancy or early-pregnancy BMI, and had at least 1 

offspring measurement (birth weight or childhood BMI). The final date of follow-up was De-

cember 2015. No exclusions were made based on previous pregnancy or birth complications.

The cohorts included had received institutional review board approval and written informed 

consent had been obtained. We invited 50 Western cohorts from Europe, North America, 

and Oceania that had been selected from existing collaborations on childhood health (the 



171

Gestational weight gain and adverse outcomes

3.2

EarlyNutrition Project, the CHICOS Project, and Birthcohorts.net, which was accessed until 

July 2014), of which 39 cohorts agreed to participate. Only participants with information 

on maternal prepregnancy BMI, gestational weight gain, and at least 1 maternal or infant 

outcome of interest were included.

Of the 29 cohorts with the required data, 25 were population based cohorts and were 

included in the main study sample. The remaining 4 hospital-based cohorts were included 

as the external validation sample (Supplemental Figure 1). The included cohorts and the 

data collection methods appear in Supplemental Table 1. Women could be included more 

than once in the analyses if they had multiple singleton pregnancies during the study period. 

Anonymized data sets were stored on a single central secure data server that was only acces-

sible by the main investigator analysts (E.V. and R.G.).

Maternal prepregnancy BMI and gestational weight gain
Maternal prepregnancy BMI was grouped into categories by 2 BMI units and clinical BMI 

groups according to World Health Organization definitions (10). Data on total gestational 

weight gain in kilograms, which was defined as the difference between the latest weight be-

fore delivery and the prepregnancy weight, were provided by the cohorts. Gestational weight 

gain was grouped into categories of 2 kg each, ranging from weight loss to weight gain of 

28 kg or greater. Smaller increments of gestational weight gain were not used because of 

insufficient statistical power among underweight and severely obese women. Categories at 

the extremes of gestational weight gain were combined for maternal underweight, obesity 

grade 2, and obesity grade 3. To be included, women were required to have data for maternal 

prepregnancy BMI, total gestational weight gain, and any adverse outcome (defined below).

Adverse maternal and infant outcomes
The main outcome of the analyses was the composite any adverse outcome, which was 

defined as the presence of at least 1 of the following outcomes: preeclampsia, gestational 

hypertension, gestational diabetes, cesarean delivery, preterm birth, and small or large size 

for gestational age at birth. Preterm birth was defined as gestational age at birth of less than 

37 weeks. Sex- and gestational age–adjusted SD scores for birth weight were calculated 

using a Northern European reference chart (11). Small and large sizes for gestational age 

at birth were defined as sex- and gestational age–adjusted birth weight less than the10th 

percentile and greater than the 90th percentile, respectively, within each cohort.

For the sensitivity analyses, sex- and age-adjusted SD scores were calculated for childhood 

BMI based on reference growth charts from the World Health Organization (12, 13). The SD 

scores were obtained using data from the highest age available for each child (median age, 

84.9 months [quartile 1 and 3, 61.9 and 95.9 months]) and categorized as underweight, 

normal weight, and overweight or obesity (referred to as overweight) using World Health 

Organization cutoffs (12, 13).
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Statistical analysis
Exploratory multilevel linear regression models were used to assess associations of maternal 

baseline characteristics with total gestational weight gain. The absolute risk for any adverse 

outcome was estimated across the full range of maternal prepregnancy BMI and gestational 

weight gain. Absolute risks were calculated as the percentage of women with any adverse 

outcome within each combination of BMI and gestational weight gain categories. Similarly, 

the absolute risks were estimated for any adverse outcome and for each individual outcome 

across the range of gestational weight gain categories within each clinical BMI group.

The optimal gestational weight gain ranges per clinical BMI group were constructed. The 

odds ratios (ORs) for any adverse outcome were calculated for each gestational weight gain 

category within the particular clinical BMI group vs all other women within that BMI group. 

The individual-level data from all cohorts were analyzed simultaneously using multilevel 

models. The models followed a 2-level hierarchical structure with participants (level 1) nested 

within cohorts (level 2).We used a generalized linear mixed model with a binominal distribu-

tion and logit link. A random intercept at the cohort level was included to allow variation 

in the baseline risk for each cohort. Allowing a random slope for gestational weight gain 

did not improve the models. Model assumptions regarding linearity, independent errors, 

and influential values were met. Optimal gestational weight gain was defined as all weight 

gain categories with a statistically significant protective association (OR <1) for any adverse 

outcome (14). If a gestational weight gain category with a nonsignificant association was 

between 2 significant estimates with an OR of less than 1, that category was included in 

the optimal gestational weight gain range. To construct easily interpretable optimal gesta-

tional weight gain ranges directly applicable for clinical practice, the main analyses were not 

adjusted for maternal age or parity. We also assessed continuous associations of maternal 

prepregnancy BMI and total gestational weight gain in SDs with any adverse outcome and 

compared the strength of these associations by using Z tests for the difference in ORs.

The following sensitivity analyses were performed: (1) we redefined the gestational weight 

gain ranges based on protective associations only (OR <1) regardless of statistical signifi-

cance; (2) we adjusted the models for gestational age at birth and excluded preterm births 

because gestational weight gain depends on length of gestation; (3) we excluded participants 

with missing data on separate adverse maternal and infant outcomes; (4) we adjusted for 

maternal age and parity to explore whether optimal gestational weight gain ranges would 

change when maternal age and parity were taken into account; (5) we excluded cesarean 

delivery as an adverse outcome and included childhood underweight and overweight as 

adverse outcomes to explore whether optimal gestational weight gain ranges would change 

depending on the definition of the composite outcome; and (6) we excluded preeclampsia 

and gestational diabetes as outcomes to address possible reverse causation. We also con-

structed optimal gestational weight gain ranges during the first half of pregnancy, which 
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were defined as the difference between weight at median gestational age of 15.4 weeks 

(quartile 1 and 3, 13.2 and 17.1 weeks) and prepregnancy weight using a similar approach.

The clinical performance of the gestational weight gain ranges in this study were assessed 

as secondary analyses and compared with the NAM guidelines by assessing the number 

of participants classified as having inadequate or excessive weight gain, the associations 

with adverse outcomes using binary logistic multilevel models, and the discriminative per-

formance for both classification systems. The discriminative performance of the classification 

(the ability of the classification to discriminate between those with and those without the 

outcome) from this study and the NAM guidelines was assessed based on the area under the 

receiver operating characteristic curve (AUROC) (15). Predicted probabilities were obtained 

from binary logistic multilevel models assessing the associations of inadequate and excessive 

gestational weight gain with the outcomes. The predicted probabilities were used to calculate 

the AUROC. To assess the associations of the optimal gestational weight gain ranges with 

clinically relevant outcomes not used for the construction of the ranges, we also assessed low 

and high birth weight (≤2500 g or ≥4000 g). In addition, the clinical performance of both 

classification systems was assessed in the external validation sample (n = 3505).

All statistical tests were 2-sided with a significance threshold of .05. However, the sec-

ondary analyses were not adjusted for multiple testing; therefore, these findings should be 

considered exploratory. All statistical analyses were performed using SPSS Statistics version 

24.0 (IBM) and R version 3.3.3 (R Foundation for Statistical Computing).

results

Participant characteristics in main sample
Of the 29 cohorts with the required data (n = 200 175 participants), 25 were population-

based cohorts (n = 196 670 women) and were included as the main study sample (median 

age, 30.0 years [quartile 1 and 3, 27.0 and 33.0 years] and 40 937 were white). At baseline, 

7809 women (4.0%) were categorized as underweight (BMI <18.5); 133 788 (68.0%), nor-

mal weight (BMI, 18.5-24.9); 38 828 (19.7%), overweight (BMI, 25.0- 29.9); 11 992 (6.1%), 

obesity grade 1 (BMI, 30.0-34.9); 3284 (1.7%), obesity grade 2 (BMI, 35.0-39.9); and 969 

(0.5%), obesity grade 3 (BMI, ≥40.0) (Table 1). Overall, any adverse outcome occurred in 

37.2% (n = 73 161) of women, ranging from 34.7% (2706 of 7809) among women catego-

rized as underweight to 61.1% (592 of 969) among women categorized as obesity grade 3.

Women who gained more gestational weight had a lower maternal prepregnancy BMI and 

were slightly younger and more often nulliparous than multiparous (Supplemental Table 2). 

There were no missing data for any individual adverse outcome for 169 437 women (86.2%). 

Of the remainder, 17093 women (8.7%) were missing data for gestational hypertensive 

disorders (including preeclampsia and gestational hypertension), 6898 (3.5%) for gestational 
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diabetes, 9786 (5.0%) for cesarean delivery, 8541 (4.3%) for preterm birth, and 6453 (3.3%) 

for size (small or large) for gestational age at birth (Supplemental Table 3). Based on the 

profiles of all included cohorts, the percentage of women included with multiple singleton 

pregnancies is about 1%.

Participant characteristics in validation sample
There were 3505 women included in the validation sample. They had a median age of 

31.0 years (quartile 1 and 3, 27.7 and 34.7 years) and 1696 were white. There were 277 

women (7.9%) categorized as underweight; 2400 (68.5%), normal weight; 577 (16.5%), 

overweight; 188 (5.4%), obesity grade 1; 53 (1.5%), obesity grade 2; and 10 (0.3%), obesity 

grade 3. Any adverse outcome occurred in 1423 women (40.6%; Supplemental Table 4).

There were no missing data for any individual adverse outcome for 3059 women (87.3%). 

Of the remainder, 423 women (12.1%) were missing data for gestational hypertensive 

disorders (including preeclampsia and gestational hypertension), 421 (12.0%) for gestational 

diabetes, 15 (0.4%) for cesarean delivery, 426 (12.2%) for preterm birth, and 7 (0.2%) for 

size (small or large) for gestational age at birth (Supplemental Table 3). Supplemental 

Tables 5 and 6 provide cohort specific information for both the main sample and the valida-

tion sample.

Maternal prepregnancy BMI, gestational weight gain, and absolute 
risk for any adverse outcome
The absolute risk for any adverse outcome increased across the full range of maternal pre-

pregnancy BMI and was largely independent of gestational weight gain (Figure 1). The 

lowest absolute risks were observed among women with low to normal BMI and a moderate 

to high total gestational weight gain. The lowest risk was 26.7% (16 of 60) for women 

with a BMI of less than 18.0 and gestational weight gain of 26.0 kg to 27.9 kg. The highest 

absolute risks were observed among women with a high BMI and a high gestational weight 

gain. The highest risk was 94.4% (17 of 18) for women with a BMI of 40.0 or greater and 

gestational weight gain of 20.0 kg to 21.9 kg.

Among women categorized as underweight, the absolute risk for any adverse outcome 

ranged from 29.2%(387 of 1326) for gestational weight gain of 14.0 kg to 15.9 kg to 

50.2% (203 of 404) for gestational weight gain of less than 8.0 kg (Figure 2). Of all out-

comes separately, the absolute risk was highest for small size for gestational age (highest risk: 

32.1% [125 of 390] for gestational weight gain <8 kg).

Among women categorized as normal weight, the absolute risk for any adverse outcome 

ranged from 31.7% (7314 of 23 073) for gestational weight gain of 14.0 kg to 15.9 kg to 

46.9% (1256 of 2679) for gestational weight gain of 28.0 kg or greater and was highest at 

both extremes of gestational weight gain.
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3.2

Among women categorized as overweight, the absolute risk for any adverse outcome 

increased from 37.3% (249 of 667) for gestational weight gain of 2.0 kg to 3.9 kg to 56.4% 

(624 of 1107) for gestational weight gain of 28.0 kg or greater. Of all outcomes separately, 

the absolute risk was highest for cesarean delivery (highest risk: 25.1% [272 of 1084] for 

gestational weight gain of ≥28.0 kg).

Among women categorized as obesity grade 1, 2, or 3, the absolute risk for any adverse 

outcome increased across the range of gestational weight gain. The highest absolute risks 

were 63.7% (160 of 251) for gestational weight gain of 28.0 kg or greater in women cat-

egorized as obesity grade 1,67.7% (384 of 567) for gestational weight gain of 16.0 kg or 

greater in women categorized as obesity grade 2, and 78.8% (93 of 118) for gestational 

weight gain of 16.0 kg or greater in women categorized as obesity grade 3. The association 

of maternal prepregnancy BMI with the risk for any adverse outcomes was stronger than 

the association of gestational weight gain. The ORs for the risk of any adverse outcome 

were 1.28 (95%CI, 1.27-1.29) and 1.04 (95%CI, 1.03-1.05) per 1-SD increase in maternal 

prepregnancy BMI and gestational weight gain, respectively (P<.001 for comparison).The 

absolute data for each gestational weight gain category appear in Supplemental Table 7.

Figure 1. Heatmap of absolute risk of any adverse maternal or infant outcome
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Values represent the absolute risks of any adverse maternal and infant outcome (left panel) and the percentages of 
participants (right panel) for each combination of body mass index and gestational weight gain. Absolute risk was cal-
culated as No. of participants (any adverse outcome)/No. of participants (body mass index and gestational weight gain 
category) × 100. The percentages of participants were calculated as the number of participants with each combination 
of body mass index and gestational weight gain as a percentage of the total study sample. The total study sample size 
was 196 670. Participants in the extreme categories of prepregnancy body mass index (calculated as weight in kilo-
grams divided by height in meters squared) and gestational weight gain had values beyond the most extreme labeled 
tick marks. Any adverse outcome includes preeclampsia (gestational hypertension plus proteinuria), gestational hyper-
tension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90mmHg, or both after 20weeks of gestation in 
previously normotensive women), gestational diabetes (a random glucose level >11.0 mmol/L, a fasting glucose level 
≥7.0 mmol/L, or a fasting glucose level between 6.1 and 6.9 mmol/L with a subsequent abnormal glucose tolerance test 
[glucose level >7.8 mmol/L after glucose intake]), cesarean delivery, preterm birth (gestational age at birth <37weeks), 
and small or large size for gestational age at birth (sex- and gestational age–adjusted birthweight <10th percentile and 
>90th percentile, respectively.
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Figure 2. Absolute risk for adverse maternal or infant outcomes
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Absolute risk was calculated as (No. of women with adverse outcome/No. of women in gestational weight gain cat-
egory within body mass index group) × 100. The symbols represent the absolute risk for women in each gestational 
weight gain category. The gestational weight gain categories were 2 kg each. Participants in the extreme categories 
of gestational weight gain had values beyond the most extreme labeled tick marks. The maternal body mass index 
(calculated as weight in kilograms divided by height in meters squared) categories were underweight (<18.5), normal 
weight (18.5-24.9), overweight (25.0-29.9), obesity grade 1(30.0-34.9), obesity grade 2 (35.0-39.9), and obesity grade 
3 (≥40.0). Any adverse outcome includes preeclampsia (gestational hypertension plus proteinuria), gestational hyper-
tension (systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, or both after 20 weeks of gestation 
in previously normotensive women), gestational diabetes (a random glucose level >11.0 mmol/L, a fasting glucose level 
≥7.0 mmol/L, or a fasting glucose level between 6.1 and 6.9 mmol/L with a subsequent abnormal glucose tolerance test 
[glucose level >7.8 mmol/L after glucose intake]), cesarean delivery, preterm birth (gestational age at birth <37weeks), 
and small or large size for gestational age at birth (sex- and gestational age–adjusted birthweight <10th percentile and 
>90th percentile, respectively). The odds ratios for the risk of any adverse outcome were 1.28 (95%CI, 1.27-1.29) and 
1.04 (95%CI, 1.03-1.05) per 1-SD increase in maternal prepregnancy body mass index and gestational weight gain, 
respectively (P < .001 for comparison). The number of cases for each outcome and the total number of participants in 
each gestational weight gain category appears in Supplemental Table 7.



179

Gestational weight gain and adverse outcomes

3.2

Optimal gestational weight gain per clinical BMI group
The optimal gestational weight gain ranges associated with the lowest risks for any adverse 

outcome appear in Figure 3. Among women categorized as underweight, the optimal 

gestational weight gain range was 14.0 kg to less than 16.0 kg, with corresponding OR 

and absolute risk reduction (ARR; the percentage reduction in absolute risk of any adverse 

outcome) of 0.74 (95% CI, 0.65-0.84) and 0.07% (95% CI, 0.04%-0.09%), respectively. 

Among women categorized as normal weight, the optimal gestational weight gain range 

was 10.0 kg to less than 18.0 kg (ORs at the outer ends of this range, 0.96 [95%CI, 0.93- 

0.99] and 0.91 [95%CI, 0.88-0.95]; ARRs, 0.01% [95%CI, 0%- 0.01%] and 0.02% [95%CI, 

0.01%-0.03%]).Among women categorized as overweight, the optimal gestational weight 

gain range was 2.0 kg to less than 16.0 kg (ORs at the outer ends of this range, 0.81 

[95% CI, 0.69-0.95] and 0.90 [95% CI, 0.85- 0.96]; ARRs, 0.05% [95%CI, 0.01%-0.08%] 

and 0.02% [95% CI, 0.01%-0.04%]). Among women categorized as obesity grade 1, the 

optimal gestational weight gain range was 2.0 kg to less than 6.0 kg (ORs at the outer ends 

of this range, 0.76 [95%CI, 0.64-0.91] and 0.73 [95%CI, 0.64-0.84]; ARRs, 0.07% [95% 

CI, 0.02%-0.11%] and 0.08% [95% CI, 0.04%-0.11%]). Among women categorized as 

obesity grade 2, the optimal gestational weight gain range was weight loss or gain of 0 kg 

to less than 4.0 kg (median weight loss: 3.0 kg; ORs at the outer ends of this range, 0.55 

[95%CI, 0.39-0.78] and 0.67 [95%CI, 0.51-0.88]; ARRs, 0.14% [95% CI, 0.06%-0.22%] 

and 0.10% [95% CI, 0.03%-0.17%]). Among women categorized as obesity grade 3, the 

optimal gestational weight gain range was 0 kg to less than 6.0 kg (ORs for the outer ends 

of this range, 0.59 [95%CI, 0.41-0.85] and 0.62 [95%CI, 0.41-0.94]; ARRs, 0.12% [95%CI, 

0.03%-0.21%] and 0.10% [95%CI, 0%-0.20%]). The ORs and ARRs for each gestational 

weight gain category used to determine the optimal ranges appear in Supplemental Tables 

8 and 9, respectively. The gestational weight gain ranges defined in this study and the NAM 

ranges appear in Supplemental Table 10.

The gestational weight gain ranges in this study were roughly comparable with the NAM 

ranges for underweight, normal weight, and overweight, and were lower for all obesity 

grades. This study classified 11.3% of women (n = 22 236) in the main sample as having 

inadequate gestational weight gain and 33.8% of women (n = 66 463) as having excessive 

gestational weight gain. The NAM categories classified 21.5%of women (n = 42 323) as 

having inadequate gestational weight gain and 42.0% of women (n = 82 544) as having 

excessive gestational weight gain. Gestational weight gain outside the ranges from the 

current study and the NAM ranges was associated with adverse outcomes (Supplemental 

Figures 2 and 3). Each classification system had a low to moderate ability to distinguish 

between those with and those without adverse outcomes (range for AUROC, 0.55-0.77; 

Supplemental Figure 4).
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Figure 3. Associations of gestational weight gain categories with any adverse outcome per 
maternal clinical body mass index group, used to determine optimal weight gain ranges
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OR indicates odds ratio and it reflects the risk for any adverse outcome per gestational weight gain category for women 
with underweight, normal weight, overweight, obesity grade 1, obesity grade 2, and obesity grade 3, parts A-F, respec-
tively, compared with all other gestational weight gain categories in that specific group for clinical maternal body mass 
index (BMI; calculated as weight in kilograms divided by height in meters squared). The solid circles represent the OR 
for all participants in each gestational weight gain category. The error bars indicate 95%CIs. The red area represents 
the optimal gestational weight gain range according to the current analysis, the gray area represents the gestational 
weight gain ranges recommended by the US National Academy of Medicine (NAM; formerly the Institute of Medicine). 
The gestational weight gain categories were 2 kg each. Participants in the extreme categories of gestational weight 
gain had values beyond the most extreme labeled tick marks. The maternal BMI categories were underweight (<18.5), 
normal weight (18.5-24.9), overweight (25.0-29.9), obesity grade 1 (30.0-34.9), obesity grade 2 (35.0-39.9), and 
obesity grade 3 (≥40.0). Any adverse outcome includes preeclampsia (gestational hypertension plus proteinuria), ges-
tational hypertension (systolic blood pressure ≥140mmHg, diastolic blood pressure ≥90mmHg, or both after 20 weeks 
of gestation in previously normotensive women), gestational diabetes (a random glucose level >11.0 mmol/L, a fasting 
glucose level 7.0 mmol/L, or a fasting glucose level between 6.1 and 6.9 mmol/L with a subsequent abnormal glucose 
tolerance test [glucose level >7.8 mmol/L after glucose intake]), cesarean delivery, preterm birth (gestational age at birth 
<37weeks), and small or large size for gestational age at birth (sex- and gestational age–adjusted birthweight <10th 
percentile and >90th percentile, respectively). For the gestational weight gain ranges defined in this study, a statistically 
significant OR lower than 1 for a gestational weight gain category was considered the optimal weight gain. If a non-
significant association (either with an OR >1, <1, or of 1) for a gestational weight gain category was surrounded by 2 
significant estimates with an OR below 1, that gestational weight gain category was included in the optimal gestational 
weight gain range. The number of cases for each outcome and the total number of participants in each gestational 
weight gain category appear in Supplemental Table 7.The optimal gestational weight gain ranges based only on 
protective associations appear in Supplemental Figure 5.
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Sensitivity analyses
The sensitivity analyses, in which optimal gestational weight gain was determined based 

on protective associations regardless of statistical significance, resulted in broader ranges 

of optimal gestational weight gain (Supplemental Figure 5). Optimal gestational weight 

gain ranges similar to those from the main analyses were observed when length of gestation 

was considered and when participants with missing individual outcome data were excluded 

(Supplemental Table 11). In addition, the sensitivity analyses showed that optimal weight 

gain definitions were not altered by including or excluding preterm birth, cesarean delivery, 

childhood underweight or overweight, gestational diabetes, and preeclampsia as adverse 

outcomes or by adjusting for maternal age and parity (Supplemental Table 11).

Of all the women classified as having excessive gestational weight gain during the full 

pregnancy, 84.6% also would be classified as having excessive weight gain during the first 

half of the pregnancy (Supplemental Figure 6 and Supplemental Tables 12 and 13).

Results for the validation sample showed that the discriminative performance of the optimal 

gestational weight gain ranges developed in this study and the weight gain ranges from the 

NAM guidelines were consistent with findings in the main study sample (range for AUROC, 

0.50-0.79; Supplemental Table 14 and Supplemental Figures 7 and 8).

discussion

Maternal prepregnancy BMI, and to a lesser extent gestational weight gain, are associated 

with risks of adverse maternal and infant adverse outcomes. Gestational weight gain ranges 

that were associated with lower risks for adverse outcomes were 14.0 kg to less than 16.0 

kg for women categorized as being underweight; 10.0 kg to less than 18.0 kg for normal 

weight; 2.0 kg to less than 16.0 kg for overweight; 2.0 kg to less than 6.0 kg for obesity 

grade1; weight loss or gain of 0 kg to less than 4.0 kg for obesity grade 2; and weight gain 

of 0 kg to less than 6.0 kg for obesity grade 3.

Gestational weight gain outside these ranges was associated with adverse outcomes. 

However, discriminative performance of gestational weight gain with adverse maternal and 

infant outcomes was low to moderate. Prepregnancy BMI was more strongly associated with 

adverse maternal and infant outcomes than the amount of gestational weight gain.

Prepregnancy BMI is significantly associated with pregnancy complications and offspring 

obesity and also is associated with gestational weight gain (5, 6). Results from this study sug-

gest that maternal prepregnancy BMI was more strongly associated with adverse maternal 

and infant outcomes than gestational weight gain. Therefore, prepregnancy BMI may be an 

important focus for preconception counseling.

Previous studies that attempted to define optimal gestational weight gain associated 

with fewer adverse outcomes differed considerably among study populations, statistical ap-



CHAPTER 3.2

182

proaches, outcomes, and conclusions regarding optimal gestational weight gain ranges (14, 

16-22). Only 1 study of 120 251 obese US women defined optimal gestational weight gain 

ranges according to maternal obesity grade 1 (4.5 kg-11.3 kg), obesity grade 2 (0 kg-4.1 

kg),and obesity grade 3 (weight loss <4 kg), and that study used data from term births only 

(21).

Compared with prior work, the present study focused on common and important adverse 

maternal and infant outcomes, included women from multiple Western countries, and 

compared the associations of gestational weight gain and prepregnancy BMI with adverse 

outcomes. Consistent with the NAM guidelines, this study used total gestational weight gain 

to identify optimal gestational weight gain ranges instead of gestational weight gain per 

week because gestational weight gain does not have a linear pattern (7, 8). Total gestational 

weight gain is dependent in part on pregnancy duration. The observed results were similar 

after adjustment for gestational age at birth and after excluding preterm births. Consistent 

with the NAM guidelines, this study showed that among women with higher prepregnancy 

BMI, lower gestational weight gain was associated with fewer adverse outcomes. Gesta-

tional weight gain ranges for women categorized as obesity grade 1, 2, or 3 were lower 

than the NAM guidelines and even involved weight loss for severely obese women, although 

neither classification was predictive for adverse outcomes. However, the results for severely 

obese women should be interpreted with caution because the optimal gestational weight 

gain ranges for obesity grades 1 through 3 associated with better outcomes fluctuate and 

do not follow a clear linear trend. These results may represent the relatively small sample 

size of obese women and lack of statistical power rather than biological plausibility. Future 

studies should evaluate the effect and safety of weight loss during pregnancy in severely 

obese women.

Gestational weight gain guidelines are used in several Western countries for preconcep-

tion counseling. The gestational weight gain ranges developed in this study classified fewer 

women as having suboptimal weight gain compared with the NAM guidelines. However, the 

discriminative performance, as indicated by the AUROC, was weak for both classification 

systems. This suggests that the use of gestational weight gain guidelines may need to be 

reconsidered for individual prediction of the risk for adverse outcomes.

Future research should assess whether optimal gestational weight gain ranges combined 

with other maternal and fetal pregnancy characteristics are useful for prediction of adverse 

outcomes. The findings from this study suggest that prepregnancy weight might be a more 

important target for interventions than gestational weight gain. Previous studies of dietary 

and physical activity interventions for pregnant women have not shown an effect on preg-

nancy outcomes (23-26). Based on current evidence, future clinical trials designed to reduce 

weight-related maternal and infant adverse outcomes should focus on maternal weight 

before or at the start of pregnancy.
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Limitations
This study has several limitations. First, not all invited cohorts were able to participate in the 

current analyses. Second, the analyses did not measure changes in the association of gesta-

tional weight gain with adverse outcomes over time. The results may be biased if the associa-

tion of gestational weight gain with adverse outcomes changed over time. Third, data on 

prepregnancy weight was mainly self-reported, and the latest weight during pregnancy was 

either self-reported or measured. This may have led to misclassification of gestational weight 

gain. Fourth, the composite outcome of any adverse outcome might have been misclassified 

as a result of some missing data for individual outcomes. Fifth, all outcomes were considered 

equally important and the analyses did not account for the differences in outcome severity. 

Sixth, cesarean delivery may be due to many factors and may not be an appropriate outcome 

for studying associations of weight change with adverse maternal outcomes (7). Seventh, in-

formation on stillbirth was not available. Eighth, optimal gestational weight gain was defined 

as a protective association with the risk for any adverse outcome, reflecting the best outcome 

possible and limiting the number of participants incorrectly classified as having adequate 

gestational weight gain. The ranges would be slightly broader if optimal gestational weight 

gain was defined as no increased risk for adverse outcomes, which includes both a protective 

association and a null association. Ninth, the analyses were not adjusted for multiple testing. 

Tenth, as a result of the limited sample sizes for underweight and severely obese women, 

heterogeneity was not assessed. Eleventh, based on the profiles of all the included cohorts, 

about 1% of women were included more than once for multiple pregnancies. Twelfth, for 

some outcomes, discriminative performance in the validation sample was lower than in the 

main sample, potentially resulting from overfitting of the models in the main sample.

Conclusions
In this meta-analysis of pooled individual participant data from 25 cohort studies, the risk 

for adverse maternal and infant outcomes varied by gestational weight gain and across 

the range of prepregnancy weights. The estimates of optimal gestational weight gain may 

inform prenatal counseling; however, the optimal gestational weight gain ranges had limited 

predictive value for the outcomes assessed.
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Supplemental Figure 1. Flow chart of the cohorts and participants
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information on maternal pre-pregnancy BMI, total 
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total gestational weight gain available 
 

n= 10 cohorts 
n = 76815 participants 
No information on maternal pre- 
pregnancy BMI and total gestational 
weight gain available 
  
 

n = 29 cohorts 
n = 200175 participants 
Information on maternal pre-pregnancy BMI, total 
gestational weight gain and at least one maternal 
or infant outcome available 
 
 

 

n = 4 cohorts 
n = 3505 participants 
Hospital-based cohorts (used as 
validation sample) 
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Supplemental Table 2. Associations of general characteristics with total gestational weight 
gaina

Total gestational weight gain, kg (95% CI)

Pre-pregnancy BMI (kg/m2)b -0.25 (-0.26, -0.24)

Underweight (<18.5 kg/m2) -0.16 (-0.29, -0.04)

Normal weight (18.5-24.9 kg/m2) Reference

Overweight (25.0-29.9 kg/m2) -0.79 (-0.85, -0.73)

Obesity grade 1 (30.0-34.9 kg/m2) -3.48 (-3.58, -3.37)

Obesity grade 2 (35.0-39.9 kg/m2) -5.73 (-5.92, -5.54)

Obesity grade 3 (≥40.0 kg/m2) -7.61 (-7.96, -5.54)

Maternal age (years) -0.11 (-0.12, -0.11)

Parity

Nulliparous Reference

Multiparous -1.07 (-1.12, -1.02)

a Values are regression coefficients from exploratory multilevel linear regression models that represent differences in 
total gestational weight gain for each of the characteristics listed. Models are not adjusted for covariates.
b Body mass index is calculated as weight in kilograms divided by height in meters squared.
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Supplemental Table 3. Description of missing data

Information available Information missing

Outcome n % n %

Main sample (n=196670)

Used in models to construct ranges (main analysis)

Pre-pregnancy BMI 196670 100.0 NA NA

Total gestational weight gain 196670 100.0 NA NA

Any adverse outcome a 196670 100.0 NA NA

Separate outcomes (included in ‘any adverse outcome’)

Gestational hypertensive disorders b 179577 91.3 17093 8.7

Gestational diabetes 189772 96.5 6898 3.5

Caesarean section 186884 95.0 9786 5.0

Preterm birth 188129 95.7 8541 4.3

Size-for-gestational-age at birth 190217 96.7 6453 3.3

All of the separate outcomes used to 
construct ranges (complete cases)c

169437d 86.2 27233e 13.8

Validation sample (Hospital-based) (n=3505)

Any adverse outcome 3505 100.0 NA NA

Gestational hypertensive disorders b 3082 87.9 423 12.1

Gestational diabetes 3084 88.0 421 12.0

Caesarean section 3490 99.6 15 0.4

Preterm birth 3089 88.1 416 11.9

Size-for-gestational-age at birth 3498 99.8 7 0.2

All of the separate outcomes (complete cases) 3059d 87.3 446e 12.7

a Any adverse outcome is defined as the presence of at least one of the following outcomes: pre-eclampsia, gestational 
hypertension, gestational diabetes, caesarean section, preterm birth and small or large size-for-gestational age.
b Includes both pre-eclampsia and gestational hypertension.
c Sensitivity analysis with complete cases is shown in Supplemental Table 10.
d Reflects the number of participants with information on all outcomes included in ‘any adverse outcome’.
e Reflects the number of participants with missing information on one or more of the outcomes included in ‘any adverse 
outcome’.
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Supplemental Table 4. Characteristics of the hospital-based population, used as a validation sample.a

Total group

n=3505

Pre-pregnancy body mass index, median (Q1, Q3)b 22.0 (20.1, 24.8)

Pre-pregnancy body mass indexb

Underweight (<18.5 kg/m2) 277 (7.9)

Normal weight (18.5-24.9 kg/m2) 2400 (68.4)

Overweight (25.0-29.9 kg/m2) 577 (16.5)

Obesity grade 1 (30.0-34.9 kg/m2) 188 (5.4)

Obesity grade 2 (35.0-39.9 kg/m2) 53 (1.5)

Obesity grade 3 (≥40.0 kg/m2) 10 (0.3)

Total gestational weight gain (kg)

Median (Q1, Q3) 13.0 (10.7, 16.0)

P2.5, P97.5 4.0, 24.0

Maternal age (years), median (Q1, Q3) 31.0 (27.7, 34.7)

Educationc

Low, n (%) 721 (20.6)

Medium, n (%) 1254 (35.9)

High, n (%) 1521 (43.5)

Country

France, n (%) 1794 (51.2)

Italy, n (%) 1296 (37.0)

Finland, n (%) 415 (11.8)

Gestational hypertension, n (%)d 102 (3.4)

Pre-eclampsia, n (%)e 61 (2.0)

Gestational diabetes, n (%)f 162 (5.3)

Caesarean section, n (%) 653 (18.7)

Preterm birth, n (%)g 140 (4.5)

Small size-for-gestational-age, n (%)h 349 (10.0)

Large size-for-gestational-age, n (%)i 348 (10.0)

Childhood underweight, n (%)j 21 (0.8)

Childhood overweight, n (%)k 563 (20.5)

Any adverse outcome, n (%)l 1423 (40.6)
a Values are median (Q1, Q3), median (P2.5, P97.5) or n (valid %). b Body mass index is calculated as weight in kilograms 
divided by height in meters squared. c Education level was based on cohort-specific criteria. Each cohort used their own 
country-specific criteria to define low, medium and high educational level. These 3 categories were subsequently used 
in the meta-analysis. d Gestational hypertension is defined as systolic blood pressure ≥140 mmHg and/or diastolic blood 
pressure ≥90 mmHg after 20 weeks of gestation in previously normotensive women. e Pre-eclampsia is defined as ges-
tational hypertension plus proteinuria. f Gestational diabetes is defined as either a random glucose level >11.0 mmol/L, 
a fasting glucose level ≥7.0 mmol/L or a fasting glucose level between 6.1 and 6.9 mmol/L with a subsequent abnormal 
glucose tolerance test (glucose level >7.8 mmol/L after glucose intake). g Preterm birth is defined as gestational age at 
birth <37 weeks. h Small size-for-gestational-age at birth is defined as sex- and gestational age adjusted birth weight 
<10th percentile. i Large size-for-gestational-age at birth is defined as sex- and gestational age adjusted birth >90th per-
centile. j Childhood underweight at the highest age available for each child (median (Q1, Q3): 84.9 (61.9, 95.9) months) 
is defined as sex- and age adjusted standard deviation scores (SDS) <-2 SDS for children of 2-5 years of age, and <-2 SDS 
for children of >5 years. k Childhood overweight at the highest age available for each child (median (Q1, Q3): 84.9 (61.9, 
95.9) months) is defined as sex- and age adjusted standard deviation scores (SDS) >2.0 SDS for children of 2-5 years 
of age, and >1 SDS for children of >5 years. l Any adverse outcome includes pre-eclampsia, gestational hypertension, 
gestational diabetes, caesarean section, preterm birth, small size-for-gestational-age, and large size-for-gestational-age.
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Supplemental Table 7. Description of outcomes by gestational weight gain categorya

Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Underweight (n=7809)

<8 10 346 2.9 12 348 3.4 5 389 1.3 55 348 15.8 54 381 14.2 125 390 32.1 3 268 1.1 203 404 50.2

8 to 9.9 6 526 1.1 12 532 2.3 9 597 1.5 68 562 12.1 55 568 9.7 147 585 25.1 12 450 2.7 252 619 40.7

10 to 11.9 12 1011 1.2 17 1016 1.7 12 1117 1.1 144 1095 13.2 78 1070 7.3 236 1087 21.7 26 877 3 434 1175 36.9

12 to 13.9 12 1235 1.0 22 1245 1.8 8 1365 0.6 174 1357 12.8 71 1299 5.5 275 1342 20.5 25 1092 2.3 506 1437 35.2

14 to 15.9 18 1181 1.5 19 1182 1.6 8 1269 0.6 134 1269 10.6 39 1217 3.2 195 1237 15.8 33 1075 3.1 387 1326 29.2

16 to 17.9 17 864 2.0 27 874 3.1 5 955 0.5 109 956 11.4 29 930 3.1 161 909 17.7 42 790 5.3 334 993 33.6

18 to 19.9 9 536 1.7 9 536 1.7 2 591 0.3 77 597 12.9 20 577 3.5 69 552 12.5 40 523 7.6 198 623 31.8

20 to 21.9 7 438 1.6 9 440 2.0 3 475 0.6 62 478 13.0 16 481 3.3 72 467 15.4 20 415 4.8 157 499 31.5

>=22 21 628 3.3 24 631 3.8 5 706 0.7 104 699 14.9 21 708 3.0 56 654 8.6 55 653 8.4 235 733 32.1

Normal weight (n=133788)

Weight loss 2 100 2.0 2 100 2.0 3 107 2.8 18 106 17.0 11 98 11.2 16 99 16.2 5 88 5.7 47 109 43.1

0 to 1.9 6 309 1.9 6 309 1.9 9 341 2.6 52 325 16.0 37 343 10.8 74 328 22.6 19 273 7.0 158 356 44.4

2 to 3.9 6 499 1.2 17 510 3.3 22 560 3.9 67 524 12.8 63 537 11.7 113 534 21.2 25 446 5.6 245 577 42.5

4 to 5.9 21 1505 1.4 42 1526 2.8 43 1664 2.6 219 1542 14.2 180 1604 11.2 305 1597 19.1 66 1358 4.9 691 1721 40.2

6 to 7.9 84 3882 2.2 123 3921 3.1 112 4327 2.6 621 4049 15.3 393 4142 9.5 811 4124 19.7 143 3456 4.1 1793 4463 40.2

8 to 9.9 151 8369 1.8 217 8435 2.6 170 9289 1.8 1172 8823 13.3 630 9015 7.0 1488 8901 16.7 370 7783 4.8 3412 9658 35.3

10 to 11.9 271 14885 1.8 405 15019 2.7 233 16444 1.4 2079 15933 13.0 888 16017 5.5 2253 15519 14.5 823 14089 5.8 5742 17081 33.6

12 to 13.9 386 20354 1.9 519 20487 2.5 224 22312 1.0 2910 21916 13.3 916 21971 4.2 2549 20940 12.2 1354 19745 6.9 7424 23217 32.0

14 to 15.9 456 20396 2.2 567 20507 2.8 195 22221 0.9 2963 21973 13.5 716 21973 3.3 2123 20493 10.4 1710 20080 8.5 7314 23073 31.7

16 to 17.9 358 15522 2.3 512 15676 3.3 132 16896 0.8 2326 16731 13.9 502 16737 3.0 1445 15387 9.4 1507 15449 9.8 5648 17498 32.3

18 to 19.9 299 10954 2.7 356 11011 3.2 88 11862 0.7 1671 11794 14.2 341 11817 2.9 925 10543 8.8 1362 10980 12.4 4161 12271 33.9

20 to 21.9 319 8903 3.6 326 8910 3.7 76 9644 0.8 1432 9666 14.8 263 9729 2.7 665 8550 7.8 1208 9093 13.3 3511 10011 35.1

22 to 23.9 209 4962 4.2 155 4908 3.2 33 5330 0.6 851 5358 15.9 125 5369 2.3 333 4569 7.3 803 5039 15.9 2046 5526 37.0

24 to 25.9 187 3473 5.4 137 3423 4 31 3745 0.8 631 3760 16.8 112 3819 2.9 197 3188 6.2 625 3616 17.3 1548 3882 39.9

26 to 27.9 92 1476 6.2 59 1443 4.1 18 1624 1.1 289 1607 18.0 46 1619 2.8 104 1365 7.6 253 1514 16.7 691 1666 41.5

>=28.0 220 2339 9.4 140 2259 6.2 18 2590 0.7 524 2597 20.2 91 2631 3.5 126 2106 6.0 516 2496 20.7 1256 2679 46.9

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.
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Supplemental Table 7. Description of outcomes by gestational weight gain categorya

Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Underweight (n=7809)

<8 10 346 2.9 12 348 3.4 5 389 1.3 55 348 15.8 54 381 14.2 125 390 32.1 3 268 1.1 203 404 50.2

8 to 9.9 6 526 1.1 12 532 2.3 9 597 1.5 68 562 12.1 55 568 9.7 147 585 25.1 12 450 2.7 252 619 40.7

10 to 11.9 12 1011 1.2 17 1016 1.7 12 1117 1.1 144 1095 13.2 78 1070 7.3 236 1087 21.7 26 877 3 434 1175 36.9

12 to 13.9 12 1235 1.0 22 1245 1.8 8 1365 0.6 174 1357 12.8 71 1299 5.5 275 1342 20.5 25 1092 2.3 506 1437 35.2

14 to 15.9 18 1181 1.5 19 1182 1.6 8 1269 0.6 134 1269 10.6 39 1217 3.2 195 1237 15.8 33 1075 3.1 387 1326 29.2

16 to 17.9 17 864 2.0 27 874 3.1 5 955 0.5 109 956 11.4 29 930 3.1 161 909 17.7 42 790 5.3 334 993 33.6

18 to 19.9 9 536 1.7 9 536 1.7 2 591 0.3 77 597 12.9 20 577 3.5 69 552 12.5 40 523 7.6 198 623 31.8

20 to 21.9 7 438 1.6 9 440 2.0 3 475 0.6 62 478 13.0 16 481 3.3 72 467 15.4 20 415 4.8 157 499 31.5

>=22 21 628 3.3 24 631 3.8 5 706 0.7 104 699 14.9 21 708 3.0 56 654 8.6 55 653 8.4 235 733 32.1

Normal weight (n=133788)

Weight loss 2 100 2.0 2 100 2.0 3 107 2.8 18 106 17.0 11 98 11.2 16 99 16.2 5 88 5.7 47 109 43.1

0 to 1.9 6 309 1.9 6 309 1.9 9 341 2.6 52 325 16.0 37 343 10.8 74 328 22.6 19 273 7.0 158 356 44.4

2 to 3.9 6 499 1.2 17 510 3.3 22 560 3.9 67 524 12.8 63 537 11.7 113 534 21.2 25 446 5.6 245 577 42.5

4 to 5.9 21 1505 1.4 42 1526 2.8 43 1664 2.6 219 1542 14.2 180 1604 11.2 305 1597 19.1 66 1358 4.9 691 1721 40.2

6 to 7.9 84 3882 2.2 123 3921 3.1 112 4327 2.6 621 4049 15.3 393 4142 9.5 811 4124 19.7 143 3456 4.1 1793 4463 40.2

8 to 9.9 151 8369 1.8 217 8435 2.6 170 9289 1.8 1172 8823 13.3 630 9015 7.0 1488 8901 16.7 370 7783 4.8 3412 9658 35.3

10 to 11.9 271 14885 1.8 405 15019 2.7 233 16444 1.4 2079 15933 13.0 888 16017 5.5 2253 15519 14.5 823 14089 5.8 5742 17081 33.6

12 to 13.9 386 20354 1.9 519 20487 2.5 224 22312 1.0 2910 21916 13.3 916 21971 4.2 2549 20940 12.2 1354 19745 6.9 7424 23217 32.0

14 to 15.9 456 20396 2.2 567 20507 2.8 195 22221 0.9 2963 21973 13.5 716 21973 3.3 2123 20493 10.4 1710 20080 8.5 7314 23073 31.7

16 to 17.9 358 15522 2.3 512 15676 3.3 132 16896 0.8 2326 16731 13.9 502 16737 3.0 1445 15387 9.4 1507 15449 9.8 5648 17498 32.3

18 to 19.9 299 10954 2.7 356 11011 3.2 88 11862 0.7 1671 11794 14.2 341 11817 2.9 925 10543 8.8 1362 10980 12.4 4161 12271 33.9

20 to 21.9 319 8903 3.6 326 8910 3.7 76 9644 0.8 1432 9666 14.8 263 9729 2.7 665 8550 7.8 1208 9093 13.3 3511 10011 35.1

22 to 23.9 209 4962 4.2 155 4908 3.2 33 5330 0.6 851 5358 15.9 125 5369 2.3 333 4569 7.3 803 5039 15.9 2046 5526 37.0

24 to 25.9 187 3473 5.4 137 3423 4 31 3745 0.8 631 3760 16.8 112 3819 2.9 197 3188 6.2 625 3616 17.3 1548 3882 39.9

26 to 27.9 92 1476 6.2 59 1443 4.1 18 1624 1.1 289 1607 18.0 46 1619 2.8 104 1365 7.6 253 1514 16.7 691 1666 41.5

>=28.0 220 2339 9.4 140 2259 6.2 18 2590 0.7 524 2597 20.2 91 2631 3.5 126 2106 6.0 516 2496 20.7 1256 2679 46.9

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.
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Supplemental Table 7. Description of outcomes by gestational weight gain category (continued)a

Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Overweight (n=38828)

Weight loss 11 192 5.7 3 184 1.6 9 206 4.4 34 195 17.4 21 199 10.6 28 188 14.9 18 178 10.1 88 213 41.3

0 to 1.9 15 489 3.1 28 502 5.6 31 530 5.8 82 510 16.1 42 534 7.9 73 501 14.6 35 463 7.6 236 546 43.2

2 to 3.9 16 598 2.7 17 599 2.8 24 651 3.7 98 623 15.7 49 638 7.7 80 603 13.3 40 563 7.1 249 667 37.3

4 to 5.9 31 1120 2.8 47 1136 4.1 47 1235 3.8 218 1206 18.1 71 1205 5.9 160 1134 14.1 96 1070 9.0 505 1271 39.7

6 to 7.9 63 1961 3.2 72 1970 3.7 82 2138 3.8 334 2071 16.1 148 2108 7.0 224 1970 11.4 167 1913 8.7 850 2206 38.5

8 to 9.9 97 2983 3.3 166 3052 5.4 87 3308 2.6 592 3235 18.3 191 3267 5.8 336 3004 11.2 313 2981 10.5 1383 3416 40.5

10 to 11.9 135 4252 3.2 179 4296 4.2 132 4688 2.8 826 4608 17.9 243 4638 5.2 418 4199 10.0 490 4271 11.5 1928 4847 39.8

12 to 13.9 186 4861 3.8 229 4904 4.7 118 5342 2.2 893 5313 16.8 217 5345 4.1 429 4768 9.0 627 4966 12.6 2148 5551 38.7

14 to 15.9 202 4768 4.2 249 4815 5.2 86 5252 1.6 928 5177 17.9 205 5249 3.9 384 4587 8.4 688 4891 14.1 2154 5400 39.9

16 to 17.9 188 3662 5.1 232 3706 6.3 71 4037 1.8 735 3983 18.5 133 4032 3.3 247 3413 7.2 629 3795 16.6 1787 4136 43.2

18 to 19.9 147 2713 5.4 149 2715 5.5 42 2951 1.4 605 2943 20.6 99 2973 3.3 189 2538 7.4 442 2791 15.8 1304 3045 42.8

20 to 21.9 172 2596 6.6 137 2561 5.3 34 2830 1.2 574 2835 20.2 110 2881 3.8 171 2320 7.4 545 2694 20.2 1325 2925 45.3

22 to 23.9 83 1406 5.9 91 1414 6.4 22 1545 1.4 323 1555 20.8 38 1563 2.4 83 1245 6.7 312 1474 21.2 760 1583 48.0

24 to 25.9 101 1159 8.7 80 1138 7.0 13 1272 1.0 282 1272 22.2 42 1288 3.3 73 1025 7.1 257 1209 21.3 636 1304 48.8

26 to 27.9 55 545 10.1 33 523 6.3 6 592 1.0 148 600 24.7 16 601 2.7 25 457 5.5 143 575 24.9 315 611 51.6

>=28.0 135 983 13.7 64 912 7.0 14 1064 1.3 272 1084 25.1 39 1093 3.6 43 786 5.5 297 1040 28.6 624 1107 56.4

Obesity grade 1 (n=11992)

Weight loss 6 251 2.4 12 257 4.7 14 273 5.1 60 260 23.1 26 266 9.8 29 242 12.0 26 239 10.9 128 275 46.5

0 to 1.9 29 541 5.4 26 538 4.8 37 576 6.4 113 575 19.7 46 588 7.8 59 523 11.3 64 528 12.1 280 596 47.0

2 to 3.9 28 473 5.9 23 468 4.9 29 515 5.6 100 509 19.6 36 513 7.0 56 471 11.9 46 461 10.0 234 533 43.9

4 to 5.9 31 741 4.2 52 762 6.8 46 854 5.4 167 817 20.4 54 834 6.5 70 750 9.3 96 776 12.4 377 872 43.2

6 to 7.9 62 898 6.9 77 913 8.4 50 1034 4.8 232 1013 22.9 66 1028 6.4 97 882 11.0 160 945 16.9 549 1068 51.4

8 to 9.9 80 1166 6.9 95 1181 8.0 51 1313 3.9 292 1302 22.4 81 1317 6.2 124 1142 10.9 183 1201 15.2 663 1359 48.8

10 to 11.9 81 1264 6.4 100 1283 7.8 53 1426 3.7 317 1419 22.3 64 1450 4.4 128 1241 10.3 213 1326 16.1 720 1487 48.4

12 to 13.9 82 1246 6.6 107 1271 8.4 34 1419 2.4 321 1405 22.8 83 1435 5.8 108 1181 9.1 254 1327 19.1 741 1463 50.6

14 to 15.9 81 1136 7.1 83 1138 7.3 38 1267 3.0 301 1264 23.8 51 1274 4.0 71 1031 6.9 237 1197 19.8 644 1301 49.5

16 to 17.9 68 774 8.8 73 779 9.4 25 876 2.9 215 870 24.7 38 890 4.3 50 699 7.2 191 840 22.7 472 905 52.2

18 to 19.9 47 484 9.7 40 477 8.4 13 536 2.4 128 542 23.6 22 550 4.0 29 416 7.0 134 521 25.7 290 561 51.7

20 to 21.9 59 507 11.6 32 480 6.7 12 550 2.2 147 556 26.4 33 566 5.8 31 424 7.3 142 535 26.5 319 575 55.5

22 to 23.9 49 301 16.3 26 278 9.4 7 334 2.1 84 335 25.1 16 334 4.8 17 252 6.7 77 312 24.7 197 341 57.8

24 to 25.9 30 238 12.6 17 225 7.6 6 255 2.4 74 258 28.7 13 261 5.0 11 198 5.6 61 248 24.6 144 262 55.0

26 to 27.9 14 116 12.1 17 119 14.3 1 138 0.7 53 138 38.4 3 137 2.2 6 90 6.7 48 132 36.4 101 143 70.6

>=28.0 34 207 16.4 27 200 13.5 4 242 1.7 81 244 33.2 11 249 4.4 14 183 7.7 63 232 27.2 160 251 63.7

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.



201

Gestational weight gain and adverse outcomes

3.2

Supplemental Table 7. Description of outcomes by gestational weight gain category (continued)a

Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Overweight (n=38828)

Weight loss 11 192 5.7 3 184 1.6 9 206 4.4 34 195 17.4 21 199 10.6 28 188 14.9 18 178 10.1 88 213 41.3

0 to 1.9 15 489 3.1 28 502 5.6 31 530 5.8 82 510 16.1 42 534 7.9 73 501 14.6 35 463 7.6 236 546 43.2

2 to 3.9 16 598 2.7 17 599 2.8 24 651 3.7 98 623 15.7 49 638 7.7 80 603 13.3 40 563 7.1 249 667 37.3

4 to 5.9 31 1120 2.8 47 1136 4.1 47 1235 3.8 218 1206 18.1 71 1205 5.9 160 1134 14.1 96 1070 9.0 505 1271 39.7

6 to 7.9 63 1961 3.2 72 1970 3.7 82 2138 3.8 334 2071 16.1 148 2108 7.0 224 1970 11.4 167 1913 8.7 850 2206 38.5

8 to 9.9 97 2983 3.3 166 3052 5.4 87 3308 2.6 592 3235 18.3 191 3267 5.8 336 3004 11.2 313 2981 10.5 1383 3416 40.5

10 to 11.9 135 4252 3.2 179 4296 4.2 132 4688 2.8 826 4608 17.9 243 4638 5.2 418 4199 10.0 490 4271 11.5 1928 4847 39.8

12 to 13.9 186 4861 3.8 229 4904 4.7 118 5342 2.2 893 5313 16.8 217 5345 4.1 429 4768 9.0 627 4966 12.6 2148 5551 38.7

14 to 15.9 202 4768 4.2 249 4815 5.2 86 5252 1.6 928 5177 17.9 205 5249 3.9 384 4587 8.4 688 4891 14.1 2154 5400 39.9

16 to 17.9 188 3662 5.1 232 3706 6.3 71 4037 1.8 735 3983 18.5 133 4032 3.3 247 3413 7.2 629 3795 16.6 1787 4136 43.2

18 to 19.9 147 2713 5.4 149 2715 5.5 42 2951 1.4 605 2943 20.6 99 2973 3.3 189 2538 7.4 442 2791 15.8 1304 3045 42.8

20 to 21.9 172 2596 6.6 137 2561 5.3 34 2830 1.2 574 2835 20.2 110 2881 3.8 171 2320 7.4 545 2694 20.2 1325 2925 45.3

22 to 23.9 83 1406 5.9 91 1414 6.4 22 1545 1.4 323 1555 20.8 38 1563 2.4 83 1245 6.7 312 1474 21.2 760 1583 48.0

24 to 25.9 101 1159 8.7 80 1138 7.0 13 1272 1.0 282 1272 22.2 42 1288 3.3 73 1025 7.1 257 1209 21.3 636 1304 48.8

26 to 27.9 55 545 10.1 33 523 6.3 6 592 1.0 148 600 24.7 16 601 2.7 25 457 5.5 143 575 24.9 315 611 51.6

>=28.0 135 983 13.7 64 912 7.0 14 1064 1.3 272 1084 25.1 39 1093 3.6 43 786 5.5 297 1040 28.6 624 1107 56.4

Obesity grade 1 (n=11992)

Weight loss 6 251 2.4 12 257 4.7 14 273 5.1 60 260 23.1 26 266 9.8 29 242 12.0 26 239 10.9 128 275 46.5

0 to 1.9 29 541 5.4 26 538 4.8 37 576 6.4 113 575 19.7 46 588 7.8 59 523 11.3 64 528 12.1 280 596 47.0

2 to 3.9 28 473 5.9 23 468 4.9 29 515 5.6 100 509 19.6 36 513 7.0 56 471 11.9 46 461 10.0 234 533 43.9

4 to 5.9 31 741 4.2 52 762 6.8 46 854 5.4 167 817 20.4 54 834 6.5 70 750 9.3 96 776 12.4 377 872 43.2

6 to 7.9 62 898 6.9 77 913 8.4 50 1034 4.8 232 1013 22.9 66 1028 6.4 97 882 11.0 160 945 16.9 549 1068 51.4

8 to 9.9 80 1166 6.9 95 1181 8.0 51 1313 3.9 292 1302 22.4 81 1317 6.2 124 1142 10.9 183 1201 15.2 663 1359 48.8

10 to 11.9 81 1264 6.4 100 1283 7.8 53 1426 3.7 317 1419 22.3 64 1450 4.4 128 1241 10.3 213 1326 16.1 720 1487 48.4

12 to 13.9 82 1246 6.6 107 1271 8.4 34 1419 2.4 321 1405 22.8 83 1435 5.8 108 1181 9.1 254 1327 19.1 741 1463 50.6

14 to 15.9 81 1136 7.1 83 1138 7.3 38 1267 3.0 301 1264 23.8 51 1274 4.0 71 1031 6.9 237 1197 19.8 644 1301 49.5

16 to 17.9 68 774 8.8 73 779 9.4 25 876 2.9 215 870 24.7 38 890 4.3 50 699 7.2 191 840 22.7 472 905 52.2

18 to 19.9 47 484 9.7 40 477 8.4 13 536 2.4 128 542 23.6 22 550 4.0 29 416 7.0 134 521 25.7 290 561 51.7

20 to 21.9 59 507 11.6 32 480 6.7 12 550 2.2 147 556 26.4 33 566 5.8 31 424 7.3 142 535 26.5 319 575 55.5

22 to 23.9 49 301 16.3 26 278 9.4 7 334 2.1 84 335 25.1 16 334 4.8 17 252 6.7 77 312 24.7 197 341 57.8

24 to 25.9 30 238 12.6 17 225 7.6 6 255 2.4 74 258 28.7 13 261 5.0 11 198 5.6 61 248 24.6 144 262 55.0

26 to 27.9 14 116 12.1 17 119 14.3 1 138 0.7 53 138 38.4 3 137 2.2 6 90 6.7 48 132 36.4 101 143 70.6

>=28.0 34 207 16.4 27 200 13.5 4 242 1.7 81 244 33.2 11 249 4.4 14 183 7.7 63 232 27.2 160 251 63.7

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.
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Supplemental Table 7. Description of outcomes by gestational weight gain category (continued)a

Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse

outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Obesity grade 2 (n=3284)

Weight loss 5 139 3.6 3 137 2.2 6 150 4.0 31 145 21.4 8 149 5.4 14 127 11.0 21 134 15.7 65 151 43.0

0.0 to 1.9 17 274 6.2 29 286 10.1 31 309 10 80 314 25.5 22 317 6.9 26 270 9.6 46 290 15.9 175 322 54.3

2.0 to 3.9 14 194 7.2 12 192 6.3 19 214 8.9 48 214 22.4 9 216 4.2 17 182 9.3 32 197 16.2 105 221 47.5

4.0 to 5.9 25 241 10.4 26 242 10.7 17 280 6.1 73 284 25.7 20 287 7.0 13 237 5.5 51 275 18.5 168 297 56.6

6.0 to 7.9 25 299 8.4 31 305 10.2 22 349 6.3 90 349 25.8 15 353 4.2 22 288 7.6 62 328 18.9 189 363 52.1

8.0 to 9.9 28 314 8.9 34 320 10.6 16 368 4.3 107 362 29.6 26 374 7.0 21 290 7.2 80 349 22.9 220 380 57.9

10.0 to 11.9 28 337 8.3 32 341 9.4 16 387 4.1 100 380 26.3 22 390 5.6 31 320 9.7 71 360 19.7 212 398 53.3

12.0 to 13.9 39 285 13.7 29 275 10.5 17 323 5.3 93 324 28.7 14 328 4.3 23 255 9.0 73 305 23.9 195 334 58.4

14.0 to 15.9 22 216 10.2 24 218 11 10 247 4.0 77 247 31.2 11 247 4.5 20 186 10.8 60 226 26.5 152 251 60.6

>=16.0 84 463 18.1 64 443 14.4 29 549 5.3 183 554 33.0 30 556 5.4 37 400 9.3 153 516 29.7 384 567 67.7

Obesity grade 3 (n=969)

Weight loss 5 73 6.8 4 72 5.6 9 85 10.6 29 84 34.5 10 85 11.8 7 73 9.6 11 77 14.3 52 87 59.8

0.0 to 1.9 14 120 11.7 7 113 6.2 9 134 6.7 34 140 24.3 11 142 7.7 12 121 9.9 19 128 14.8 73 144 50.7

2.0 to 3.9 5 52 9.6 10 57 17.5 4 64 6.3 25 63 39.7 7 66 10.6 10 48 20.8 18 56 32.1 46 67 68.7

4.0 to 5.9 9 92 9.8 6 89 6.7 8 102 7.8 32 101 31.7 3 108 2.8 7 86 8.1 21 100 21.0 56 108 51.9

6.0 to 7.9 14 79 17.7 10 75 13.3 4 92 4.3 35 93 37.6 6 93 6.5 10 72 13.9 21 83 25.3 64 96 66.7

8.0 to 9.9 8 91 8.8 8 91 8.8 6 101 5.9 32 102 31.4 5 106 4.7 6 83 7.2 20 97 20.6 60 107 56.1

10.0 to 11.9 13 86 15.1 9 82 11.0 5 98 5.1 21 97 21.6 6 100 6.0 10 77 13.0 23 90 25.6 56 101 55.4

12.0 to 13.9 13 64 20.3 5 56 8.9 5 76 6.6 23 74 31.1 8 75 10.7 7 55 12.7 20 68 29.4 48 77 62.3

14.0 to 15.9 7 49 14.3 10 52 19.2 4 59 6.8 22 61 36.1 4 62 6.5 5 40 12.5 21 56 37.5 44 64 68.8

>=16.0 24 102 23.5 13 91 14.3 7 116 6.0 51 114 44.7 9 117 7.7 6 73 8.2 43 110 39.1 93 118 78.8

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.
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Pre-eclampsia
Gestational

hypertension
Gestational

diabetes
Caesarean

section
Preterm

birth
Small size-for-

gestational-age
Large size-for-

gestational age
Any adverse

outcome

Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total % Cases Total %

Obesity grade 2 (n=3284)

Weight loss 5 139 3.6 3 137 2.2 6 150 4.0 31 145 21.4 8 149 5.4 14 127 11.0 21 134 15.7 65 151 43.0

0.0 to 1.9 17 274 6.2 29 286 10.1 31 309 10 80 314 25.5 22 317 6.9 26 270 9.6 46 290 15.9 175 322 54.3

2.0 to 3.9 14 194 7.2 12 192 6.3 19 214 8.9 48 214 22.4 9 216 4.2 17 182 9.3 32 197 16.2 105 221 47.5

4.0 to 5.9 25 241 10.4 26 242 10.7 17 280 6.1 73 284 25.7 20 287 7.0 13 237 5.5 51 275 18.5 168 297 56.6

6.0 to 7.9 25 299 8.4 31 305 10.2 22 349 6.3 90 349 25.8 15 353 4.2 22 288 7.6 62 328 18.9 189 363 52.1

8.0 to 9.9 28 314 8.9 34 320 10.6 16 368 4.3 107 362 29.6 26 374 7.0 21 290 7.2 80 349 22.9 220 380 57.9

10.0 to 11.9 28 337 8.3 32 341 9.4 16 387 4.1 100 380 26.3 22 390 5.6 31 320 9.7 71 360 19.7 212 398 53.3

12.0 to 13.9 39 285 13.7 29 275 10.5 17 323 5.3 93 324 28.7 14 328 4.3 23 255 9.0 73 305 23.9 195 334 58.4

14.0 to 15.9 22 216 10.2 24 218 11 10 247 4.0 77 247 31.2 11 247 4.5 20 186 10.8 60 226 26.5 152 251 60.6

>=16.0 84 463 18.1 64 443 14.4 29 549 5.3 183 554 33.0 30 556 5.4 37 400 9.3 153 516 29.7 384 567 67.7

Obesity grade 3 (n=969)

Weight loss 5 73 6.8 4 72 5.6 9 85 10.6 29 84 34.5 10 85 11.8 7 73 9.6 11 77 14.3 52 87 59.8

0.0 to 1.9 14 120 11.7 7 113 6.2 9 134 6.7 34 140 24.3 11 142 7.7 12 121 9.9 19 128 14.8 73 144 50.7

2.0 to 3.9 5 52 9.6 10 57 17.5 4 64 6.3 25 63 39.7 7 66 10.6 10 48 20.8 18 56 32.1 46 67 68.7

4.0 to 5.9 9 92 9.8 6 89 6.7 8 102 7.8 32 101 31.7 3 108 2.8 7 86 8.1 21 100 21.0 56 108 51.9

6.0 to 7.9 14 79 17.7 10 75 13.3 4 92 4.3 35 93 37.6 6 93 6.5 10 72 13.9 21 83 25.3 64 96 66.7

8.0 to 9.9 8 91 8.8 8 91 8.8 6 101 5.9 32 102 31.4 5 106 4.7 6 83 7.2 20 97 20.6 60 107 56.1

10.0 to 11.9 13 86 15.1 9 82 11.0 5 98 5.1 21 97 21.6 6 100 6.0 10 77 13.0 23 90 25.6 56 101 55.4

12.0 to 13.9 13 64 20.3 5 56 8.9 5 76 6.6 23 74 31.1 8 75 10.7 7 55 12.7 20 68 29.4 48 77 62.3

14.0 to 15.9 7 49 14.3 10 52 19.2 4 59 6.8 22 61 36.1 4 62 6.5 5 40 12.5 21 56 37.5 44 64 68.8

>=16.0 24 102 23.5 13 91 14.3 7 116 6.0 51 114 44.7 9 117 7.7 6 73 8.2 43 110 39.1 93 118 78.8

a Values are number of cases of each outcome, total number of participants, and absolute risks of adverse maternal and 
infant outcomes (%, calculated as (n (outcome) / n (gestational weight gain category within BMI group))*100 ) within 
in each gestational weight gain category.
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Supplemental Table 8. Odds Ratios for the associations of gestational weight gain categories 
with any adverse outcome per maternal clinical body mass index group a

Underweight Normal weight Overweight Obesity grade 1 Obesity grade 2 Obesity grade 3

Weight
gain(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight loss 1.5 (1.15,1.96) Weight loss 0.99 (0.75,1.30) Weight loss 0.87 (0.68,1.11) Weight loss 0.55 (0.39,0.78) Weight loss 0.96 (0.60,1.53)

0 to 1.9 1.57 (1.31,1.88) 0 to 1.9 1.06 (0.89,1.26) 0 to 1.9 0.86 (0.73,1.02) 0 to 1.9 0.89 (0.70,1.13) 0 to 1.9 0.59 (0.41,0.85)

2 to 3.9 1.42 (1.21,1.66) 2 to 3.9 0.81 (0.69,0.95) 2 to 3.9 0.76 (0.64,0.91) 2 to 3.9 0.67 (0.51,0.88) 2 to 3.9 1.39 (0.81,2.39)

4 to 5.9 1.28 (1.16,1.40) 4 to 5.9 0.90 (0.80,1.01) 4 to 5.9 0.73 (0.64,0.84) 4 to 5.9 0.98 (0.77,1.25) 4 to 5.9 0.62 (0.41,0.94)

<8 2.01 (1.64,2.46) 6 to 7.9 1.28 (1.20,1.36) 6 to 7.9 0.84 (0.77,0.92) 6 to 7.9 1.06 (0.94,1.21) 6 to 7.9 0.80 (0.65,1.00) 6 to 7.9 1.33 (0.85,2.08)

8 to 9.9 1.33 (1.12,1.57) 8 to 9.9 1.04 (1.00,1.09) 8 to 9.9 0.91 (0.85,0.98) 8 to 9.9 0.92 (0.82,1.03) 8 to 9.9 1.04 (0.84,1.30) 8 to 9.9 0.79 (0.53,1.19)

10 to 11.9 1.12 (0.98,1.28) 10 to 11.9 0.96 (0.93,0.99) 10 to 11.9 0.89 (0.83,0.94) 10 to 11.9 0.91 (0.82,1.02) 10 to 11.9 0.85 (0.68,1.05) 10 to 11.9 0.77 (0.50,1.16)

12 to 13.9 1.04 (0.93,1.18) 12 to 13.9 0.88 (0.86,0.91) 12 to 13.9 0.85 (0.80,0.90) 12 to 13.9 1.02 (0.91,1.13) 12 to 13.9 1.06 (0.84,1.34) 12 to 13.9 1.08 (0.67,1.76)

14 to 15.9 0.74 (0.65,0.84) 14 to 15.9 0.87 (0.85,0.90) 14 to 15.9 0.90 (0.85,0.96) 14 to 15.9 0.96 (0.86,1.08) 14 to 15.9 1.17 (0.90,1.53) 14 to 15.9 1.43 (0.82,2.47)

16 to 17.9 0.95 (0.82,1.09) 16 to 17.9 0.91 (0.88,0.95) 16 to 17.9 1.07 (1.00,1.14) 16 to 17.9 1.09 (0.95,1.25) >=16 1.81 (1.49,2.19) >=16 2.68 (1.68,4.27)

18 to 19.9 0.88 (0.74,1.05) 18 to 19.9 1.00 (0.96,1.04) 18 to 19.9 1.05 (0.98,1.13) 18 to 19.9 1.09 (0.92,1.30)

20 to 21.9 0.84 (0.69,1.02) 20 to 21.9 1.06 (1.01,1.10) 20 to 21.9 1.18 (1.10,1.28) 20 to 21.9 1.25 (1.06,1.49)

>=22 0.88 (0.75,1.04) 22 to 23.9 1.17 (1.10,1.24) 22 to 23.9 1.33 (1.21,1.47) 22 to 23.9 1.41 (1.13,1.75)

24 to 25.9 1.31 (1.23,1.40) 24 to 25.9 1.36 (1.22,1.52) 24 to 25.9 1.24 (0.97,1.58)

26 to 27.9 1.42 (1.29,1.56) 26 to 27.9 1.56 (1.33,1.82) 26 to 27.9 2.51 (1.74,3.61)

>= 28 1.77 (1.64,1.91) 1.87 (1.66,2.11) >= 28 1.84 (1.42,2.38)

aValues represent odds ratios (95% Confidence Intervals) reflecting the risk of any adverse outcome per gestational 
weight gain category for women with underweight, normal weight, overweight, obesity grade 1, obesity grade 2 
and obesity grade 3, as compared to all other gestational weight gain categories in that specific clinical maternal BMI 
group. Any adverse outcome includes pre-eclampsia, gestational hypertension, gestational diabetes, caesarean section, 
preterm birth, small size-for-gestational-age, and large size-for-gestational-age.
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Supplemental Table 8. Odds Ratios for the associations of gestational weight gain categories 
with any adverse outcome per maternal clinical body mass index group a

Underweight Normal weight Overweight Obesity grade 1 Obesity grade 2 Obesity grade 3

Weight
gain(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight gain
(kg)

OR
(95% CI)

Weight loss 1.5 (1.15,1.96) Weight loss 0.99 (0.75,1.30) Weight loss 0.87 (0.68,1.11) Weight loss 0.55 (0.39,0.78) Weight loss 0.96 (0.60,1.53)

0 to 1.9 1.57 (1.31,1.88) 0 to 1.9 1.06 (0.89,1.26) 0 to 1.9 0.86 (0.73,1.02) 0 to 1.9 0.89 (0.70,1.13) 0 to 1.9 0.59 (0.41,0.85)

2 to 3.9 1.42 (1.21,1.66) 2 to 3.9 0.81 (0.69,0.95) 2 to 3.9 0.76 (0.64,0.91) 2 to 3.9 0.67 (0.51,0.88) 2 to 3.9 1.39 (0.81,2.39)

4 to 5.9 1.28 (1.16,1.40) 4 to 5.9 0.90 (0.80,1.01) 4 to 5.9 0.73 (0.64,0.84) 4 to 5.9 0.98 (0.77,1.25) 4 to 5.9 0.62 (0.41,0.94)

<8 2.01 (1.64,2.46) 6 to 7.9 1.28 (1.20,1.36) 6 to 7.9 0.84 (0.77,0.92) 6 to 7.9 1.06 (0.94,1.21) 6 to 7.9 0.80 (0.65,1.00) 6 to 7.9 1.33 (0.85,2.08)

8 to 9.9 1.33 (1.12,1.57) 8 to 9.9 1.04 (1.00,1.09) 8 to 9.9 0.91 (0.85,0.98) 8 to 9.9 0.92 (0.82,1.03) 8 to 9.9 1.04 (0.84,1.30) 8 to 9.9 0.79 (0.53,1.19)

10 to 11.9 1.12 (0.98,1.28) 10 to 11.9 0.96 (0.93,0.99) 10 to 11.9 0.89 (0.83,0.94) 10 to 11.9 0.91 (0.82,1.02) 10 to 11.9 0.85 (0.68,1.05) 10 to 11.9 0.77 (0.50,1.16)

12 to 13.9 1.04 (0.93,1.18) 12 to 13.9 0.88 (0.86,0.91) 12 to 13.9 0.85 (0.80,0.90) 12 to 13.9 1.02 (0.91,1.13) 12 to 13.9 1.06 (0.84,1.34) 12 to 13.9 1.08 (0.67,1.76)

14 to 15.9 0.74 (0.65,0.84) 14 to 15.9 0.87 (0.85,0.90) 14 to 15.9 0.90 (0.85,0.96) 14 to 15.9 0.96 (0.86,1.08) 14 to 15.9 1.17 (0.90,1.53) 14 to 15.9 1.43 (0.82,2.47)

16 to 17.9 0.95 (0.82,1.09) 16 to 17.9 0.91 (0.88,0.95) 16 to 17.9 1.07 (1.00,1.14) 16 to 17.9 1.09 (0.95,1.25) >=16 1.81 (1.49,2.19) >=16 2.68 (1.68,4.27)

18 to 19.9 0.88 (0.74,1.05) 18 to 19.9 1.00 (0.96,1.04) 18 to 19.9 1.05 (0.98,1.13) 18 to 19.9 1.09 (0.92,1.30)

20 to 21.9 0.84 (0.69,1.02) 20 to 21.9 1.06 (1.01,1.10) 20 to 21.9 1.18 (1.10,1.28) 20 to 21.9 1.25 (1.06,1.49)

>=22 0.88 (0.75,1.04) 22 to 23.9 1.17 (1.10,1.24) 22 to 23.9 1.33 (1.21,1.47) 22 to 23.9 1.41 (1.13,1.75)

24 to 25.9 1.31 (1.23,1.40) 24 to 25.9 1.36 (1.22,1.52) 24 to 25.9 1.24 (0.97,1.58)

26 to 27.9 1.42 (1.29,1.56) 26 to 27.9 1.56 (1.33,1.82) 26 to 27.9 2.51 (1.74,3.61)

>= 28 1.77 (1.64,1.91) 1.87 (1.66,2.11) >= 28 1.84 (1.42,2.38)

aValues represent odds ratios (95% Confidence Intervals) reflecting the risk of any adverse outcome per gestational 
weight gain category for women with underweight, normal weight, overweight, obesity grade 1, obesity grade 2 
and obesity grade 3, as compared to all other gestational weight gain categories in that specific clinical maternal BMI 
group. Any adverse outcome includes pre-eclampsia, gestational hypertension, gestational diabetes, caesarean section, 
preterm birth, small size-for-gestational-age, and large size-for-gestational-age.
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Supplemental Table 9. Absolute Risk Reductions for the associations of gestational weight 
gain categories with any adverse outcome per maternal clinical body mass index group a

Underweight Normal weight Overweight Obesity grade 1 Obesity grade 2 Obesity grade 3

Weight
gain(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight loss -0.09 (-0.18,0) Weight loss 0.01 (-0.06,0.07) Weight loss 0.04 (-0.02,0.10) Weight loss 0.14 (0.06,0.22) Weight loss 0.01 (-0.09,0.12)

0 to 1.9 -0.10 (-0.15,-0.05) 0 to 1.9 -0.01 (-0.05,0.03) 0 to 1.9 0.03 (-0.01,0.07) 0 to 1.9 0.03 (-0.03,0.08) 0 to 1.9 0.12 (0.03,0.21)

2 to 3.9 -0.08 (-0.12,-0.04) 2 to 3.9 0.05 (0.01,0.08) 2 to 3.9 0.07 (0.02,0.11) 2 to 3.9 0.10 (0.03,0.17) 2 to 3.9 -0.08 (-0.20,0.03)

4 to 5.9 -0.06 (-0.08,-0.04) 4 to 5.9 0.02 (0.00,0.05) 4 to 5.9 0.08 (0.04,0.11) 4 to 5.9 0.00 (-0.06,0.06) 4 to 5.9 0.10 (0.00,0.20)

<8 -0.16 (-0.21,-0.11) 6 to 7.9 -0.06 (-0.08,-0.05) 6 to 7.9 0.04 (0.02,0.06) 6 to 7.9 -0.01 (-0.04,0.02) 6 to 7.9 0.05 (0.0,0.11) 6 to 7.9 -0.06 (-0.16,0.04)

8 to 9.9 -0.07 (-0.11,-0.03) 8 to 9.9 -0.01 (-0.02,0.00) 8 to 9.9 0.02 (0.00,0.03) 8 to 9.9 0.02 (-0.01,0.04) 8 to 9.9 -0.01 (-0.07,0.04) 8 to 9.9 0.06 (-0.04,0.16)

10 to 11.9 -0.03 (-0.06,0,00) 10 to 11.9 0.01 (0.00,0.01) 10 to 11.9 0.02 (0.01,0.04) 10 to 11.9 0.02 (-0.01,0.05) 10 to 11.9 0.04 (-0.01,0.09) 10 to 11.9 0.06 (-0.04,0.17)

12 to 13.9 -0.01 (-0.03,0.02) 12 to 13.9 0.03 (0.02,0.03) 12 to 13.9 0.04 (0.02,0.05) 12 to 13.9 -0.01 (-0.03,0.02) 12 to 13.9 -0.02 (-0.07,0.04) 12 to 13.9 -0.01 (-0.13,0.10)

14 to 15.9 0.07 (0.04,0.09) 14 to 15.9 0.03 (0.02,0.04) 14 to 15.9 0.02 (0.01,0.04) 14 to 15.9 0.01 (-0.02,0.04) 14 to 15.9 -0.04 (-0.10,0.02) 14 to 15.9 -0.08 (-0.20,0.04)

16 to 17.9 0.01 (-0.02,0.04) 16 to 17.9 0.02 (0.01,0.03) 16 to 17.9 -0.01 (-0.03,0.00) 16 to 17.9 -0.02 (-0.06,0.01) >=16 -0.13 (-0.17,-0.09) >=16 -0.20 (-0.28,-0.12)

18 to 19.9 0.03 (-0.01,0.07) 18 to 19.9 0.00 (-0.01,0.01) 18 to 19.9 -0.01 (-0.03,0.01) 18 to 19.9 -0.02 (-0.06,0.03)

20 to 21.9 0.03 (-0.01,0.08) 20 to 21.9 -0.01 (-0.02,0.00) 20 to 21.9 -0.04 (-0.05,-0.02) 20 to 21.9 -0.06 (-0.10,-0.01)

>=22 0.03 (-0.01,0.06) 22 to 23.9 -0.03 (-0.04,-0.02) 22 to 23.9 -0.06 (-0.09,-0.04) 22 to 23.9 -0.08 (-0.13,-0.02)

24 to 25.9 -0.06 (-0.07,-0.04) 24 to 25.9 -0.07 (-0.10,-0.04) 24 to 25.9 -0.05 (-0.11,0.01)

26 to 27.9 -0.07 (-0.10,-0.05) 26 to 27.9 -0.10 (-0.14,-0.06) 26 to 27.9 -0.21 (-0.28,-0.13)

>= 28 -0.13 (-0.15,-0.11) >= 28 -0.15 (-0.18,-0.12) >= 28 -0.14 (-0.20,-0.08)

a Values represent absolute risk reductions (95% Confidence Intervals) reflecting the reduction of absolute risk of any 
adverse outcome per gestational weight gain category for women with underweight, normal weight, overweight, 
obesity grade 1, obesity grade 2 and obesity grade 3, as compared to all other gestational weight gain categories 
in that specific clinical maternal BMI group. Any adverse outcome includes pre-eclampsia, gestational hypertension, 
gestational diabetes, caesarean section, preterm birth, small size-for-gestational-age, and large size-for-gestational-age.
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gain categories with any adverse outcome per maternal clinical body mass index group a

Underweight Normal weight Overweight Obesity grade 1 Obesity grade 2 Obesity grade 3

Weight
gain(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight gain
(kg)

ARR
(95% CI)

Weight loss -0.09 (-0.18,0) Weight loss 0.01 (-0.06,0.07) Weight loss 0.04 (-0.02,0.10) Weight loss 0.14 (0.06,0.22) Weight loss 0.01 (-0.09,0.12)

0 to 1.9 -0.10 (-0.15,-0.05) 0 to 1.9 -0.01 (-0.05,0.03) 0 to 1.9 0.03 (-0.01,0.07) 0 to 1.9 0.03 (-0.03,0.08) 0 to 1.9 0.12 (0.03,0.21)

2 to 3.9 -0.08 (-0.12,-0.04) 2 to 3.9 0.05 (0.01,0.08) 2 to 3.9 0.07 (0.02,0.11) 2 to 3.9 0.10 (0.03,0.17) 2 to 3.9 -0.08 (-0.20,0.03)

4 to 5.9 -0.06 (-0.08,-0.04) 4 to 5.9 0.02 (0.00,0.05) 4 to 5.9 0.08 (0.04,0.11) 4 to 5.9 0.00 (-0.06,0.06) 4 to 5.9 0.10 (0.00,0.20)

<8 -0.16 (-0.21,-0.11) 6 to 7.9 -0.06 (-0.08,-0.05) 6 to 7.9 0.04 (0.02,0.06) 6 to 7.9 -0.01 (-0.04,0.02) 6 to 7.9 0.05 (0.0,0.11) 6 to 7.9 -0.06 (-0.16,0.04)

8 to 9.9 -0.07 (-0.11,-0.03) 8 to 9.9 -0.01 (-0.02,0.00) 8 to 9.9 0.02 (0.00,0.03) 8 to 9.9 0.02 (-0.01,0.04) 8 to 9.9 -0.01 (-0.07,0.04) 8 to 9.9 0.06 (-0.04,0.16)

10 to 11.9 -0.03 (-0.06,0,00) 10 to 11.9 0.01 (0.00,0.01) 10 to 11.9 0.02 (0.01,0.04) 10 to 11.9 0.02 (-0.01,0.05) 10 to 11.9 0.04 (-0.01,0.09) 10 to 11.9 0.06 (-0.04,0.17)

12 to 13.9 -0.01 (-0.03,0.02) 12 to 13.9 0.03 (0.02,0.03) 12 to 13.9 0.04 (0.02,0.05) 12 to 13.9 -0.01 (-0.03,0.02) 12 to 13.9 -0.02 (-0.07,0.04) 12 to 13.9 -0.01 (-0.13,0.10)

14 to 15.9 0.07 (0.04,0.09) 14 to 15.9 0.03 (0.02,0.04) 14 to 15.9 0.02 (0.01,0.04) 14 to 15.9 0.01 (-0.02,0.04) 14 to 15.9 -0.04 (-0.10,0.02) 14 to 15.9 -0.08 (-0.20,0.04)

16 to 17.9 0.01 (-0.02,0.04) 16 to 17.9 0.02 (0.01,0.03) 16 to 17.9 -0.01 (-0.03,0.00) 16 to 17.9 -0.02 (-0.06,0.01) >=16 -0.13 (-0.17,-0.09) >=16 -0.20 (-0.28,-0.12)

18 to 19.9 0.03 (-0.01,0.07) 18 to 19.9 0.00 (-0.01,0.01) 18 to 19.9 -0.01 (-0.03,0.01) 18 to 19.9 -0.02 (-0.06,0.03)

20 to 21.9 0.03 (-0.01,0.08) 20 to 21.9 -0.01 (-0.02,0.00) 20 to 21.9 -0.04 (-0.05,-0.02) 20 to 21.9 -0.06 (-0.10,-0.01)

>=22 0.03 (-0.01,0.06) 22 to 23.9 -0.03 (-0.04,-0.02) 22 to 23.9 -0.06 (-0.09,-0.04) 22 to 23.9 -0.08 (-0.13,-0.02)

24 to 25.9 -0.06 (-0.07,-0.04) 24 to 25.9 -0.07 (-0.10,-0.04) 24 to 25.9 -0.05 (-0.11,0.01)

26 to 27.9 -0.07 (-0.10,-0.05) 26 to 27.9 -0.10 (-0.14,-0.06) 26 to 27.9 -0.21 (-0.28,-0.13)

>= 28 -0.13 (-0.15,-0.11) >= 28 -0.15 (-0.18,-0.12) >= 28 -0.14 (-0.20,-0.08)

a Values represent absolute risk reductions (95% Confidence Intervals) reflecting the reduction of absolute risk of any 
adverse outcome per gestational weight gain category for women with underweight, normal weight, overweight, 
obesity grade 1, obesity grade 2 and obesity grade 3, as compared to all other gestational weight gain categories 
in that specific clinical maternal BMI group. Any adverse outcome includes pre-eclampsia, gestational hypertension, 
gestational diabetes, caesarean section, preterm birth, small size-for-gestational-age, and large size-for-gestational-age.
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Supplemental Table 10. Classification of gestational weight gain by classifications from this study and IOM

This study IOM

Range (kg) n (%) Range (kg) n (%)

Underweight (n=7809)

 Inadequate <14.0 3635 (46.5) <12.5 2894 (37.1)

 Adequate 14.0 – <16.0 1326 (17.0) 12.5 – 18.0 3416 (43.7)

 Excessive ≥16.0 2848 (36.5) >18.0 1499 (19.2)

Normal weight (n=133788)

 Inadequate <10.0 16884 (12.6) <11.5 32755 (24.5)

 Adequate 10.0 – <18.0 80869 (60.5) 11.5 – 16.0 55188 (41.2)

 Excessive ≥18.0 36035 (26.9) >16.0 45845 (34.3)

Overweight (n=38828)

 Inadequate <2.0 759 (2.0) <7.0 3691 (9.5)

 Adequate 2.0 – <16.0 233580 (60.1) 7.0 – 11.5 9309 (24.0)

 Excessive ≥16.0 14711 (37.9) >11.5 25828 (66.5)

Obesity grade 1 (n=11992)

 Inadequate <2.0 871 (7.3) <5.0 1798 (15.0)

 Adequate 2.0 – <6.0 1405 (11.7) 5.0 – 9.0 2779 (23.2)

 Excessive ≥6.0 9716 (81.0) >9.0 7415 (61.8)

Obesity grade 2 (n=3284)

 Inadequate NA NA <5.0 835 (25.4)

 Adequate
Weight loss – 

<4.0a 694 (21.1) 5.0 – 9.0 865 (26.3)

 Excessive ≥4.0 2590 (78.9) >9.0 1584 (48.2)

Obesity grade 3 (n=969)

 Inadequate Weight lossb 87 (9.0) <5.0 350 (36.1)

 Adequate 0 – <6.0 319 (32.9) 5.0 – 9.0 246 (25.4)

 Excessive ≥6.0 563 (58.1) >9.0 373 (38.5)

Total group (n=196670)

 Inadequate 22236 (11.3) 42323 (21.5)

 Adequate 107971 (54.9) 71803 (36.5)

 Excessive 66463 (33.8) 82544 (42.0)

Abbreviations: NA, not available; IOM, US Institute of Medicine (nowadays called National Academy of Medicine 
(NAM)).
a Median gestational weight gain in the weight loss category: -3.00 kg (range: -25.00 to -0.13) for obesity grade 2.
b Median gestational weight gain in the weight loss category: -3.00 kg (range: -13.58 to -0.40) for obesity grade 3.
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Supplemental Figure 2. Associations of inadequate and excessive gestational weight gain by 
classifications from this study and IOM with adverse maternal and infant outcomes

Abbreviations: IOM: US Institute of Medicine (nowadays called National Academy of Medicine (NAM)). Values represent 
odds ratios (OR) (95% Confidence Intervals (CI)) reflecting the risk of adverse maternal and infant outcomes in women 
with inadequate and excessive weight gain as compared to women with adequate weight gain, according to this study 
(red triangles) and IOM classifications (black dots). Inadequate and excessive gestational weight gain are defined as 
gestational weight gain below or above the ranges defined by this study and IOM, respectively (Supplemental Table 
10). Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), 
caesarean section, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low 
and high birth and childhood under- and overweight were not included for the definition of the optimal weight gain 
ranges. * P-value for the difference between ORs for this study and IOM (calculated using Z= (logodds This study – logodds 

IOM) /sqrt(SEThis study 2+SEIOM
2)).
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Supplemental Figure 3. Associations of inadequate and excessive gestational weight gain by 
classifications from this study and IOM with adverse maternal and infant outcomes. by clinical 
body mass index group

Values represent odds ratios (95% Confidence Intervals) reflecting the risk of adverse maternal or infant outcome in 
women with inadequate and excessive weight gain as compared to women with adequate weight gain, according to 
this study, red triangles) and IOM (US Institute of Medicine, nowadays called National Academy of Medicine (NAM)) 
classifications (black dots), per clinical BMI category. Inadequate and excessive gestational weight gain are defined as 
gestational weight gain below or above the ranges defined by this study and IOM, respectively (Supplemental Table 
10). Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), cae-
sarean section, preterm birth, and small size-for-gestational-age (SGA), large size-for-gestational-age (LGA). Low and 
high birth weight and childhood under- and overweight were not included for the definition of the optimal weight gain 
ranges. * P-value for the difference between ORs for this study and IOM (calculated using Z= (logodds This study – logodds 

IOM) /sqrt(SEThis study 2+SEIOM
2)).
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Supplemental Figure 3. Associations of inadequate and excessive gestational weight gain by 
classifications from this study and IOM with adverse maternal and infant outcomes. by clinical 
body mass index group (continued)

Values represent odds ratios (95% Confidence Intervals) reflecting the risk of adverse maternal or infant outcome in 
women with inadequate and excessive weight gain as compared to women with adequate weight gain, according to 
this study, red triangles) and IOM (US Institute of Medicine, nowadays called National Academy of Medicine (NAM)) 
classifications (black dots), per clinical BMI category. Inadequate and excessive gestational weight gain are defined as 
gestational weight gain below or above the ranges defined by this study and IOM, respectively (Supplemental Table 
10). Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), cae-
sarean section, preterm birth, and small size-for-gestational-age (SGA), large size-for-gestational-age (LGA). Low and 
high birth weight and childhood under- and overweight were not included for the definition of the optimal weight gain 
ranges. * P-value for the difference between ORs for this study and IOM (calculated using Z= (logodds This study – logodds 

IOM) /sqrt(SEThis study 2+SEIOM
2)).
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Supplemental Figure 4. Receiver operator characteristic curves of inadequate and excessive 
gestational weight gain by classifications from this study and IOM for the detection of adverse 
maternal and infant outcomes

Abbreviations: AUC, area under the Receiver Operator Characteristic curve; IOM, US Institute of Medicine (nowadays 
called National Academy of Medicine (NAM)). Inadequate and excessive gestational weight gain are defined as ges-
tational weight gain below or above the ranges defined by this study and IOM, respectively (Supplemental Table 
10). Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), 
caesarean section, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low 
and high birth weight and childhood under- and overweight were not included for the definition of the optimal weight 
gain ranges.
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Supplemental Figure 4. Receiver operator characteristic curves of inadequate and excessive 
gestational weight gain by classifications from this study and IOM for the detection of adverse 
maternal and infant outcomes (continued)

Abbreviations: AUC, area under the Receiver Operator Characteristic curve; IOM, US Institute of Medicine (nowadays 
called National Academy of Medicine (NAM)). Inadequate and excessive gestational weight gain are defined as ges-
tational weight gain below or above the ranges defined by this study and IOM, respectively (Supplemental Table 
10). Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), 
caesarean section, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low 
and high birth weight and childhood under- and overweight were not included for the definition of the optimal weight 
gain ranges.
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Supplemental Figure 5. Associations of gestational weight gain categories with any adverse 
outcome per maternal clinical body mass index group, ranges from this study based on protec-
tive associations only

The symbols represent odds ratios (95% Confidence Intervals) reflecting the risk of any adverse outcome per gestational 
weight gain category for women with (A) underweight, (B) normal weight, (C) overweight, (D) obesity grade 1, (E) obe-
sity grade 2 and (F) obesity grade 3, as compared to all other gestational weight gain categories in that specific clinical 
maternal body mass index group. The symbols represent the mean for all participants in each gestational weight gain 
category. The percentages below each of the figures represent the number of participants in that gestational weight 
gain category as a percentage of all participants within that BMI category. Participants in the extreme categories of 
gestational weight gain had values beyond the most extreme labeled tick marks. Any adverse outcome includes pre-
eclampsia, gestational hypertension, gestational diabetes, caesarean section, preterm birth, small size-for-gestational-
age, and large size-for-gestational-age. This figure is equal to Figure 3, but shows ranges from this study when optimal 
weight gain would be defined as all associations below 1, regardless of statistical significance. The red area represents 
the optimal weight gain range according to this study, the grey area represents the weight gain ranges as recom-
mended by the US Institute of Medicine (IOM, nowadays called National Academy of Medicine (NAM)).
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Supplemental Figure 6. Associations of categories of gestational weight gain in first half of 
pregnancy with any adverse outcome per maternal clinical body mass index group

The symbols represent odds ratios (95% Confidence Intervals) reflecting the risk of any adverse outcome per category 
of gestational weight gain in first half of pregnancy for women with (A) underweight, (B) normal weight, (C) over-
weight, (D) obesity grade 1, (E) obesity grade 2 and (F) obesity grade 3, as compared to all other gestational weight gain 
categories in that specific clinical maternal body mass index group. The percentages below each of the figures represent 
the number of participants in that gestational weight gain category as a percentage of all participants within that BMI 
category. The symbols represent the mean for all participants in each gestational weight gain category. Participants in 
the extreme categories of gestational weight gain had values beyond the most extreme labeled tick marks. Because 
of the relatively low levels of gestational weight gain in first half of pregnancy, we categorized weight gain within this 
time interval into categories of 1 kg each. Any adverse outcome includes pre-eclampsia, gestational hypertension, 
gestational diabetes, caesarean section, preterm birth, small size-for-gestational-age, and large size-for-gestational-age. 
The red area represents the optimal weight gain range according to the current analysis. No optimal weight gain range 
was observed for obesity grade 3 due to low numbers.
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Supplemental Table 12. Classification of gestational weight gain in first half of pregnancy by 
classification from this study

This study

Range (kg) n (%)

Underweight (n=4906)

 Inadequate <2.0 1315 (26.8)

 Adequate 2.0 – <3.0 941 (19.2)

 Excessive ≥3.0 2650 (54.0)

Normal weight (n=90084)

 Inadequate Weight lossa 7272 (8.1)

 Adequate 0.0 – <2.0 21481(23.8)

 Excessive ≥2.0 61331 (68.1)

Overweight (n=27128)

 Inadequate NA NA

 Adequate <1.0a 7662 (28.2)

 Excessive ≥1.0 19466 (71.8)

Obesity grade 1 (n=8328)

 Inadequate NA NA

 Adequate Weight lossa 2053 (24.7)

 Excessive ≥0.0 6275 (75.3)

Obesity grade 2 (n=2310)

 Inadequate NA NA

 Adequate Weight lossa 784 (33.9)

 Excessive ≥0.0 1526 (66.1)

Obesity grade 3 NA NA

Total group (n=132756)

 Inadequate 8587 (6.5)

 Adequate 32921 (24.8)

 Excessive 91248 (68.7)

Abbreviations: NA, not available.
a Results need to be interpreted with caution, as the effect and safety of weight loss during pregnancy are not known.
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Supplemental Table 13. Classification table for ranges of this study for weight gain in first half 
of pregnancy vs. total gestational weight gain a, b

Total pregnancy

First half Inadequate Adequate Excessive Total

Inadequate 3634 (25.1) 4462 (5.8) 791 (1.7) 8587

Adequate 5309 (36.6) 21296 (29.5) 6316 (13.7) 32921

Excessive 5545 (38.3) 46683 (64.7) 39020 (84.6) 91248

Total 14488 72141 46127 132756

a Values are n (% within groups of total gestational weight gain (columns)).
b As no inadequate weight gain categories were observed in first half of pregnancy for most BMI categories, classifica-
tion for inadequate gestational weight gain needs to be interpreted carefully.
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Supplemental Table 14. Classification of gestational weight gain by classifications from this 
study and IOM, hospital-based population (used as validation sample)

This study IOM

Range (kg) n (%) Range (kg) n (%)

Underweight (n=277)

 Inadequate <14.0 134 (48.4) <12.5 99 (35.7)

 Adequate 14.0 – <16.0 58 (20.9) 12.5 – 18.0 136 (49.1)

 Excessive ≥16.0 85 (30.7) >18.0 42 (15.2)

Normal weight (n=2400)

 Inadequate <10.0 303 (12.6) <11.5 664 (27.7)

 Adequate 10.0 – <18.0 1656 (69.0) 11.5 – 16.0 1142 (47.6)

 Excessive ≥18.0 441 (18.4) >18.0 594 (24.8)

Overweight (n=577)

 Inadequate <2.0 7 (1.2) <7.0 57 (9.9)

 Adequate 2.0 – <16.0 404 (70.0) 7.0 – 11.5 171 (26.6)

 Excessive ≥16.0 166 (28.8) >11.5 349 (60.5)

Obesity grade 1 (n=188)

 Inadequate <2.0 6 (3.2) <5.0 23 (12.2)

 Adequate 2.0 – <6.0 25 (13.3) 5.0 – 9.0 65 (34.6)

 Excessive ≥6.0 157 (83.5) >9.0 100 (53.2)

Obesity grade 2 (n=53)

 Inadequate NA NA <5.0 15 (28.3)

 Adequate
Weight loss – 

<4.0
13 (24.5) 5.0 – 9.0 17 (32.1)

 Excessive ≥4.0 40 (75.5) >9.0 21 (39.6)

Obesity grade 3 (n=10)

 Inadequate Weight loss 1 (10.0) <5.0 6 (60.0)

 Adequate 0 – <6.0 6 (60.0) 5.0 – 9.0 2 (20.0)

 Excessive ≥6.0 3 (30.0) >9.0 2 (20.0)

Total group (n=3505)

 Inadequate 451 (12.9) 864 (24.7)

 Adequate 2162 (61.7) 1533 (43.7)

 Excessive 892 (25.4) 738 (31.6)

Abbreviations: NA, not available; US Institute of Medicine (nowadays called National Academy of Medicine (NAM)).
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Supplemental Figure 7. Associations of inadequate and excessive gestational weight gain by 
classifications from this study and IOM with adverse maternal and infant outcomes, hospital-
based population (used as validation sample)

Abbreviations: IOM, US Institute of Medicine (nowadays called National Academy of Medicine (NAM)). Values represent 
odds ratios (OR) (95% Confidence Intervals (CI)) reflecting the risk of adverse maternal and infant outcomes in women 
with inadequate and excessive weight gain as compared to women with adequate weight gain, according to this study 
(red triangles) and IOM classifications (black dots). Inadequate and excessive gestational weight gain are defined as 
gestational weight gain below or above the ranges from this study and IOM, respectively (Supplemental Table 14). 
Any adverse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), caesar-
ean section, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low and high 
birth and childhood under- and overweight were not included for the definition of the optimal weight gain ranges. 
* P-value for the difference between ORs for this study and IOM (calculated using Z= (logodds This study – logodds IOM) /
sqrt(SEThis study 2+SEIOM

2)).



221

Gestational weight gain and adverse outcomes

3.2

Supplemental Figure 8. Receiver operator characteristic curves of inadequate and excessive 
gestational weight gain by classifications from this study and IOM for the detection of adverse 
maternal and infant outcomes, hospital-based population (used as validation sample)

Abbreviations: AUC, area under the Receiver Operator Characteristic curve; IOM, US Institute of Medicine (nowadays 
called National Academy of Medicine (NAM)). Inadequate and excessive gestational weight gain are defined as gesta-
tional weight gain below or above the ranges from this study and IOM, respectively (Supplemental Table 14). Any ad-
verse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), caesarean sec-
tion, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low and high birth 
weight and childhood under- and overweight were not included for the definition of the optimal weight gain ranges.
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Supplemental Figure 8. Receiver operator characteristic curves of inadequate and excessive 
gestational weight gain by classifications from this study and IOM for the detection of ad-
verse maternal and infant outcomes, hospital-based population (used as validation sample) 
(continued)

Abbreviations: AUC, area under the Receiver Operator Characteristic curve; IOM, US Institute of Medicine (nowadays 
called National Academy of Medicine (NAM)). Inadequate and excessive gestational weight gain are defined as gesta-
tional weight gain below or above the ranges from this study and IOM, respectively (Supplemental Table 14). Any ad-
verse outcome includes pre-eclampsia (PE), gestational hypertension (PIH), gestational diabetes (GDM), caesarean sec-
tion, preterm birth, small size-for-gestational-age (SGA), and large size-for-gestational-age (LGA). Low and high birth 
weight and childhood under- and overweight were not included for the definition of the optimal weight gain ranges.
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abstract

Objective: This study aimed to examine the associations of maternal early-pregnancy glucose 

and insulin concentrations with offspring cardiometabolic risk factors and fat distribution.

Methods: In a population-based prospective cohort study among 3,737 mothers and their 

children, random maternal glucose and insulin concentrations were measured at a median 

gestational age of 13.2 (95% range 10.5-17.1) weeks. Childhood fat, blood pressure, and 

blood concentrations of lipids, glucose, and insulin at the age of 10 years were measured.

Results: Higher maternal early-pregnancy glucose and insulin concentrations were asso-

ciated with a higher risk of childhood overweight, and higher maternal early-pregnancy 

insulin concentrations were associated with an increased childhood risk of clustering of 

cardiometabolic risk factors (all P < 0.05). These associations were explained by maternal 

prepregnancy BMI. Independent of maternal prepregnancy BMI, one SD score (SDS) higher 

maternal early-pregnancy glucose and insulin concentrations were associated with higher 

childhood glucose (0.08 SDS, 95% CI: 0.04-0.11) and insulin concentrations (0.07 SDS, 95% 

CI: 0.03-0.10), but not with childhood blood pressure, lipids, and fat measures.

Conclusions: These results suggest that maternal early-pregnancy random glucose and 

insulin concentrations are associated with childhood glucose and insulin concentrations but 

not with other childhood cardiometabolic risk factors.
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introduction

Gestational diabetes is associated with increased risks of offspring obesity, type 2 diabetes, 

and metabolic syndrome (1-5). Increasing evidence has suggested that these risks might not 

be confined to women diagnosed with gestational diabetes but that they may already exist 

in offspring exposed to maternal glucose concentrations below diagnostic thresholds (6, 7). 

Previous studies have reported associations of maternal glucose concentrations in mid- and 

late pregnancy with offspring cardiometabolic risk factors (6, 7). However, as fetal cardio-

vascular and metabolic development already starts in the first trimester, early pregnancy 

may already be a critical period for the adverse influence of a suboptimal maternal glucose 

metabolism on the development of the fetal cardiometabolic system. Increases of maternal 

glucose and insulin concentrations from early pregnancy onward may directly affect placental 

development and increase nutrient transfer to the developing fetus. This may subsequently 

lead to increased fetal growth as well as adaptations in adipogenesis and pancreatic and 

vascular development. These adaptations may increase the susceptibility to cardiometabolic 

disease in later life (4, 8-12). Altered childhood body fat development may especially be 

involved in the associations of maternal glycemia with offspring cardiometabolic risk factors 

(9). A few studies have shown an association of maternal fasting glucose concentrations in 

pregnancy with increased childhood sum of skinfolds and waist circumference (6, 7, 13). 

However, it is not clear whether this includes overall fat or more specifically visceral fat 

accumulation, which is known to be more strongly related with cardiometabolic disease 

(14, 15). We hypothesized that higher maternal early-pregnancy glucose concentrations are 

associated with an unfavorable offspring cardiometabolic risk profile and suboptimal body 

fat distribution.

Therefore, in a population-based prospective cohort from early pregnancy onward among 

3,737 mothers and their children, we assessed the associations of maternal early-pregnancy 

glucose and insulin concentrations across the full range with cardiometabolic risk factors and 

detailed measurements of general and abdominal fat in childhood. We additionally explored 

whether these associations are independent of maternal lifestyle factors and birth, infant, or 

childhood characteristics.

methods

Study design and participants
This study was embedded in the Generation R Study, a population-based prospective cohort 

study from early pregnancy onward in Rotterdam, The Netherlands (16). Approval for the 

study was obtained from the Medical Ethical Committee of Erasmus University Medical Cen-

ter, Rotterdam. Written consent was obtained from the parents of all participants. In total, 



CHAPTER 4.1

230

8,879 pregnant women were enrolled between 2001 and 2005. Of these, 6,117 mothers 

had early-pregnancy information on glucose and insulin concentrations available and had 

singleton live-born children. Cardiometabolic follow-up measurements at the age of 10 years 

were available for 3,737 of their children (Figure 1). Main reasons for missing data were 

participants lost to follow-up and no consent or failure of venous punctures (16).

Maternal early-pregnancy glucose and insulin concentrations
Nonfasting blood samples were collected at enrollment in the study before 18 weeks of 

gestation (median: 13.2 weeks; 95% range: 10.5-17.1). Glucose concentration (millimoles 

per liter) is an enzymatic quantity and was measured with c702 module on the Cobas 8000 

analyzer (Roche, Almere, the Netherlands). Insulin concentration (picomoles per liter) was 

measured with electrochemiluminescence immunoassay on the Cobas e411 analyzer (Roche).

Figure 1. Flow chart of the study participants
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Childhood cardiometabolic risk factors and general and abdominal 
fat measurements
At the age of 10 years, we measured height and weight without shoes and heavy clothing 

and calculated BMI (kilograms per meter squared). Childhood BMI standard deviation scores 

(SDS) adjusted for sex and age were constructed based on Dutch reference growth charts 

(Growth Analyzer 4.0; Dutch Growth Research Foundation, Rotterdam, Netherlands) (17). 

We defined childhood overweight and underweight by categorizing childhood weight status 

according to the International Obesity Task Force cutoffs (18). Overweight and obesity were 

combined into one category, and children with underweight were excluded only in this vari-

able (n = 266). We observed similar results when children with underweight were included 

in the analyses (results not shown). Systolic and diastolic blood pressures (millimeters of mer-

cury) were measured at the right brachial artery, four times with 1-minute intervals, using the 

validated automatic sphygmanometer Datascope Accutorr Plus (Paramus, New Jersey) (19). 

Mean systolic and diastolic blood pressure values were calculated using the last three blood 

pressure measurements. We obtained nonfasting venous blood samples and measured total 

cholesterol (millimoles per liter), high-density lipoprotein (HDL) cholesterol (millimoles per 

liter), triglycerides (millimoles per liter), glucose (millimoles per liter), and insulin (picomoles 

per liter) concentrations.

We measured total, android, and gynoid body fat mass by dual-energy x-ray absorptiom-

etry (Lunar iDXA; GE Healthcare, Madison, Wisconsin) and calculated android/gynoid fat 

mass ratio (20). Abdominal subcutaneous and visceral fat measures were obtained from 

magnetic resonance imaging (MRI) scans using a 3.0-T MRI (Discovery MR750w; GE Health-

care, Milwaukee, Wisconsin) as described previously (16, 21). Childhood body fat mass is 

strongly influenced by height of the child (22). To enable assessment of the associations of 

maternal glucose metabolism with childhood adiposity measures independent of childhood 

size, we constructed childhood fat mass measures independent of height of the child. Using 

log-log regressions, we estimated the optimal adjustment for childhood height needed to 

construct height-independent fat mass measures (details in Supplemental Methods 1) (22-

24). We calculated total fat mass and subcutaneous fat mass indices (total and subcutaneous 

fat mass/height4) and visceral fat mass index (visceral fat mass/height3).

Clustering of cardiometabolic risk factors was defined as having three or more of the 

following components: visceral fat mass index ≥ 75th percentile, systolic or diastolic blood 

pressure ≥ 75th percentile, triglycerides ≥ 75th percentile, or HDL cholesterol ≤ 25th percen-

tile; and insulin ≥ 75th percentile (25). Because waist circumference was not available, we 

used visceral fat mass index as a proxy for waist circumference.

Covariates
Information on maternal educational level, ethnicity, parity, weight just before pregnancy, 

maximum weight during pregnancy, smoking, and total daily energy intake (in kilojoules) dur-
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ing pregnancy was obtained through questionnaires (16). Maternal height was measured at 

intake without shoes and BMI was calculated (16). We obtained information about diagnosis 

of gestational diabetes and child’s sex, gestational age at birth, and birth weight from medical 

records (16). Preterm birth was defined as a gestational age at birth < 37 weeks. We cre-

ated gestational age- and sex-adjusted SDS of birth weight using North-European reference 

growth charts (26). We defined small for gestational age and large for gestational age at 

birth as the lowest and the highest 10 percentiles of gestational-age–adjusted birth weight, 

respectively. We obtained information on breastfeeding in infancy by questionnaire (16).

Statistical analysis
First, we performed a nonresponse analysis to compare children with and without follow-up 

measurements at the age of 10 years. Second, we assessed the associations of maternal 

early-pregnancy glucose and insulin concentrations across the full range with the risks of 

childhood overweight and clustering of cardiometabolic risk factors using multiple logistic 

regression models. Third, we used multiple linear regression models to assess the associations 

of maternal early-pregnancy glucose and insulin concentrations with childhood BMI, blood 

pressure, lipids, and glucose and insulin concentrations across the full range separately and 

with detailed childhood general and abdominal fat measurements. We used three different 

models for the analyses. The first was the basic model, which was adjusted for gestational 

age at enrollment and child’s age and sex at follow-up measurements. The second was 

the confounder model, which was the basic model additionally adjusted for confounding 

covariates and was considered as the main model. Based on literature, maternal ethnicity, 

educational level, parity, smoking, and daily total caloric intake were considered as potential 

confounders. Only maternal ethnicity and educational level were selected in the model 

based on their association with exposures and outcomes and change in effect estimates 

of > 10% in our study sample. The third model was the maternal BMI model, which was the 

confounder model additionally adjusted for maternal prepregnancy BMI. Because previous 

studies have suggested that associations between gestational diabetes and childhood BMI 

are largely explained by maternal prepregnancy BMI, we constructed this separate maternal 

prepregnancy BMI model (12). Correlation coefficients for correlation between maternal 

glucose and insulin concentrations and prepregnancy BMI were 0.16 and 0.20 for maternal 

glucose and insulin concentrations, respectively. For associations that persisted after adjust-

ment for maternal prepregnancy BMI, we further explored whether these associations were 

mediated by gestational weight gain, birth weight, infant breastfeeding, or childhood BMI by 

adding these variables separately to the maternal BMI model. We tested for interactions of 

maternal glucose and insulin with maternal BMI, maternal ethnicity, and child’s sex, but none 

was significant and no further stratified analyses were performed (27-29). We performed 

the following sensitivity analyses: (1) we excluded women with a diagnosis of gestational 

diabetes (n = 34) because we were interested in the associations of maternal glucose and 
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insulin concentrations within a nondiabetic population; (2) we repeated the analyses exclud-

ing children born preterm, small for gestational age at birth, or large for gestational age at 

birth to explore whether these adverse birth outcomes explained potential associations.

Not normally distributed exposure and outcome measures were log transformed. To enable 

comparison of effect estimates, we constructed SDS of exposures and outcomes. To reduce 

selection bias because of missing data, multiple imputations of covariates (pooled results 

of five imputed data sets) were performed (30). We applied Bonferroni correction to take 

multiple testing into account. As outcomes were strongly correlated, we divided the α of 0.05 

by four categories (fat measures, blood pressure, lipid concentrations, and glucose/insulin 

concentrations), resulting in P < 0.013. All analyses were performed using SPSS Statistics 

version 24.0 for Windows (IBM Corp., Armonk, New York).

results

Characteristics of study participants
Table 1 shows the population characteristics. In early pregnancy, the mean maternal glucose 

concentration was 4.4 mmol/L (SD 0.9) and the median insulin concentration was 114.0 

pmol/L (95% range: 24.1-491.8). Nonresponse analyses showed that mothers of children 

included in the analyses compared with mothers lost to follow-up were, on average, older, 

more frequently European, and more highly educated and that they had a higher prepreg-

nancy weight and had children with a higher birth weight. No differences in early-pregnancy 

glucose and insulin concentrations were present (Supplemental Table 1).

Table 1. Characteristics for the study population

Total group
(n = 3,737)

Maternal characteristics

Age at enrolment, mean (SD), years 30.7 (4.7)

Height, mean (SD), cm 168.2 (7.4)

Prepregnancy weight, median (95%), kg 65.0 (50.3; 90.0)

Prepregnancy BMI, median (95%), kg/m2 22.6 (18.8; 31.9)

Ethnicity, n (%)

Dutch 2193 (58.7)

European 299 (8.0)

Cape Verdean 153 (4.1)

Dutch Antillean 66 (1.8)

Moroccan 169 (4.5)

Surinamese 272 (7.3)

Turkish 218 (5.8)
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Table 1. Characteristics for the study population (continued)

Total group
(n = 3,737)

Education, n high (%) 1855 (49.6)

Parity, No. nulliparous (%) 2230 (59.7)

Smoking during pregnancy, n yes (%) 853 (22.8)

Gestational weight gain, mean (SD), kg 15.1 (5.7)

Daily energy intake, mean (SD), kJ 8581 (2294)

Gestational age at intake, median (95%), weeks 13.2 (10.5; 17.1)

Glucose concentration, mean (SD), mmol/l 4.4 (0.9)

Insulin concentration, median (95%), pmol/l 114.0 (24.1; 491.8)

Gestational diabetes, n (%) 34 (0.9)

Infant characteristics

Sex, n female (%) 1894 (50.7)

Gestational age at birth, median (95%), weeks 40.3 (37.14; 42.14)

Birth weight, mean (SD), grams 3437 (550)

Small for gestational age, n (%) 373 (10)

Large for gestational age, n (%) 373 (10)

Preterm birth, n (%) 155 (4)

Ever breastfeeding, n yes (%) 2878 (77)

Childhood characteristics

Age, mean (SD), years 9.8 (0.4)

Height, mean (SD), cm 141.6 (6.7)

Weight, median (95%), kg 33.8 (26.4; 49.7)

BMI, median (95%), kg/m2 16.9 (14.4; 23.3)

Fat

Total fat mass, median (95%) 8417 (4905; 19116)

Android/gynoid fat mass ratio, median (95%) 0.24 (0.16; 0.44)

Subcutaneous fat mass, median (95%), g 1294 (642; 4271)

Visceral fat mass, median (95%), g 369 (187; 853)

Blood pressure

Systolic, mean (SD), mmHg 103.1 (7.9)

Diastolic, mean (SD), mmHg 58.5 (6.4)

Lipid concentrations

Total cholesterol, mean (SD), mmol/l 4.31 (0.66)

High-density lipoprotein-cholesterol, mean (SD), mmol/l 1.48 (0.34)

Triglycerides, median (95%), mmol/l 0.98 (0.47; 2.28)

Glucose, mean (SD), mmol/l 5.20 (0.94)

Insulin, median (95%), pmol/l 174.60 (45.87; 512.40)

Overweight/obese, n (%) 643 (17.2)

Clustering of cardio-metabolic risk factors, n (%) 261 (7)
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Childhood cardiometabolic risk factors
Figure 2 shows that, in the confounder model, 1-SDS higher maternal early-pregnancy 

glucose and insulin concentrations were associated with an increased risk of childhood 

overweight (odds ratio [OR] 1.14, 95% CI: 1.04-1.24 and OR 1.20, 95% CI: 1.10-1.32 per 

SDS increase in maternal glucose and insulin concentrations, respectively). A 1-SDS higher 

maternal early-pregnancy insulin concentration, but not glucose concentration, was associ-

ated with clustering of cardiometabolic risk factors in childhood (OR 1.20, 95% CI: 1.04-1.38 

per SDS increase in maternal insulin concentration). All of these associations attenuated to 

nonsignificance after adjustment for maternal prepregnancy BMI.

Figure 2. Associations of maternal early-pregnancy glucose and insulin concentrations and 
childhood risks of overweight and clustering of cardio-metabolic risk factors
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Table 2 shows the associations of maternal glucose and insulin concentrations with each 

of the childhood cardiometabolic risk factors separately. In the confounder model, a 1-SDS 

higher maternal glucose concentration was associated with lower HDL cholesterol (−0.04 

SDS, 95% CI: −0.08 to −0.01 per SDS increase in glucose concentration). A 1-SDS higher 

maternal insulin concentration was associated with higher childhood BMI (0.05 SDS, 95% 

CI: 0.02 to 0.08 per SDS increase in insulin concentration) and systolic blood pressure (0.04 

SDS, 95% CI: 0.01 to 0.07 per SDS increase in insulin concentration). These associations 

attenuated to nonsignificance after adjustment for maternal prepregnancy BMI. A 1-SDS 

higher maternal early-pregnancy glucose concentration was associated with higher glucose 

concentration in childhood (0.08 SDS, 95% CI: 0.04-0.11 per SDS increase in maternal glu-

cose concentration), whereas a 1-SDS higher maternal early-pregnancy insulin concentration 

was associated with higher childhood insulin concentration (0.07 SDS, 95% CI: 0.03-0.10 

per SDS increase in maternal insulin concentration). The association of maternal glucose 

concentration with childhood glucose concentration was not affected by additional adjust-

ment for maternal prepregnancy BMI, whereas the association of maternal early-pregnancy 

insulin concentration with childhood insulin concentration only slightly attenuated after 

adjustment for maternal prepregnancy BMI. Further adjustment for gestational weight gain, 

birth weight, infant breastfeeding, and childhood BMI did not materially affect the associa-

tions (Supplemental Table 2).

Childhood general and abdominal fat
Table 3 shows that in the confounder model, a 1-SDS higher maternal early-pregnancy 

insulin concentration, but not glucose concentration, was associated with higher childhood 

total fat mass index (0.06 SDS, 95% CI: 0.03-0.09 per SDS increase in insulin concentration), 

android/gynoid fat mass ratio (0.05 SDS, 95% CI: 0.02-0.08 per SDS increase in insulin con-

centration), and subcutaneous fat mass index (0.07 SDS, 95% CI: 0.03-0.11 per SDS increase 

in insulin concentration). All of these associations of maternal insulin concentration with 

childhood total fat mass index, android/gynoid fat mass ratio, and abdominal subcutaneous 

fat mass index attenuated to nonsignificance after adjustment for maternal prepregnancy 

BMI. No associations of maternal glucose or insulin concentrations with childhood visceral 

fat mass index were present.

Sensitivity analyses
No differences in findings were present when mothers with gestational diabetes were ex-

cluded from the analyses (data not shown). We observed largely similar results when children 

with adverse birth outcomes were excluded from the analyses (Supplemental Tables 3-6).
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discussion

In this prospective cohort study, we observed that higher maternal early-pregnancy glucose 

and insulin concentrations were associated with higher childhood glucose and insulin con-

centrations at the age of 10 years. The associations of maternal early-pregnancy glucose 

and insulin concentrations with other childhood cardiometabolic risk factors and detailed 

measurements of general and abdominal fat were explained by maternal prepregnancy BMI.

Interpretation of main findings
A high number of pregnancies are complicated by gestational diabetes. Next to an increased 

risk of maternal complications, intrauterine exposure to gestational diabetes is associated 

with adverse cardiometabolic outcomes in the offspring (4). Previous studies have already 

reported associations between higher late-pregnancy maternal glucose concentrations 

already below the clinical threshold of gestational diabetes with offspring cardiometabolic 

risk factors (6, 31, 32). A study among 970 Chinese mother-child pairs reported that third-

trimester maternal fasting glucose concentrations were associated with a higher risk for 

obesity, higher systolic blood pressure, and abnormal glucose tolerance at the age of 7 years, 

independent of maternal prepregnancy BMI (6). A cohort study in the United Kingdom 

including 2,563 women and their offspring showed that, independent of maternal prepreg-

Table 3. Associations of maternal early-pregnancy glucose and insulin concentrations with 
childhood general and abdominal fat

Model Total fat mass
Index
(SDS)

(n=3684)

Android/gynoid
fat mass ratio

(SDS)
(n=3691)

Subcutaneous
fat mass index

(SDS)
(n=1919)d

Visceral
fat mass index

(SDS)
(n=1919)d

Maternal glucose concentrations (SDS)

Basic modela 0.05 (0.02; 0.08)* 0.04 (0.00; 0.07) 0.04 (-0.01; 0.08) -0.01 (-0.05; 0.04)

Confounding modelb 0.03 (0.00; 0.06) 0.02 (-0.01; 0.05) 0.03 (-0.02; 0.07) -0.01 (-0.06; 0.03)

Maternal BMI modelc N.A. N.A. N.A. N.A.

Maternal insulin concentrations (SDS)

Basic modela 0.11 (0.08; 0.14)* 0.09 (0.06; 0.12)* 0.11 (0.06; 0.15)* 0.03 (-0.01; 0.08)

Confounding modelb 0.06 (0.03; 0.09)* 0.05 (0.02; 0.08)* 0.07 (0.02; 0.11)* 0.02 (-0.02; 0.07)

Maternal BMI modelc 0.01 (-0.02; 0.04) 0.01 (-0.02; 0.04) 0.02 (-0.02; 0.06) N.A.

Values represent regression coefficients (95% confidence interval) from linear regression models that reflect differences 
in childhood outcomes in SDS per SDS change in maternal glucose and insulin concentrations. Estimates are based on 
multiple imputed data.
SDS: standard deviation score, N.A.: not applicable
aBasic model includes gestational age at enrolment, child’s age and sex at follow up measurements
bConfounding model includes the basic model additionally adjusted for ethnicity, maternal educational level
cMaternal BMI model includes the confounder model additionally adjusted for maternal prepregnancy BMI
dMagnetic resonance imaging follow up measurements were performed in a subgroup of children
*p-value<0.013 (Bonferroni corrected p-value for multiple testing)
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nancy BMI, glycosuria in midpregnancy was associated with higher offspring BMI and fasting 

insulin concentrations but not with blood pressure and lipid concentrations (31). It is likely 

that women who develop gestational diabetes or hyperglycemia later in pregnancy already 

have a suboptimal glucose metabolism in early pregnancy, a critical period for placental 

and fetal cardiometabolic development (9, 33). Suboptimal maternal glucose and insulin 

concentrations in early pregnancy may adversely affect placental development, predisposing 

to alterations in fetal nutrient supply, growth, and development (34). In addition, suboptimal 

maternal early-pregnancy glucose concentrations may have direct adverse influences on fetal 

cardiometabolic development (9).

In the current study, we observed that higher maternal glucose and insulin concentrations 

in early pregnancy were associated with higher childhood risks of overweight and clustering 

of cardiometabolic risk factors. However, these associations attenuated after adjustment 

for maternal prepregnancy BMI. These findings suggest that maternal prepregnancy BMI, 

a known risk factor for insulin resistance in pregnancy and cardiometabolic risk factors in 

childhood, explains the associations of maternal early-pregnancy glucose and insulin con-

centrations with childhood overweight and cardiometabolic risk factors (9). When we further 

explored the associations of maternal early-pregnancy glucose and insulin concentrations 

with individual cardiometabolic risk factors, we observed that higher maternal glucose and 

insulin concentrations were associated with higher offspring glucose and insulin concentra-

tions, respectively. These associations were independent of maternal prepregnancy BMI, 

gestational weight gain, birth weight, infant breastfeeding, and childhood BMI. Findings 

were also similar when we excluded children with adverse birth outcomes from the analyses. 

Thus, these factors do not seem to explain the associations of maternal glucose and insulin 

concentrations with childhood glucose metabolism. This suggests that at least part of the as-

sociation may be due to an intrauterine effect of maternal glucose and insulin concentrations 

on offspring glucose metabolism. Similar to previous studies performed later in pregnancy 

using fasting glucose samples, we did not find an association of maternal early-pregnancy 

glucose and insulin concentrations with childhood BMI, blood pressure, and lipid concentra-

tions, independent of maternal prepregnancy BMI (31). Thus, our results suggest that ma-

ternal glucose and insulin concentrations, as soon as early pregnancy, are related to higher 

childhood glucose and insulin concentrations, irrespective of maternal, birth, and childhood 

characteristics, but not to other cardiometabolic outcomes. Whether maternal factors other 

than impaired glucose metabolism as a consequence of higher maternal BMI, such as altered 

maternal hormone status, play a role in the association of maternal prepregnancy BMI with 

childhood BMI, blood pressure, and lipids should be further studied.

Animal and mechanistic studies proposed that offspring fat accumulation and adverse fat 

distribution might be involved in the associations of maternal hyperglycemia with offspring 

cardiometabolic risk factors. Observational studies have confirmed this hypothesis and re-

ported associations of maternal fasting glucose concentrations in pregnancy with adverse 
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offspring body fat composition, measured by sum of skinfolds and waist circumference (6, 7, 

31, 35, 36). However, these measures are suboptimal, as waist circumference does not dis-

tinguish subcutaneous from visceral fat, whereas visceral abdominal fat is much more closely 

related to risk of cardiometabolic disease in later life (14). In the present study, we observed 

that higher maternal early-pregnancy insulin concentrations but not glucose concentrations 

were associated with childhood total body fat mass, android/gynoid fat mass ratio, and sub-

cutaneous abdominal fat mass. In line with the associations of maternal glucose and insulin 

concentrations with childhood BMI, blood pressure, and lipids, all associations of maternal 

glucose and insulin concentrations with detailed measurements of childhood general and 

abdominal fat in the present study were fully explained by maternal prepregnancy BMI. 

Contrary to our hypothesis, no specific associations with childhood visceral fat mass were 

present. It might be that associations with childhood visceral fat are more apparent among 

higher risk populations or at older ages. Further studies are needed to explore the detailed 

role of a suboptimal offspring body fat distribution in response to impaired maternal glucose 

metabolism during pregnancy within different populations and using advanced imaging 

techniques. Based on our results, it seems that maternal early-pregnancy glucose and insulin 

concentrations are associated with childhood subcutaneous fat accumulation, but these as-

sociations are explained by maternal prepregnancy BMI.

Within this study, we only observed independent associations of maternal early-pregnancy 

glucose and insulin concentrations with childhood glucose and insulin concentrations. These 

associations provide insight into potential underlying mechanisms, and they may be explained 

through several pathways. First, shared genetic factors are expected to have a contribution in 

the association between maternal glucose and insulin concentrations with offspring glucose 

and insulin concentrations (37). Second, higher maternal early-pregnancy glucose concentra-

tions lead to fetal hyperinsulinemia, whereas higher maternal early-pregnancy insulin con-

centrations are involved in protein, lipolysis, and early placental development. Together, this 

could cause alternations in fetal nutrient supply, affecting fetal pancreatic beta-cell develop-

ment and increasing fetal insulin secretion. These irreversible alterations may subsequently 

lead to increased glucose and insulin concentrations in childhood (9, 38, 39). Furthermore, 

higher maternal glucose concentrations may also be involved in gene expression through 

DNA methylation, leading to altered insulin secretion in the offspring (40). Further studies 

are needed to disentangle the complex mechanisms underlying the association of maternal 

glucose and insulin concentrations with childhood glucose metabolism.

The observed effect estimates for the associations of maternal early-pregnancy glucose 

and insulin concentrations with childhood glucose and insulin concentrations were relatively 

small but they may be important on a population level. Previous studies have shown that 

childhood glucose and insulin concentrations tend to track into adulthood. A study among 

1,766 children showed that children with higher fasting glucose concentrations at the age 

of 10 years had a higher risk of developing type 2 diabetes in adolescence (6). Similarly, 
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a study among 1,723 children reported that children with higher fasting glucose concen-

trations within the normal range had a higher risk of prediabetes and type 2 diabetes in 

adulthood (7). A study among 4,857 American Indian children without diabetes showed 

that children with higher glucose concentrations after a glucose tolerance test had a higher 

risk of premature death, but this effect was not independent of concurrent childhood BMI 

(41). Together, these findings suggest that even subclinical differences in childhood glucose 

and insulin concentrations may be related to the development of type 2 diabetes in later 

life (42). Maternal prepregnancy BMI seems to explain the associations of maternal glucose 

and insulin concentrations with other childhood cardiometabolic risk factors and childhood 

body fat development. This suggests that preventive strategies, aimed at improving offspring 

cardiometabolic health, might be more effective when focusing on optimizing maternal 

prepregnancy BMI than on optimizing maternal glucose concentrations from early pregnancy 

onward.

Methodological considerations
Strengths of this study are the prospective design, large sample size, and the use of detailed 

fat measures obtained through MRI. Although only 61% of children from mothers with 

information on glucose and insulin concentrations in pregnancy participated in follow-up 

measurements, we do not expect that nonresponse affected our effect estimates, as maternal 

insulin and glucose concentrations did not differ between these groups. The generalizability 

of our results may be affected by a selection toward a relatively healthy, high-educated 

study population. We obtained nonfasting glucose and insulin concentrations, sampled on 

nonfixed times throughout the day. This may have led to nondifferential misclassification, 

causing an underestimation of our associations. Although we simultaneously measured 

insulin concentrations to substantiate our findings, random glucose concentrations cannot 

directly assess insulin resistance. However, random glucose concentrations are useful for 

identifying women at risk for gestational diabetes and they are used in clinical practice as a 

screening method in early pregnancy (43, 44). In addition, we measured maternal glucose 

and insulin concentrations once during early pregnancy. Impaired glucose tolerance in early 

pregnancy has been suggested to persist throughout pregnancy (33). Further studies are 

needed with multiple, more detailed maternal glucose measurements, including fasting glu-

cose concentrations and detailed postprandial glucose measurements throughout pregnancy. 

These studies also need to use more advanced statistical methods to provide further insight 

into critical periods for potential adverse effects of impaired maternal glucose metabolism 

on offspring glucose metabolism. We did not have information available on clinical diagnosis 

of type 2 diabetes in the offspring. However, we expect the percentage of childhood type 2 

diabetes according to clinical diagnosis within our cohort to be low, as the average age of the 

children in our cohort is 9.8 years, whereas the onset of type 2 diabetes mostly occurs at later 

childhood ages (45). Further studies are needed to assess whether maternal early-pregnancy 
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glucose and insulin concentrations are also associated with the risk of type 2 diabetes in the 

offspring during adolescence. Finally, although we had detailed information on maternal 

and childhood sociodemographic and lifestyle factors available, because of the observational 

study design, residual confounding by, for example, childhood dietary factors and physical 

activity may have influenced our results.

Conclusions
Maternal early-pregnancy random glucose and insulin concentrations were associated with 

higher childhood glucose and insulin concentrations, independent of maternal and child-

hood characteristics. When taking maternal prepregnancy BMI into account, no associations 

of maternal glucose and insulin concentrations with other childhood cardiometabolic risk 

factors were present.
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suPPlemental material

Supplemental Methods 1. Log-log regression analyses

For our fat measures, we created index variables, which were made independent of height. 

We did this by dividing our fat measurements by the optimal adjustment for height. The 

optimal adjustment was determined using log-log regression analyses (1). Total fat mass, 

subcutaneous fat mass, visceral fat mass and height were log-transformed using natural logs. 

We performed linear regression analyses with log-fat measures as the dependent variable 

and log- height as the independent variable. The regression slope corresponds with the 

power by which height should be raised. This resulted in the following index values of the fat 

measures: total fat mass divided by height4, subcutaneous fat mass divided by height4 and 

visceral fat mass divided by height3.
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Supplemental Table 1. Non-response analysis for loss to follow-up at the age of 10 years (n=6117)

Follow up at 10 
years (n=3737)

No follow up at 10 
years (n=2380)

P-value*

Maternal characteristics

Age at enrolment, mean (SD), years 30.7 (4.7) 28.3(5.2) <0.01

Height, mean (SD), cm 168.2 (7.4) 166.5 (7.3) <0.01

Pre-pregnancy weight, median (95%), kg 65.0 (50.3; 90.0) 63 (50.0; 92.0) <0.01

Pre-pregnancy BMI, median (95%), kg/m2 22.6 (18.8; 31.9) 22.6 (18.6; 32.8) 0.64

Gestational weight gain, mean (SD), kg 15.1 (5.7) 15.1 (6.3) 0.82

Gestational age at intake, median (95%), weeks 13.2 (10.5; 17.1) 13.4 (10.4; 17.4) <0.01

Parity, n nulliparous (%) 2230 (59.7) 1244 (52.3) <0.01

Ethnicity, n (%) <0.01

Dutch/European 2492 (66.7) 1088 (49.7)

Other 1191 (31.9) 1103 (46.3)

Education level, n high (%) 1855 (49.6) 695 (33.0) <0.01

Smoking during pregnancy, n yes (%) 853 (22.8) 673 (29.2) <0.01

Folic acid supplement use, n yes (%) 2363 (63.2) 1126 (47.3) <0.01

Glucose, mean (SD), mmol/l 4.40 (0.86) 4.38 (0.82) 0.39

Insulin, median (95%), pmol/l 114.0 (24.05) 115.35 0.06

Gestational diabetes, n (%) 34 (0.9) 28 (1.2) 0.27

Daily calorie intake, mean (SD), kcal 2050 (548) 2008 (588) 0.02

Birth characteristics

Gender, n female (%) 1894 (50.7) 1123 (47.2) 0.01

Birth weight, mean (SD), grams 3437 (550) 3386 (583) <0.01

Gestational age at birth, median (95%), weeks 40.3 (37.1; 42.1) 40.0 (36.4; 42.0) <0.01

*Differences in subject characteristics between the groups were evaluated using unpaired t-tests for the normally dis-
tributed continuous variables, Mann-Whitney U tests for the not-normally distributed continuous variables and chi-
square tests for proportions.
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Supplemental Table 2. Associations of maternal early-pregnancy glucose and insulin concentrations with 
childhood glucose and insulin concentrations after adjustment for maternal and childhood characteristics

Model Glucose
Concentrations

(SDS)
(n=2589)

Insulin
Concentrations

(SDS)
(n=2583)

Maternal glucose concentrations (SDS)

Gestational weight gain modela 0.07 (0.03; 0.12)* 0.03 (-0.02; 0.07)

Birth weight modelb 0.08 (0.04; 0.12)* 0.03 (-0.01; 0.07)

Infant modelc 0.07 (0.03; 0.11)* 0.03 (-0.01; 0.06)

Child BMI modeld 0.07 (0.03; 0.11)* 0.03 (-0.01; 0.07)

Maternal insulin concentrations (SDS)

Gestational weight gain modela 0.02 (-0.02; 0.07) 0.05 (0.01; 0.10)*

Birth weight modelb 0.03 (-0.01; 0.07) 0.06 (0.02; 0.10)*

Infant modelc 0.02 (-0.02; 0.07) 0.06 (0.02; 0.10)*

Child BMI modeld 0.02 (-0.02; 0.07) 0.06 (0.02; 0.09)*

aGestational weight gain model includes the maternal BMI model additionally adjusted for gestational weight gain
bBirth weight model includes the maternal BMI model additionally adjusted for gestational-age-adjusted birth weight
cInfant model includes maternal BMI model additionally adjusted for breastfeeding in infancy
dChild BMI model, the maternal BMI model additionally adjusted for child’s BMI during follow up measurement at 10 
years
*p-value<0.013 (Bonferroni corrected p-value for multiple testing)
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Supplemental Table 6. Associations of maternal early-pregnancy glucose and insulin concentrations with 
childhood general and abdominal fat after exclusion of children small or large for gestational age at birth

Model Total fat mass
Index
(SDS)

(n=2951)

Android/gynoid
fat mass ratio

(SDS)
(n=2951)

Subcutaneous
fat mass index

(SDS)
(n=1544)d

Visceral
fat mass index

(SDS)
(n=1544)d

Maternal glucose concentrations (SDS)

Basic modela 0.04 (0.01; 0.08) 0.04 (0.00; 0.07) 0.04 (-0.01; 0.09) -0.01 (-0.06; 0.04)

Confounding modelb 0.03 (-0.01; 0.06) 0.02 (-0.01; 0.05) 0.03 (-0.02; 0.07) -0.02 (-0.07; 0.03)

Maternal BMI modelc N.A. N.A. N.A. -0.06 (-0.11; -0.01)

Maternal insulin concentrations (SDS)

Basic modela 0.11 (0.08; 0.14)* 0.10 (0.06; 0.13)* 0.11 (0.06; 0.15)* 0.03 (-0.02; 0.08)

Confounding modelb 0.06 (0.03; 0.09)* 0.06 (0.03; 0.10)* 0.07 (0.03; 0.12)* 0.02 (-0.03; 0.06)

Maternal BMI modelc 0.01 (-0.02; 0.04) 0.02 (-0.01; 0.06) 0.02 (-0.03; 0.06) N.A.

Values represent regression coefficients (95% confidence interval) from linear regression models that reflect differences 
in childhood outcomes in SDS per SDS change in maternal glucose and insulin concentrations. Estimates are based on 
multiple imputed data.
N.A.: not applicable, SDS: standard deviation score
aBasic model includes gestational age at enrolment, child’s age and sex at follow up measurements
bConfounding model includes the basic model additionally adjusted for ethnicity, maternal educational level
cMaternal BMI model includes the confounder model additionally adjusted for maternal prepregnancy BMI
dMagnetic resonance imaging follow up measurements were performed in a subgroup of children
*p-value<0.013 (Bonferroni corrected p-value for multiple testing)

Supplemental Table 5. Associations of maternal early-pregnancy glucose and insulin concentrations with 
childhood general and abdominal fat after exclusion of children born premature

Model Total fat mass
Index
(SDS)

(n=3540)

Android/gynoid
fat mass ratio

(SDS)
(n=3540)

Subcutaneous
fat mass index

(SDS)
(n=1846)d

Visceral
fat mass index

(SDS)
(n=1846)d

Maternal glucose concentrations (SDS)

Basic modela 0.05 (0.02; 0.08)* 0.04 (0.01; 0.07) 0.03 (-0.01; 0.08) -0.01 (-0.06; 0.03)

Confounding modelb 0.03 (0.00; 0.06) 0.02 (-0.01; 0.06) 0.02 (-0.02; 0.06) -0.02 (-0.06; 0.03)

Maternal BMI modelc N.A. N.A. N.A. N.A.

Maternal insulin concentrations (SDS)

Basic modela 0.11 (0.08; 0.14)* 0.09 (0.06; 0.12)* 0.10 (0.06; 0.15)* 0.03 (-0.02; 0.07)

Confounding modelb 0.07 (0.04; 0.10)* 0.05 (0.02; 0.08)* 0.07 (0.03; 0.11)* 0.02 (-0.03; 0.06)

Maternal BMI modelc 0.02 (-0.01; 0.05) 0.01 (-0.02; 0.05) 0.02 (-0.02; 0.06) N.A.

Values represent regression coefficients (95% confidence interval) from linear regression models that reflect differences 
in childhood outcomes in SDS per SDS change in maternal glucose and insulin concentrations. Estimates are based on 
multiple imputed data.
N.A.: not applicable, SDS: standard deviation score
aBasic model includes gestational age at enrolment, child’s age and sex at follow up measurements
bConfounding model includes the basic model additionally adjusted for ethnicity, maternal educational level
cMaternal BMI model includes the confounder model additionally adjusted for maternal prepregnancy BMI
dMagnetic resonance imaging follow up measurements were performed in a subgroup of children
*p-value<0.013 (Bonferroni corrected p-value for multiple testing)
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abstract

Aims/hypothesis: We aimed to identify critical periods and specific longitudinal growth 

patterns from fetal life onwards associated with childhood insulin and C-peptide levels.

Methods: In a prospective population-based cohort study of 4328 children, we repeatedly 

measured (femur) length and (estimated fetal) weight from the second trimester of fetal life 

until 6 years of age. BMI was calculated from 6 months onwards. Insulin and C-peptide levels 

were measured at 6 years of age.

Results: Preterm birth and small or large size for gestational age at birth were not associated 

with childhood insulin levels. Conditional growth modelling showed that, independent of 

growth in other time intervals, weight growth in each time interval from birth onwards, 

length growth from 6 months onwards and BMI growth from 12 months onwards were 

positively associated with childhood insulin levels. The strongest associations were present 

for weight and BMI growth between 48 and 72 months of age. Repeated measurement 

analyses showed that, compared with children in the lowest quartile of childhood insulin, 

those in the highest quartile had a higher length from birth onwards and a higher weight and 

BMI from 24 months onwards. These differences increased with age. No associations were 

observed for fetal growth characteristics. Similar results were observed for C-peptide levels.

Conclusions/interpretation: Our results suggest that rapid length, weight and BMI growth 

from birth onwards, but not during fetal life, is associated with higher insulin levels in child-

hood.
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introduction

A large body of evidence suggests that adverse exposures in early life influence the risk of 

type 2 diabetes in later life (1). Multiple previous studies have shown that adults born with 

either a low or high birthweight are at increased risk of type 2 diabetes (2, 3). Birthweight is 

often used as a proxy for fetal growth. However, since birthweight is the result of different 

fetal growth patterns and is the starting point of infant growth, birthweight is not a causal 

factor per se in the development of type 2 diabetes. Studies assessing the associations of 

directly measured fetal growth characteristics with measures of glucose or insulin metabolism 

in later life are scarce and focused on measures of growth during specific trimesters only (4, 

5). As the development of the endocrine pancreas starts as early as the first trimester (6), 

fetal life might be a critical period for glucose and insulin metabolism, and the development 

of type 2 diabetes in later life.

More research has been performed on childhood growth patterns related to the risk of 

type 2 diabetes in later life (7-11). These studies showed that participants who developed 

type 2 diabetes in adulthood were small at birth and thin in infancy. During childhood, they 

gained weight rapidly, leading to an average or above average BMI at the age of 11 years. 

Furthermore, weight gain during the first 6 months of life was more strongly related to the 

risk of insulin resistance in adulthood compared with weight gain later in infancy (9).

Thus far, there have been no studies to explore the associations of directly measured 

fetal growth characteristics or the combined associations of repeatedly measured fetal and 

childhood growth characteristics with insulin metabolism in later life. It is also not clear 

which time period of growth is most important for later insulin metabolism. Therefore, we 

aimed to identify critical periods and specific growth patterns from fetal life onwards that are 

important for the development of suboptimal insulin metabolism in childhood. Among 4328 

participants of a population-based prospective cohort study from early pregnancy onwards, 

we assessed the associations of directly measured fetal and childhood growth characteristics 

with insulin and C-peptide levels at 6 years of age.

methods

Study design
This study was embedded in the Generation R Study, a population-based prospective cohort 

study from early pregnancy onwards performed in Rotterdam, the Netherlands (12, 13). 

The study was approved by the Medical Ethical Committee of the Erasmus Medical Center, 

University Medical Center, Rotterdam (MEC 198.782/2001/31). Written informed consent 

was obtained from all mothers. The response rate at birth was 61%. In total, 9901 children 

were enrolled in the study. As growth represents a change in size between two time points, 
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we included children who had measurements of fetal or childhood growth characteristics 

available at, at least, two different time points (n=9639). Of these children, 9395 were 

singleton and live-born, 6522 participated in the follow-up measurements at 6 years of age 

and 4328 had information on insulin or C-peptide levels available (Supplemental Figure 1). 

Missing data on insulin and C-peptide levels were mainly due to lack of consent for venous 

punctures or non-successful venous punctures (13).

Fetal and childhood growth characteristics
We performed fetal ultrasound examinations in each trimester of pregnancy. As described 

previously, gestational age was established using data from the first fetal ultrasound exami-

nation (14). Second and third trimester fetal head circumference (HC), abdominal circumfer-

ence (AC) and femur length (FL) were measured to the nearest millimetre using standardised 

ultrasound procedures. We calculated estimated fetal weight (EFW) using the formula of 

Hadlock et al (15): log10 EFW=1.5662−0.0108 (HC)+0.0468 (AC)+0.171 (FL)+0.00034 

(HC)2−0.003685 (AC× FL). Information on child’s sex, gestational age, weight and length 

at birth was obtained from medical records. Preterm birth was defined as a gestational 

age at birth <37 weeks. Low birthweight was defined as a birthweight ≤2500 g and high 

birthweight was defined as a birthweight ≥4000 g. Small and large size for gestational age 

at birth were defined as the lowest and the highest ten percentiles of gestational age and 

sex-adjusted birthweight in the complete cohort.

Well-trained staff in community health centres obtained childhood growth characteristics 

(length and weight) according to standard schedules and procedures at 6, 12, 24, 36 and 48 

months of age. Growth characteristics at 72 months were obtained in a dedicated research 

centre following standardised protocols. We calculated BMI (kg/m2) at each time point 

from 6 months onwards. Standard deviation scores (SDS) were constructed for all growth 

characteristics using reference charts from the complete cohort for fetal measurements (14), 

northern European growth charts for birth measurements (16) and Dutch growth reference 

charts for childhood growth characteristics (Growth Analyzer 3.0; Dutch Growth Research 

Foundation, Rotterdam, the Netherlands) (17).

Childhood insulin and C-peptide levels
At 6 years of age, 30 min fasting venous blood samples were obtained in a well-equipped 

and dedicated research centre in the Erasmus Medical Center Sophia Children’s hospital, Rot-

terdam, the Netherlands (12). All blood samples were stored for a maximum of 4 h at 4°C. 

Blood samples were transported twice daily to the laboratory facility of the regional laboratory 

in Rotterdam, the Netherlands (STAR-MDC), where they were processed and stored within 

4 h of venous puncture (13). Insulin (pmol/l) and C-peptide levels (nmol/l) were obtained 

enzymatically using a Cobas 8000 Analyzer (Roche, Almere, the Netherlands). Quality control 

samples demonstrated intra- and inter-assay coefficients of variation of 1.39% and 2.40%, 
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respectively. As C-peptide is secreted in equal amounts but has a longer half-life compared 

with insulin, we included C-peptide levels as an additional, more stable, outcome measure.

Covariates
We assessed maternal age, pre-pregnancy weight, parity, ethnicity, educational level and 

folic acid use by questionnaire at enrolment in the study. Maternal height was measured and 

pre-pregnancy BMI was calculated. Smoking during pregnancy was repeatedly assessed by 

questionnaire throughout pregnancy. We obtained information on gestational hypertensive 

disorders (gestational hypertension and preeclampsia) and gestational diabetes from medical 

records (18). Information on breastfeeding and the timing of introduction to solid foods 

was assessed by questionnaire during infancy, and the average time watching television was 

assessed by questionnaire at 6 years of age.

Statistical analysis
First, we assessed the associations of gestational age at birth (preterm, term), birthweight 

(low, normal, high) and size for gestational age at birth (small, appropriate, large) with child-

hood insulin and C-peptide levels using multiple linear regression models. Second, to identify 

specific critical periods of growth associated with childhood insulin and C-peptide levels, 

we used conditional growth modelling (19-21). We constructed length, weight and BMI 

growth variables, which are statistically independent from each other, using the standardised 

residuals obtained from the linear regression models of length, weight and BMI regressed 

on all prior corresponding growth measurements (Supplemental Methods 1). This enables 

inclusion of the growth measurements at all time points simultaneously in one model, and 

thus to estimate the independent and mutually adjusted influence of growth during each 

time interval on childhood insulin and C-peptide levels (19-21). Third, in order to examine the 

associations of longitudinal fetal and childhood growth patterns with childhood insulin and 

C-peptide levels, we used unbalanced repeated measurement models. These models allow 

for incomplete outcome data and take the correlation between repeated measurements of 

the same participant into account by modelling the correlated errors of these measurements. 

For these analyses, we constructed quartiles of childhood insulin and C-peptide levels. 

These categories were included in the models as intercept and as interaction terms with 

(gestational) age to study the (gestational) age-independent effects (difference constant over 

time) as well as (gestational) age-dependent effects (difference non-constant over time). The 

actual models are described in more detail in Supplemental Methods 2.

All models were first adjusted for the child’s sex and age at insulin and C-peptide mea-

surement only (basic models), and were subsequently adjusted for maternal and childhood 

sociodemographic and lifestyle related characteristics (adjusted models). The models for birth 

outcomes were also adjusted for childhood BMI at insulin and C-peptide measurement. We 

included covariates in the models based on their associations with the outcomes of inter-
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est in previous studies, a significant association with the determinants and outcomes, or a 

change in effect estimates of >10%. The associations between all growth characteristics and 

childhood insulin and C-peptide levels were linear. We tested for interactions between birth-

weight and BMI at the age of insulin and C-peptide measurement, birthweight and child’s 

sex, and BMI at the age of insulin and C-peptide measurement and child’s sex in the models 

described above, but no significant interactions were present (p values for interaction >0.05). 

In order to obtain normal distributions, we square root transformed insulin and C-peptide 

levels. SDS were constructed for insulin and C-peptide levels, defined as (observed value 

minus mean value of the reference population)/SD, to enable comparison of effect estimates. 

We used multiple imputation for missing values of covariates (<32%) and for the growth 

characteristics (<46%) for conditional growth modelling only by generating five independent 

datasets using the Markov Chain Monte Carlo (MCMC) method. Pooled effect estimates 

were presented. We performed a sensitivity analysis in children with growth characteristics 

available at all time points, which did not materially change the main findings (results not 

shown). The repeated measurement analyses were performed using the Statistical Analysis 

System version 9.3 (SAS Institute, Cary, NC, USA). All other analyses were performed using 

the Statistical Package of Social Sciences version 21.0 for Windows (IBM, Armonk, NY, USA).

results

Study population
Table 1 shows the characteristics of the study population. At 6 years of age, the median 

insulin and C-peptide levels were 112 pmol/l (95% range 17, 395) and 0.95 nmol/l (95% 

range 0.30, 2.14), respectively. Supplemental Table 1 shows the growth characteristics at 

each time point. Nonresponse analysis showed that the mothers of children not included in 

the analyses were more likely to have a lower level of education and to smoke more often 

compared with the mothers of children included in the analyses (Supplemental Table 2). 

Furthermore, children not included in the analysis were less often from European descent. No 

or minor differences in childhood growth characteristics were observed between the groups.

Critical periods of early growth
We did not observe associations of gestational age at birth, birthweight or size for gesta-

tional age at birth with childhood insulin levels in the basic or the adjusted models (Table 2). 

After additional adjustment for childhood current BMI, tendencies to inverse associations of 

birthweight and size for gestational age at birth with childhood insulin levels were present. 

The results were similar for childhood C-peptide levels (Supplemental Table 3).

Figure 1 shows the associations of growth during specific time intervals, conditional on 

prior growth measurements, with childhood insulin levels (adjusted models). No associations 
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were observed for growth during specific periods in fetal life. Independent of growth in 

other time intervals, weight growth in each time interval from birth onwards, length growth 

in each time interval from 6 months onwards and BMI growth in each time interval from 

12 months onwards were positively associated with childhood insulin levels (p <0.05). The 

strongest associations were present for weight and BMI growth between 48 and 72 months. 

The results obtained from the basic model were consistent (Supplemental Figure 2). Similar 

results were also observed for childhood C-peptide levels (Supplemental Figures 2 and 3).

Table 1. Characteristics of the study population

Total group

N=4,328

Maternal characteristics

Age at intake (years), mean (SD) 30.7 (5.1)

Height (cm), mean (SD) 167.7 (7.5)

Pre-pregnancy weight (kg), median (95% range) 64.0 (49.0, 98.0)

Pre-pregnancy BMI (kg/m2), median (95% range) 22.7 (18.1, 34.5)

Highest education completed, n (%)

Primary 343 (8.7)

Secondary 1692 (43.1)

Higher 1887 (48.1)

Parity, nulliparous (%) 2299 (55.1)

Ethnicity, European (%) 2605 (61.9)

Folic acid use, yes (%) 2239 (75.3)

Smoking during pregnancy, yes (%) 601 (16.0)

Gestational diabetes, yes (%) 42 (1.0)

Pre-eclampsia, yes (%) 65 (1.8)

Gestational hypertension, yes (%) 155 (4.2)

Child characteristics

Sex, male (%) 2235 (51.6)

Gestational age at birth (weeks), median (95% range) 40.1 (35.8, 42.3)

Birthweight (g), median (95% range) 3450 (2261, 4474)

Ever breastfed, yes (%) 3150 (92.5)

Introduction of solid foods before 6 months, yes (%) 2328 (89.9)

Ethnicity, European (%) 2730 (64.8)

Television watching >2 h/day, n (%) 672 (19.9)

Age at 6-year follow-up examination (years), median (95% range) 6.0 (5.7, 8.0)

BMI (kg/m2), median (95% range) 15.9 (13.7, 21.2)

Insulin at 6 years (pmol/l), median (95% range) 112 (17, 395)

C-peptide at 6 years (nmol/l), median (95% range) 0.95 (0.30, 2.14)
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Fetal and childhood growth patterns
Figure 2a–c shows the growth patterns from fetal life onwards for children in the higher 

childhood insulin quartiles compared with children in the lowest childhood insulin quartile. 

The overall growth patterns for fetal weight and length did not differ between the insulin 

quartiles (p values for trend >0.05). During childhood, length, weight and BMI gain were 

faster for children in the higher insulin quartiles (p values for trend <0.05). The largest dif-

ferences were observed for children in the highest insulin quartile. Compared with children 

in the lowest insulin quartile, children in the highest insulin quartile were taller from birth 

onwards. Furthermore, they had a higher weight and BMI from 24 months onwards. These 

differences increased with age. Supplemental Figure 4a-c shows the growth patterns as-

sociated with childhood C-peptide levels, which were similar to those for insulin levels. The 

regression coefficients for (gestational) age-independent (intercept) and (gestational) age-

dependent effects (interaction between the insulin or C-peptide quartiles and (gestational) 

age) are given in Supplemental Tables 4 and 5.

Table 2. Associations of birth outcomes with childhood insulin levels (n=4286)

Birth outcome n Insulin (SDS [95% CI])

Basic model Adjusted model BMI-adjusted model

Gestational age at birth

Preterm (<37 weeks) 213 0 (-0.14, 0.14) -0.03 (-0.18, 0.13) -0.07 (-0.22, 0.08)

Term (≥37 weeks) 4051 Reference Reference Reference

p value for trend 4264 0.957 0.743 0.358

Birthweight

Low (≤2500 g) 187 -0.01 (-0.16, 0.14) 0.06 (-0.12, 0.23) 0.12 (-0.06, 0.29)

Normal (2500–3999 g) 3474 Reference Reference Reference

High (≥4000 g) 625 -0.03 (-0.12, 0.05) -0.07 (-0.16, 0.02) -0.13 (-0.22, -0.04)*

p value for trend 4286 0.529 0.098 0.002

Size for gestational age

SGA (≤10th percentile) 363 -0.01 (-0.11, 0.10) 0.01 (-0.10, 0.12) 0.08 (-0.03, 0.19)

AGA (10–90th percentile) 3447 Reference Reference Reference

LGA (≥90th percentile) 444 -0.04 (-0.14, 0.06) -0.06 (-0.16, 0.04) -0.12 (-0.22, -0.02)*

p value for trend 4254 0.635 0.276 0.005

Values are regression coefficients that reflect the differences in insulin SDS between the groups of the different birth 
outcomes
The basic models are adjusted for child’s sex and age at insulin and C-peptide measurement. The adjusted models are 
further adjusted for maternal pre-pregnancy BMI, maternal age, parity, smoking during pregnancy, folic acid use, ma-
ternal education level, gestational diabetes, gestational hypertensive disorders, ethnicity of the child, gestational age at 
birth (for birthweight) and birthweight (for gestational age at birth). The BMI-adjusted models are the adjusted models 
with additional adjustment for childhood BMI at insulin and C-peptide measurement
p values for trend were obtained by entering the categorical variables to the models as continuous variables
*p<0.05
AGA, appropriate for gestational age; LGA, large for gestational age; SGA, small for gestational age
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discussion

In this prospective population-based cohort study, rapid length, weight and BMI growth from 

birth onwards was associated with higher childhood insulin levels. Although the strongest as-

sociations were present for weight and BMI growth between 48 and 72 months, we also ob-

served independent associations of postnatal weight and BMI growth with childhood insulin 

levels at earlier time intervals. No associations were observed for fetal growth characteristics.

Strengths and limitations
In this prospective population-based study, we had repeatedly measured growth character-

istics available from fetal life onwards, enabling us to study the combined associations of 

fetal and childhood growth characteristics with childhood insulin and C-peptide levels. Of all 

eligible children at baseline, 54% were not included in the analyses. We consider it unlikely 

that this led to selection bias, since no or only minor differences were observed between the 

growth characteristics of children included in the analyses and children not included in the 

analyses.

The fasting time before venous puncture was limited. Due to the design of the study and 

the young age of the children, we were not able to collect blood samples after a longer 

fasting period (12). This may have led to some non-differential misclassification and un-

Figure 1. Associations of fetal and childhood growth, conditional on prior measurements, with 
childhood insulin levels (n=4293)
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Values are regression coefficients representing differences in childhood insulin SDS per standardised residual change in 
growth characteristic in each time interval. The standardised residuals were obtained from models in which the growth 
measures of interest were regressed on the prior corresponding growth measures. For models presented for length and 
weight, the initial measure of size (starting point) was at 20 weeks of gestation (FL and EFW), and for BMI at 6 months 
of age. The models are adjusted for child’s sex, age at insulin and C-peptide measurement, maternal pre-pregnancy 
BMI, maternal age, parity, smoking during pregnancy, folic acid use, maternal education level, gestational diabetes, 
gestational hypertensive disorders, ethnicity of the child, gestational age at birth, breastfeeding, timing of introduction 
of solid foods and time watching television. Circles, length; squares, weight; triangles, BMI; wks, weeks; mo, months.
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Figure 2. Fetal and childhood growth patterns according to insulin quartile (n=4293)
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Results are based on repeated linear regression models and reflect the differences in SDS of (a) length (based on 
39,022 measurements), (b) weight (based on 42,630 measurements) and (c) BMI (based on 23,277 measurements) 
growth in children with insulin levels in the second, third and fourth quartiles (insulin levels 62.7–112.4, 112.5–186.9 
and 187.0–569.7 pmol/l, respectively), compared with those with insulin levels in the first quartile (2.7–62.6 pmol/l). 
The reference value is an SDS of 0. The models were adjusted for child’s sex, maternal pre-pregnancy BMI, maternal 
age, parity, smoking during pregnancy, folic acid use, maternal education level, gestational diabetes, gestational hy-
pertensive disorders, ethnicity of the child, gestational age at birth, breastfeeding, timing of introduction of solid foods 
and time watching television. Circles/dotted line, second insulin quartile; triangles/dashed line, third insulin quartile; 
squares/solid line, fourth insulin quartile.
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derestimation of the observed effect estimates. This may especially affect childhood insulin 

levels, which are less stable and have a shorter half-life compared with C-peptide levels. In 

addition, information on glucose levels was not available and therefore we were unable to 

estimate insulin sensitivity. However, as blood glucose levels are less variable than insulin 

levels, especially in children, and most of the variability in insulin sensitivity is due to insulin 

levels, we consider insulin levels to be a useful proxy of insulin sensitivity (22, 23). Further 

studies are needed to assess the associations of fetal and childhood growth with detailed and 

fasting measures of offspring glucose and insulin metabolism.

As insulin is known to stimulate growth and fat deposition, it might be possible that the 

associations observed were due to reverse causation (24). However, as information on insulin 

and C-peptide levels was only available at 6 years of age, we were not able to assess this 

possibility in our study.

The prospective design of the study from early pregnancy onwards enabled us to take into 

account numerous potential maternal and childhood confounders. However, some residual 

confounding might be present in the reported effect estimates as, for example, detailed 

dietary information was not available.

Interpretation of main findings
An accumulating body of evidence suggests that adverse exposures in early life influence the 

risk of type 2 diabetes in later life. Multiple studies have reported associations of birthweight 

with measures of glucose and insulin metabolism in children as well as adults, some of them 

depending on adjustment for current body size (2-4, 9, 25). We did not observe associations 

of gestational age at birth, birthweight or size for gestational age at birth with childhood 

insulin or C-peptide levels. After adjustment for childhood current BMI, tendencies to inverse 

associations for birthweight and size for gestational age at birth were present. However, it 

has been argued that adjusting early size for later size reflects the change in size between 

these two time points (26). This suggests that the change between the growth characteristics 

at birth and in childhood is related to childhood insulin and C-peptide levels rather than 

birthweight per se.

Thus far, critical periods from fetal life onwards associated with the development of type 

2 diabetes remain unclear, as previous studies mainly used birthweight as a proxy of fetal 

growth. Among 123 Danish adolescents, fetal growth velocity during the third trimester 

was not associated with any measure of insulin or glucose metabolism (4). In our own study 

cohort, first trimester crown to rump length was not associated with childhood insulin levels 

(5). In childhood, results from the Helsinki birth cohort suggest that growth during the first 

6 months is critical for the development of insulin resistance in adulthood (9). In a study of 

1124 children from England and Wales, both a lower birthweight and a higher childhood 

ponderal index were associated with higher fasting and postload insulin levels at 10–11 

years, with stronger effect estimates for the childhood ponderal index (25). Furthermore, a 
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recent study among 3301 European children with a mean age of 8.5 years showed that rapid 

BMI growth between 9 months and 6 years was related to a higher risk of insulin resistance 

(27). In our current study, growth during fetal life was not associated with childhood insulin 

or C-peptide levels, independent of growth in other time intervals. Weight growth from birth 

onwards, length growth from 6 months onwards and BMI growth from 12 months onwards 

were independently and positively associated with childhood insulin and C-peptide levels. 

The strongest associations were present for weight and BMI growth between 48 and 72 

months. These results suggest that growth during childhood, especially in weight and BMI, is 

important for the development of a suboptimal insulin metabolism in childhood, irrespective 

of growth during fetal life.

Observations from previous studies suggest that a growth pattern characterised by a low 

birthweight, followed by a rapid childhood weight gain, is associated with increased risk of 

insulin resistance or type 2 diabetes in later life (9-11). We observed no associations of fetal 

growth patterns with childhood insulin and C-peptide levels. During childhood, children with 

higher insulin and C-peptide levels had a growth pattern characterised by a high weight and 

BMI, which increased throughout childhood. This suggests that children with relatively high 

childhood insulin or C-peptide levels grow faster during childhood but might not have grown 

differently during fetal life.

Thus, our results suggest that rapid growth throughout childhood is important for the 

development of suboptimal insulin metabolism in childhood, rather than fetal growth. It 

has been proposed that adverse exposures during fetal life lead to reduced muscle mass, 

reduced muscle sensitivity to insulin, and changes in the structure and function of the beta 

cells, which may subsequently lead to insulin resistance and beta cell dysfunction in later life 

(28-30). Since only childhood growth characteristics were related to childhood insulin and 

C-peptide levels in our study, the mechanisms underlying these associations may involve 

differences in the body composition of the child, for example an increased body fat mass 

resulting from rapid postnatal growth or genetic influences, rather than developmental 

adaptations during fetal life (21, 31-33). However, it is possible that associations of fetal 

growth with insulin or glucose metabolism become apparent later in life. Furthermore, the 

widely described associations of low birthweight with increased risk of type 2 diabetes may 

be explained by beta cell dysfunction, which we were unable to assess in this study (34). If 

our findings are confirmed by other studies with directly measured fetal growth data, de-

tailed childhood growth data and more detailed measures of childhood glucose and insulin 

metabolism, including measures of beta cell function, our results underline the importance 

of strategies aimed at preventing rapid weight gain throughout childhood to improve insulin 

metabolism in later life.
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Conclusions
Our results suggest that rapid length, weight and BMI gain from birth onwards, but not 

growth during fetal life, is associated with the development of suboptimal insulin metabo-

lism in childhood. Further research is needed to replicate our findings and to explore the 

underlying mechanisms.
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Supplemental Figure 1. Flow chart of the study participants 
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Supplemental Methods 1. Conditional growth modelling

We used conditional growth modelling in order to identify critical periods of growth as-

sociated with childhood insulin and C-peptide levels (1-3). We first calculated the predicted 

value of the growth measurement at the time point of interest, using a linear regression 

model including all prior corresponding growth measurements. The standardised residuals 

of these models indicate to what degree a growth measure of interest differs from that 

predicted by all previous growth measures, and represent the excess growth during the time 

interval prior to the growth measurement of interest. As these standardised residuals are not 

correlated, we subsequently included the standardised residuals plus the initial measure of 

size (femur length and estimated fetal weight at 20 weeks of gestation for models of length 

and weight, and BMI at the age of 6 months for models of BMI) simultaneously in one linear 

regression model, estimating the effect of growth during each time interval on childhood 

insulin or C-peptide levels. The regression coefficients of these models represent the differ-

ence in childhood insulin or C-peptide levels per standardised residual change in growth in 

each time interval, adjusted for growth during the other time intervals. Conditional growth 

modelling enables us to examine the associations of growth during specific time-periods, 

independent of growth in other time intervals and to compare the strength of the effect 

estimates between time intervals. This method thus allows us to identify periods of growth 

which are most important for later childhood insulin and C-peptide levels (1-3).
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and abdominal fat distribution in school-age children. J Clin Endocrinol Metab. 2014;99:2557-

2566.

Supplemental Methods 2. Unbalanced repeated measurement models

We analysed the fetal and childhood growth patterns among children in the 2nd, 3rd and 4th 

insulin and C-peptide quartiles, as compared to children in the 1st quartiles using unbalanced 

repeated measurement regression models. These models allow for incomplete outcome 

data and take the correlation between repeated measurements of the same participant 

into account by modelling the correlated errors of these measurements (1, 2). As fetal and 

childhood growth were defined using different measures (femur length vs. body length and 

estimated fetal weight vs. measured weight), we constructed best fitting models for fetal 

and childhood growth separately. First, we constructed linear models for fetal and childhood 
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growth characteristics separately and subsequently tested whether adding higher polynomi-

als of (gestational) age to the models improved the fit of the models by checking the good-

ness of fit (smallest –2 log likelihood). Since higher polynomials of (gestational) age did not 

considerably improve the fit of the models and to prevent overfitting of the models, we kept 

the models as simple as possible and did not include higher polynomials of (gestational) age 

to the models. To model the correlated errors, a compound symmetry covariance structure 

was assumed for the models for fetal growth, indicating that measurements are correlated 

equally. For the childhood models, we assumed an autoregressive covariance structure, given 

that measurements closer in time tend to be correlated more strongly. Using alternative 

covariance structures did not change the results.

The final models can be written as:

Fetal length (SDS) = ß0 + ß1 × insulin or C-peptide quartile + ß2 × gestational age + ß3 × 

insulin or C-peptide quartile × gestational age

Childhood length (SDS) = ß0 + ß1 × insulin or C-peptide quartile + ß2 × age + ß3 × insulin 

or C-peptide quartile × age

Fetal weight (SDS) = ß0 + ß1 × insulin or C-peptide quartile + ß2 × gestational age + ß3 × 

insulin or C-peptide quartile × gestational age

Childhood weight (SDS) = ß0 + ß1 × insulin or C-peptide quartile + ß2 × age + ß3 × insulin 

or C-peptide quartile × age

BMI (SDS)= ß0 + ß1 × insulin or C-peptide quartile + ß2 × age + ß3 × insulin or C-peptide 

quartile × age

In these models, ‘ß0 + ß1 × insulin or C-peptide quartile’ reflects the intercept. The intercept 

reflects the mean growth characteristic value in SDS for each insulin or C-peptide quartile. 

The term ‘ß2 × (gestational) age’ reflects the change in growth characteristics per week 

(fetal models) or month (childhood models). The term ‘ß3 × insulin or C-peptide quartile × 

(gestational) age’, reflects the difference in change in growth characteristics per week (fetal 

models) or month (childhood models) between the different insulin or C-peptide quartiles. 

For presentation purposes, we obtained point estimates from these models at time points of 

interest. The regression coefficients for (gestational) age-independent (intercept: ß0 + ß1 × 

insulin or C-peptide quartile) and (gestational) age-dependent differences (slope: ß3 × insulin 

or C-peptide quartile × (gestational) age) are given in Supplemental Tables 4 and 5 below.
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Supplemental Table 1. Fetal and childhood growth characteristics

Total group

n=4328

Second trimester

Gestational age (weeks), median (95% range) 20.5 (18.6, 23.3)

Femur length (mm), mean (SD) 34 (4)

Estimated fetal weight (g), median (95% range) 364 (246, 624)

Third trimester

Gestational age (weeks), median (95% range) 30.4 (28.4, 33.1)

Femur length (mm), mean (SD) 58 (3)

Estimated fetal weight (g), median (95% range) 1608 (1175, 2232)

Birth

Gestational age at birth (weeks), median (95% range) 40.1 (35.8, 42.3)

Birth length (cm), mean (SD) 50.2 (2.3)

Birthweight (g), median (95% range) 3450 (2261, 4474)

6 months

Age at follow-up (months), median (95% range) 6.2 (5.2, 8.3)

Length (cm), mean (SD) 67.7 (2.6)

Weight (kg), mean (SD) 7.9 (0.9)

BMI (kg/m2), mean (SD) 17.2 (1.4)

12 months

Age at follow-up (months), median (95% range) 11.1 (10.1, 125)

Length (cm), mean (SD) 74.4 (2.6)

Weight (kg), mean (SD) 9.7 (1.1)

BMI (kg/m2), mean (SD) 17.4 (1.4)

24 months

Age at follow-up (months), median (95% range) 11.1 (10.1, 12.5)

Height (cm), mean (SD) 88.8 (3.7)

Weight (kg), mean (SD) 13.0 (1.6)

BMI (kg/m2), median (95% range) 16.5 (14.1, 19.6)

36 months

Age at follow-up (months), median (95% range) 37.7 (35.3, 40.7)

Height (cm), mean (SD) 97.5 (3.8)

Weight (kg), mean (SD) 15.3 (1.9)

BMI (kg/m2), mean (SD) 16.0 (1.3)
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Supplemental Table 1. Fetal and childhood growth characteristics (continued)

Total group

n=4328

48 months

Age at follow-up (months), median (95% range) 45.7 (44.4, 48.4)

Height (cm), mean (SD) 103.3 (4.1)

Weight (kg), mean (SD) 17.0 (2.2)

BMI (kg/m2), mean (SD) 15.8 (1.4)

72 months

Age at follow-up (months), median (95% range) 72.6 (68.2, 96.3)

Height (cm), mean (SD), cm 119.7 (6.1)

Weight (kg), median (95% range) 22.6 (17.6, 34.4)

BMI (kg/m2), median (95% range) 15.9 (13.7, 21.2)
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Supplemental Table 2. Non-response analysis of children included and not included in the 
analyses (n=9395)

Included in the 
analyses

Not included in 
the analyses

p-valuea

n=4328 n=5067

Maternal characteristics

Age at intake (years), mean (SD) 30.7 (5.1) 29.2 (5.5) <0.001

Height (SD), mean (SD) 167.7 (7.5) 166.6 (7.3) <0.001

Pre-pregnancy weight (kg), median (95% range) 64.0 (49.0, 98.0) 63.0 (47.0, 100.0) 0.039

Pre-pregnancy BMI (kg/m2), median (95% range) 22.7 (18.1, 34.5) 22.6 (17.8, 35.5) 0.684

Highest education completed, n (%)

 Primary 343 (8.7) 565 (13.0) <0.001

 Secondary 1692 (43.1) 2117 (48.7)

 Higher 1887 (48.1) 1662 (38.3)

Parity, Nulliparous (%) 2299 (55.1) 2709 (55.4) 0.747

Ethnicity, European (%) 2605 (61.9) 2502 (54.5) <0.001

Folic acid use, yes (%) 2239 (75.3) 2252 (66.5) <0.001

Smoking during pregnancy, yes (%) 601 (16.0) 837 (19.8) <0.001

Gestational diabetes, yes (%) 42 (1.0) 57 (1.2) 0.444

Pre-eclampsia, yes (%) 65 (1.8) 103 (2.4) 0.060

Gestational hypertension, yes (%) 155 (4.2) 155 (3.6) 0.167

Child characteristics

Sex, male (%) 2235 (51.6) 2522 (49.8) 0.074

Gestational age at birth (weeks), median (95% range) 40.1 (35.8, 42.3) 39.8 (35.3, 42.3) 0.038

Birthweight (g), median (95% range) 3450 (2261, 
4474)

3400 (2190, 
4510)

<0.001

Ever breastfed, yes (%) 3150 (92.5) 2919 (91.4) 0.086

Timing of introduction of solid foods, No. before 6 
months (%)

2328 (89.9) 1941 (89.0) 0.300

Ethnicity, European (%) 2730 (64.8) 2686 (58.3) <0.001

Age at follow-up examination at 24 months (months), 
median (95% range)

25.0 (23.4, 31.4) 25.0 (23.4, 31.3) 0.815

BMI at the age of 24 months (kg/m2), mean (SD) 16.6 (1.4) 16.6 (1.5) 0.590

Age at follow-up examination at 48 months (months), 
median (95% range)

45,8 (44.4, 48.4) 45.8 (44.5, 48.7) 0.004

BMI at the age of 48 months, mean (SD), kg/m2 15.8 (1.4) 15.9 (1.5) 0.033

Age at follow-up examination at 6 years (years), 
median (95% range)

6.0 (5.7, 8.0) 6.0 (5.6, 7.6) <0.001

BMI at the age of 6 years (kg/m2), mean (SD) 16.2 (1.8) 16.2 (2.0) 0.651

a Differences in participant characteristics between the groups were tested using Independent Samples T-tests for con-
tinuous variables and Chi-square tests for proportions.
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Supplemental Table 3. Associations of birth outcomes with childhood C-peptide levels (n=4321)

Birth outcome n

C-peptide (SDS (95% CI))

Basic model Adjusted model BMI adjusted model

Gestational age at birth

 Preterm (<37 weeks) 215 0.03 (-0.11, 0.17) 0 (-0.15, 0.16) -0.04 (-0.19, 0.12)

 Term (≥ 37 weeks) 4083 Reference Reference Reference

 p-value for trend 4298 0.683 0.975 0.647

Birthweight

 Low (≤2500 g) 191 0.09 (-0.06, 0.24) 0.15 (-0.03, 0.32) 0.20 (0.03, 0.37)*

 Normal (2500-3999 g) 3503 Reference Reference Reference

 High (≥4000 g) 627 0 (-0.09, 0.08) -0.05 (-0.14, 0.04) -0.10 (-0.19, -0.01)*

 p-value for trend 4321 0.465 0.095 0.005

Size for gestational age

 SGA (≤ 10th percentile) 368 0.03 (-0.08, 0.14) 0.05 (-0.06, 0.16) 0.10 (-0.01, 0.21)

 AGA (10 - 90th percentile) 3475 Reference Reference Reference

 LGA (≥90th percentile) 445 0 (-0.10, 0.10) -0.03 (-0.13, 0.07) -0.08 (-0.18, 0.02)

 p-value for trend 4288 0.730 0.236 0.011

Values are regression coefficients that reflect the differences in C-peptide SDS between the groups of the different 
birth outcomes. The basic models are adjusted for child’s sex and age at insulin and C-peptide measurement. The ad-
justed models are further adjusted for maternal pre-pregnancy BMI, maternal age, parity, smoking during pregnancy, 
folic acid use, maternal education level, gestational diabetes, gestational hypertensive disorders, ethnicity of the child, 
gestational age at birth (for birthweight) and birthweight (for gestational age at birth). The BMI-adjusted models are 
the adjusted models with additional adjustment for childhood BMI at insulin and C-peptide measurement. P-values for 
trend were obtained by entering the categorical variables to the models as continuous variables. *p <0.05. AGA, Ap-
propriate for gestational age. LGA, Large for gestational age; SGA: Small for gestational age
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Supplemental Figure 2. Associations of fetal and childhood growth conditional on prior mea-
surements with childhood insulin and C-peptide levels (n=4328)
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Values are regression coefficients representing differences in childhood insulin or C-peptide SDS per standardised re-
sidual change in growth characteristic in each time interval. The standardised residuals were obtained from models 
in which the growth measures of interest were regressed on the prior corresponding growth measures. For models 
presented for length and weight, the initial measure of size (starting point) was at 20 weeks of gestation (femur length 
and estimated fetal weight), and for BMI at 6 months of age. The models are adjusted for child’s sex and age at insulin 
and C-peptide measurement. Circles, length; squares, weight; triangles, BMI; wks, weeks; mo, months.
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Supplemental Figure 3. Associations of fetal and childhood growth conditional on prior mea-
surements with childhood C-peptide levels (n=4303)
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Values are regression coefficients representing differences in childhood C-peptide SDS per standardised residual change 
in growth characteristic in each time interval. The standardised residuals were obtained from models in which the 
growth measures of interest were regressed on the prior corresponding growth measures. For models presented for 
length and weight, the initial measure of size (starting point) was at 20 weeks of gestation (femur length and estimated 
fetal weight), and for BMI at 6 months of age. The models are adjusted for child’s sex, age at insulin and C-peptide 
measurement, maternal pre-pregnancy BMI, maternal age, parity, smoking during pregnancy, folic acid use, maternal 
education level, gestational diabetes, gestational hypertensive disorders, ethnicity of the child, gestational age at birth, 
breastfeeding, timing of introduction of solid foods and time watching television. Circles, length; squares, weight; 
triangles, BMI; wks, weeks; mo, months.
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Supplemental Figure 4. Fetal and childhood growth patterns according to C-peptide quartile 
(n=4303)
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Results are based on repeated linear regression models and reflect the differences in SDS of (a) length (based on 39,086 
measurements), (b) weight (based on 42,692 measurements) and (c) BMI (based on 23,310 measurements) growth 
in children with C-peptide levels in the second, third and fourth quartiles (C-peptide levels 0.67-0.95, 0.96-1.28 and 
1.29-3.69 nmol/l, respectively), compared with those with C-peptide levels in the first quartile (0.11-0.66 nmol/l). The 
reference value is an SDS of 0. The models were adjusted for child’s sex, maternal pre-pregnancy BMI, maternal age, 
parity, smoking during pregnancy, folic acid use, maternal education level, gestational diabetes, gestational hyperten-
sive disorders, ethnicity of the child, gestational age at birth, breastfeeding, timing of introduction of solid foods and 
time watching television. Circles/dotted line, second C-peptide quartile; triangles/dashed line, third C-peptide quartile; 
squares/solid line, fourth C-peptide quartile.
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Supplemental Table 4. Longitudinal associations between insulin levels and growth character-
istics (n=4293)

Childhood insulin levels Intercept (SDS) p-value Slope (SDS (95% CI)) p-value

Height

Fetal

 1st insulin quartile -0.287 0.27 Reference

 2nd insulin quartile -0.273 0.90 0.0013 (-0.0059, 0.0086) 0.72

 3rd insulin quartile -0.437 0.18 0.0048 (-0.0024, 0.0119) 0.19

 4th insulin quartile -0.273 0.90 0.0012 (-0.0060, 0.0084) 0.74

Childhood

 1st insulin quartile -4.426 <0.001 Reference

 2nd insulin quartile -4.358 0.07 0.0005 (-0.0004, 0.0017) 0.24

 3rd insulin quartile -4.395 0.41 0.0014 (0.0007, 0.0028) <0.001

 4th insulin quartile -4.337 0.02 0.0022 (0.0016, 0.0037) <0.001

Weight

Fetal

 1st insulin quartile -0.508 0.02 Reference

 2nd insulin quartile -0.345 0.08 -0.0024 (-0.0080, 0.0031) 0.38

 3rd insulin quartile -0.547 0.68 0.0003 (-0.0052, 0.0058) 0.90

 4th insulin quartile -0.440 0.46 -0.0018 (-0.0073, 0.0037) 0.52

Childhood

 1st insulin quartile -3.455 <0.001 Reference

 2nd insulin quartile -3.421 0.34 0.0010 (0.0001, 0.0020) 0.03

 3rd insulin quartile -3.490 0.32 0.0027 (0.0017, 0.0037) <0.001

 4th insulin quartile -3.463 0.78 0.0060 (0.0050, 0.0068) <0.001

BMI

 1st insulin quartile -1.821 <0.001 Reference

 2nd insulin quartile -1.865 0.71 0.0008 (-0.0006, 0.0021) 0.26

 3rd insulin quartile -1.871 0.62 0.0012 (-0.0002, 0.0251) 0.08

 4th insulin quartile -1.865 0.50 0.0035 (0.0021, 0.0048) <0.001

Values are regression coefficients obtained from linear repeated measurement models and reflect the (gestational) age 
independent differences (intercepts) and the (gestational) age dependent differences (slopes: change in growth charac-
teristics SDS per week (fetal models) or per month (childhood models) per insulin quartile, compared with the reference 
group (1st insulin quartile). The models were adjusted for child’s sex, maternal pre-pregnancy BMI, maternal age, par-
ity, smoking during pregnancy, folic acid use, maternal education level, gestational diabetes, gestational hypertensive 
disorders, ethnicity of the child, gestational age at birth, breastfeeding, timing of introduction of solid foods and time 
watching television. P-values reflect the significance levels of the regression coefficients
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Supplemental Table 5. Longitudinal associations between C-peptide levels and growth char-
acteristics (n=4303)

Childhood C-peptide levels Intercept 
(SDS)

p-value Slope (SDS (95% CI)) p-value

Height

Fetal

1st C-peptide quartile -0.279 0.29 Reference

2nd C-peptide quartile -0.220 0.60 -0.0012 (-0.0085, 0.0059) 0.73

3rd C-peptide quartile -0.394 0.30 0.0046 (-0.0026, 0.0118) 0.21

4th C-peptide quartile -0.398 0.29 0.0052 (-0.0021, 0.0125) 0.16

Childhood

1st C-peptide quartile -4.406 <0.001 Reference

2nd C-peptide quartile -4.383 0.54 0.0018 (0.0007, 0.0028) <0.001

3rd C-peptide quartile -4.375 0.42 0.0016 (0.0006, 0.0027) <0.01

4th C-peptide quartile -4.406 0.32 0.0032 (0.0021, 0.0042) <0.001

Weight

Fetal

1st C-peptide quartile -0.562 0.01 Reference

2nd C-peptide quartile -0.375 0.05 -0.0065 (-0.0120, -0.0010) 0.02

3rd C-peptide quartile -0.556 0.95 -0.0006 (-0.0062, 0.0049) 0.83

4th C-peptide quartile -0.554 0.93 -0.0009 (-0.0065, 0.0047) 0.75

Childhood

1st C-peptide quartile -3.440 <0.001 Reference

2nd C-peptide quartile -3.482 0.24 0.0026 (0.0017, 0.0035) <0.001

3rd C-peptide quartile -3.486 0.20 0.0033 (0.0024, 0.0043) <0.001

4th C-peptide quartile -3.482 0.25 0.0057 (0.0048, 0.0067) <0.001

BMI

1st C-peptide quartile -1.872 <0.001 Reference

2nd C-peptide quartile -1.872 0.92 0.0011 (-0.0002, 0.0024) 0.10

3rd C-peptide quartile -1.897 0.56 0.0019 (0.0006, 0.0033) <0.01

4th C-peptide quartile -1.852 0.63 0.0033 (0.0020, 0.0047) <0.001

Values are regression coefficients obtained from linear repeated measurement models and reflect the (gestational) age 
independent effects (intercepts) and the (gestational) age dependent effects (slopes, change in growth characteristics 
SDS per week (fetal models) or per month (childhood models) per C-peptide quartile, compared with the reference 
group (1st C-peptide quartile). The models were adjusted for child’s sex, maternal pre-pregnancy BMI, maternal age, 
parity, smoking during pregnancy, folic acid use, maternal education level, gestational diabetes, gestational hyperten-
sive disorders, ethnicity of the child, gestational age at birth, breastfeeding, timing of introduction of solid foods and 
time watching television. P-values reflect the significance levels of the regression coefficients.
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abstract

Introduction: Adverse exposures in early life may predispose children to cardio-metabolic 

disease in later life. Metabolomics may serve as a valuable tool to disentangle the metabolic 

adaptations and mechanisms that potentially underlie these associations.

Objectives: To describe the acquisition, processing and structure of the metabolomics data 

available in a population-based prospective cohort from early pregnancy onwards and to 

examine the relationships between metabolite profiles of pregnant women and their children 

at birth and in childhood.

Methods: In a subset of 994 mothers-child pairs from a prospective population-based 

cohort study among pregnant women and their children from Rotterdam, the Netherlands, 

we used LC–MS/MS to determine concentrations of amino acids, non-esterified fatty acids, 

phospholipids and carnitines in blood serum collected in early pregnancy, at birth (cord 

blood), and at child’s age 10 years.

Results: Concentrations of diacyl-phosphatidylcholines, acyl-alkyl-phosphatidylcholines, 

alkyl-lysophosphatidylcholines and sphingomyelines were the highest in early pregnancy, 

concentrations of amino acids and non-esterified fatty acids were the highest at birth and 

concentrations of alkyl-lysophosphatidylcholines, free carnitine and acyl-carnitines were the 

highest at age 10 years. Correlations of individual metabolites between pregnant women 

and their children at birth and at the age of 10 years were low (range between r = − 0.10 

and r = 0.35).

Conclusion: Our results suggest that unique metabolic profiles are present among pregnant 

women, newborns and school aged children, with limited intergenerational correlations 

between metabolite profiles. These data will form a valuable resource to address the early 

metabolic origins of cardio-metabolic disease.
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introduction

Cardio-metabolic diseases are of major public health concern (1-3). The pathogenesis of these 

cardio-metabolic diseases involves adaptations in metabolic pathways. Thus far, studies mainly 

focused on a small set of conventional biomarkers to assess metabolic status and pathways. 

Recent developments in high-throughput technologies and analytical methods have enabled 

the application of metabolomics for detailed characterization of an individual’s metabolic 

status on a large scale (4-6). Metabolomics measures a large number of low molecular weight 

metabolites in biological tissues and fluids. The metabolome is the most downstream com-

ponent of biological processes and closely linked to the phenotype. It carries information 

about gene expression as well as lifestyle- and environmental factors (5, 6). Metabolomics 

has already been successfully applied in large-scale epidemiological studies, mainly in adult 

populations, to identify new biomarkers of cardio-metabolic disease status, development and 

progression, as well as the underlying pathophysiological mechanisms (7-9).

Accumulating evidence suggests that cardio-metabolic diseases might originate in early 

life. Adverse exposures in early life may lead to developmental adaptations in organ structure 

or function, which may predispose these children to later cardio-metabolic disease (10). Early-

life developmental adaptations in metabolic pathways may underlie these associations. Only 

a limited amount of metabolomics studies on the early origins of cardio-metabolic disease 

have been performed. Most of these studies were small and mainly assessed cross-sectional 

relationships (11, 12). Also, it is unclear whether metabolite profiles correlate between 

mothers and their children. The application of metabolomics in longitudinal birth cohort 

studies may serve as a valuable tool to identify biomarkers of metabolic status, in order 

to disentangle the mechanisms linking adverse exposures in early life to cardio-metabolic 

disease later in life (11).

Therefore, in a population-based cohort from early pregnancy onwards among 994 mother–

child pairs from Rotterdam, the Netherlands, we obtained serum concentrations of a range of 

metabolite groups involved in energy metabolism, including amino acids (AA), non-esterified 

fatty acids (NEFA), phospholipids (PL), and carnitines (Carn) in maternal blood in early-preg-

nancy, and child’s (cord-) blood at birth and at age 10 years. We provide a detailed description 

of the data acquisition, processing and data structure and examined the relationships between 

metabolite profiles of pregnant women and their children at birth and in childhood.

methods

Study population
The Generation R Study is a multi-ethnic population-based prospective cohort study from 

fetal life until adulthood in Rotterdam, the Netherlands, described in detail previously (13). 
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The study was approved by the Medical Ethical Committee of the Erasmus Medical Center, 

University Medical Center, Rotterdam (MEC 198.782/2001/31). Written informed consent 

was obtained from all mothers at enrollment in the study. Measurement of conventional 

biomarkers of metabolic status in pregnancy and childhood has been described previously 

(14-16). For metabolomics, 2,395 blood samples were analyzed from a subsample of 1041 

Dutch mother–child pairs who had their blood drawn at birth (cord blood) and at least 1 

other time point: early pregnancy (mother) or at the age of 10 years (child). A number of 

blood samples (n = 157) was excluded during data acquisition (e.g. low sample volumes, 

hemolytic samples) and processing (e.g. duplicate samples, high proportion of missing 

values, missing or non-Dutch ethnicity), leaving a total of 2,238 blood samples from 994 

mother–child pairs available for analysis. Of these 994 mother–child pairs, a total of 814 

mothers had early pregnancy data available, and 921 and 503 children had data available 

at birth and at the age of 10 years, respectively. Of all mothers included, 10 had a twin 

pregnancy. Metabolomics data was only available for one of the twins. Therefore, mothers 

with twin pregnancies were included only once in the dataset.

Sample collection and processing
Maternal early-pregnancy non-fasting blood samples were obtained at enrollment in the 

study [median gestational age: 12.8 weeks (95% range 9.9, 16.9)] by research nurses at one 

of the dedicated research centers (17). Umbilical venous cord blood samples were collected 

directly after birth [median gestational age at birth: 40.3 weeks (95% range 36.6, 42.4)] by a 

midwife or obstetrician. Child’s non-fasting blood samples were obtained by research nurses 

at the 10-year follow-up visit to the research center [median age: 9.8 years (95% range 9.1, 

10.6)]. All blood samples were transported to the regional laboratory (STAR-MDC), spun and 

stored at − 80°C for further studies within a maximum of 4 h after collection. For metabolite 

measurements, blood serum samples were transported on dry ice to the Division of Meta-

bolic and Nutritional Medicine of the Dr. von Hauner Children’s Hospital in Munich, Germany.

Metabolite measurements
A targeted metabolomics approach was adopted to determine serum concentrations 

(µmol/L) of AA, NEFA, PL and Carn (18). Detailed information is given in Supplemental 

Text 1 and Supplemental Table 1. Briefly, AA were analyzed with 1100 high-performance 

liquid chromatography (HPLC) system (Agilent, Waldbronn, Germany) coupled to a API2000 

tandem mass spectrometer (AB Sciex, Darmstadt, Germany) (19). IUPAC-IUB Nomenclature 

was used for notation of AA (20). NEFA, PL and Carn were measured with a 1200 SL HPLC 

system (Agilent, Waldbronn, Germany) coupled to a 4000QTRAP tandem mass spectrometer 

from AB Sciex (Darmstadt, Germany) (21, 22). The analytical technique used is capable of 

determining the total number of total bonds, but not the position of the double bonds and 

the distribution of the carbon atoms between fatty acid side chains. We used the following 
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notation for NEFA, PL and Carn.a:X:Y, where X denotes the length of the carbon chain, and Y 

the number of double bonds. The ‘a’ denotes an acyl chain bound to the backbone via an es-

ter bond (‘acyl-’) and the ‘e’ represents an ether bond (‘alkyl-’). For analyses, we categorized 

metabolites in to general metabolite groups based on chemical structure (AA, NEFA, PC.aa, 

PC.ae, Lyso.PC.a, Lyso.PC.e, SM, Free Carn and Carn.a) and in detailed metabolite subgroups 

based on chemical structure and physiological and biological relevance (AA: BCAA, aromatic 

amino acids (AAA), essential AA, non-essential AA; NEFA, PC.aa, PC.ae, Lyso.PC.a, Lyso.

PC.e and SM: saturated, mono-unsaturated, poly-unsaturated; Carn.a: short-chain, medium-

chain, long-chain).

Quality control and pre-processing
To assess the precision of the measurements, six quality control (QC) samples per batch were 

consistently measured between study samples. After exclusion of outliers, the coefficients 

of variation (CV; SD/mean) for each batch (intra-batch) and for all batches (inter-batch) of 

the QC samples were calculated for each metabolite. In line with previous studies (23-26), 

for each metabolite we excluded batches with an intra-batch CV higher than 25%. Data on 

complete metabolites were excluded for metabolites with inter-batch CV higher than 35% or 

if less than 50% of the batches passed the QC (i.e. had an intra-batch CV lower than 25%). 

To correct for batch effects, the participant data at each time point were median corrected 

by dividing the metabolite concentration by the ratio of the intra-batch median and the 

inter-batch median of the QC samples (26). In line with previous studies, metabolites and 

participants with more than 50% of missing values were excluded (26, 27). Missing values in 

other participants were imputed using the Random Forest algorithm (R package missForest), 

which has been shown to perform well with MS data (28).

Statistical analysis
First, we calculated the sum of individual metabolite concentrations per general and detailed 

metabolite group and per time point. In order to explore the variability of the metabolites 

between participants and between time points, we obtained the median (95% range) for 

the individual metabolites and the summed metabolite concentrations per general and 

detailed metabolite group per time point. To enable comparison between time points, only 

metabolites that were present at each time point were included in the summed variables. 

Second, we explored the dimensionality of the data, by conducting principal component 

analyses (PCA) at each time point separately. As log transformations did not sufficiently 

normalize the metabolite concentrations, we used square root transformations to normalize 

metabolite concentrations. These normalized metabolite concentrations were subsequently 

standardized by calculating standard deviation scores [SDS; (observed value − mean)/SD]. 

Third, as we considered PCA not informative for describing the information contained in 

our dataset, we further explored the correlation structure of the data by calculating pair-
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wise Pearson’s correlations coefficients between all individual metabolites within each time 

point and between individual metabolites at different points. These correlations within and 

between time points were visualized using two circos plots (R package circlize) (29, 30). 

To facilitate presentation, the first plot only includes correlation coefficients < −0.15 and 

> 0.15. To display correlation coefficients that are at least of weak magnitude, the second 

plot displays correlation coefficients < −0.30 and > 0.30 (31). To obtain further insight in pos-

sible metabolic pathways, we additionally presented correlations between metabolites within 

a time point as correlation networks, as correlations between metabolites were strongest 

within time points (32). To provide a numerical summary of the strength of the correla-

tions, we additionally constructed heatmaps of the median absolute correlation coefficients 

within general and detailed metabolite groups and between general and detailed metabolite 

groups at each of the time points separately. We calculated the correlation coefficients for 

correlations between individual metabolites at different time points. Correlations of 0–0.29, 

0.3–0.49, 0.5–0.69, 0.7–0.89, and 0.9–1.0 were considered to be very low, low, moderate, 

high and very high, respectively (31). As sex differences in metabolite concentrations may 

exist (33), we repeated steps one and three stratified by child’s sex. The statistical analyses 

were performed using R version 3.3.4 (R Foundation for Statistical Computing) (34).

results

Description of the study population
Table 1 provides general characteristics of the study population. Of the 994 mother–child 

pairs with data available, 125 (12.6%), 494 (49.7%) and 375 (37.7%) had data available at 

1, 2, or 3 time points, respectively.

Variability
Data was available on a total of 196 metabolites, of which 195 metabolites in early preg-

nancy, 194 metabolites at birth and 181 metabolites at child’s age 10 years. Descriptive 

information is provided in Supplemental Table 2. Figure 1 shows that the summed 

metabolite concentration for each general metabolite group varied considerably by time 

point. Summed concentrations of PC.aa, PC.ae, Lyso.PC.e and SM were highest in maternal 

blood in early pregnancy, compared to the other time points. Summed concentrations of 

AA and NEFA were highest in children at birth, whereas summed concentrations of Lyso.

PC.a, Free Carn and Carn.a were highest in children of age 10. Supplemental Table 2 gives 

the summed concentrations of the detailed metabolite subgroups, which followed similar 

patterns. Supplemental Figure 1 shows that the summed metabolite concentrations did 

not differ by child’s sex.
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Dimensionality
Table 2 shows the number of components (PCs) required to explain percentages of cumula-

tive variance at each time point. At each time point, a relatively high number of PCs was 

needed to explain > 85% of the variance. The obtained PCs did not clearly represent specific 

metabolic pathways (Supplemental Figures 2–4).

Table 2. Number of components required to explain percentages of cumulative proportions of 
variance at each time point

Number of PCs

Time point Number of metabolites 50% 75% 85% 95% 99.5%

Mother early pregnancy 195 3 15 35 88 163

Child at birth 194 4 21 46 101 169

Child age 10 years 181 6 27 50 98 157

Values represent the number of principal components (PCs) derived from principal component analyses required to 
explain 50, 75, 85, 95, and 99.5 percent, respectively, of the variances of the data at each of the time points

Figure 1. Median metabolite concentrations by metabolite group and time point
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Values represent the median (95% range) of the sum of the individual metabolite concentrations in each of the me-
tabolite groups, by time point. Sums only include metabolites with data at all time points, and therefore do not include 
concentrations of lyso.PC.a.C20.2, PC.aa.C32.3, PC.aa.C34.5, PC.aa.C36.0, PC.aa.C38.2, PC.aa.C40.3, PC.ae.C34.4, 
SM.a.C30.1, SM.a.C35.0, SM.a.C37.1, SM.a.C38.3, SM.a.C39.2, SM.a.C40.5, SM.a.C42.4, SM.a.C44.6, SM.e.C36.2, 
and SM.e.C40.5. SM includes SM.a plus one SM.e.
AA: amino acids, PC.aa: diacyl-phosphatidylcholines, PC.ae: acyl-alkyl-phosphatidylcholines, Lyso.PC.a: acyl-lysophos-
phatidylcholines, Lyso.PC.e: alkyl-lysophosphatidylcholines, SM: sphingomyelines, NEFA: non-esterified fatty acids, Free 
Carn: free carnitine, Carn.a: acyl-carnitines.
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4.3

Correlation structure
Figure 2 provides an overview of the correlations between individual metabolite concentrations 

within general metabolite groups (outer circle), between metabolites concentrations in different 

general metabolite groups (inner circle) and metabolite concentrations at different time points 

(lines going through the middle of the circle). Figure 2a shows all correlations lower than 

− 0.15 or higher than 0.15, whereas Figure 2b shows all correlations lower than − 0.30 or 

higher than 0.30. At all time points, relatively high correlations were observed of individual 

metabolites within general metabolite groups and between individual metabolites from the 

different PL groups (PC.aa, PC.ae, Lyso.PC.a, Lyso.PC.e, and SM), between AA and Carn.a, and 

between NEFA and Carn.a. These correlations were mainly of positive direction, except some of 

the correlations between AA and Carn.a. In children of age 10 years only, some of the AA were 

negatively correlated with NEFA. Presentation of these correlations within pregnant women, 

children at birth and children at age 10 years as correlation networks showed the strongest cor-

relations for individual metabolites within general metabolite groups (Supplemental Figure 5).

To provide further insight into the strength of these correlations, Figure 3 a–c summarizes 

the correlations as the median absolute correlations of individual metabolites within general 

and detailed metabolite groups (diagonal) per time point. The median absolute correlations 

between general and detailed metabolite groups per time point are shown off-diagonal. 

Median absolute correlations within general and detailed metabolite groups at the same time 

point were low to high, and ranged between r = 0.27 and r = 0.92. The strength of these 

within-group median correlations differed by detailed metabolite subgroup, with BCAA, mono-

unsaturated NEFA, mono-unsaturated PC.aa, mono-unsaturated PC.ae, saturated Lyso.PC.e, 

mono-unsaturated SM and long-chain Carn.a generally having the highest median correla-

tions within their respective general groups. Median absolute correlations between subgroups 

of different metabolite groups were very low, except for correlations between NEFA detailed 

subgroups and medium-chain Carn.a in early pregnancy (r ranging between 0.24–0.34) and 

at age 10 years (r ranging between 0.23–0.44), between BCAA and AAA and short-chain 

Carn.a in early pregnancy (r = 0.26 and r = 0.33, respectively) and at age 10 years (r = 0.30 and 

r = 0.25, respectively), and between BCAA and short-chain Carn.a (r = 0.33) at birth.

Table 3 shows correlations of individual metabolites between each of the time points. For pre-

sentation purposes, this table only gives the 30 strongest correlations at each combination of time 

points, all correlations given in Supplemental Table 3. Correlations between early pregnancy 

and child’s metabolites at birth mainly included Free Carn, and Carn.a, and some long chain- and 

very long chain NEFA and some mainly non-essential AA. Correlations between early pregnancy 

and child age 10 years included a few AA and some PC.aa. In children, metabolites correlated 

between birth and age 10 years mainly included phospholipids. Almost all correlations were very 

weak, except the correlations between early pregnancy and birth Free Carn (r = 0.35) and Carn.a 

C9:0 (r = 0.32). Supplemental Figures 6 and 7 show that the correlations between individual 

metabolites and median absolute correlations, respectively, were similar for boys and girls.



CHAPTER 4.3

292

Fi
g

u
re

 2
. C

ir
co

s 
p

lo
ts

 o
f 

co
rr

el
at

io
n

s 
b

et
w

ee
n

 in
d

iv
id

u
al

 m
et

ab
o

lit
e 

co
n

ce
n

tr
at

io
n

s

AA

NEFA

PC.a
a

P
C

.a
e

Ly
so

.P
C

.a

Ly
so

.P
C

.e

S
M

F
re

e 
C

ar
n

C
ar

n.
a

AA

NEFA

Lyso.PC.a

Lyso.PC.e

PC.aa

PC.ae

SM

Fre
e 

Car
n

C
ar

n.
a

A
A

N
E

FA

Ly
so

.P
C.a

Lys
o.PC.e

P
C

.a
aPC

.a
e

SMFree Carn
Carn.a

M
ot

he
r 

pr
eg

na
nc

y

C
hi

ld
 a

t b
ir

th

C
hi

ld
 a

ge
 1

0y

A
. r

 <
 −

0.
15

 a
n

d
 >

 0
.1

5 

AA

NEFA

PC.a
a

P
C

.a
e

Ly
so

.P
C

.a

Ly
so

.P
C

.e

S
M

F
re

e 
C

ar
n

C
ar

n.
a

AA

NEFA

Lyso.PC.a

Lyso.PC.e

PC.aa

PC.ae

SM

Fre
e 

Car
n

C
ar

n.
a

A
A

N
E

FA

Ly
so

.P
C.a

Lys
o.PC.e

P
C

.a
aPC

.a
e

SMFree Carn
Carn.a

M
ot

he
r 

pr
eg

na
nc

y

C
hi

ld
 a

t b
ir

th

C
hi

ld
 a

ge
 1

0y

B
. r

 <
 −

0.
30

 a
n

d
 >

 0
.3

0 

Li
ne

s 
re

pr
es

en
t P

ea
rs

on
’s 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s 

be
tw

ee
n 

th
e 

in
di

vi
du

al
 m

et
ab

ol
ite

 c
on

ce
nt

ra
tio

ns
 w

ith
in

 m
et

ab
ol

ite
 g

ro
up

s 
(o

ut
er

 c
irc

le
), 

be
tw

ee
n 

m
et

ab
ol

ite
 g

ro
up

s 
(in

ne
r c

irc
le

) a
nd

 b
e-

tw
ee

n 
tim

e 
po

in
ts

 (l
in

es
 g

oi
ng

 t
hr

ou
gh

 t
he

 m
id

dl
e 

of
 t

he
 c

irc
le

). 
Re

d 
lin

es
 re

pr
es

en
t 

po
si

tiv
e 

co
rr

el
at

io
ns

 a
nd

 b
lu

e 
lin

es
 re

pr
es

en
t 

ne
ga

tiv
e 

co
rr

el
at

io
ns

. T
he

 b
rig

ht
ne

ss
 o

f 
th

e 
lin

es
 in

di
ca

te
s 

th
e 

st
re

ng
th

 o
f 

th
e 

co
rr

el
at

io
ns

, 
w

ith
 b

rig
ht

er
 c

ol
or

s 
fo

r 
st

ro
ng

er
 c

or
re

la
tio

ns
. 

Fi
gu

re
 2

A
 s

ho
w

s 
on

ly
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

s 
lo

w
er

 t
ha

n 
-0

.1
5 

an
d 

hi
gh

er
 t

ha
n 

0.
15

 a
nd

 F
ig

ur
e 

2B
 s

ho
w

s 
on

ly
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

s 
lo

w
er

 t
ha

n 
-0

.3
0 

an
d 

hi
gh

er
 t

ha
n 

0.
30

.
A

A
: 

am
in

o 
ac

id
s,

 N
EF

A
: 

no
n-

es
te

rifi
ed

 f
at

ty
 a

ci
ds

, 
PC

.a
a:

 d
ia

cy
l-p

ho
sp

ha
tid

yl
ch

ol
in

es
, 

PC
.a

e:
 a

cy
l-a

lk
yl

-p
ho

sp
ha

tid
yl

ch
ol

in
es

, 
Ly

so
.P

C
.a

: 
ac

yl
-ly

so
ph

os
ph

at
id

yl
ch

ol
in

es
, 

Ly
so

.P
C

.e
: 

al
ky

l-
ly

so
ph

os
ph

at
id

yl
ch

ol
in

es
, S

M
: s

ph
in

go
m

ye
lin

es
, F

re
e 

C
ar

n:
 f

re
e 

ca
rn

iti
ne

, C
ar

n.
a:

 a
cy

l-c
ar

ni
tin

es
.



293

Metabolite profiles in pregnant women and their children

4.3

Figure 3. Heatmaps of median absolute correlation of individual metabolites within and be-
tween metabolite groups by time point
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Figure 3. Heatmaps of median absolute correlation of individual metabolites within and be-
tween metabolite groups by time point (continued)
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B. Child at birth

Values represent median absolute correlation coefficients of individual metabolite concentrations within metabolite 
groups (diagonal) and between metabolite groups (off-diagonal) by time point. Mono-unsaturated lyso.PC.e, saturated 
SM and Free Carn include 1 metabolite, resulting in a correlation coefficient of 1 for within-group correlations. For child 
at birth, no data on saturated SM is available.
AA: amino acids, BCAA: branched-chain amino acids, AAA: aromatic amino acids, NEFA: non-esterified fatty acids, 
PC.aa: diacyl-phosphatidylcholines, PC.ae: acyl-alkyl-phosphatidylcholines, Lyso.PC.a: acyl-lysophosphatidylcholines, 
Lyso.PC.e: alkyl-lysophosphatidylcholines, SM: sphingomyelines, Free Carn: free carnitine, Carn.a: acyl-carnitines, Sat.: 
Saturated, Unsat.: Unsaturated.
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Figure 3. Heatmaps of median absolute correlation of individual metabolites within and be-
tween metabolite groups by time point (continued)
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C. Child age 10y

Values represent median absolute correlation coefficients of individual metabolite concentrations within metabolite 
groups (diagonal) and between metabolite groups (off-diagonal) by time point. Mono-unsaturated lyso.PC.e, saturated 
SM and Free Carn include 1 metabolite, resulting in a correlation coefficient of 1 for within-group correlations. For child 
at birth, no data on saturated SM is available.
AA: amino acids, BCAA: branched-chain amino acids, AAA: aromatic amino acids, NEFA: non-esterified fatty acids, 
PC.aa: diacyl-phosphatidylcholines, PC.ae: acyl-alkyl-phosphatidylcholines, Lyso.PC.a: acyl-lysophosphatidylcholines, 
Lyso.PC.e: alkyl-lysophosphatidylcholines, SM: sphingomyelines, Free Carn: free carnitine, Carn.a: acyl-carnitines, Sat.: 
Saturated, Unsat.: Unsaturated.
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Table 3. Correlations of individual metabolite concentrations between time points, subset of 
30 strongest correlations

A. Mother early pregnancy – 
Child at birth

B. Mother early pregnancy – Child 
age 10 years

C. Child at birth – Child age 10 
years

Metabolite n r P-value Metabolite n r P-value Metabolite n r P-value

Free Carn 749 0.35 <0.001 Free Carn 413 0.24 <0.001 Cit 457 0.24 <0.001

Carn.a C9:0 749 0.32 <0.001 PC.aa C36:6 413 0.23 <0.001 SM.a C34:2 457 0.21 <0.001

Carn.a C8:1 749 0.28 <0.001 Carn.a C14:2 413 0.22 <0.001 lyso.PC.a C22:6 457 0.20 <0.001

Carn.a C4:0 749 0.26 <0.001 Cit 413 0.21 <0.001 SM.a C42:6 457 0.20 <0.001

NEFA C26:0 749 0.24 <0.001 Orn 413 0.21 <0.001 His 457 0.19 <0.001

Gly 749 0.22 <0.001 Asn 413 0.17 <0.001 Carn.a C4:0 457 0.19 <0.001

Carn.a C10:1 749 0.22 <0.001 PC.aa C38:4 413 0.17 0.001 PC.aa C38:6 457 0.18 <0.001

Carn.a C15:0 749 0.22 <0.001 PC.aa C38:6 413 0.17 <0.001 PC.ae C32:2 457 0.18 <0.001

Carn.a C3:0 749 0.21 <0.001 NEFA C24:4 413 0.16 0.001 SM.a C32:2 457 0.18 <0.001

Cit 749 0.20 <0.001 PC.aa C38:0 413 0.16 0.001 Free Carn 457 0.18 <0.001

NEFA C20:5 749 0.20 <0.001 PC.aa C36:5 413 0.15 0.002 PC.aa C36:5 457 0.17 <0.001

Carn.a C8:0 749 0.20 <0.001 PC.ae C34:3 413 0.15 0.002 PC.aa C38:0 457 0.17 <0.001

NEFA C22:6 749 0.19 <0.001 NEFA C20:5 413 0.14 0.004 PC.ae C34:1 457 0.17 <0.001

Carn.a C2:0 749 0.19 <0.001 NEFA C24:5 413 0.14 0.004 Orn 457 0.16 <0.001

Carn.a C14:2 749 0.19 <0.001 PC.aa C40:6 413 0.14 0.003 PC.aa C43:6 457 0.16 0.001

His 749 0.18 <0.001 PC.aa C43:6 413 0.14 0.005 PC.ae C32:0 457 0.16 0.001

Carn.a C10:0 749 0.18 <0.001 PC.ae C36:5 413 0.14 0.004 NEFA C26:1 457 0.15 0.001

Carn.a C18:2 749 0.18 <0.001 PC.ae C40:0 413 0.14 0.005 NEFA C26:2 457 0.15 0.001

Carn.a C20:3 749 0.18 <0.001 SM.a C35:1 413 0.14 0.005 PC.ae C38:6 457 0.15 0.001

Carn.a.C20.4 749 0.18 <0.001 Carn.a C4:0 413 0.14 0.004 PC.ae C42:3 457 0.15 0.001

Pro 749 0.17 <0.001 Carn.a C15:0 413 -0.14 0.004 SM.a C33:1 457 0.15 0.001

PC.ae C42:4 749 0.17 <0.001 Carn.a C16:0 413 0.14 0.004 Carn.a C8:1 457 0.15 0.002

lyso.PC.a C22:6 749 0.17 <0.001 Ala 413 0.13 0.007 NEFA C20:5 457 0.14 0.003

Carn.a C12:0 749 0.17 <0.001 Thr 413 0.13 0.007 NEFA C24:1 457 0.14 0.003

NEFA C26:1 749 0.16 <0.001 PC.ae C30:0 413 0.13 0.007 NEFA C24:4 457 0.14 0.003

PC.aa C44:12 749 0.16 <0.001 PC.ae C38:0 413 0.13 0.009 PC.ae C42:5 457 0.14 0.002

Ala 749 0.15 <0.001 PC.ae C40:1 413 0.13 0.009 PC.ae C42:6 457 0.14 0.003

Phe 749 0.15 <0.001 PC.ae C42:5 413 0.13 0.008 SM.a C32:1 457 0.14 0.004

PC.aa C38:6 749 0.15 <0.001 Carn.a C16:0.Oxo 413 0.13 0.008 SM.a C36:2 457 0.14 0.002

lyso.PC.a C20:5 749 0.15 <0.001 Gln 413 0.12 0.018 NEFA C22:3 457 0.13 0.006

Values represent Pearson’s correlation coefficients (r), and corresponding p-values and number of participants for cor-
relations between metabolites at different time points. For presentation purposes, only the 30 strongest correlations 
at each combination of time points were presented. A complete list of correlations is given in Supplemental Table 3.
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discussion

We described the data acquisition, processing and structure of the metabolomics data avail-

able in the Generation R Study and assessed the relationships between metabolite profiles 

of pregnant women and their children at birth and in childhood. Metabolite concentrations 

vary considerably between pregnant women and their children at birth and at the age of 10 

years. The individual metabolites correlate within groups of metabolites with similar chemical 

structures, but to a lesser extent between groups of metabolites with different chemical 

structures. The correlations of individual metabolites between pregnant women and their 

children at birth and age 10 years are relatively low.

Interpretation of main findings
Metabolomics studies targeting cardio-metabolic diseases have already been successfully ap-

plied in adults (7-9), but only a limited number of metabolomics studies have been performed 

on the early origins of these diseases (11, 12). We obtained intergenerational metabolomics 

data at three different time points during pregnancy and postnatal life, that may provide 

more detailed insights in the early origins of cardio-metabolic disease, the underlying mecha-

nisms and identify potential novel biomarkers.

Maternal metabolic profile during pregnancy might influence fetal metabolic profile, either 

directly through placental transfer, or indirectly by influences on hormone levels or placental 

function (11). Maternal blood metabolite concentrations generally tend to decrease across 

pregnancy, likely reflecting increased circulating volume, tissue biosynthesis and placental 

uptake (24). Fetal metabolite concentrations are the result of both placental transfer and 

endogenous synthesis. Concentrations of AA, Carn and NEFA, particularly long-chain poly-

unsaturated fatty acids (LC-PUFA), tend to be higher in fetal blood than in maternal blood 

(35-37). This might be indicative of an active transport mechanism across the placenta 

or increased fetal synthesis. Although the large time differences between the metabolite 

measurements in our study should be noted and preclude direct conclusions about placental 

transfer, our observation that the summed concentrations of AA, NEFA and Carn.a were 

higher in cord blood than in maternal early pregnancy blood is in line with these previous 

studies. The lower PL concentrations observed in cord blood in comparison to maternal 

early pregnancy blood might be explained by the fact that PL do not cross the placenta, but 

are hydrolyzed to NEFA that in turn cross the placental barrier (35, 38, 39). Relatively high 

correlations between individual metabolites within known general and detailed metabolite 

subgroups in pregnant women as well as in cord blood were observed, as expected from the 

shared precursors and biosynthesis pathways. However, correlations of individual metabolites 

between these two time points were relatively weak. These results are in line with those 

from a multi-ethnic study among 1600 participants that showed mostly weak correlations 

of these metabolites between maternal blood at 28 weeks of gestation and cord blood 
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(40). In our study, there is a large time difference between the metabolite measurements 

in mothers and newborns. Therefore, the relatively low correlations between maternal and 

cord blood metabolites might result from changes in metabolism in both pregnant women 

and the fetus that occur throughout pregnancy (24, 38). In addition, placental transfer 

of nutrients throughout pregnancy is tightly regulated by various transport mechanisms 

to ensure stable fetal metabolite concentrations at the expense of variations in maternal 

metabolite concentrations (41, 42). The relatively high correlations for carnitines in our study 

might be explained by the main source of carnitines for the fetus being placental transfer, 

rather than endogenous synthesis (43). Thus, individual metabolite concentrations correlate 

within mothers and newborns, but barely between mothers and newborns. This might result 

from changes in maternal and fetal metabolism throughout pregnancy and from tightly 

regulated active trans-placental transport mechanisms resulting in distinct metabolite profiles 

in pregnant women and their children at birth.

Less is known about the metabolite profiles from birth throughout childhood and the 

influence of maternal metabolite profiles in pregnancy on these profiles. A study among 127 

children from Sweden showed that concentrations of conventional lipids, including total 

cholesterol, LDL cholesterol and HDL cholesterol increased between the age of 6 months and 

4 years, whereas triglyceride concentrations decreased (44). A study among 500 children 

and adolescents aged 0 to 19 years observed that concentrations of AA, NEFA, and Carn.a 

dropped after the neonatal period. However, some of these Carn.a increased again from the 

age of 7 years and returned to neonatal concentrations at age 19 years (45). A large familial 

resemblance in metabolite concentrations has been suggested, which seems to be largely 

genetic (46-48). In cross-sectional studies, correlations of metabolites between parents and 

their offspring vary strongly, ranging from weak to relatively strong (33, 44, 49). Partly in line 

with these previous studies, we observed that AA and NEFA concentrations were lower in 

childhood as compared to cord blood samples, whereas concentrations of PL and Carn were 

higher in childhood. However, the correlations between individual metabolite concentra-

tions of children at birth and at the age of 10 years as well as between mothers in early 

pregnancy and their children at the age of 10 years were very weak. This might be explained 

by the large timespan between the measurements. Also, previous research has indicated 

that metabolite concentrations are highly influenced by nutritional factors, physical activity 

and the gut microbiome (23, 50-53). Differences in these factors between mothers and their 

children and over time might explain the weak correlations between different time points. 

Previous studies observed sex differences in metabolite concentrations in both children and 

adults (33, 45). We did not observe metabolite concentrations to vary between the sexes. 

This could be explained by the relatively young age of the participants, as sex differences in 

metabolite concentrations have been shown to be more pronounced in adolescence and 

adulthood (33, 45). Thus, correlations between individual metabolites between pregnant 

women and their children at school-age and within children over time are very low. This 
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might suggest strong influences of external factors and limited intergenerational correlations 

of metabolite profiles.

We provided the first explorative analyses of a unique large longitudinal dataset consisting 

of metabolomics data of pregnant women and their children at birth and in childhood, and 

studied correlations between a large number of metabolites at these different time points. 

Not much is known yet about the correlations of metabolites between pregnant women 

and their children and the metabolite profiles in children from birth until childhood. We 

observed relatively low correlations of metabolite concentrations between time points. We 

explored whether offspring sex affected these correlations as this is an important baseline 

characteristic which has been suggested to influence metabolite profiles in children and 

adults, but this did not affect our findings. Other maternal and childhood factors are likely 

to influence metabolite profiles in pregnant women, and the development of metabolites 

profiles from birth until childhood. Further studies are needed to obtain detailed insight into 

the influence of maternal and offspring socio-demographic, lifestyle and physical factors 

on the stability of metabolites profiles in pregnancy and from birth throughout childhood. 

Future studies using these data should take into account the correlations of metabolites 

within the same metabolite group. PCA, a data reduction approach commonly used in 

metabolomics, showed that the data were highly dimensional. This indicates that the vari-

ability in the data is difficult to capture in a lower number of components and that each 

metabolite contributes unique information. In addition, the obtained components did not 

describe specific metabolic pathways. Therefore, we do not consider the PCs informative in 

describing the information contained in this dataset. Given the high dimensionality of the 

data and the relatively high correlation of metabolites within metabolite groups, it seems 

that future studies focused on relating these data to exposures and outcomes of interest 

should analyze the data per individual metabolite and per metabolite group with structural, 

physiological and biological relevance. In addition, correlation networks based on correla-

tions between individual metabolites or more advanced pathway analysis may be useful 

for identifying metabolic pathways involved in these associations. Due to the longitudinal 

nature of the data and the large amount of data on relevant exposures and outcomes avail-

able in the cohort, these data will form an important population-based resource for future 

metabolomics analyses on the developmental origins of cardio-metabolic disease.

Methodological considerations
We obtained metabolomics data in a subgroup of the cohort, which consists of Dutch, rela-

tively high educated and healthy participants, as compared to the full cohort (13). This may 

affect the generalizability of our sample to the full cohort and the general population. We 

adopted a targeted metabolomics approach, which enabled us to study absolute metabolite 

concentrations of metabolites known a priori to be relevant for obesity and cardio-metabolic 

disease. However, the targeted design might also be a limitation in future association studies, 
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as relevant biological pathways might be missed. The blood samples used in our study were 

non-fasting and taken during non-fixed times of the day for logistic and ethical reasons 

(relatively young age of the children). Metabolite concentrations are dependent on fasting 

status. Fasting blood samples are usually preferred, as they are more reliable over time (54). 

The use of non-fasting blood samples in our study might influence precision and power to 

detect associations of interest. However, non-fasting blood samples appear to be more in-

formative of metabolic status throughout the day. Also, non-fasting lipids have been shown 

to perform equally or even better than fasting lipids in predicting the risk of cardiovascular 

disease (55). We therefore still consider non-fasting metabolite concentrations to be of 

interest. Due to the longitudinal design of the study, we were able to measure metabolite 

concentrations at 3 different time points during pregnancy and early postnatal life. However, 

due to the large time intervals between the blood samples and differences in the nature of 

the blood samples, small differences in procedures and handling of the blood samples may 

exist. As previous studies showed that different pre-storage temperatures and durations only 

minimally affected measured concentrations of most metabolites, we consider it unlikely that 

this strongly influenced our results.

Conclusions
Metabolite concentrations vary between pregnant women and their children at birth and 

at the age of 10 years. Correlations of individual metabolites between pregnant women 

and their children at birth and in childhood are relatively low. This may suggest that unique 

metabolic profiles are present among pregnant women, newborns and school aged children, 

with limited intergenerational correlations between metabolite profiles. These data are an 

important population-based resource for future metabolomics analyses to address the early 

origins of cardio-metabolic disease.
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suPPlemental material

Supplemental Text 1. Metabolite measurements

A targeted metabolomics approach was adopted to determine serum concentrations (µmol/L) 

of AA, NEFA, PL and Carn, as described previously (1). Proteins of 50 µL serum were precipi-

tated by adding 450 µL methanol including internal standards: labeled amino acid standards 

set A (NSK-A-1, Cambridge Isotope Laboratories (CIL), USA), 15N2-L-asparagine (NLM-3286-

0.25, CIL, USA), indole-D5-L-tryptophan (DLM-1092-0.5, CIL, USA), U-13C16-palmitic acid 

(CLM-409-MPT-PK, CIL, USA), D3-acetyl-carnitine (DLM-754-PK, CIL, USA), D3-octanoyl-

carnitine (DLM-755-0.01, CIL, USA) and D3-palmitoyl-carnitine (DLM-1263-0.01, CIL, USA), 

tridecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (855476, Avanti Polar Lipids, USA) and 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (850345, Avanti Polar Lipids, USA). If sample 

volume was less than optimal, the concentrations were corrected by the respective factor. 

Sample volumes less than 25 µL were not used and considered missing. After centrifugation 

the supernatant was split into aliquots. AA were analyzed by liquid chromatography tandem 

mass spectrometry (LC-MS/MS) as described previously (2). An aliquot of the supernatant 

was used for the derivatization to AA butylester with hydrochloric acid in 1-butanol. After 

evaporation, the residues were dissolved in water/methanol (80:20; (v/v)) with 0.1% formic 

acid. The samples were analyzed with 1100 high-performance liquid chromatography (HPLC) 

system (Agilent, Waldbronn, Germany) equipped with 150 x 2.1 mm, 3.5 µm particle size 

C18 HPLC column (X-Bridge, Waters, Milford, USA) and 0.1% heptafluorobutyric acid as and 

ion pair reagent in the mobile phases A and B (A: water, B: methanol). Mass spectrometric 

(MS) detection was performed with an API2000 tandem mass spectrometer (AB Sciex, Darm-

stadt, Germany) equipped with an atmospheric pressure chemical ionization (APCI) source 

operating in positive ion ionization mode. IUPAC-IUB Nomenclature was used for notation 

of the AA (3).

NEFA, PL and Carn were measured with a 1200 SL HPLC system (Agilent, Waldbronn, 

Germany) coupled to a 4000QTRAP tandem mass spectrometer from AB Sciex (Darmstadt, 

Germany) (4, 5). NEFA were analyzed by injection of the supernatant to a LC-MS/MS oper-

ating in negative electrospray ionization (ESI) mode where they were separated by gradi-

ent elution on a 100 x 3.0 mm, 1.9 µm particle size Purusuit UPS Diphenyl column from 

Varian (Darmstadt, Germany) using 5 mM ammonium acetate in water as mobile phase A 

and acetonitrile/ isopropanol (80:20; (v/v)) as mobile phase B. NEFA species were quanti-

fied using GLC-85 reference standard mixture (Nu-Chek Prep, USA). PL were analyzed by 

flow-injection analysis (FIA) with LC-MS/MS coupled with ESI (6). The system was run in 

positive ionization mode with 5% water in isopropanol as mobile phase A and 5% water 

in methanol as mobile phase B. The analysis was performed for diacyl-phosphatidylcholines 

(PC.aa), acyl-alkyl-phosphatidylcholines (PC.ae) , acyl-lysophosphatidylcholines (Lyso.PC.a), 

alkyl-lysophosphatidylcholines (Lyso.PC.e) and sphingomyelines (SM)). Carn (Free carnitine 
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(Free Carn) and acyl-carnitines (Carn.a)) were analyzed by flow-injection analysis of the 

supernatant into a LC-MS/MS system using an isocratic elution with 76% isopropanol, 19% 

methanol and 5% water. The mass spectrometer was equipped with electrospray ionization 

and operated in positive ionization mode. PL and acyl-carn were quantified using aliquots of 

a commercial available lyophilized control plasma (ClinChek®, Recipe, Germany), where the 

concentrations have been determined by AbsoluteIDQ p150 Kit from Biocrates®, a previous 

published LC-MS/MS method (7) and by in-house quantification with various standards. The 

calibrators used are given in Supplemental Table 1. The analytical technique used is capable 

of determining the total number of total bonds, but not the position of the double bonds 

and the distribution of the carbon atoms between fatty acid side chains. We used the follow-

ing notation for NEFA, PL and Carn.a: X:Y, where X denotes the length of the carbon chain, 

and Y the number of double bonds. The ‘a’ denotes an acyl chain bound to the backbone via 

an ester bond (‘acyl-’) and the ‘e’ represents an ether bond (‘alkyl-’).
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Supplemental Figure 1. Median metabolite concentrations by metabolite group and time 
point, stratified by child’s sex
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5

introduction

Childhood overweight and obesity are of major public health concern globally. The prevalence 

of overweight and obesity in children increased extensively in the last couple of decades (1). 

Childhood overweight and obesity are associated with adult overweight and obesity and 

are risk factors of a variety of health problems, including cardio-metabolic diseases, asthma, 

osteoarthritis, mental health problems and premature death (2). Obesity is defined as an 

excess of body fat, and is usually based on the body mass index (3, 4). Body mass index is a 

measure of weight adjusted for height, and is therefore not an exact measure of body fat. 

More direct measures of body fat mass and its distribution seem to be more strongly linked 

to metabolic disturbances and the risks of cardio-metabolic diseases (5, 6).

The etiology of obesity and associated cardio-metabolic diseases is complex and multifac-

torial. Risk factors include, but are not limited to, genetics, excess energy intake, sedentary 

behavior, lack or excess of sleep, stress and certain diseases (7). In addition, an accumulating 

body of research suggest that adverse exposures in fetal and early postnatal life may lead to 

developmental adaptations in organ structure and function, that may increase susceptibility 

to obesity and cardio-metabolic disease in later life (8). This might be reflected by different 

growth patterns from fetal life onwards. It has been observed that both children that grow 

slow and rapid in fetal life and grow rapidly in childhood are at the highest risk to develop 

cardio-metabolic diseases in later life (9-12). Identifying the factors related to adverse growth 

patterns and body fat development and the underlying mechanisms will contribute to the 

understanding of the early origins of these diseases and will help to target interventions 

aiming to reduce the burden of these diseases.

The general objective of this thesis was to assess the associations of common maternal di-

etary factors and maternal adiposity with growth, body fat development and cardio-metabolic 

risk factors in children, as well as the metabolic mechanisms that might underlie these associa-

tions. This chapter provides a general discussion of the main findings of this thesis, discusses 

general methodological considerations and provides suggestions for future research.

interPretation of main findinGs

Maternal common dietary factors
Nutrition during pregnancy is important for both the pregnant woman’s and her child’s 

health (13). Thus far, the associations of maternal dietary factors during pregnancy, such as 

diet quality, dietary patterns, total energy intake and macro- and micronutrient intake with 

offspring health outcomes have been studied extensively (13, 14). In this thesis, we specifi-

cally focused on intake of caffeine and milk, that are less studied, but common components 

of the diet in pregnant women.
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Maternal caffeine intake during pregnancy
Caffeine-containing beverages, including coffee and tea, are frequently consumed. Con-

sumption of these beverages seems to be beneficial for the risks of several diseases in non-

pregnant adults such as type 2 diabetes and non-alcoholic fatty liver disease (15-20), but 

might have unfavorable consequences in pregnant women. Previous studies, including one in 

our own cohort, have observed that maternal caffeine intake was associated with increased 

risks of fetal death, impaired fetal growth and increased risks of low birth weight (21-23). In 

addition to these short-term outcomes, previous studies have observed associations of any 

caffeine intake during pregnancy with higher offspring sum of skinfold thicknesses at age 

3 months (24), and with higher risks of obesity and central obesity up until age 15 years 

(25-27). In contrast, a study among 1986 mothers and their children from the United States 

did not show consistent associations of maternal serum concentrations of paraxanthine, 

the primary metabolite of caffeine, during pregnancy with childhood body mass index at 

ages 4 and 7 years (28). In this thesis, we observed that a high caffeine intake tended to be 

associated with a lower birth weight, a higher weight gain from birth until the age of 6 years 

and a higher body mass index from 6 months to 6 years and at the age of 10 years. Children 

of mothers with a high caffeine intake also had a higher total body fat mass and a higher 

android to gynoid fat mass ratio at the ages of 6 and 10 years, suggesting that maternal 

caffeine intake might be related to total body fat mass and a central body fat distribution in 

childhood. In addition, higher caffeine intake during pregnancy was associated with higher 

abdominal subcutaneous and visceral fat masses and liver fat fraction at the age of 10 years. 

The associations of abdominal visceral fat mass and liver fat fraction were independent of 

child’s concurrent total body fat mass. This suggests that maternal caffeine intake throughout 

pregnancy might differentially affect visceral and liver fat accumulation, rather than the total 

amount of body fat, and may increase susceptibility to cardio-metabolic disease.

The mechanisms by which maternal caffeine intake during pregnancy might affect off-

spring growth and body fat development are unclear. Studies in adults have suggested that 

consumption of caffeine may increase adiponectin concentrations and decrease concentra-

tions of pro-inflammatory cytokines (15, 18). We therefore speculate that these altered 

concentrations in pregnant women may affect fetal nutrient supply, which may subsequently 

affect development of the adipose tissue. Also, animal studies have suggested that in-utero 

exposure to caffeine may overexpose the developing fetus to glucocorticoids, leading to an 

altered development of the HPA-axis (29, 30). High glucocorticoid concentrations have been 

related to increased central obesity. In addition, the concentration of glucocorticoid receptors 

is higher in visceral adipose tissue as compared to other fat depots, possibly resulting in 

differential fat deposition in these depots (31). The associations might also be explained by 

confounding by unhealthy lifestyle factors that are shared within families. However, a nega-

tive control analysis among 50,943 participants showed stronger associations for maternal 

caffeine intake during pregnancy with the risk of childhood overweight at the age of 3 years, 
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as compared to those for paternal caffeine intake (26). This suggests that an intra-uterine 

programming mechanism might at least partly be involved in these associations.

Maternal milk intake during pregnancy
In contrast to maternal caffeine intake during pregnancy, maternal milk intake during preg-

nancy seems to be associated with increased fetal growth, resulting in higher birth weights 

(32-38). However, the long-term effects of maternal milk intake during pregnancy remain 

unclear. A study from the United Kingdom among 6663 mothers and children, did not 

observe associations of maternal milk intake in late pregnancy with child’s height at the age 

of 7.5 years (39). Another study among 685 mothers and children from Denmark observed 

that milk consumption during pregnancy was associated with increased height and increased 

concentrations of insulin-like growth factor 1 (IGF-1) in the 20-year old offspring (40). In this 

thesis, we observed that high maternal milk intake during pregnancy was associated with 

a higher childhood body mass index, a higher total fat mass, a higher lean mass, a higher 

android to gynoid fat mass ratio, a higher abdominal visceral fat mass and a higher risk of 

overweight/obesity at age 10 years. No consistent associations were observed for pericardial 

fat, liver fat, blood pressure, lipids, insulin or glucose concentrations. Thus, maternal milk 

intake during pregnancy seems to be associated with an adverse body fat distribution in 

childhood, but not with other cardio-metabolic risk factors.

The biological mechanisms linking maternal milk intake during pregnancy with offspring 

general and visceral body fat masses is not known. It has been suggested that milk intake 

increases concentrations of insulin, IGF-1, growth hormone, amino acids and fatty acids in 

the blood. In pregnant women, this might activate the nutrient sensitive kinase mTORC1 

in the placenta. Activation of mTORC1 in the placenta might result in increased placental 

transfer of amino acids and glucose and subsequent fetal overnutrition, causing fetal mTORC 

overactivation and stimulation of anabolic processes, cell growth and adipogenesis in the fe-

tus (41, 42). Overactivation of mTORC1 is associated with several cardio-metabolic diseases, 

including obesity, insulin resistance and type 2 diabetes (41, 43, 44). In addition, microRNAs 

that are present in milk involved in epigenetic upregulation of genes that are involved in 

the development of cardio-metabolic diseases might also play a role (45). Further research 

is needed on the mechanisms linking maternal milk intake during pregnancy to childhood 

body fat mass.
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Conclusions
Both higher maternal caffeine intake during pregnancy and higher maternal milk intake 

during pregnancy are associated with higher childhood general- and abdominal adiposity. 

Further research is needed on whether optimizing intake of caffeine and milk during 

pregnancy is beneficial for reducing childhood adiposity and to define recommendations 

for caffeine and milk intake based on these long-term offspring associations.

Maternal adiposity
Both pre-pregnancy obesity and excessive gestational weight gain are important risk factors 

for adverse short- and long-term offspring health outcomes (46-56). We previously observed 

in the Lifecycle - Maternal Obesity and Childhood Outcomes collaboration that both pre-

pregnancy overweight and obesity and excessive gestational weight gain have a high popula-

tion impact on the risks of adverse pregnancy and birth outcomes, with population attribut-

able risk fractions (PAR) ranging between 1.2% and 31.4%, depending on the outcome. 

Also, the associations of maternal body mass index and gestational weight gain with these 

short-term adverse outcomes were present across the full ranges of body mass index and 

gestational weight gain (57). In this thesis, we showed that both pre-pregnancy obesity and 

excessive gestational weight gain also have a considerable population impact with respect 

to the risk of offspring overweight and obesity throughout childhood, with PARs ranging 

between 10.2 and 21.6%. In addition, we observed that not only maternal overweight and 

obesity were associated with higher risks of overweight and obesity in childhood, but also 

that these risks were progressively higher among children of mothers with grade 1, 2, and 3 

obesity, respectively. The risks of childhood overweight and obesity increased across the full 

ranges of maternal body mass index and gestational weight gain. This suggests that these 

risks are not confined to the extremes of maternal body mass index and gestational weight 

gain, but increase gradually over the ranges of maternal pre-pregnancy BMI and gestational 

weight gain. For prevention, insight into the combined effects of maternal body mass index 

and gestational weight gain is needed. We observed that maternal pre-pregnancy obesity 

was associated with the highest risks of both short-term maternal and infant outcomes and 

obesity throughout childhood. Gestational weight gain only added to a limited extend to 

these risks. This suggests that maternal body mass index might be a more important factor 

than gestational weight gain with respect to the risks of maternal and offspring adverse 

outcomes.

Thus far, it is unclear how much weight pregnant women should gain to minimize their 

risk of adverse pregnancy and offspring outcomes. The optimal gestational weight gain 

reflects a trade-off between outcomes occurring at both low and high levels of gestational 

weight gain. Previous studies aimed to identify the optimal gestational weight gain, but 

these studies differed considerably in study populations, statistical approaches and included 
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outcomes, and the acquired optimal gestational weight gain ranges varied across studies 

(58-65). Despite these methodological issues, five of these previous studies were included 

for the construction of the current guidelines of the US Institute of Medicine (IOM; currently 

known as the National Academy of Medicine). These guidelines are criticized because of 

the non-systematic approach, lack of inclusion of maternal pregnancy complications and 

no consideration of obesity severity (63, 66). Only one previous study among 120251 obese 

US women defined separate optimal weight gain ranges for obesity grade 1 (4.5-11.3 kg), 

obesity grade 2 (0-4.1 kg) and obesity grade 3 (<4 kg weight loss), based on four outcomes, 

including preeclampsia, caesarean delivery, small size for gestational age at birth and large 

for size gestational age at birth, using data from term births only (63). In this thesis we identi-

fied ranges of optimal gestational weight gain associated with the lowest risk of maternal 

and infant outcomes. In line with previous studies, the optimal gestational weight gain in our 

study was lower for women with a higher pre-pregnancy BMI. Optimal gestational weight 

gain further decreased with increasing obesity grades and might even involve weight loss for 

severely obese women. However, this result needs be interpreted with caution as the safety 

and effectiveness of weight loss during pregnancy remain to be assessed. In addition, we 

observed that weight gain outside both the ranges defined in our study and IOM ranges was 

associated with adverse maternal and infant outcomes, with generally stronger associations 

for the ranges defined in our study. However, both the ranges defined in our study and IOM 

ranges had limited ability to distinguish between those with and without adverse outcomes. 

This suggests that the optimal gestational weight gain ranges defined in this study may be 

informative for preconception counselling, but also that gestational weight gain guidelines 

in general might not be useful for individual risk prediction.

The mechanisms underlying the associations of maternal weight before and during preg-

nancy with offspring outcomes are not fully understood. The observed associations might be 

explained by genetics (67, 68), estimations of the heritability of obesity go up to 85% (69). 

The remainder might be explained by developmental programming mechanisms or environ-

mental and lifestyle characteristics shared by mother and child. The fetal over-nutrition hy-

pothesis suggests that increased exposure to several types of nutrients in children of women 

with obesity or excessive gestational weight gain may lead to persistent adaptations in the 

structure and function of adipose tissue, appetite regulation and energy metabolism, lead-

ing to an increased susceptibility to offspring adiposity (70-72). Also, epigenetic processes 

may play an important role in these mechanisms (73-75). Increasing evidence suggests that 

maternal adiposity already exerts effects before conception. Increased concentrations of pro-

inflammatory cytokines, hormones and metabolites may accumulate in the ovarian follicular 

fluid and subsequently affect oocyte maturation and reduce embryo quality by metabolic, 

mitochondrial and chromosomal alterations (76).
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Conclusions
Maternal pre-pregnancy body mass index and gestational weight gain are important 

risk factors for adverse pregnancy and birth outcomes and childhood overweight and 

obesity. The optimal gestational weight gain associated with the risks pregnancy and 

birth outcomes was lower for higher pre-pregnancy body mass indexes. However, the 

predictive ability of these optimal weight gain ranges was limited. These results suggest 

that maternal weight before pregnancy might be more important than weight gain dur-

ing pregnancy with respect to the risks of adverse pregnancy and birth outcomes and 

childhood overweight and obesity. Also, gestational weight gain guidelines might not 

be useful for individual prediction of the risks of adverse pregnancy and birth outcomes.

Maternal and childhood metabolism
Several possible mechanisms underlying the associations of adverse exposures in early life 

with later obesity and cardio-metabolic disease have been proposed, which include, but are 

not limited to, epigenetics, adaptations in placental function, and hormonal and metabolic 

changes (77, 78). The possible underlying mechanisms specific for maternal adiposity and 

dietary factors have been described above. In this thesis, we focused in more detail on poten-

tial metabolic mechanisms underlying the early origins of cardio-metabolic disease.

Conventional biomarkers of metabolic status
Thus far, studies have mainly focused on conventional biomarkers of metabolic status, such 

as glucose, insulin and lipid concentrations. These studies suggest that higher concentrations 

of these biomarkers, already from early pregnancy onwards, are associated with altered fetal 

and early postnatal growth trajectories and increased risks of obesity and associated cardio-

metabolic diseases (79-82). In this thesis, we observed that maternal glucose concentrations 

already in early pregnancy were associated with lower HDL cholesterol and higher glucose 

concentrations in childhood, whereas maternal insulin concentrations were associated with 

a higher body mass index, systolic blood pressure, total fat mass, android to gynoid fat mass 

ratio, subcutaneous fat mass and insulin levels in childhood. All associations, except those 

for childhood glucose and insulin levels, were explained by maternal pre-pregnancy BMI. In 

addition, adverse exposures in early life might also influence offspring metabolic profiles. For 

instance, differences in fetal and postnatal growth patterns are related to adverse metabolic 

profiles and increased risks of cardio-metabolic disease in later life. Previous studies have 

shown that children born with a low birth weight are at increased risk of developing cardio-

metabolic disease in later life (9-12). On the other side of the spectrum, children born with a 

high birth weight are also at risk of these diseases (9-12). However, in this thesis we observed 

that children with relatively high insulin and c-peptide concentrations in childhood, do not 

grow differently in fetal life, but have higher weights and body mass indexes in childhood, as 
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compared to children with lower insulin and c-peptide concentrations. This might suggest a 

strong influence of postnatal factors, such as childhood body composition.

Metabolomics
Detailed characterization of metabolic status by metabolomics approaches may provide 

additional insights in the mechanisms that link early life adverse exposures to later cardio-

metabolic disease. Several, mostly small, studies have reported associations of amino acids, 

fatty acids, acyl-carnitines, several lipid species and vitamins in pregnancy (83-89) and at 

birth (90-98) with (gestational age adjusted-) birth weight. Only two studies assessed directly 

measured fetal growth and observed associations of maternal urinary branched-chain amino 

acid concentrations, taurine, histidine and malonate and fetal weight change between 12 

and 34 weeks of gestation and fetal anterior abdominal wall width at 34 weeks of gestation 

(88, 89). In this thesis, we compared concentrations of amino acids, non-esterified fatty 

acids, phospholipids, and carnitines in pregnant women, newborns and children. In line 

with previous studies (99-101), concentrations of amino acids, non-esterified fatty acids and 

acyl-carnitines were higher in cord blood as compared to maternal early-pregnancy blood, 

whereas concentrations of phospholipids were higher in maternal early-pregnancy blood. 

The higher amino acids, non-esterified fatty acids, carnitines in cord blood are indicative 

of an active transport of these metabolites across the placenta, whereas polar lipids get 

hydrolyzed to fatty acids before crossing the placenta (99-101). Concentrations of amino 

acids and non-esterified fatty acids were lower in childhood as compared to cord blood 

samples, whereas concentrations of phospholipids and carnitines were higher in childhood. 

Despite these higher exact concentrations, correlations of individual metabolites between 

pregnant women and their children were relatively low, suggesting that distinct metabolite 

profiles exist.

In addition, we assessed the associations of maternal and newborn metabolite con-

centrations with fetal growth from first trimester onwards and the risks of adverse birth 

outcomes. We observed a few associations of maternal phospholipids, particularly acyl-

alkyl-phosphatidylcholines, with femur length and head circumference in third trimester and 

weight and head circumference at birth. No associations were present for other metabolites 

or with earlier fetal growth measures, suggesting that maternal early-pregnancy metabolite 

concentrations are only to a very limited extend related to fetal growth. Contrary, newborn 

metabolite profiles at birth, mainly concentrations of non-esterified fatty acids and acyl-lyso-

phosphatidylcholines, were strongly associated with weight, length and head circumference 

at birth and the risks of SGA and LGA. Concentrations of several diacyl-phosphatidylcholines, 

acyl-alkyl-phosphatidylcholines, sphingomyelines, amino acids and acyl-carnitines were as-

sociated with the risk of pre-term birth, suggesting that suboptimal size at birth and pre-term 

birth are characterized by distinct cord blood metabolite profiles. Thus, results from this thesis 

suggest that cord blood metabolite profiles are strongly associated with growth measures at 
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birth and the risks of adverse birth outcomes. However, it should be noted that as a result 

of the cross-sectional design of these analyses we are not able to draw conclusions on the 

direction of these associations.

Conclusions
Maternal and newborn metabolism might influence offspring growth and cardio-meta-

bolic outcomes in later life. Whether the maternal and offspring metabolite concentra-

tions serve as intermediates in the pathways linking maternal body mass index and other 

lifestyle related exposures to childhood obesity and cardio-metabolic risk factors remains 

to be studied.

relevance and imPlications for Policy and 
clinical Practice

The results from this thesis might have implications for policy and clinical practice. Given the 

high prevalence of childhood obesity and associated cardio-metabolic disease, it is important 

to effectively target factors related to these diseases. Results from this thesis suggest that 

in addition to adverse birth outcomes, maternal caffeine and milk intake during pregnancy 

might influence long-term offspring body fat distribution. Current recommendations for 

maternal caffeine intake during pregnancy are based on the risks of adverse pregnancy 

and birth outcomes and range between a maximum of 200 and 300 mg per day (102-

104). Currently, no specific recommendations of maternal milk intake during pregnancy 

exist. Women of reproductive age are generally advised to consume 2-3 glasses of milk 

or milk products per day, although differences in included products and portion sizes exist 

between countries (105-107). Results of our and previous studies suggest that associations 

with childhood outcomes might already be present for lower intakes. Future studies should 

confirm whether optimizing caffeine or milk intake during pregnancy is beneficial for reduc-

ing childhood adiposity before these results could be incorporated in guidelines. However, 

given the considerable amount of women with caffeine and milk intakes above the current 

recommendations, awareness to the health effects of these factors and adherence to the 

current recommendations could be increased.

The studies described in this thesis suggest that the preconception period provides an 

important opportunity for prevention of offspring short- and long-term adverse outcomes. 

We therefore strongly suggest that prevention strategies focus on optimizing weight and 

diet before conception. We acknowledge that this is challenging because women planning 

to become pregnant are generally not in clinical care and a large proportion of pregnancies 

is unplanned. Therefore, prevention strategies should both involve individual preconception 

counselling on a healthy weight before and during pregnancy in women that have a known 
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pregnancy wish by general practitioners and other health professionals and population-based 

approaches. Population approaches could involve increasing awareness about the impor-

tance of a healthy weight before and during pregnancy with respect to health consequences 

for both mother and child, or could be part of larger population-based health promotion 

strategies for the general population. Next to the preconception period, prevention strate-

gies should target women during pregnancy with respect to dietary intake and weight. An 

advantage of targeting women during pregnancy is that they are easy to target and might 

be more motivated to make lifestyle changes. Our results suggest that optimal gestational 

weight gain guidelines are of limited importance with respect to individual prediction of 

adverse pregnancy and birth outcomes. However, gestational weight gain outside the 

guidelines was strongly associated with adverse pregnancy and birth outcomes at population 

level. Also, these results are limited to the outcomes that were included in the definition of 

the guidelines. Therefore, we consider it important to target and monitor weight gain in 

pregnant women at population level.

In addition, results from our thesis suggest that maternal and newborn metabolite profiles 

from metabolomics might influence offspring growth and cardio-metabolic outcomes in later 

life. Our results serve as a first step in understanding of the biological mechanisms underlying 

the associations of an adverse intrauterine environment with these outcomes. Therefore, 

these results are currently mainly of interest from etiological perspective, rather than for 

clinical practice. However, results from metabolomics studies might potentially be useful for 

the identification of biological biomarkers or individual risk prediction.

methodoloGical considerations

Selection bias
Selection bias is a bias in effect estimates that may occur if the association between the 

exposure and outcomes of interest is different in those included in the study and those in 

the target population. Selection bias in cohort studies may arise at baseline, resulting from 

selective inclusion, or at follow-up, due to selective loss to follow up (attrition bias). Selection 

can either be differential or non-differential. Non-differential selection refers to the situation 

that non-participation is dependent on the exposure but independent of the outcome, or 

vice versa, and is not considered to bias effect estimates. Differential selection bias refers to 

non-participation that is related to both the exposure and outcome under study, and results 

in selection bias (108).

Most studies presented in this thesis were embedded in the Generation R Study. A total of 

61% of all children that were eligible participated at birth. Compared to the general popula-

tion of Rotterdam, women included in the study were less often from ethnic minority groups 

and of lower socio-economic status. Also, pregnancy and birth complications, including 
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gestational hypertensive disorders, preterm birth and low birth weight were less prevalent 

(109). This suggests selection towards a more healthy population of higher socioeconomic 

status. Given the prospective design of the study, it seems unlikely that this selection at 

baseline is differential and might have led to selection bias. However, it seems likely that this 

selective participation may have led to lower prevalence rates and reduced statistical power, 

and a limited generalizability to other populations. Of all children included in the study, 

about 67.5% and 57.4% participated in the follow-up body composition measurements 

at age 6 and 10 years, respectively. Reasons for loss to follow up were movement outside 

study area, non-consent, and death of the child (110). Participation rates were slightly lower 

for measurements involving venous punctures (44.6% and 39.9%), due to non-consent or 

unsuccessful venous punctures, and abdominal and liver fat measurements using magnetic 

resonance imaging at age 10 years (29.2%), due to non-consent. As compared to those lost 

to follow-up, those included in the analyses described in this thesis were generally higher 

educated, more often of European descent, and smoked less often. It is difficult to speculate 

whether this selection to a more healthy, higher educated study population has led to selec-

tion bias. It seems unlikely, as loss to follow up was not related to exposure status in most 

studies.

Two studies presented in this thesis were embedded in the LifeCycle - Maternal Obesity 

and Childhood Outcomes (MOCO) collaboration, a collaboration of 39 pregnancy and birth 

cohort studies. As the majority of the cohorts included was prospective population-based, 

we expect these studies to have selection patterns similar to those of the Generation R Study, 

and therefore consider the risk of selection bias within these studies small. Selection of stud-

ies to participate in the collaboration was based on participation in existing collaborations 

on childhood health and might not be completely at random. Also, of 50 cohorts invited 

for participation, 11 did not participate because they were not reached or did not share 

data. However, it seems very unlikely that non-participation of studies in the collaboration is 

related to the exposures and outcomes under study and has biased the results described in 

this thesis.

Information bias
Information bias, or misclassification, is a bias in effect estimates that arises from measurement 

errors of exposure and outcome measurements. Analogous to selection, misclassification can 

be either differential or non-differential. Differential misclassification refers to misclassifica-

tion where the exposure status is dependent on outcome status, or vice versa, and can either 

result in an under- or overestimation of effect estimates. Non-differential misclassification 

refers to misclassification were exposure status does not depend on outcome status, or vice 

versa, and generally results in an underestimation of effect estimates (108).

In the studies described in this thesis, exposure data was collected longitudinally before as-

sessment of the outcomes. Data collectors were blinded to the exposure status when collect-
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ing data on the outcomes. Also, both participants and data collectors were not aware of the 

specific research questions under study. This makes bias due to differential misclassification 

unlikely. However, non-differential misclassification might be present and might have led to 

underestimated effect estimates. Fetal growth was assessed using ultrasound measurements 

in each trimester of pregnancy. Data on crown-rump length or biparietal diameter from the 

first ultrasound visit were used for pregnancy dating for the majority of women. Although 

this method is more accurate than pregnancy dating by last menstrual period, it neglects 

variation in early fetal growth. In offspring of these women, growth variation in second and 

third trimester might be underestimated. Part of the anthropometrics used for calculation of 

maternal body mass index, gestational weight gain and childhood body mass index came 

from self-report or parental report. Information on body mass index by self-report tends to be 

underestimated (111), which might have led to an underestimation of the effect estimates. 

Information on maternal caffeine and milk intake during pregnancy was obtained using 

(food frequency-) questionnaires. As these questionnaires rely on recall, it might be possible 

that some misclassification has occurred. For caffeine, it is likely that women underestimated 

their intakes, which might have led to an underestimation of the effect estimates. Milk intake 

could be either under- or overestimated, leading to an under- or overestimation of the effect 

estimates. Maternal and childhood blood samples were 30 minutes fasting or non-fasting. 

This may have resulted in non-differential misclassification and an underestimation of the 

effect estimates.

Confounding
Confounding is a bias in effect estimates that occurs when the exposure of interest coincides 

with another factor, that is also related to the outcome but is not an intermediate in the 

association between exposure and outcome under study. Due to the observational nature, 

the results described in this thesis might be subject to confounding. The exposures assessed 

in this thesis, weight, diet and metabolic factors, are likely to cluster with each other, but 

also with other socio-economic and lifestyle related factors, such as ethnicity, education, 

physical activity, smoking and alcohol consumption. We had data on many of these factors 

available, which enabled us to adjust our analyses for many possible confounders. These 

possible confounders were selected based on prior knowledge from previous studies, their 

associations with exposures and outcomes of interest, or a change of in effect estimates of 

more than 10%. Adjustment for confounders only changed the effect estimates slightly in 

most of the studies, suggesting that the influence of confounding factors is small. However, 

residual confounding might be present. This may either result from inaccurate adjustment 

for confounding factors due to measurement errors or from unmeasured or unknown con-

founders. For example, physical activity would be an important factor to take into account 

in many of the associations studied in this thesis, but this information was not available and 

might cause residual confounding.
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Causality
The observational nature of this thesis precludes conclusions about causality of the associa-

tions assessed. However, from a clinical and preventive perspective, insight in whether the 

observed associations are causal is of great interest. Sir Bradford Hill’s criteria can help assess-

ing the causality of an observed association. The criteria for a causal relationship are: strength, 

consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment 

and analogy. The effect estimates of the associations of maternal adiposity with childhood 

growth and body fat development are relatively large. However, the effect estimates of com-

mon maternal dietary factors with these outcomes are smaller. The results of the studies 

presented in this thesis are consistent with those of previous studies in humans and coherent 

with the results of animal studies. Exposure assessment took place before assessment of the 

outcomes and dose-response effects were observed for most of the associations assessed. 

Plausible potential mechanisms have been suggested for the associations assessed, although 

some need to be confirmed in further research. Although not assessed in this thesis, the 

associations might not be specific, as the exposures studied are likely to influence other 

outcomes. The experiment and analogy criteria were not assessed in this thesis. Thus, there 

seems to be some evidence for causality, but further studies are warranted to obtain more 

insight in this.

future research

In this thesis, we described associations of maternal common dietary factors and adiposity 

with offspring growth, body fat development and cardio-metabolic risks factors as well as 

potential underlying metabolic mechanisms. However, there are several factors that could be 

improved and clarified in future studies.

General design
The studies in this thesis are based on results from observational pregnancy and birth cohort 

studies with follow-up until age 10 years (The Generation R Study) and 18 years (MOCO 

collaboration). Future studies in other populations should confirm and extend the findings 

presented in this thesis. These future studies should extend beyond the follow-up durations 

of the studies in this thesis, as associations might become more apparent at later ages. As 

results from this thesis as well as from other studies strongly suggest that the preconception 

period is important for offspring health, future cohort studies should already start before 

pregnancy. Also, follow-up of multiple generations is of interest to assess whether the inter-

generational effects of adverse exposures in early life, for instance the intergenerational cycle 

of obesity. These studies would ideally include repeatedly assessed information on exposure 

and outcome data, enabling the assessment of temporal relationships and patterns over 
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time. In addition, efforts should be made to study relatively rare populations, such as severely 

obese women and the safety and effectiveness of weight loss during pregnancy in these 

women.

A number of factors could be improved in data collection in future studies. First, maternal 

pre-pregnancy body mass index, gestational weight gain and childhood body mass index 

were partly self- or parent reported, which may have potentially induced non-differential 

misclassification. Measuring these anthropometrics might reduce this risk. More precise mea-

sures of maternal fat mass before and during pregnancy as well as its location will be of inter-

est to obtain further insight into the effects of maternal body composition. It is recognized 

that measuring fat mass by methods such as dual-energy x-ray absorptiometry and magnetic 

resonance imaging in pregnant women is not feasible in observational studies due to safety 

concerns. However, alternative methods such as abdominal ultrasounds early in pregnancy, 

skinfold thicknesses and bioelectrical impedance might already provide important informa-

tion. Third, in the studies described in this thesis, we only had data available on caffeine 

intake from coffee and tea. Although at the time of data collection 80% of all caffeine intake 

was from coffee and tea (112), future studies should also obtain data on other common 

caffeine sources, such as cola, energy drinks, chocolate and medications. Maternal caffeine 

intake during pregnancy and maternal milk intake were assessed using questionnaires. An 

alternative to assessing caffeine intake by questionnaires is measuring urine concentrations 

of paraxanthine, which is the primary metabolite of caffeine. This approach is more objec-

tive and avoids problems as underreporting and recall bias, but depends on differences in 

metabolism and excretion rates between participants. Questionnaires for assessing caffeine 

(regular questionnaire) and milk intake (FFQ) were based on recall about the last 3 months. 

An alternative to FFQ’s would be 24-hours recalls, that are more precise and less prone to 

recall bias and social desirable answers, but reflect the intake of one specific day rather than 

habitual intakes. Fourth, 30-minutes fasting or non-fasting blood samples were used and no 

information was available on the time of the last meal. Use of fasting blood samples would 

avoid misclassification due to food intakes before blood draw. Also, detailed information on 

duration and intensity of physical activity needs to be obtained.

Causality
In this thesis, we described associations of common maternal dietary factors and maternal 

adiposity with offspring growth and development. Drawing conclusions on causality based 

on observational data is difficult. Despite the fact that we adjusted our analyses for many 

possible confounding factors and the fact that there is some evidence for causality based on 

the Bradford Hill criteria, further research is needed to establish causality of these associa-

tions.

The gold standard for assessing causality are randomized controlled trials. By randomizing 

participants to be part of either an intervention or a control group, differences in outcomes 
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can be attributed to the interventions, rather than confounding factors. In addition, these 

studies would also provide insights in the effectivity of these interventions and the timing of 

these interventions. With respect to maternal adiposity, randomized controlled intervention 

trials have been performed to reduce gestational weight gain in second and third trimester. 

These intervention trials, focused on improving diet and physical activity, have been moder-

ately successful in reducing gestational weight gain (113-116). However, these interventions 

did not show any effect on offspring outcomes, such as gestational age at birth, birth weight, 

or childhood weight (113-116). Results from this thesis suggest that pre-pregnancy weight 

is a more important determinant of offspring adverse outcomes than gestational weight 

gain. Thus far, interventions that aim to reduce pre-pregnancy weight are scarce (117). A 

few intervention studies targeted pre-conception lifestyle, such as alcohol intake, smoking, 

nutrition (mainly micronutrients), and showed small effects on the risks of adverse birth 

outcomes, but whether these effects were through pre-pregnancy weight remains unclear 

(118-120). Thus, randomized controlled interventional trials targeting maternal weight in 

the preconception period are needed. With respect to maternal caffeine and milk intake, 

intervention studies would be focused on optimizing intakes of caffeine and milk. Thus far, 

only one intervention study focused on reducing caffeine intake during pregnancy has been 

performed. A study from Denmark randomized 1207 pregnant women to replace their usual 

coffee with either caffeinated instant coffee or decaffeinated instant coffee, but did not 

show any effect on birth weight or length of gestation (121). Further intervention trials 

focused on restricting caffeine intake during pregnancy are needed to confirm these find-

ings and to assess the long-term offspring health effects. To the best of our knowledge, no 

intervention trials focused on maternal milk intake during pregnancy have been performed.

In addition, observational study designs that deal with confounding in a more natural way 

could help in assessing causality. These study designs include parent-offspring comparison 

studies, sibling comparison studies and Mendelian Randomization studies. Parent-offspring 

comparison studies compare the strength of maternal-offspring associations with the strength 

of paternal offspring associations. Stronger maternal-offspring associations than paternal-

offspring associations might suggest that the observed associations can at least partly be 

explained by intra-uterine programming mechanisms. A limitation of this approach is the 

assumption that both parents contribute equally to the shared lifestyle-related characteristics 

between parents and their offspring. This approach has been performed for pre-pregnancy 

body mass index and caffeine intake (26, 122), but results need to be confirmed. Sibling 

comparison studies compare siblings within families, and therefore control for family based 

characteristics and genetics. Sibling-comparison studies have been performed with respect 

to maternal weight before or during pregnancy, and are suggestive of a causal relationship 

(123-127). However, an important limitation of this study design is that it assumes these 

family based characteristics to be constant over time, whereas these might change along 

with the exposures under study (128). Mendelian Randomization studies use a genetic vari-
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ant known to be strongly associated with the exposure and not affected by confounding as 

instrumental variable for the exposure, in order to assess whether the exposure is causally 

related to the outcome (129). Mendelian Randomization Studies have been performed with 

respect to the associations of maternal obesity with offspring birth weight and obesity, but 

results are conflicting (68, 130, 131). Sibling-comparison studies and Mendelian Randomiza-

tion studies regarding the offspring effects of maternal caffeine intake during pregnancy 

remain to be performed.

Underlying mechanisms
Unraveling the mechanisms underlying the associations between adverse exposures in early 

life and health and disease in later life is important to design effective interventions interfer-

ing with these mechanisms. In this thesis, we focused on the potential underlying metabolic 

mechanisms, by looking at maternal, newborn and childhood metabolic profiles. We also 

showed newborn, and to a much smaller extent maternal, metabolite profiles associated 

with fetal growth measures. Futures studies should focus on the associations of these me-

tabolomics data with early life adverse exposures and outcomes both short- and long-term. 

Also, mediation analyses addressing the potential mediating role of metabolites in the as-

sociations of early life exposures with the outcome are of interest. We applied a targeted me-

tabolomics approach, which is an efficient and straightforward hypothesis-driven approach 

that provides exact metabolite concentrations, but might miss important metabolites and 

pathways (132). Untargeted metabolomics approaches might provide more detailed insights 

in the metabolic pathways under study. We measured metabolite concentrations in blood 

serum. Other biological samples, such as plasma, urine, saliva, or breast milk may show dif-

ferent metabolic profiles and might therefore provide additional insights. Next to metabolic 

mechanisms, other mechanisms could be involved. These mechanisms include, but are not 

limited to, hormonal changes (alterations in HPA and satiety axes), genetics and changes in 

gene expression (epigenetic mechanisms), and changes in the microbiome. Further studies 

are needed to address potential underlying mechanisms as well as their interrelationships, by 

for example multi-omics approaches (133).

conclusions

Maternal common dietary factors and maternal adiposity are associated with offspring 

growth and body fat development. Changes in metabolite profiles might underlie these 

associations.
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summary

Chapter 1 describes the background and rationale for the studies presented in this thesis. 

Childhood overweight and obesity are a major public health problem. Children with over-

weight and obesity are at risk of a variety of adult diseases, such as overweight and obesity 

in adulthood, cardio-metabolic disease, asthma, osteoarthritis, mental health problems and 

premature death. The etiology of obesity and cardio-metabolic disease is complex and mul-

tifactorial. It has been suggested that, in addition to well-known risk factors such as genetic 

predisposition, excess energy intake, and sedentary behavior, susceptibility to these diseases 

might already be established in early life. This might be reflected by different growth patterns 

from fetal life onwards. Identifying the factors related to adverse growth patterns and body 

fat development as well as the underlying mechanisms will broaden the understanding of 

the early origins of disease and is vital to effectively target interventions aiming to reduce 

the burden of these diseases. Therefore, the general objective of this thesis was to assess 

the associations of common maternal dietary factors and maternal adiposity with growth, 

body fat development and cardio-metabolic risk factors in children, as well as the metabolic 

mechanisms that potentially underlie these associations. The studies presented in this thesis 

used data from the Generation R Study, a population-based cohort study from fetal life 

onwards in Rotterdam, the Netherlands, and the LifeCycle – Maternal Obesity and Childhood 

Outcomes (MOCO) collaboration, an international collaboration of 39 pregnancy and birth 

cohort studies from Europe, North-America and Australia.

Chapter 2 describes studies on the influence of common maternal dietary factors on child-

hood growth, adiposity and cardio-metabolic risk factors. In Chapter 2.1, we examined the 

associations of maternal caffeine intake during pregnancy with childhood growth patterns 

from birth until the age of 6 years and general adiposity at age 6 years. We showed that a 

high maternal caffeine intake tended to be associated with a lower birth weight, a higher 

weight gain from birth until the age of 6 years and a higher body mass index from 6 months 

to 6 years, and a higher total body fat mass and android to gynoid fat mass ratio at the age 

of 6 years. This suggests that maternal caffeine intake is related to total body fat mass and a 

central body fat distribution in childhood. In Chapter 2.2, we showed that these associations 

were also present at the age of 10 years. In addition, higher maternal caffeine intake during 

pregnancy was associated with higher abdominal subcutaneous and visceral fat masses and 

a higher liver fat fraction at the age of 10 years. The associations of abdominal visceral 

fat mass and liver fat fraction were independent of child’s concurrent total body fat mass, 

suggesting that maternal caffeine intake might differentially affect visceral and liver fat ac-

cumulation. In Chapter 2.3 we assessed the associations of maternal milk intake during 

pregnancy with childhood general- and organ fat measures and other cardio-metabolic risk 

factors. We observed that a high maternal milk intake during pregnancy was associated 

with higher childhood body mass index, total body fat mass, lean mass, android to gynoid 
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fat mass ratio, abdominal visceral fat mass and a higher risk of overweight/obesity at age 10 

years. No consistent associations were observed for pericardial fat, liver fat, blood pressure, 

lipids, insulin or glucose concentrations. Thus, results from this thesis suggest that maternal 

milk intake during pregnancy seems to be associated with an adverse body fat distribution in 

childhood, but not with other cardio-metabolic risk factors.

Chapter 3 describes studies on the influences of maternal adiposity before and during 

pregnancy on offspring adiposity at birth and in childhood. In Chapter 3.1 we assessed 

the separate and combined associations of maternal pre-pregnancy body mass index and 

gestational weight gain with the risks of overweight/obesity throughout childhood and their 

population impact. We observed that not only maternal pre-pregnancy overweight and 

obesity are associated with an increased risk of childhood overweight, but that these risks 

increase gradually across the full range of maternal pre-pregnancy body mass index. Similarly, 

the risk of childhood overweight/obesity increased across the full range of gestational weight 

gain. The additional effect of excessive gestational weight gain on the risk of childhood 

overweight was small among women who are already overweight or obese before preg-

nancy. In Chapter 3.2, we identified ranges of optimal gestational weight gain associated 

with the lowest risk of maternal and infant adverse outcomes. These ranges were lower for 

women with a higher pre-pregnancy body mass index. The optimal gestational weight gain 

decreased with increasing severity of obesity. We also observed that weight gain outside both 

the ranges defined in our study and the existing guidelines from the US Institute of Medicine 

(IOM) was associated with adverse maternal and infant outcomes, with generally stronger 

associations for the ranges defined in our study. However, both the ranges defined in our 

study and from the IOM had limited ability to distinguish between those with and without 

adverse outcomes. This suggests that the optimal gestational weight gain ranges defined in 

this study may be informative for preconception counselling, but also that gestational weight 

gain guidelines in general might not be useful for individual risk prediction.

Chapter 4 describes studies on the potential metabolic mechanisms linking adverse expo-

sures in early life to later obesity and cardio-metabolic disease. In Chapter 4.1 we showed 

that maternal glucose concentrations already in early pregnancy were associated with lower 

HDL cholesterol and higher glucose concentrations in childhood, whereas maternal insulin 

concentrations were associated with a higher body mass index, systolic blood pressure, total 

body fat mass, android to gynoid fat mass ratio, subcutaneous fat mass and insulin levels 

in childhood. All associations, except those for childhood glucose and insulin levels, were 

explained by adjustment for maternal pre-pregnancy BMI. In Chapter 4.2 we aimed to 

identify critical periods and specific growth patterns from fetal life onwards associated with 

childhood insulin levels. We showed that, independent of growth in other time intervals, 

weight growth from 6 months onwards and body mass index growth from 24 months 

onwards were positively associated with childhood insulin levels, with the strongest associa-

tions at the age of 72 months. As compared to children in the lowest quartile of childhood 
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insulin, those in the highest quartile had a higher length from birth onwards and a higher 

weight and body mass index from 24 months onwards. These differences increased with 

age. No associations were observed for fetal growth characteristics. Thus, results from this 

thesis suggest that rapid length, weight and body mass index growth in childhood, but not 

during fetal life, is associated with higher insulin levels in childhood. In Chapter 4.3 we used 

metabolomics analyses to describe the metabolite profiles in pregnant women, newborns 

and children as well as their interrelationships. We observed that metabolite concentrations 

vary considerably between pregnancy women and their children at birth and at the age of 

10 years. Correlations of individual metabolites between pregnant women and their children 

at birth and in childhood are relatively low. This may suggest that unique metabolic profiles 

are present among pregnant women, newborns and school-aged children, with limited inter-

generational correlations between metabolite profiles. In Chapter 4.4 we examined whether 

maternal early-pregnancy and newborn metabolite profiles are associated with fetal growth 

from first trimester onwards and the risks of adverse birth outcomes. We observed only a few 

associations of maternal phospholipids, particularly acyl-alkyl-phosphatidylcholines, with fe-

mur length and head circumference in third trimester and weight and head circumference at 

birth. Contrary, newborn metabolite profiles at birth, mainly concentrations of non-esterified 

fatty acids and acyl-lysophosphatidylcholines, were strongly associated with weight, length 

and head circumference at birth and the risks of SGA and LGA. Thus, results from this thesis 

suggest that maternal early-pregnancy metabolite are only to very limited extend related to 

fetal growth, whereas cord blood metabolite profiles are strongly associated with growth 

measures at birth and the risks of adverse birth outcomes.

Finally, in Chapter 5 a general discussion of the main findings of this thesis, general 

methodological considerations and suggestions for future research are provided. In conclu-

sion, maternal common dietary factors and maternal adiposity are associated with offspring 

growth and body fat development. Changes in metabolite profiles might underlie these 

associations.
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Hoofdstuk 1 beschrijft de achtergrond en rationale voor de studies beschreven in dit 

proefschrift. Overgewicht en obesitas bij kinderen vormen een groot probleem voor de 

volksgezondheid. Kinderen met overgewicht en obesitas hebben een hoog risico op ziekten 

op latere leeftijd, zoals overgewicht en obesitas, cardio-metabole ziekten, astma, osteoar-

tritis, mentale gezondheidsproblemen en vroegtijdig overlijden. De etiologie van obesitas 

en cardio-metabole ziekten is complex en multifactorieel. Naast bekende risicofactoren als 

genetische aanleg, overmatige energie inname and sedentaire leefstijl, lijkt ook het vroege 

leven een rol te spelen in de ontwikkeling van deze ziekten. Dit zou tot uiting kunnen komen 

door middel van afwijkende groeipatronen al vanaf het foetale leven. Het identificeren van 

factoren gerelateerd aan afwijkende groeipatronen en de ontwikkeling van lichaamsvet, 

alsmede de biologische mechanismen die hieraan ten grondslag liggen, zal bijdragen aan 

een beter begrip van de vroege oorsprong van ziekten en is belangrijk voor de ontwikkeling 

van interventies gericht op het verminderen van het vóórkomen van deze ziekten. Het doel 

van dit proefschrift was dan ook het bestuderen van de associaties van veel voorkomende 

voedingscomponenten en maternale adipositas met groei, de ontwikkeling van lichaamsvet 

en cardio-metabole risicofactoren bij kinderen, alsmede de potentiële onderliggende meta-

bole mechanismen. Voor de studies beschreven in dit proefschrift is gebruik gemaakt van 

data van de Generation R studie, een prospectieve cohort studie onder zwangere vrouwen 

en hun kinderen in Rotterdam, en LifeCycle – Maternal Obesity and Childhood Outcomes 

(MOCO), een internationale samenwerking tussen 39 zwangerschaps- en geboorte cohorten 

uit Europa, Noord-Amerika en Australië.

Hoofdstuk 2 beschrijft studies naar de invloed van door zwangere vrouwen vaak ge-

consumeerde voedingscomponenten, namelijk cafeïne en melk, op groei, adipositas en 

cardio-metabole risicofactoren bij hun kinderen. In Hoofdstuk 2.1 hebben we de associatie 

van maternale cafeïne consumptie tijdens de zwangerschap met groeipatronen vanaf de 

geboorte tot de leeftijd van 6 jaar en algemene adipositas op de leeftijd van 6 jaar onder-

zocht. Resultaten van deze studie lieten zien dat een hogere maternale cafeïne consumptie 

was geassocieerd met een lager geboortegewicht, een hogere gewichtstoename vanaf de 

geboorte tot de leeftijd van 6 jaar, een hogere body mass index vanaf de leeftijd van 6 

maanden tot 6 jaar en een hogere totale lichaamsvetmassa en een hogere ratio van androïde 

en genoïde vetmassa op de leeftijd van 6 jaar. Dit wijst erop dat cafeïne consumptie door 

zwangere vrouwen is gerelateerd aan totale lichaamsvetmassa en een centrale vetverdeling 

bij hun kinderen op de leeftijd van 6 jaar. Hoofstuk 2.2 laat zien dat deze associaties ook 

bestaan op de leeftijd van 10 jaar. Daarnaast was een hogere maternale cafeïne consumptie 

tijdens de zwangerschap ook geassocieerd met hogere abdominale subcutane en viscerale 

vet massa’s en een hogere lever vet fractie bij kinderen van 10 jaar. De associaties van abdo-

minale viscerale vetmassa en lever vet fractie waren onafhankelijk van de totale vetmassa van 
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het kind. Dit zou kunnen betekenen dat cafeïne consumptie door zwangere vrouwen in het 

specifiek de ontwikkeling van visceraal en lever vet bij kinderen beïnvloedt. In Hoofdstuk 

2.3 hebben we de associatie tussen maternale melk consumptie met totaal lichaamsvet en 

orgaanvet bij hun kinderen onderzocht. In dit hoofdstuk hebben we laten zien dat een hoge 

maternale consumptie van melk tijdens de zwangerschap was geassocieerd met een hogere 

body mass index, totale lichaamsvetmassa, vetvrije massa, ratio tussen androïde and genoïde 

vetmassa, abdominale viscerale vetmassa en een hoger risico op overgewicht of obesitas bij 

kinderen van 10 jaar. Er waren geen consistente associaties met pericardiaal vet, lever vet 

fractie, bloeddruk, vetten, insuline of glucose concentraties. Samenvattend kunnen we stel-

len dat melk consumptie door zwangere vrouwen gerelateerd lijkt te zijn aan een nadelige 

vetverdeling bij hun kinderen, maar niet aan andere cardio-metabole risico factoren.

Hoofdstuk 3 beschrijft studies naar de invloed van maternale adipositas voor en tijdens 

de zwangerschap op adipositas bij haar kinderen tijdens de geboorte en in de kindertijd. In 

Hoofdstuk 3.1 hebben we de individuele en gecombineerde associaties van maternale body 

mass index voorafgaand aan de zwangerschap en gewichtstoename tijdens de zwanger-

schap met het risico op overgewicht en obesitas tijdens de kindertijd onderzocht, alsmede de 

impact van deze associaties op populatieniveau. De resultaten van dit hoofdstuk laten zien 

dat niet alleen overgewicht en obesitas voorafgaand aan de zwangerschap zijn geassocieerd 

met een verhoogd risico op overgewicht bij kinderen, maar dat deze risico’s geleidelijk stijgen 

naarmate de body mass index stijgt. Het risico op overgewicht bij kinderen steeg ook gelei-

delijk met stijgende gewichtstoename tijdens de zwangerschap. Het effect van overmatige 

gewichtstoename op het risico op overgewicht bij kinderen was beperkt voor vrouwen 

die al overgewicht of obesitas hadden voorafgaand aan de zwangerschap. In Hoofdstuk 

3.2 hebben we de optimale gewichtstoename tijdens de zwangerschap bepaald als de ge-

wichtstoename met het laagste risico op nadelige zwangerschaps- en geboorte uitkomsten. 

De optimale gewichtstoename was lager voor vrouwen die een hogere body mass index had-

den voorafgaand aan de zwangerschap. De optimale gewichtstoename was ook lager voor 

vrouwen met ernstigere obesitas. Zowel gewichtstoename buiten de in dit proefschrift gede-

finieerde categorieën als buiten de bestaande richtlijnen van het instituut der geneeskunde 

(IOM) in de Verenigde Staten was geassocieerd met nadelige zwangerschaps- en geboorte 

uitkomsten. Deze associaties waren over het algemeen sterker voor de categorieën bepaald 

in dit proefschrift. Zowel de in dit proefschrift gedefinieerde categorieën als die van het 

IOM waren echter maar beperkt in staat om onderscheid te maken tussen vrouwen met en 

zonder nadelige uitkomsten. Dit wijst erop dat de optimale gewichtstoename bepaald in dit 

proefschrift informatief kan zijn voor preconceptionele counseling, maar dat richtlijnen voor 

gewichtstoename tijdens de zwangerschap in het algemeen waarschijnlijk niet informatief 

zijn voor risicopredictie op individueel niveau.

Hoofdstuk 4 beschrijft studies naar de metabole mechanismen die onderliggend zouden 

kunnen zijn aan de associaties tussen blootstelling aan nadelige factoren vroeg in het leven 
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en obesitas en cardio-metabole ziekten later in het leven. In Hoofdstuk 4.1 hebben we 

laten zien dat maternale glucose concentraties in de vroege zwangerschap geassocieerd 

waren met een lager HDL cholesterol en hogere glucose concentraties bij kinderen. Mater-

nale insuline concentraties waren geassocieerd met een hogere body mass index, systolische 

bloeddruk, totale lichaamsvet massa, ratio van androïde tot genoïde vetmassa, subcutane 

vetmassa en insuline concentraties bij kinderen. Alle associaties, behalve die voor glucose en 

insuline concentraties bij het kind, konden worden verklaard door verschillen in maternale 

body mass index voorafgaand aan de zwangerschap. Het doel van Hoofdstuk 4.2 was om 

perioden en groeipatronen geassocieerd met insuline concentraties bij kinderen te identifice-

ren. Resultaten van dit hoofdstuk laten zien dat, onafhankelijk van groei in andere perioden, 

gewichtstoename vanaf de leeftijd van 6 maanden en body mass index toename vanaf de 

leeftijd van 24 maanden geassocieerd waren met insuline concentraties bij kinderen, met de 

sterkste associaties op de leeftijd van 72 maanden. Vergeleken met kinderen in het laagste 

kwartiel van insuline, waren kinderen in het hoogste kwartiel langer vanaf de geboorte en 

hadden een hoger gewicht en een hogere body mass index vanaf de leeftijd van 24 maanden. 

Deze verschillen werden groter naarmate het kind ouder werd. Er waren geen associaties 

voor foetale groei. Deze resultaten wijzen erop dat een snelle groei in lengte, gewicht en 

body mass index in de kindertijd, maar niet tijdens het foetale leven, geassocieerd is met 

hogere insuline concentraties bij kinderen. In Hoofdstuk 4.3 hebben we gebruik gemaakt 

van metabolomics data om de metaboliet profielen van zwangere vrouwen en hun kinderen 

bij de geboorte en op de leeftijd van 10 jaar te beschrijven, alsmede de relaties tussen deze 

profielen. Resultaten van dit hoofdstuk laten zien dat metaboliet concentraties variëren tus-

sen de verschillende tijdspunten. De correlaties van de individuele metabolieten tussen de 

zwangere vrouwen en hun kinderen waren relatief laag. Dit zou kunnen betekenen dat 

unieke metaboliet profielen bestaan voor zwangere vrouwen en hun kinderen bij de geboorte 

en op de leeftijd van 10 jaar, met beperkte correlaties tussen generaties. In Hoofdstuk 4.4 

hebben we onderzocht of maternale metaboliet profielen tijdens de vroege zwangerschap 

en metaboliet profielen van pasgeborenen gerelateerd zijn aan foetale groei vanaf het eer-

ste trimester en het risico op nadelige geboorte uitkomsten. Resultaten van dit hoofdstuk 

laten zien dat maar enkele fosfolipiden, vooral alkyl-fosfolipiden, geassocieerd waren met 

dijbeenlengte en hoofdomtrek van het kind in het eerste trimester van de zwangerschap en 

gewicht en hoofdomtrek bij de geboorte. Metaboliet profielen van pasgeborenen, vooral 

niet-veresterde vetzuren en acyl-lysophosphatidylcholines, waren sterk geassocieerd met 

gewicht, lengte en hoofdomtrek bij de geboorte en met de risico’s om zowel te klein als te 

groot geboren te worden voor de zwangerschapsduur. Dus, de resultaten van dit proefschrift 

wijzen erop dat de metaboliet profielen van de moeder tijdens de vroege zwangerschap 

maar in beperkte mate gerelateerd zijn aan foetale groei, terwijl metabolietprofielen van 

pasgeborenen sterk gerelateerd zijn aan maten van groei bij de geboorte en het risico op 

nadelige geboorte uitkomsten.
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Als laatste geeft Hoofdstuk 5 een algemene discussie van de belangrijkste bevindingen 

van dit proefschrift, methodologische overwegingen en suggesties voor verder onderzoek. 

Concluderend, door zwangere vrouwen vaak geconsumeerde voedingscomponenten en 

adipositas bij zwangere vrouwen zijn geassocieerd met groei, lichaamsvetonwikkeling en 

cardio-metabole risicofactoren bij hun kinderen. Veranderingen in metaboliet profielen 

zouden een onderliggend mechanisme kunnen zijn.
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