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Abstract: Fusarium head blight (FHB) and the accumulation of deoxynivalenol (DON) mycotoxin
induced by Fusarium graminearum and other Fusarium fungi cause serious problems for oat production
in the Nordic region (Scandinavia, Fennoscandia). Besides toxin accumulation, FHB causes reduction
in grain yield and in germination capacity. Here, genomic approaches for accelerating breeding efforts
against FHB and DON accumulation were studied. Resistance-related traits included DON content,
F. graminearum DNA (relative to oat DNA) content (qFUSG) measured with real-time quantitative
polymerase chain reaction (PCR), Fusarium-infected kernels (FIKs) and germination capacity (GC).
Plant germplasm used in the study consisted of mostly breeding lines, and additionally, a few cultivars
and exotic accessions. Genome-wide association study (GWAS) and genomic prediction, enabling
genomic selection (GS) on the resistance-related and collected agronomic traits, were performed.
Considerable genetic correlations between resistance-related traits were observed: DON content had
a positive correlation (0.60) with qFUSG and a negative correlation (−0.63) with germination capacity.
With the material in hand, we were not able to find any significant associations between markers
and resistance-related traits. On the other hand, in genomic prediction, some resistance-related
traits showed favorable accuracy in fivefold cross-validation (GC = 0.57). Genomic prediction is
a promising method and genomic estimated breeding values (GEBVs) generated for germination
capacity are applicable in oat breeding programs.

Keywords: Fusarium head blight (FHB); deoxynivalenol (DON); real-time quantitative PCR (qPCR);
germination capacity (GC); Fusarium-infected kernels (FIKs); breeding for resistance; oats

1. Introduction

Spring oat (Avena sativa L.) is an important cereal crop in Finland. By cultivation area, it was the
second largest cereal crop, after barley, in 2018 [1]. Worldwide, oat cultivation is concentrated to Russia,
Canada, Australia, and Eastern and Northern Europe [2]. At least, in Finland [3,4], Norway [5–8],
Russia [9], Sweden [10], Denmark [11], Germany [12,13], the UK [14,15], Canada [16–18] and the
US [19], the occurrence of Fusarium head blight (FHB) in oats has been recorded. In most of the
countries, deoxynivalenol (DON) is the predominant mycotoxin caused by Fusarium infection. Instead,
in the UK, T-2/HT-2 toxin produced by various Fusarium species is observed more frequently than
DON in oats [14,15]. All these mycotoxins are harmful for both humans and animals [20,21]. Besides
toxin production, FHB has been related to yield losses and low germination capacity [22,23]. In
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European Union (EU) countries, legislation limits the use of unprocessed cereals with DON levels
above 1250 µg/kg, unprocessed oat 1750 µg/kg and processed cereal foods 750 µg/kg [24]. In Norway,
oat lots exceeding these limits are given a price penalty [8]. In Finland, oat lots for human consumption
with toxin accumulation above the limits are discarded in the cereal trade. For animal feed, the EU
recommendations are generally not as strict (8000 µg/kg) but vary depending upon the age of the
animal and species. Thus, it can be concluded that FHB is a major concern from both health and
economic aspects.

In the Nordic region, infections caused by Fusarium species have become more prominent
during the last 10–20 years. Recently, Fusarium graminearum Schwabe has become the most dominant
DON-producing Fusarium species, and has replaced its close relative, F. culmorum (Wm.G. Sm.)
Sacc. [4,8,25–27]. F. langsethiae Torp and Nirenberg has been recognized as the most important T2/HT-2
toxin producer [25]. In Finland, the Finnish Cereal Committee (VYR) has taken samples of commercial
cereal lots since 1999 for DON content analysis. Between 2000 and 2014, seven percent of all cereal
samples had DON content higher than the acceptable EU limit [28], whereas 11% of the oat samples
exceeded the limits. In these surveys, oat represented 60% of the total collected samples, and had more
infected samples than spring barley and spring wheat. Accumulation of DON has been rarely observed
in winter cereals. According to these empirical results, in Finland oat has more DON accumulation
compared to other cereals. In the processing industry, on average 90% of the remaining toxins are
removed by dehulling oats [15,29].

Weather has a large influence on the FHB severity and the accumulation of DON. The F. graminearum
infection level and higher DON content depend upon moisture [30], temperature [31], light intensity
and wind [32]. The highest risk of an infection is during anthesis, but infection can occur with
diminishing probability later during the growing season [23,33,34]. Higher F. graminearum infection
level is related to moist and warm weather during anthesis for cereals [32]. Warm, moist and rainy
weather conditions around anthesis, but also dry conditions during germination and tillering, enhance
the higher DON content in oat. Warm and moist weather followed by cool and dry conditions around
harvest are associated with lower DON accumulation [35].

Resistance toward FHB can be divided into five components. Type 1 [36] is the resistance towards
initial infection, which has not been reported for FHB in oat [37]. Type 2 is the resistance to spreading
of an infection. Type 3 covers the kernel-induced infection [38], which has been complicated to
observe in oat, due to the seed hull [37]. Type 4 includes the tolerance towards infection, which can be
measured as yield stability and minimal yield loss in infected trials [38]. The type 5 is resistance to
toxin formation [39]. It has been suggested that more than one type of resistance should be measured
when determining the FHB resistance of oat genotypes [37].

In North America, oat is not considered as the most susceptible cereal to FHB [18,40,41]. In fact,
it was found to be more resistant than wheat and barley. In morphology, oat panicles differ from
wheat and barley heads. Infection has been rarely found to move from spikelet to spikelet, due to
longer distance through rachilla, pedicles and rachis compared to the more compact heads [33,41].
Therefore, oat has a good type 2 resistance [33,41]. In contrast, oat flowering endures for a longer time
(on average eight days) than the flowering of wheat (around 3 to 6 days) [37,42,43], which prolongs the
time of susceptibility.

There are multiple studies on traits which have correlation either with FHB resistance or DON
accumulation. These agronomic traits are not resistance mechanisms as such, but rather give an escape
mechanism to infection. Hull-less oats have been reported to have less FHB and to accumulate less
DON [9,44,45]. There are implications on other morphological characteristics giving resistance to FHB,
including the color of the lemma [44,46,47]. In modern oat cultivars, the most studied traits correlated
with FHB resistance are plant height, days to heading, days to flowering, days to maturity and anther
extrusion. Taller plants have been reported to either escape the disease pressure, have a linkage with
FHB resistance-affecting genes, or resistance is a result of pleiotropy [7,8,48], but at the same time
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lodging promotes FHB and the accumulation of DON [7,49]. In a Russian oat study, no correlation
between FHB severity and plant height was found [50]. Earliness has been more of a contradictory trait.

In Norway, a high negative correlation between FHB and days to flowering or days to maturity
was reported [8,48]. Correlation between low DON content and late maturity was not as strong.
In contrast, opposite results have been reported in Finland and Russia [50,51], where early maturing
oat lines were more resistant to DON accumulation. In wheat, taller and later plant lines have been
reported to have less FHB [52–54]. Anther extrusion have been described as a trait correlated with
wheat FHB and DON accumulation [54–56]. The more the anthers are extruded, the less disease is
observed. In oat, preliminary studies have been conducted, and evidence of a similar, but not as clear
connection, has been reported [33,37,57,58].

Besides the correlated agronomic traits, visually scored FHB and DON content have often been
found to have a positive correlation in barley and wheat [59,60]. In oat, visual scoring has not been
found to be a reliable method, because in the field, disease symptoms can easily be mixed with
maturing spikelets [37,48,61]. In three studies [8,37,48], correlations between FHB and DON content
have been 0.43, −0.05 and −0.19, respectively. These results imply that visual scoring may be reliable if
a broad spectrum of susceptibility does exist in the tested material and the level of infection is high,
but otherwise visual scoring is not reliable [8]. Evaluation of Fusarium infection in oat is commonly
done after harvest in the laboratory. Mycotoxins can be measured with different methods, such as
chromatography [62,63] or enzyme-linked immunosorbent assays (ELISAs). The level of Fusarium
infection can be measured by growing seeds on a selective media and visually assessing the number
of infected kernels (Fusarium-infected kernels, FIKs) [38,60,64] or with a real-time polymerase chain
reaction (real-time quantitative PCR = qPCR) by identifying the fungal DNA mass of a sample [65–68].
Type 3 resistance (kernel infection) has been quantified by a germination capacity assay [23].

When reliable measurements for FHB resistance have been carried out and genotypic information
on tested lines is available, genome-wide studies can be performed. Genome-wide association
studies (GWAS) can be used to search for important associations between measured traits and genetic
markers [69–71]. Spurious associations may rise from population structure or close relatedness within
the population [72,73]. In order to correct for population structure, assumption-free PCA is often
used [74]. Genome-wide marker data can also be used to calculate genomic estimated breeding values
(GEBVs) and use them in a genomic selection (GS) approach [75,76]. In GS, a training population
with genotypic and phenotypic information are connected with a statistical model that is then used to
predict GEBVs for unphenotyped individuals with genotypic information [76]. The prediction models
differ in their ability to estimate marker effects [77,78]. One of the most used models, genomic best
linear unbiased prediction (GBLUP), is a robust, infinitesimal model for polygenic traits. The prediction
model is validated with methods, like k-fold cross-validation or leave-one-out, and the accuracy of the
prediction is received.

Genomic studies are still scarce in oat. One of the reasons is in its complex genome, which is
known to carry three genomes, each containing seven chromosomes. The genomes are designated as
AA, CC and DD [79]. There are major translocation events described in the genomes, like in 7C and
17A (7C-17A) [80]. The current oat consensus map [81] is not yet perfect, and only part of the merged
linkage groups have been assigned to chromosomes. The merged linkage groups are numbered from
1 to 33, and if the group has been assigned to a specific chromosome, it is shown after a slash (e.g.,
12/13A). Recently, a GWAS study was made for FHB resistance in oat [8]. Bjørnstad et al. (2017) used
an oat core population, which contained oat lines from the Nordic region and North America. In their
results, visually scored FHB had significant association with several markers on merged linkage groups,
i.e., preliminary chromosomes, 12/13A, 02/9D and 03/4C [81]. However, when days to flowering was
added as a covariate, these associations were not significant, suggesting that at least some of the
variation in FHB was due to growing time. DON content had as well significant associations with
multiple markers on merged linkage groups 03/4C, 09/6C, 18, 23/11A and 28 [81] (7C-17A) [82]. Other
GWAS studies made in oats are for beta-glucan [83,84], crown rust [85], lodging, plant height [86] and
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frost tolerance [87]. All of these studies implicate that oat generally has less genetic variation and a
weak population structure compared to other cereals.

A lot of genomic studies have been reported for FHB resistance in wheat [88] and some in
barley [89,90]. In wheat, a major gene influencing on resistance, Fhb1, has been found from Chinese
germplasm [91–93]. For wheat FHB resistance, several authors have reported reasonable genomic
prediction accuracies [94–97]. The five-fold cross-validation accuracy for the DON content was 0.64
and for the Fusarium-infected kernel, it was 0.82 [94]. Similar accuracy was computed for the FHB
index, which contained both the severity and incidence of the infection [95]. GS studies point out the
potential benefit of using GS in breeding for FHB resistance in wheat. To our knowledge, validated
genomic predictions have not been reported before for FHB resistance in oat. GS studies in oat include
traits, like grain yield [98,99], which imply that the use of GS in breeding for quantitative traits may be
beneficial in oats.

FHB resistance and DON accumulation seem to be quantitatively inherited traits in oat [8,48],
and no single major QTL resistance source, like in wheat (Fhb1), has been found. However, multiple
associated QTLs for two mapping populations and a diversity panel have been found [8,48]. The aim
of this study is to observe the existing genetic variation of FHB resistance and DON accumulation,
trait relations and heritabilities, within a commercial oat breeding population. Possible significant trait
and marker associations are studied. Breeding for quantitatively inherited traits with the GS approach
may be beneficial, but it requires adequate amounts of phenotypic and genotypic information, in order
to receive reliable estimates of the GEBVs. Genomic prediction accuracies, for data accumulated so far
in the breeding program, are computed, and the possibilities of using genomic models to assist oat
resistance breeding are evaluated.

2. Materials and Methods

2.1. Plant Germplasm and Genotype Data

Plant lines in our study were provided by Boreal Plant Breeding Ltd. and were listed in
Supplementary 1. A total of 327 tested lines contained inbred breeding lines (F4:8), cultivars and some
accessions from the N.I. Vavilov Research Institute of Plant Industry (VIR 6963, VIR 7766, VIR 7934 and
VIR 8479) [9,45]. Tested lines contained the best and the worst hulled lines in DON accumulation based
on a previous, unpublished study, where available resistance sources were thoroughly studied. The set
of tested lines was altered every year as new breeding lines were included in the trials. On average, 41%
of the lines were shared between the trials. Tested lines represented 162 biparental families. The largest
family contained 10 progenies, while most of the families were represented by one line.

Plant lines, referred to as GID, were genotyped with a customized, unpublished 6K
single-nucleotide polymorphism (SNP) chip. Quality of the SNP markers was checked, and markers
were removed if the call rate was less than 90%, the minor allele frequency (MAF) was less than 5% and
the heterozygosity was more than 5%. Those remaining 2785 markers were used in the further analysis.
Missing SNPs were imputed with a mean value with the A.mat function in the rrBLUP R package [100].
An unpublished genetic consensus map based upon several mapping populations was used. The
SNP markers which did not have a map position (n = 608) where assigned into “chromosome 22”.
Linkage disequilibrium (LD) was measured (r2) for each marker pair per chromosome. The decay of
LD was examined visually by plotting each marker pair against their distance (cM), and by fitting a
nonlinear regression based on Hill and Weir [101]. The computation was done in software R, with
version 3.6.0 [102], and the code was provided by Marroni [103]. All the markers were used in principal
component analyses (PCA) to compute the population structure for GWAS. Computation was as well
done in R [102].
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2.2. Phenotypic Data

Field experiments were in Jokioinen (Jok, WGS 84 coordinates: 60.811163, 23.497720) between the
years 2015 and 2018, and in Laukaa (Lau, WGS 84 coordinates: 62.326318, 25.991806), in the years 2016
and 2017. Trials, referred in the analysis as TRIAL, were planted according to a row-column design
with three replications [104]. Check cultivars across trials consisted of 20 cultivars, three of them were
specifically selected to represent the different levels of FHB resistance.

The three checks were chosen based on a previous unpublished study: Finnish cultivar Niklas
was found to be moderately resistant, Swedish cultivar Belinda intermediate and Finnish cultivar
Mirella susceptible. The number of replicates for checks varied between trials, but mostly checks were
replicated six times per a trial. In the Jokioinen 2018a trial, only Belinda was included. The experimental
unit was a 1-m long row. In 2015, plant lines were placed as single rows, in 2016 and 2017 as double
rows and in 2018 as single rows with guard rows set as borders to equalize disease pressure within rows.
Trials were spawn inoculated once before heading, at latest at Zadoks 49 stage [105]. The preparation
of the inoculum is described by Tekle et al. [37]. Briefly, a mixture of five Finnish F. graminearum
isolates were grown on autoclaved oat kernels. Once the inoculum was ready it was spread by evenly
dispersing seeds between each row with density of 10 g/m2. The experiments were mist-irrigated
between 7 PM and 10 PM from anthesis until yellow maturity. Fertilizer was used according to each
field standards, and no fungicides were used during the growing season. Rows were harvested by
hand in bags, threshed and cleaned with an indoor thresher (Saatmeister, Kurt Pelz, Germany).

Phenotyped agronomic traits included days to heading (DH), which was recorded when 50% of
the panicles were visible; maturity class (MC) (1-early, 5-late) was recorded when 50% of the panicles
reached yellow maturity; and plant height (PH) was measured from ground level to the top of the
panicles at yellow maturity.

Resistance-related traits recorded were the germination capacity (GC), frequency of
Fusarium-infected kernels (FIKs) [106], DON mycotoxin content and the relative amount of
F. graminearum fungus DNA (pg) per oat DNA (100 ng) measured by qPCR [67], which is referred
to later as qFUSG (quantity of F. graminearum). All the resistance-related traits were measured from
each replicate. Germination capacity was determined with the standard paper germination test used
in Finnish authority laboratories (ISTA 2006). Germinated seedlings were assessed as germinated if
the shoot growth was normal. In the case of abnormal growth, the seedlings were not determined as
germinated. The seedlings were grown up to 10 cm before assessing the germination. Fusarium-infected
kernels were determined by plating 100 seeds on a selective media [107]. The Fusarium-infected kernel
level was estimated after three days or one week of incubation at 23 ◦C, depending on the progress
of the infection rate. Grain samples of 10 g for DON mycotoxin analysis were taken after mixing the
threshed row samples. The samples were milled (Lab Mill 120, Perten Instruments, Hägersten, Sweden)
and DON content was measured with an ELISA kit (R5906 Ridascreen DON 96 test, R-Biopharm,
Darmstadt, Germany). To control the variation between measurements, the commercial reference
sample for DON, TR-D100 (R-Biopharm, Darmstadt, Germany), was used. The same milled samples
were used in qPCR (QuantStudio 5 Real-Time PCR System, Thermo Fisher Scientific, Waltham, USA)
with the method, including probes and primers, from Divon et al. 2012 [108]. The quantity of oat and
F. graminearum DNA were analyzed in a multiplex reaction, where each reaction was repeated two or
three times and the means were calculated and used for further analysis. Each qPCR run contained a
dilution series for both species. The sample data was processed with Standard Curve version 3.9 app
(Thermo Fisher Connect, Waltham, MA, USA).

2.3. Experimental Analysis

The data analysis was done in two stages. In the first stage spatial effects were corrected for
each trial separately. A model without corrections for spatial effects was compared with models with
replication, column, row, column within a replication and/or row within a replication. During the
process, clear outliers were removed. An optimal model was selected [109] for each trait in each trial
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based on the Bayesian information criterion (BIC). The best linear unbiased estimates (BLUEs) for
each line per trial (referred to as per trial computed BLUEs later) were derived and used for further
analysis. Broad-sense heritability for each trial as well as across trials was computed based on Piepho
and Möhring (2007) [110]:

h2 =
σ2

G

σ2
G + MVD

(1)

where σ2
G presents the genetic variance and MDV the mean variance of a difference within the BLUEs.

Computations were done according to Schmidt et al. (2019) [111]. The trait data per trial was removed
if the broad-sense heritability was below 0.3. Testing of normality assumptions for each trait and
data preparations were done in R [102]. The normality assumption was not met in the case of DON
content and qFUSG. For this reason, log-transformation was done, and all presented DON contents are
presented as log (DON) and qFUSG values as log (qFUSG). Before transformation, a constant (+10)
was added to all qFUSG spatially-corrected phenotypes due to negative values in the data.

2.4. Association Analysis

The second stage of the analysis included GWAS and genomic prediction, which were computed
separately. GWAS was performed using the Genomic Association and Prediction Integrated Tool
(GAPIT) package, version 3 in R [102,112,113]. Analysis was checked following a published
protocol [114]. As an extra step in GWAS, per trial computed BLUEs were calculated as BLUEs
for each line (referred to as line-specific BLUEs later) using the lmer function, “lmer(TRAIT ~ GID +

(1|TRIAL)”, from the lme4 R package [102,115]. Before estimation, per trial computed BLUEs were
centered with “scale(TRAIT, center = T, scale = F)” to avoid an intercept being added in the first estimate.
Next, in the GWAS process, principal component analysis (PCA) was used to detect the population
structure. PCA was computed within GAPIT, and the number of PCs was determined visually by
looking at the flattening of the curve in the scree plot of the variation explained by each of the PCs
and, in addition, using BIC values provided by GAPIT while setting the “model.selection = TRUE”
and “PCA.total = 10”. The actual GWAS analysis was run with four different models to assess
the marker–trait association. The first model was a naive model, where no population structure or
information on the relationship between lines was added. In GAPIT, model parameters were set
as “group.from = 1, group.to = 1” to disable the default kinship calculation. The second model (Q)
included a selected number of PCs for population structure control as covariates in the model, but no
relationship between individuals was added. In the third model (K), the cryptic relatedness was tested
with a kinship (K) matrix computed within GAPIT by the default method “VanRaden” [116]. To clarify,
K was calculated from SNP markers. No PCs were added in the third model. The fourth model (QK)
included both the selected number of PCs and the K matrix.

The naive and Q models can be described as

y = Xb + e (2)

where y represents the line-specific BLUEs calculated for each trait, X is the design matrix, vector b
describes the fixed effects, which are in the naive model only the markers, and in the Q model, markers
and eigenvalues from the computed PCA, and vector e is the random error.

The K and QK model can be presented as

y = Xb + Za + e, (3)

where y represents the line-specific BLUEs calculated for each trait. Vector b presents the fixed effects,
which are in the K model only as the markers, and in the QK as the markers and the eigenvalues. Vector
a describes the random additive genetic effects by including the kinship K matrix. X and Z are design
matrices associating both effects to the BLUEs, and vector e is the random error. The assumptions for
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the models are detailed in the GAPIT manual [117]. The analysis was conducted for a single year
DON content and qFUSG data as well, if the number of lines within a year exceeded 100 (DON 2017,
DON 2018, qFUSG 2017 and qFUSG 2018). The significance level of the trait–marker associations was
corrected with two methods, the Bonferroni multiple testing correction and by adjusting the p-value
(0.10) with the false-discovery-rate (FDR) [118].

2.5. Genomic Prediction

Genomic prediction was conducted with the GBLUP model. The per trial computed BLUEs
(vector y) can be represented with the model 2. In this case, vector b describes the fixed effects (TRIAL),
vector a, the random additive genetic effects, and vector e the random residual effects. The per trial
computed BLUEs are associated with the effects via the corresponding design matrices X and Z.
The following assumptions were used

a ∼ N
(
0, Gσ2

a

)
, (4)

where G is the additive relationship matrix calculated from SNP markers, and σ2
a is the genetic variance,

and e ∼ N
(
0, Iσ2

e

)
, where I is the identity matrix and σ2

e is the residual variance. The covariance
between a and e is assumed to be zero. Variance components for genomic prediction were estimated
using the Average Information REstricted Maximum Likelihood (AI-REML) [119] and calculated with
DMU software version 6, release 5.2 [120]. The relationship matrix G was computed from SNP markers
according to the first method from VanRaden (2008). An inverse matrix G−1 was calculated with MiX99
software [121] and used in the analysis. The same software was used to solve mixed model equations
using pre-estimated variance components.

Estimates for variance components and narrow-sense heritabilities were extracted from single-trait
models with DMU software. The narrow-sense heritability estimates were calculated as

h2 =
d(G)σ2

a

d(G)σ2
a + σ

2
e

(5)

where d(G) is the average of the diagonal elements of the G-matrix, σ2
a presents the additive genetic

variance and σ2
e the residual variance. The genetic correlation estimates were obtained from two-trait

models with DMU software. Structures for the two-trait models can be specified as follows:

y
′

=
[
y
′

1 y
′

2

]
, e
′

=
[
e
′

1 e
′

2
]

b =

[
b1

b2

]
, X =

[
X1 0
0 X2

]
a =

[
a1

a2

]
, Z =

[
Z1 0
0 Z2

] (6)

For the two-trait models, the distributional assumptions included

a ∼ N(0, G0 ⊗G) (7)

where G0 is the genetic covariance between the two traits and G is the additive relationship matrix,

e ∼ N(0, R0 ⊗ I), (8)

where R0 is the residual covariance matrix and I the incidence matrix, E(y) = Xb and Cov(a, e) = 0.
The ⊗ refers to Kronecker product of the two matrices. The genetic correlations between the traits i and
j were calculated as:

d(G)(G0)ij√
d(G)(G0)iid(G)(G0)jj

=
(G0)ij√

(G0)ii(G0)jj

(9)
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where d(G) is the average of diagonal elements of the G-matrix, (G0)ij is the genetic covariance between
two traits and (G0)ii is the genetic variance for trait i and (G0)jj is the genetic variance for trait j. The
phenotypic covariance matrix was computed as

d(G)G0 + R0 (10)

and phenotypic correlations were derived from this matrix, where R0 is the residual covariance matrix.
The formulation is specified as:

(d(G)G0 + R0)ij√
(d(G)G0 + R0)ii(d(G)G0 + R0)jj

(11)

2.6. Prediction Model Validation

Genomic prediction was validated with two schemes, random fivefold cross-validation (CV)
with 100 replications, and leave-one-out (LOO), where each TRIAL was assigned as a validation set.
In CV, the tested lines were randomly assigned to five subsets, and four sets were used as a training
set, and one set as a validation set. The validation sets consisted of 62 lines, except that the fifth one
had 60 lines, for DON content, 57 lines for qFUSG and 38 lines for the rest of the traits. The check
cultivars (20 lines) were always assigned into a training set. In LOO, one of the trials was assigned as a
validation set and the remaining trials were used as a training set.

The validation accuracy in CV was computed as a weighted correlation between predicted value
and line-specific pseudo-phenotype. This pseudo-phenotype was calculated from complete data and
each per trial computed BLUEs was adjusted for the fixed effects within a trial and averaged across.
The number of observations for each line were used as a weight in the correlation. In LOO, a correlation
was made between the predicted value and per trial computed BLUEs adjusted for the fixed effects
estimated from the complete data.

3. Results

3.1. Phenotypic Records

Agronomic (DH, PH, MC) and FHB resistance-related traits (GC, FIK, DON, qFUSG) were collected
from artificially infected field trials. Descriptive statistics for each trait are presented in Table 1. There
was a lot of unexplained variation in DON content and qFUSG, which is indicated as high CV% and
LSD values for each trial (Table 2). Least significant differences (LSDs) within the trials varied between
1.1 ppm and 22.8 ppm, with a mean of 7.8 ppm for DON content, and for qFUSG, the variation was
between 17.8 and 281.6, with a mean of 132.9. On average, the coefficient of variation (CV%) was
46.2% for DON content and 65.7% for qFUSG. Distributions of DON content and qFUSG in each trial
are provided in Figure 1a,b, pointing out some of the germplasm included in the trials. The level of
the DON accumulation varied a lot depending on the year. In the rainy year 2017, the level of DON
accumulation was higher compared to the dry year 2018. Despite the level of DON content varying
yearly, the ranking of the marker cultivars, i.e., checks, in DON content, was rather constant throughout
(Figure 1a). An exception was seen in the Jokioinen 2018b trial, where Belinda accumulated more
DON than Mirella. Ranking of VIR lines varied between trials. In Jokioinen, VIR lines were placed
between Belinda and Mirella. In Laukaa 2016, VIR lines had less accumulated DON than Niklas, which
was divergent from the other trials. Data for qFUSG was missing the check cultivars and VIR-lines in
some trials. The cultivars or lines were not measured, or they were removed during the data quality
check. For qFUSG data (Figure 1b), in Jok2018b and Lau2017, the ranking of the marker cultivars was
comparable to DON ranking. As well for Jok2018b, Belinda had higher level of qFUSG than Mirella.
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Table 1. Traits summarized are DH = Days to heading, PH = Plant height, MC = Maturity class (Maturity
class 1 corresponded on average to 92 growing days, while class five to 101 days), GC = Germination
capacity, FIKs = Fusarium-infected kernels, DON = deoxynivalenol content and qFUSG = relative
amount of F. graminearum fungus DNA (pg) per oat DNA (100 ng). Total number of observations (n
obs), number of unique lines (n lines), number of trials (n trials), mean, standard deviation (SD), min
and max values are presented for each collected trait. The computed h2 equals to the broad-sense
heritability across trials according to Piepho and Möhring (2007) [110].

Trait N Obs N Lines N Trials Mean SD Min Max h2

DH 506 210 4 57.9 2.64 51 68 0.90
PH 506 210 4 99.7 7.50 69 146 0.89
MC 307 210 3 3.21 0.96 1 5 0.91
GC 335 209 4 67.5 14.0 26 97 0.60
FIK 254 209 2 43.9 17.6 12.7 91.2 0.45

DON 1 797 327 7 2.05 1.44 -2.18 4.66 0.48
qFUSG 1 555 315 4 4.34 1.24 1.55 6.90 0.19

1 log-transformed.

Table 2. Descriptive statistics for DON content, qFUSG, Fusarium-infected kernel (FIK) and germination
capacity (GC) traits for each trial. Trait_trial describes the trait and location * year of testing, n equals
the number of unique lines in the TRIAL, mean is the arithmetic mean, standard deviation (SD) the
standard deviation, CV% is the coefficient of variation after the spatial correction, similarly least
significant difference (LSD) values corresponds to the values after the spatial correction, with critical
level of α = 0.05 and h2 is the broad-sense heritability based on Piepho and Möhring (2007) [110].

Trait_Trial n Mean SD CV% LSD (α = 0.05) h2

DON_Jok2015 51 0.6 0.4 63,2 0.7 0.41
DON_Jok2016 55 3.6 1.7 52.7 3.0 0.56
DON_Jok2017 200 20.1 6.9 33.8 11.2 0.55
DON_Jok2018a 106 1.3 0.6 50.1 1.1 0.31
DON_Jok2018b 132 3.8 1.6 55.2 3.3 0.49
DON_Lau2016 54 9.8 3.9 32.6 5.2 0.63
DON_Lau2017 199 38.8 16.9 36.0 22.8 0.71
qFUSG_Jok2017 125 133.8 89.9 95.3 211.2 0.40
qFUSG_Jok2018a 91 12.0 11.9 58.6 21.1 0.54
qFUSG_Jok2018b 129 15.1 9.6 61.6 17.8 0.45
qFUSG_Lau2017 198 289.8 174.4 47.1 281.6 0.59
FIK_Lau2016 73 72.5 10.4 17.4 20.6 0.51
FIK_Lau2017 200 36.0 8.8 27.9 16.3 0.46
GC_Jok2015 62 89.9 4.8 4.9 7.1 0.60
GC_Jok2017 29 68.9 11.0 9.8 10.8 0.71
GC_Lau2016 73 70.4 9.6 9.8 11.4 0.72
GC_Lau2017 200 60.5 9.6 12.8 12.5 0.68

3.2. Genotypes and Population Structure

The rate of linkage disequilibrium (LD) decay was visualized by plotting the pairwise LD within
a chromosome against the distance between the two markers (Figure 2). Based on the computed
nonlinear regression, the distance when r2 fell below the commonly used 0.3 threshold was 35 cM.

Principle component analysis (PCA) was used as an approximation of population structure
(Figure 3). The first principal component explained 9.8%, and the second 5.3% of the total variation.
The sum of the first six principal components was 29.7%. The material clustered into early and late
maturity groups on the first PC.
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Figure 1. Distributions for deoxynivalenol (DON) content (a) and for qFUSG, (relative amount of
F. graminearum fungus DNA (pg) per oat DNA (100 ng)) (b) for each field trial (Jok=Jokioinen and
Lau=Laukaa). Check cultivars, Niklas (N, moderate resistance), Belinda (B, intermediate resistance)
and Mirella (M, susceptible), are pointed out with arrows to observed value for each marked cultivar.
Respective DON response for the marker cultivars in each trial: Jok2015 Niklas 0.28, Belinda 0.61
and Mirella 1.1, Jok2016 Niklas 2.1, Belinda 3.2 and Mirella 5.8, Jok2017 Niklas 16.6, Belinda 18.2 and
Mirella 40.4, Jok2018a Belinda 1.3, Jok2018b Niklas 1.6, Belinda 6.7 and Mirella 3.8, Lau2016 Niklas
8.0, Belinda 7.8 and Mirella 34.4, and Lau2017 Niklas 10.4, Belinda 45.5 and Mirella 63.3. Respective
gFUSG response for marker cultivars in each trial: Jok2018a Belinda 7.2, Jok2018b Niklas 8.4, Belinda
24.3 and Mirella 8.4, and Lau2017 Niklas 200, Belinda 166 and Mirella 285. VIR accessions are indicated
accordingly VIR 6963 (V1), VIR 7766 (V2), VIR 7934 (V3) and VIR 8479 (V4) in the trials where they
were tested.
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Figure 2. Decay of the linkage disequilibrium (LD) (r2) is presented for the 2785 markers used in the
analysis. The figure presents r2 LD for each marker pair within chromosomes plotted against their
distance (cM). The red line is the nonlinear regression line based on Hill and Weir [101].
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Figure 3. Principle component analysis (PCA) for the tested plant lines with 2785 single-nucleotide
polymorphism (SNP) markers. The coloring indicates early (blue) and late (red) maturing lines.

3.3. Heritability Estimates and Correlations Between Traits

The broad-sense heritability estimates were computed for each trial (Table 2) and across trials (Table 1).
Two trials were removed from Fusarium-infected kernels data due to a low heritability estimate (less than
0.3). Otherwise, considerable differences between trials were found: the estimates varied between 0.31 and
0.72. Mostly, the lower estimates were connected to a lower Fusarium head blight (FHB) infection level
(e.g., DON_Jok 2015 and Jok2018a, and GC_Jok2015). Comparatively, for qFUSG, the level of infection
did not seem to affect the heritability estimate. The heritability estimates computed across trials were
higher for agronomic traits than for FHB resistance-related traits. From the FHB resistance-related traits,
germination capacity had the highest and qFUSG the lowest estimates.

Variance components were estimated, and narrow-sense heritabilities based on the estimates were
computed. Agronomic traits showed higher heritability (0.45–0.56) compared to resistance-related
traits (0.04–0.19) (Table 3). Genotypic and phenotypic correlations were computed with pairwise
mixed models for each combination. As expected, germination capacity showed a negative genetic
correlation (−0.63 and −0.45) and Fusarium-infected kernels a positive genetic correlation (0.57 and
0.66) with DON content and qFUSG, respectively. Germination capacity and Fusarium-infected
kernels had a considerable negative correlation (−0.88). Genetic correlations between agronomic
traits and DON content were not prominent, except for plant height and qFUSG, which had a
notable negative correlation (−0.45). Phenotypic correlations were closer to zero, i.e., weaker, than the
genetic correlations.
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Table 3. Variance components with standard errors and narrow-sense heritabilities (h2) estimated with single-trait model for each trait. ADD equals to the additive
genetic variance and RES to the residual variance. Genotypic correlations with confidence interval in parenthesis are presented in the lower triangle. Phenotypic
correlations are printed in the upper triangle.

Variance Estimates Correlations

Trait ADD (SE) RES (SE) h2 DH PH MC GC FIK DON1 qFUSG 1

DH 1.78 (0.31) 1.11 (0.09) 0.62 0.33 0.61 −0.03 0.01 −0.06 −0.09
PH 30.4 (4.64) 13.2 (1.04) 0.70 0.50 (0.31, 0.68) 0.28 −0.03 −0.19 −0.15 −0.20
MC 0.32 (0.06) 0.13 (0.01) 0.71 0.75 (0.63, 0.87) 0.37 (0.17, 0.58) −0.16 NA 0.06 0.04
GC 21.3 (5.91) 47.9 (4.41) 0.31 −0.10 (−0.43, 0.23) −0.12 (−0.43, 0.18) −0.44 (−0.73, −0.15) −0.58 −0.44 −0.28
FIK 25.1 (8.57) 53.3 (6.29) 0.32 0.05 (−0.39, 0.29) −0.26 (−0.55, 0.03) NA −0.88 (−1, −0.66) 0.50 0.33

DON 1 0.04 (0.01) 0.16 (0.01) 0.21 0.06 (−0.25, 0.36) −0.12 (−0.41, 0.16) 0.15 (−0.15, 0.44) −0.63 (−0.90, −0.36) 0.57 (0.23, 0.90) 0.38
qFUSG 1 0.03 (0.01) 0.29 (0.02) 0.08 −0.03 (−0.50, 0.45) −0.45 (−0.84, −0.07) 0.11 (−0.32, 0.53) −0.45 (−0.90, 0.01) 0.66 (0.28, 1) 0.60 (0.28, 0.93)

1 log-transformed.
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3.4. Genome-wide Association Study

The number of PCs to correct for the population structure was tested prior to GWAS. According to
the BIC values for maturity class and germination capacity, the first PC should be added as a covariate.
For the remaining traits, the model without PC was the best. The scree plot of the percentage of
variation explained by each PC showed a level off after the sixth PC (data not shown). As a compromise,
three PCs were added as covariates for each trait, when the population structure was accounted for.

Four statistical models were computed in order to find marker–trait associations for FHB
resistance-related and agronomic traits (Table 4). Manhattan plot and quantile–quantile (q–q) plots for
each trait are presented in Supplementary 2, Figures S1–S11. The naïve model, which did not include
the K matrix or population structure, showed a substantial number of significant SNPs for all the traits
(Table 4). When the population structure was considered, agronomic traits still had a large amount
of associations, whereas resistance-related traits had less (three for germination capacity and 29 for
qFUSG18). Associations were significantly reduced when cryptic relatedness was added into the model
(only three for maturity class). With the QK model, no associations were detected. In the q–q plots, the
observed −log(p-values) should follow the distribution of the expected −log(p-values), and in the case
of significant association, a departure from the expected line at the highest values. Generally, q–q plots
showed a strong deviation from the expected distribution when the K matrix was not included in the
model. A high degree of relatedness may partly explain the large amounts of associations and the
strong deviation from the line in q–q plots. Considerable, significant associations were reported for
maturity class with the K model (Figure 4). Two out of three significant associations were significant
even based on the conservative Bonferroni correction. These two markers (M2425 unmapped and
M1103 on chromosome 10D) were highly correlated (r2 = 0.996), which indicates that they exist in the
same haplotype block. M2425 and M1103 accounted for 4% each of the phenotypic variability, and the
estimated allelic effect was −0.37 for both. The third association (M337) was significant with respect to
the FDR corrected p-values (α = 0.05) and was located on chromosome 4C. M337 had correlation of
0.57 with the other two markers. Variability explained by the SNP was 3% and the allelic effect size
was –0.29. These marker–trait associations were also significant with the published protocol used to
check the analysis.

Table 4. The number of significant associations for each model and for each trait. Significance level
was based on false-discovery-rate (FDR)-adjusted p-values (α = 0.10).

Trait Naive Q K QK

DH 553 253 0 0
PH 332 303 0 0
MC 1970 349 3 0
QC 1121 3 0 0
FIK 884 0 0 0

DON 1 310 0 0 0
DON17 956 0 0 0
DON18 0 0 0 0
qFUSG 1 0 0 0 0
qFUSG17 132 0 0 0
qFUSG18 534 29 0 0

1 log-transformed.

3.5. Prediction Model Validation

Prediction models were validated with two selected schemes, fivefold random cross-validation
and leave-one-out. Correlations between predicted and pseudo-phenotypes (CV) or per trial computed
BLUEs adjusted for fixed effects (LOO) are presented with boxplots in Figure 5. The accuracies varied
substantially between the traits. In the agronomic traits, the maturity class was constant with the
highest accuracy for both validation schemes, while plant height and days to heading had a lot of
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variability in CV, but less in LOO. From resistance-related traits, the highest accuracy in CV was
observed in germination capacity and the lowest in qFUSG. The mean of the CV results for each trait
was 0.62 (days to heading), 0.59 (plant height), 0.84 (maturity class), 0.59 (germination capacity), 0.47
(Fusarium-infected kernels), 0.31 (DON) and 0.11 (qFUSG); and accordingly, the mean of the LOO
results was 0.71 (days to heading), 0.75 (plant height), 0.90 (maturity class), 0.57 (germination capacity),
0.32 (Fusarium-infected kernels), 0.29 (DON) and −0.07 (qFUSG).
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represents the Bonferroni-corrected significance level. The X-axis describes the chromosome numbers
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Figure 5. The validation results for the two exploited schemes, random fivefold cross-validation
(red) and leave-one-out (blue). In CV, material was randomly divided into five folds and replicated
for 100 times. In LOO, each trial was assigned as a validation set one at a time. Therefore, LOO
boxplots include three to seven validation accuracies depending on the number of trials for each trait.
The median is the line in the middle of the boxplot and the box is the interquartile range. The whiskers
are 1.5 times the interquartile.

4. Discussion

F. graminearum infection causes considerable yield losses, lower germination capacity and
accumulated toxin levels in cereals. Many studies about FHB resistance concentrate upon wheat,
whereas oat studies are rare. The use of genomic information is crucially important for accelerating
breeding for improved resistance towards FHB. In this study, the data set generated in artificially
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inoculated disease nursery showed no significant associations in GWAS for resistance-related traits.
We found no major gene effects for DON or qFUSG to be used directly for breeding purposes; at least
the effects were not large enough to be detected with this dataset. Based on this information, the use of
genomic prediction might provide a better strategy to enhance resistance breeding by enabling the
enriching of small resistance alleles in the breeding material.

The within trial variation for resistance-related traits was substantial. The reported CV% (Table 2)
for DON content were on a similar level (CV% mean for DON 42.6%) than found in the study by Yan
et al. 2010 [29] (53.3%). The within trial variation makes the records more unreliable. Therefore, a
number of observations need to be collected for adequate precision. It may be speculated that because
oat has a good type 2 resistance [22,33], and the infection moves slowly from spikelet to spikelet, the
differences within a panicle or a row sample can be high in respect to DON accumulation and qFUSG
levels. This makes them difficult traits to correct with experimental designs based on variation within
the field. Even though the observations for DON content and qFUSG may seem unreliable, the ranking
of the check cultivars (not VIR lines), with known a level of resistance, was quite stable (Figure 1).
Oat is prone to late tillering, which may have affected the results for some lines. In other words, late
tillering may prolong the flowering period and extend the time period of the highest susceptibility,
which may have increased unwanted variability. In our study, the most susceptible check was an
adapted cultivar, and therefore, we might have missed a very susceptible check, which an unadapted
cultivar would maybe have presented [8]. As was seen in the referred study, the photoperiod sensitive
reaction might have increased susceptibility of the cultivars originating from the Mid-West. In addition,
Nordic material seemed to have mid-range resistance for FHB and DON compared to studied material
originating elsewhere. Lack of extreme phenotypes narrows genetic variance and may have lowered
our heritability estimates, which may have influenced low success in GWAS and low accuracy in
genomic prediction for the DON content and qFUSG. The most exotic lines in the study, VIR lines,
were not consistent in their DON content ranking (Figure 1). We speculate that the VIR lines might
have been influenced by photoperiodic responses. It was revealed in 2017, when the growing period
extended, and trials were exposed to very cool weather late in the season. These conditions could
explain differences between trial locations within the same year. Moreover, plausible heterogeneity
within a line could have caused some inconsistency in the results as well. Finally, the level of resistance
for the tested VIR-lines did not exceed the resistance of the best check cultivar, which is discussed in
Hautsalo et al. (under review) [122].

The estimated broad-sense heritabilities varied between trials. Somewhat, the differences were
explained by a lower FHB infection level. For example, germination capacity in Jok2015 had the
lowest heritability estimate and the highest germination rate compared to the other trials. The high
level of germination masked the differences between the lines. The heritability estimates per trial
were quite high compared to the across-trial computed estimates. This might be due to the low
repeatability of the traits in different years and genotype-by-environment interaction. The differences
in germination rate might be due to other issues affecting the germination rate more than the infection
level, when the germination rate was high in Jok2015, and therefore, lower the estimate across trials. The
narrow-sense heritability estimates for resistance-related traits were low (germination capacity = 0.18,
Fusarium-infected kernels = 0.19, DON = 0.12 and qFUSG = 0.04), which can partly be explained by
limited data. The genetic correlation between germination capacity and DON content was highly
negative (−0.63). A similar phenotypic correlation of the traits was observed in this study (−0.44), as in
Tekle et al. 2013 [23] (−0.412 to −0.711). In Norway, selecting for low DON content supplemented with
high germination capacity has been applied successfully over >10 years in the oat breeding [8].

A highly positive correlation was found between qFUSG and Fusarium-infected kernels (0.66),
which implies that, as they are both measuring the same type of resistance and are both laborious
methods of assessing the amount of fungus, only one of them may be needed. Overall, agronomic traits
had no prominent correlation with resistance-related traits, except for plant height and qFUSG (−0.45).
In the study by Bjørnstad et al. 2017 [8], a negative correlation between FHB (visual symptoms) and



Agronomy 2020, 10, 174 16 of 23

plant height was detected, and it was speculated that taller plants may escape some of the infection
pressure [7,8,44,48], which is common for wheat. In our study, DON content had a slight negative
correlation with plant height and a positive correlation with maturity, which would mean that taller
and earlier lines are more resistant toward DON accumulation. These results are in line with previous
studies [7,50,51], but not with all [8,48]. Especially, correlation between DON content and maturity
are controversial between Finland and Norway. This may be due to the different plant genotypes
used in the studies or due to climatic conditions favoring early maturing lines in Finland. In spawn
inoculation nursery, early maturing lines are exposed to the infection for a longer time, since inoculant
is spread before any of the early maturing lines were flowering. Depending on a year and how much
difference there is in the heading of the early and late lines, early lines have more contact to the
inoculate. In Finnish growing conditions, however, early and late plant lines may differ very little in
their heading date.

Population structure is an important factor in genome-wide association studies, as it can cause
false associations between traits and markers [73]. Low stratification was discovered in the studied
data set. The first PC did separate the early and late maturing plant lines, but the percentages of
variation explained by the first two PCs were rather low (9.8% and 5.3%). The percentages are very
close to the results from a previous study in oat (8.9% and 5.5%) [8], where the material consisted of
oats from multiple breeding programs. Other studies on population structure in oat have found the
same level of variation within the first PCs as well [84,99,123]. In our study, most studied lines were
breeding lines from a breeding program, supplemented with a few accessions from the gene bank
and other breeding programs. Other published studies contained material from multiple breeding
programs, but the level of the variation explained is relatively similar. Generally, there seems to be
weak population differentiation within the oat germplasm.

GWAS with mixed linear models showed no significant associations for resistance-related traits,
when relationships between tested lines were considered. Based on q–q plots from different models
(Supplementary 2), when correcting for relatedness instead of population structure, the distribution
of observed −log (p-values) resembled more the distribution of predicted values. Correcting only
for population structure seems to be insufficient in our material, and therefore seems to produce
an overestimation of associations. On the contrary, correcting with both population structure and
relatedness led to underestimation in some cases (e.g., qFUSG), but mostly no obvious change
compared to correcting with only kinship. It is possible that our data was not quite adequate for finding
significant associations in resistance-related traits which are difficult to measure, and more data need
to be generated. In Bjørnstad et al. (2017) [8]. GWAS on oat FHB resistance traits and associations were
detected for DON content and visual FHB. A significant and common marker (GMI_ES17_C3969_600)
was not close to significance in our material. In their study, tested germplasm contained lines with
high susceptibility, which we may have lacked. He et al. (2013) [48] conducted a QTL study on DON
and visual FHB for two mapping population. They found a QTL from chromosome 17A/7C, which
explained 12.2%–26.6% of the phenotypic variation. In our study, there is a small indication of a
peak in the same chromosome for DON, but more clearly for qFUSG, but both are highly speculative.
As the correspondence between the chromosomes and map locations is uncertain, and the QTL study
was done for two biparental populations, we can only speculate the results. QTLs for DON were
as well discovered from chromosomes 5C, 9D, 13A, 14D and unknown_3 in their study. For DON,
detected in 2017, there is indication of associations for 5C and 9D, even for the QK model in our study.
If a more liberal threshold for significance is chosen (e.g., arbitrary threshold of −log (p-values) = 3),
then putative associations can be seen for DON in 3C (DON 2018), 5C (DON 2017), 9D (DON 2017) and
for unmapped (DON 2017, DON 2018) markers (indicated as chromosome 22), and for qFUSG 2018
in 2C, 19A and unmapped markers. For Fusarium-infected kernels and germination capacity, there
are more distinct indications of associations in chromosome 9D for Fusarium-infected kernels and in
chromosomes 8A and 19A for germination capacity. These putative associations should be treated
with caution and studied further.
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Genomic prediction was applied for both resistance-related and agronomic traits. Cross-validation
results for DON content (CV = 0.31 and LOO = 0.29) and Fusarium-infected kernels (CV = 0.47 and
LOO = 0.32) are lower than those found in wheat breeding population studies (DON 0.6–0.7 and
Fusarium-infected kernels 0.8–0.9) with respectively similar training population size [94]. Most of the
genomic selection studies done in wheat measure a visual score of FHB [95,124–126], which has proven
to be an unreliable measure in oat [8,48,127]. Cross-validated accuracy for germination capacity was
the highest among resistance-related traits and presents a potential trait for selecting FHB resistance. As
more data is generated and genetic covariances between traits become more accurate, the possibility of
using multi-trait or trait-assisted models [128,129], in order to improve the prediction of DON content
and qFUSG, should be assessed. Even before the multi-trait prediction approach, use of the disease
index should be explored. In wheat, FHB resistance-related traits have been combined successfully
with an index [96].

In this study, the analysis was carried out using mostly breeding lines adapted to Nordic climatic
and photoperiodic conditions. Bjørnstad et al. 2017 [8] had more diverse material in their study
and speculated that photoperiodic sensitivity may have affected the susceptibility of unadapted lines
originating from the Midwest. It may be that the variation within our trials was not adequate for the
detection of significant associations between SNPs and resistance traits, but at least we discovered
that differences in FHB resistance exist and a moderate level of resistance does occur within the
studied material. Bjørnstad et al. 2017 [8] as well claimed that Nordic and Canadian originated lines
have accumulated resistance, due to higher disease occurrence in the growing area, compared to US
originated lines. We are positive that variation within the breeding material is adequate for resistance
breeding, and with more data accumulating, GS can be used effectively to enrich resistance alleles
within the breeding population. The breeding approach enhanced by genomics is a key to overcome
the FHB susceptibility, and lead to accelerated resistance breeding in oat.
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