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Highlights
� Meta-analysis of 42 studies (>1 million participants) to assess

the role of rs641738C>T near MBOAT7 in NAFLD.

� rs641738C>T positively associated with liver fat, ALT, fibrosis
and HCC.

� rs641738C>T negatively associated with serum triglycerides.

� Consistent associations found in studies of Caucasian pop-
ulations only.
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Lay summary
Fatty liver disease is a common condition
where fat builds up in the liver, which can
cause liver inflammation and scarring
(including ‘cirrhosis’). It is closely linked to
obesity and diabetes, but some genes are
also thought to be important. We did this
study to see whether one specific change
(‘variant’) in one gene (‘MBOAT7’) was
linked to fatty liver disease. We took data
from over 40 published studies and found
that this variant near MBOAT7 is linked to
more severe fatty liver disease. This means
that drugs designed to work on MBOAT7
could be useful for treating fatty liver
disease.
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Background & Aims: A common genetic variant near MBOAT7 Introduction

(rs641738C>T) has been previously associated with hepatic fat
and advanced histology in NAFLD; however, these findings have
not been consistently replicated in the literature. We aimed to
establish whether rs641738C>T is a risk factor across the spec-
trum of NAFLD and to characterise its role in the regulation of
related metabolic phenotypes through a meta-analysis.
Methods: We performed a meta-analysis of studies with data on
the association between rs641738C>T genotype and liver fat,
NAFLD histology, and serum alanine aminotransferase (ALT),
lipids or insulin. These included directly genotyped studies and
population-level data from genome-wide association studies
(GWAS). We performed a random effects meta-analysis using
recessive, additive and dominant genetic models.
Results: Data from 1,066,175 participants (9,688 with liver bi-
opsies) across 42 studies were included in the meta-analysis.
rs641738C>T was associated with higher liver fat on CT/MRI
(+0.03 standard deviations [95% CI 0.02–0.05], pz = 4.8×10–5)
and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05–1.3],
pz = 0.003) in Caucasian adults. The variant was also positively
associated with presence of advanced fibrosis (OR 1.22 [95% CI
1.03–1.45], pz = 0.021) in Caucasian adults using a recessive
model of inheritance (CC + CT vs. TT). Meta-analysis of data from
previous GWAS found the variant to be associated with higher
ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10–4).
rs641738C>T was not associated with fasting insulin and no
effect was observed in children with NAFLD.
Conclusions: Our study validates rs641738C>T near MBOAT7 as a
risk factor for the presence and severity of NAFLD in individuals
of European descent.
Lay summary: Fatty liver disease is a common condition where
fat builds up in the liver, which can cause liver inflammation and
scarring (including ‘cirrhosis’). It is closely linked to obesity and
diabetes, but some genes are also thought to be important. We
did this study to see whether one specific change (‘variant’) in
one gene (‘MBOAT7’) was linked to fatty liver disease. We took
data from over 40 published studies and found that this variant
near MBOAT7 is linked to more severe fatty liver disease. This
means that drugs designed to work on MBOAT7 could be useful
for treating fatty liver disease.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Journal of Hepatology
Since the first genome-wide association study (GWAS) of liver
fat,1 >20 genetic single nucleotide variants (SNVs) have been
associated with NAFLD.2 These studies have deepened our un-
derstanding of the condition, its heritability and its relationship
with cardiometabolic disease.

rs641738C>T nearmembrane-boundO-acyltransferase domain-
containing 7 (MBOAT7) was initially identified as a genome-wide
significant risk variant for alcohol-related cirrhosis [odds ratio
(OR) = 1.35, p = 1.03×10–9],3 although this was not replicated in a
more recent analysis.4 It has since been implicated in the patho-
genesis of NAFLD,5 HCC,6 as well as in fibrosis development in
chronic HBV and HCV,7,8 and primary sclerosing cholangitis.9

However, unlike variants in patatin-like phospholipase domain
containing protein 3 (PNPLA3), transmembrane 6 superfamily
member 2 (TM6SF2), and 17b-hydroxysteroid dehydrogenase type
13 (HSD17B13), it was not identified to have genome-wide signifi-
cance for liver fat or serum alanine aminotransferase (ALT).1,10,11

Rs641738 is located a few hundred base pairs downstream of
the 30-untranslated region of MBOAT7, which belongs to a family
of genes that encode specific acyl donors and acceptors.12

MBOAT7 encodes lysophosphatidylinositol acyltransferase 1
(LPIAT1), which contributes to the regulation of free arachidonic
acid in cells.13,14 Rs641738C>T is associated with lower hepatic
expression of MBOAT7 at both the mRNA15 and protein levels.5

Given its role in inflammatory lipid pathways, most mecha-
nistic work relating to rs641738 has focussed on MBOAT7.16

In NAFLD, the rs641738C>T variant was first demonstrated to
be associated with increased hepatic fat content and severity of
fibrosis in individuals of European descent.5 Proton magnetic
resonance spectroscopy data from 2,736 individuals showed a
modest increase in hepatic fat in those with the TT-genotype
(4.1%) compared with those with the CT- (3.6%) or CC-genotype
(3.5%, p = 0.005). Follow-up studies of European subjects
corroborated the initial findings, and suggested a role in devel-
opment of HCC.17,18 However, these results were not replicated in
adults of other ancestries5,19–21 or in children.22

In addition, bi-allelic loss-of-function mutations in MBOAT7
cause autosomal recessive mental retardation 57 (Online Men-
delian Inheritance in Man #617188) and no liver phenotype has
been reported in these patients to date.14,23 However, rare likely
pathogenic (coding) variants in MBOAT7 are associated with HCC
in NAFLD.24
2021 vol. 74 j 20–30 21
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In summary, the association between rs641738C>T and he-
patic fat content, as well as its effects on severity of NAFLD,
remain unclear. Moreover, the broader metabolic effects of this
SNV, including its association with markers of insulin resistance
and dyslipidaemia, have not been assessed. Understanding the
broader metabolic effects of rs641738C>T is important if MBOAT7
were to be investigated as a drug target in NAFLD.

Here, we conducted a large meta-analysis to determine
whether rs641738C>T influences the development or stage of
NAFLD and related traits.

Methods
Data sources and study selection
Two data sources were included in the meta-analysis: (i) studies
that looked at the effect of the variant on traits of interest by
genotyping the variant; and (ii) look-up from GWAS of traits of
interest.

Studies were sourced through Medline, Embase, HuGe Navi-
gator, Web of Science, bioRxiv and medRxiv. The search terms
used were: ‘(MBOAT7 or membrane-bound-o-acyltransferase) or
(rs641738 or rs626283) or (TMC4)’. In addition, HuGe Navigator
Phenopedia was searched using terms related to liver disease
(see Supplementary Methods). There were no restrictions on
either date or language. The search was completed on July 28,
2020. Reference lists of publications were also reviewed.

A separate search was conducted for all potentially relevant
GWAS through GWAS Catalogue,25 Phenoscanner,26 Type 2 dia-
betes knowledge portal27 and Cardiovascular disease knowledge
portal28 (see Supplementary Methods).

After removal of duplicates, titles and abstracts were screened
for eligibility independently by 2 authors (investigators), with
inclusion/exclusion criteria applied to potentially eligible full
texts.

HuGENet guidelines29 were followed throughout and MOOSE
reporting guidelines30 were used. This study was prospectively
registered on the PROSPERO Database of Systematic Reviews
(CRD42018105507; www.crd.york.ac.uk/PROSPERO/display_rec
ord.php?ID=CRD42018105507).

Inclusion and exclusion criteria
Studies were included if genotyping of rs641738C>T [or
rs626283G>C (R2 >0.98 in European and American pop-
ulations31)/rs2576452C>T (R2 = 0.92 in Guzman et al.32), which
are in strong linkage disequilibrium with rs641738C>T] was
conducted and data on one of the outcomes of interest were
reported. Narrative review articles, in vitro studies and in-
vestigations involving animals, fish and invertebrates were
excluded. Studies that investigated liver disease of other aetiol-
ogies were also excluded. There was no restriction on ethnicity
or ancestry. The types of study eligible for inclusion were case-
control, cohort, GWAS, systematic reviews and meta-analyses.
Preprint and abstract publications were not eligible for inclu-
sion. Several studies reported on the same cohort (or patient
sample) in more than 1 article. In these instances, data only from
the larger of the overlapping cohorts were included in analyses.
A full list of overlapping cohorts and articles is provided in
Table S1.

Data collection
Details of the recruitment of controls and cases were obtained
from each study and, where necessary, clarified by discussion
22 Journal of Hepatology
with the authors of the study. In particular, it was noted when
cases and controls were not recruited from the same population
or clinics.

Hepatic steatosis or NAFLD (as diagnosis) was evaluated as a
dichotomous variable where radiological (liver ultrasound,
controlled attenuation parameter [CAP, with cut-off >248 dB/m],
CT, MRI, or histological assessment were used. Hepatic fat con-
tent was collected as a continuous variable from CT, magnetic
resonance spectroscopy (MRS), MRI, and proton density fat
fraction (PDFF). Non-invasive assessment of hepatic fat content
was also assessed using semiquantitative scoring in the Fenland
cohort, as previously described,33 and using CAP.

Individual participant-level histology data were extracted
according to the NASH Clinical Research Network scoring sys-
tem34 and, where not otherwise diagnosed by a pathologist’s
assessment, NASH was defined using the Fatty Liver Inhibition of
Progression algorithm.35 The above data were collected for each
genotype separately (CC, CT, and TT).

Participant demographics and characteristics meta-data were
collected from each study, including sex, age, ethnicity, presence
of type 2 diabetes mellitus (T2DM), and body mass index (BMI).
Where possible, individual patient-level data were obtained.

The authors of 59 studies were contacted for additional data
or clarification, of whom 49 replied. Data from 11 potentially
relevant studies could not be included, which are listed in the
Supplementary Methods.

Additional details regarding cohorts with genome-wide data,
the Avon Longitudinal Study of Parents and Children
(ALSPAC)36–38 data extracted from the UK BioBank (UKBB),
quality assessment and statistical analysis are found in the
Supplementary Methods.

Results
Database searches identified 1,167 articles (Fig. S1), of which 44
articles were included: 42 primary studies (Tables S2–S4), 1
systematic review, and 1 meta-analysis (Table S5).

In total, 1,066,175 individuals (5,711 children) were included
in the meta-analysis. Most studies were in adults (32/42, 76%)
and in individuals from predominantly Caucasian populations
(26/42, 62%). Of the 42 studies included, 14 (9,688 participants,
including 584 children) reported data on liver histology.

Studies were generally of high quality, although, in 5
studies11,22,39–41 (4 in adults and 1 in children), the control group
was recruited from a different population or sample to the cases
(Table S3).

One previous meta-analysis was included,42 which used data
from 5 case-control studies to assess the effect of rs641738C>T on
the diagnosis of NAFLD. The meta-analysis included 2,560 cases
and 8,738 controls and found no evidence of an association be-
tween this variant and a diagnosis of NAFLD (Table S5). One
previous systematic review43 found positive associations be-
tween rs641738C>T in adults of Caucasian, Hispanic, and Black
descent, with limited data in children (Table S5).

Liver fat, NAFLD and severe steatosis in adults
Seven studies (29,679 participants) reported data on hepatic fat
as a continuous variable assayed by CT or MRI. On meta-analysis,
rs641738C>T was associated with higher liver fat in studies in
Caucasian populations using an additive model of inheritance,
with a per T-allele change of b 0.034 (95% CI 0.018–0.051),
pz = 4.8x10–5) standard deviations in inverse-normalised liver fat
2021 vol. 74 j 20–30
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Fig. 1. The effect of rs641738C>T on liver fat. Data from 29,679916 individuals with CT, MRI or MRS liver fat. rs641738C>T was positively associated with liver fat
in Caucasian populations (using an additive model of inheritance), where data represent SD change in normalised liver fat per T-allele. Meta-analysis was
performed using random effects with DerSimonian-Laird method for estimation of tau2. Additional references are available in the Supplementary Data. MRS,
magnetic resonance spectroscopy; UKBB, UK BioBank.
(Fig. 1), whereas no consistent effect was observed in non-
Caucasian populations. A similar trend was observed using a
dominant model of inheritance in studies of Caucasian pop-
ulations: mean difference in hepatic fat +0.18% (95% CI 0.2–0.34;
pz = 0.04; Table S6).

Given the difference in sensitivity and specificity of modalities
used to assess liver fat, a subanalysis by modality of imaging was
performed. No significant differences were observed between
studies using CT, MRI, or MRS for quantification of liver fat
(Fig. S2).

A similar trend was observed using CAP and semiquantitative
ultrasound to assess steatosis severity in 12,224 adults (b 0.02
[95% CI -0.002–0.04], pz = 0.08; Fig. S3).

Data from a range of diverse modalities were used to assess
the effect of this variant on the diagnosis of NAFLD, to reflect
real-world diagnostic practice. rs641738C>T was associated
with NAFLD as a trait (OR 1.15 [95% CI 1.05–1.26], pz = 0.002)
using a recessive model of inheritance (Fig. 2) but not using
additive or dominant models (Table S7). The effect was only
observed in studies of Caucasian populations (OR 1.17 [95% CI
1.05–1.3], pz = 0.003). Subgroup analysis by modality of diag-
nosis found that the 95% CIs for all modalities overlapped,
except for MRI-PDFF, which had only 1 study (Fig. S4). The
association remained after excluding 4 studies in which there
was a lack of similarity between cases and controls (OR 1.19
[95% CI 1.07–1.33], pz = 0.0017) using a recessive model of
inheritance.

However, Egger’s test suggested evidence of study distribu-
tion (publication) bias (p = 0.013) and when using the Trim and
Fill method to account for this bias, the positive association
remained but was attenuated (OR 1.11 [95% CI 1.01–1.23],
pz = 0.037; Fig. S5).

In patients with NAFLD, data from 8 studies (6,206 partic-
ipants) showed that rs641738C>T was not significantly asso-
ciated with the presence of severe steatosis (S1-S2 vs. S3) on
Journal of Hepatology
liver biopsy (OR 1.08 [95% CI 0.78–1.5], pz = 0.64; Table 1 and
Fig. S6).

Histological NASH in adults
Data from 9 studies (7,719 participants) found that rs641738C>T
was not associated with the presence of NASH on biopsy in
adults (OR 1.24 [95% 0.96–1.36], pz = 0.128; Fig. S7).

Fibrosis in adults
Liver biopsy data on the presence of advanced fibrosis were
available from 8 studies (7,692 adults). Our primary outcome,
presence of advanced fibrosis in adults (stage F0–F2 vs. stage F3–
F4), showed a borderline positive association with rs641738C>T
in Caucasian populations (OR 1.22 [95% 1.03–1.45], pz = 0.021;
Fig. 3). In addition, 2 studies used International Statistical Clas-
sification of Diseases and Related Health Problems (ICD) codes in
the UKBB cohort to identify individuals with NAFLD and
advanced fibrosis or cirrhosis.44,45 Both found positive associa-
tions below genome-wide significance: for example, using an
additive model of inheritance, Emdin et al. found the association
between rs641738C>T and cirrhosis as b 1.22 (SE 0.06, p = 0.03),
using an additive genetic model.44

Data from 9 studies (8,389 participants) found that the
presence of any fibrosis (F0 vs. F1–F4) was also borderline
positively associated with rs641738C>T overall (OR 1.27 [95%
1.04–1.54], pz = 0.018) as well as in non-Caucasian populations as
a subgroup (Fig. S8).

Development of HCC
Four cohorts (2,328 participants, 228 cases of NAFLD-HCC) re-
ported on the development of HCC in patients with NAFLD.
rs641738C>T was associated with increased odds of HCC in
NAFLD only when using a dominant model (CC vs. CT + TT) of
inheritance (OR 1.64 [95% CI 1.18–2.27], pz = 0.003, Fig. 4).
2021 vol. 74 j 20–30 23
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Fig. 2. rs641738C>T is associated with higher odds of diagnosis of NAFLD. Data from 52,17333,263 adults (11,3019,713 cases and 40,87223,550 controls) with
radiologically or histologically defined steatosis for presence vs. absence of NAFLD using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis was
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Biopsy Cohort; OR, odds ratio.

Table 1. Summary of results in adults from meta-analyses for dichotomous outcomes.

Outcome Genetic model Subanalysis No. of studies

Heterogeneity Effect summary

I2 pQ OR (95% CI) pZ
NAFLD diagnosis (control vs. NAFLD) Recessive Overall 17 0.25 0.17 1.15 (1.05–1.26) 0.0018

Non-Caucasian 5 0 0.46 1.1 (0.9–1.34) 0.343
Caucasian 12 0.38 0.09 1.17 (1.05–1.3) 0.0033

Severe steatosis (S1–S2 vs. S3) Recessive Overall 8 0.67 0 1.08 (0.78–1.5) 0.642
Non-Caucasian 1 NA NA 1.11 (0.39–3.16) 0.852
Caucasian 7 0.72 0 1.08 (0.76–1.54) 0.676

NASH (NAFL vs. NASH) Recessive Overall 9 0.33 0.15 1.14 (0.96–1.36) 0.128
Non-Caucasian 3 0 0.58 1.24 (0.81–1.9) 0.324
Caucasian 6 0.53 0.06 1.14 (0.93–1.41) 0.213

Any fibrosis (F0 vs. F1–F4) Recessive Overall 9 0.52 0.03 1.27 (1.04–1.54) 0.0183
Non-Caucasian 2 0 0.82 2.14 (1.2–3.84) 0.0105
Caucasian 7 0.51 0.06 1.19 (0.99–1.45) 0.068

Advanced fibrosis (F0–F2 vs. F3–F4) Recessive Overall 8 0 0.65 1.2 (1.02–1.42) 0.027
Non-Caucasian 2 0 0.64 0.96 (0.5–1.85) 0.911
Caucasian 6 0 0.5 1.22 (1.03–1.45) 0.0206

HCC (NAFLD-HCC vs. NAFLD no-HCC) Recessive Overall 4 0 0.95 1.4 (0.99–1.98) 0.056

Meta-analyses were performed using random effects with subgroup analysis for Caucasian and non-Caucasian populations. Additive, recessive and dominant genetic models
were tested for all outcomes. Results using a recessive model of inheritance (CC + CT vs. TT) are shown for all outcomes. Given the use of 3 genetic models, the critical p value
for effect summary is pz <0.017. Full results (with all genetic models) are in Table S5. Meta-analyses were performed using random effects with DerSimonian-Laird method for
estimation of tau2. OR, odds ratio.

Research Article NAFLD and Alcohol-Related Liver Diseases
Effect on alanine aminotransferase
Data from GWAS using log-transformed ALT (609,794 partici-
pants) were available for meta-analysis to investigate the effect
of rs641738C>T on ALT. The variant showed a positive association
with ALT (b 0.004 [95% CI 0.002–0.007], pz = 0.002), which was
observed in Caucasian populations but not in non-Caucasian
populations on subanalysis (Fig. 5; Table S7).
24 Journal of Hepatology
Additionally, in the UKBB cohort, rs641738C>T was associated
with a small, but statistically significant (p = 2.0×10–8) increase in
untransformed ALT: 0.18 IU/L higher ALT per T-allele in this
variant (Table S8).

In the remaining cohort and case-control studies included in
the meta-analysis (15,208 adults), rs641738C>T was not found to
be significantly associated with a change in ALT; for example, the
2021 vol. 74 j 20–30
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mean difference using a recessive model (CC + CT vs. TT)
was +0.32 IU/L ([95% CI -0.06–0.7], pz = 0.08; Table S9) in
Caucasian populations.

Effect on serum lipids and insulin
Data from GWAS using log-transformed serum triglycerides
(850,241 participants) found that rs641738C>T was associated
with lower triglycerides (b -0.01 [95% CI -0.018, -0.006],
pz = 1.5×10–4), which was observed in Caucasian populations
but not in non-Caucasian populations on subanalysis (Fig. S9).
Similar findings were obtained from a meta-analysis of cohort
and case-control studies, particularly when using an additive
model (b -0.03 [95% CI -0.05, -0.01], pz = 0.00091; Table S9).

Data from GWAS (852,409 participants) found rs641738C>T to
be positively associated with total cholesterol in Caucasian
populations (b 0.007 [95% CI 0.003–0.01], pz = 2.1×10–4), which
was not observed in non-Caucasian populations (Fig. S10). A
borderline positive association was also observed between
rs641738C>T and HDL cholesterol (b 0.009 [95% CI 0.001–0.02],
pz = 0.02; Table S7). There was no effect on fasting insulin levels
found in population-level GWAS (b 0.009 [95% CI -0.03–0.04],
pz = 0.64; Table S7). However, a negative association was
observed using data from cohort and case-control studies with a
dominant genetic model (mean difference -1.4 pmol/L [95% CI
-2.1, -0.65], pz = 0.004; Table S9).
Journal of Hepatology
Effect of rs641738C>T on paediatric NAFLD
Data from 10 studies (5,711 children) were used in the meta-
analysis. rs641738C>T was not significantly associated with the
diagnosis of NAFLD, liver fat content, stage of liver histology, or
serum biochemistry in children (Table S10).

Meta-regression shows interaction between rs641738C>T and
type 2 diabetes mellitus
Finally, we aimed to determine using meta-regression whether
baseline participant characteristics influenced the association of
rs641738C>T with histological outcomes. There was a negative
association with the presence of T2DM and effect size for NASH
vs. NAFL (b -1.8 [SE 0.65], p = 0.006; Fig. S11A). A similar negative
trend with T2DM was observed for severe steatosis (S1–S2 vs. S3,
b -2.6 [SE 1.5], p = 0.08) and presence of fibrosis (F0 vs. F1-4,
b -1.5 [SE 0.8], p = 0.06; Table S11). In addition, the effect size
for any fibrosis was greater in cohorts with an older mean age
(b 0.05 [SE 0.02], p = 0.014; Fig. S11D).

Discussion
Identification of genetic variants associated with NAFLD has the
potential to inform preclinical research and our understanding
of hepatic metabolism. In this meta-analysis, we validated
rs641738C>T nearMBOAT7 as a risk factor for the full spectrum of
NAFLD in Caucasian adults.
2021 vol. 74 j 20–30 25
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A 2-stage GWAS initially identified rs641738C>T as a genome-
wide significant locus for alcohol-related cirrhosis.3 MBOAT7 was
a potentially interesting target as an enzyme involved in (phos-
pho)lipid metabolism, conceptually similar to other SNVs at
GWAS significance in alcoholic and non-alcoholic liver disease,
namely TM6SF2 and PNPLA3. Later studies found the variant to
influence the full spectrum of fatty liver disease, from steatosis to
NASH, to fibrosis, cirrhosis, and HCC.5,17 However, these
associations have not been consistently replicated in the litera-
ture.19 We conducted a meta-analysis to firmly establish the
association of rs641738C>T with the presence and severity of
NAFLD and associated metabolic traits.

Main findings
We found that rs641738C>T was associated with higher liver fat
content, higher ALT, and with higher odds of NAFLD diagnosis,
fibrosis, and HCC, particularly in Caucasian adults and in the
homozygous ‘TT’ genotype. The effect sizes of rs641738C>T re-
ported here are small compared with those of PNPLA3 p.I148M
and TM6SF2 p.E167K, the 2 strongest steatogenic variants.46

Also, the magnitude of change in ALT is small relative to that
associated with variants in PNPLA3, HSD17B13, mitochondrial
amidoxime reducing component 1 (MTARC1), and
TM6SF2. This might account for the absence of this variant (or
others near MBOAT7) from GWAS for NAFLD in the general
population.1,10,11,45,47 The effect size (and associated p value) was
too small to be identified as significant genome-wide. The
marginal positive effect on hepatic triglyceride content suggests
that this variant acts through alterations in the composition as
well as quantity of hepatic lipid.17 This is consistent with pre-
clinical data on lipotoxicity, where the composition of hepatic
fats influences the development of NASH. By contrast, a recent
Mendelian randomisation study using these variables as
26 Journal of Hepatology
instruments to assess causality of fatty liver in determining
fibrosis showed that the effect of steatosis highly correlates with
fibrosis in all the genetic variables, indicating that quantity of
lipid rather than quality might be more important.48 Functional
studies are needed to understand the relationship between
quality/quantity of fat and hepatotoxic/-protective mechanisms
in causing progression of disease.

The function of this variant is still relatively poorly under-
stood and there is conflicting evidence as to whether
rs641738C>T is associated with changes in the hepatic expres-
sion of MBOAT7. Results from the GTEx Consortium showed a
strong negative association with T-allele,15 which is supported by
data from Schadt et al.49 MBOAT7 protein expression correlated
with mRNA in liver biopsies fromMancina et al.,5 but this finding
was not replicated by Sookoian et al.19 MBOAT7 encodes LPIAT1, a
6-transmembrane domain protein involved in acyl-chain
remodelling of membranes that influence intracellular mem-
brane composition and circulating phosphatidylinositols.50

Furthermore, recent metabolite profiling data implicated
MBOAT7 as the causal gene for this SNV.51 Moreover, trans-
membrane channel-like 4 (TMC4) was found to have a low
expression in the liver,5 which is consistent with no mechanistic
data supporting its role in NAFLD.

The hypothesis thatMBOAT7 is the causal gene underlying the
association with liver disease at the locus is supported by the
observation that mice deficient for MBOAT7 have altered hepatic
concentrations of polyunsaturated phosphatidylinositol.50 Simi-
larly, metabolite data from humans are strongly suggestive that
rs641738C>T reduces MBOAT7 function.52 In addition, 2 inde-
pendent groups found that loss of MBOAT7 (but not TMC4) in-
creases the severity of NAFLD in mice fed a high-fat diet.53,54

These analyses suggest that rs641738C>T impacts the severity
of NAFLD through a recessive model of inheritance, although
2021 vol. 74 j 20–30



some analyses using an additive genetic model were suggestive
of a role (e.g. for liver fat and ALT). Other genetic variants are
known to impact all-cause mortality in a recessive manner,
notably variants that perturb homeostatic iron regulator protein
(HFE).44 Further mechanistic work is required to understand the
extent to which the haplo-insufficient state affects hepatocyte
function.

We found no evidence of an effect of rs641738C>T on insulin
resistance (the key driver of hepatic steatosis) as determined by
unaltered fasting insulin concentrations. GWAS meta-analyses of
T2DM have implicated p.I148M in PNPLA3 and p.E167K in
TM6SF2 as significant risk loci (albeit with very modest effect
sizes compared with their effects on liver disease)55 and Men-
delian randomisation studies indicate a causal role in deter-
mining insulin resistance mediated by the degree of liver
damage.48,56 Similarly, these 2 variants are associated with
reduced risk of coronary artery disease; although our analysis
did find lower serum triglycerides to be associated with this
variant, it has not been associated with lower rates of cardio-
vascular disease.57 However, we did observe a negative associa-
tion between effect size and prevalence of diabetes on
meta-regression, suggesting that this variant has the greatest
effect in less insulin-resistant individuals.

A strength of this meta-analysis is the large number of in-
dividuals with liver biopsy-derived phenotypic data as well as
the use of population-based GWAS data. The larger number of
included studies and participants is likely to account for the
different conclusions reached in this study compared with the
previous meta-analysis by Xia et al.42

Limitations and quality of evidence
An important practical consideration is the population frequency
of this variant in different ethnicities. The mean allelic frequency
of the effect (T) allele is highly variable: from 0.24 in East Asians
compared with 0.53 in those of South Asian ancestry.58 More-
over, the majority of studies included in this meta-analysis used
self-reported ethnicity, rather than genetic ancestry.

Although this analysis did include data from individuals of
multiple ethnicities (and genetic ancestries), we only found ev-
idence of an effect of this variant in Caucasian individuals. This is
consistent with the initial discovery and it is likely that
rs641738C>T is a proxy for the true causal variant. However,
because of differences in patterns of linkage disequilibrium, we
cannot exclude the possibility that a different nearby locus is
associated with liver-related phenotypes in individuals of other
genetic ancestries.

A limitation of using meta-analysis for a single variant is the
lack of adjustment for population stratification. When further
genome-wide data are available, a formal GWAS meta-analysis
might be able to address this. We found significant differences
between adult and paediatric histological analyses. Although
there were fewer clinical events (e.g. with advanced fibrosis) in
children, the analyses did not show a trend congruous with those
in adults. Paediatric NAFLD has a different histological phenotype
to that of adults (with prominent periportal inflammation) and,
therefore, it is plausible that this is a true lack of association in
children with NAFLD.

Data from multiple diagnostic or imaging modalities were
combined in several analyses. Although we observed minimal
heterogeneity between modalities, these techniques have
differing accuracy for the diagnosis of steatosis, which has the
Journal of Hepatology
potential to affect results. The subgroup analysis of hepatic fat by
modality suggested a marginally greater effect size in studies
using MRS, which is regarded as a highly sensitive technique.
There is potential that, through the inclusion of other modalities
(e.g. CT), we have underestimated the effect size associated with
this variant.

The magnitude of effect observed across all associations was
small compared with other well-established variants. The clin-
ical relevance of rs738409C>G in PNPLA3 has been validated with
hard end-points,59 but large cohorts will be required to pro-
spectively demonstrate the clinical risk associated with this
variant near MBOAT7.

Although there was minimal heterogeneity across included
studies, there was evidence of publication bias, but the effect on
diagnosis of NAFLD appeared to persist after attempting to ac-
count for this. Also of note, the numbers of individuals with
NAFLD and HCC were comparatively low, limiting the power to
assess for an association of this variant with non-cirrhotic HCC,
as has been previously reported.6 The HCC analysis was also
unique in only demonstrating an effect in the dominant, rather
than recessive, model of inheritance. Further work in this area
might improve the accuracy of effect estimates.

Conclusions
rs641738C>T near MBOAT7 is positively associated with liver fat,
ALT and histological severity in Caucasian adults with NAFLD, but
negatively associated with serum triglycerides and with rela-
tively small effect sizes throughout. These data validate this locus
as significant in the pathogenesis of NAFLD.
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