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Plasmodesmata are small channels that connect plant cells. While recent technological advances have facilitated analysis of the
ultrastructure of these channels, there are limitations to efficiently addressing their presence over an entire cellular interface.
Here, we highlight the value of serial block electron microscopy for this purpose. We developed a computational pipeline to
study plasmodesmata distributions and detect the presence/absence of plasmodesmata clusters, or pit fields, at the phloem
unloading interfaces of Arabidopsis (Arabidopsis thaliana) roots. Pit fields were visualized and quantified. As the wall
environment of plasmodesmata is highly specialized, we also designed a tool to extract the thickness of the extracellular
matrix at and outside of plasmodesmata positions. We detected and quantified clear wall thinning around plasmodesmata
with differences between genotypes, including the recently published plm-2 sphingolipid mutant. Our tools open avenues for
quantitative approaches in the analysis of symplastic trafficking.

The cellular units of complex organisms have an in-
trinsic need for communication. In plants, effective sig-
nal exchange is enabled by plasmodesmata (PD), small
channels connecting neighboring plant cells (for review,
see Nicolas et al., 2017a). While research has largely fo-
cused on the structure and biological regulation of the
aperture of the PD, recent insights point to the impor-
tance of PD spatial arrangements and their cell wall en-
vironments for the flow of materials through them
(Deinum et al., 2019). Novel methods to get compre-
hensive information on PD are therefore now required.

The nanometer size of PD pores poses a challenge
for their study. A tradeoff exists between resolving the
detailed structure of the channels and capturing their
overall distribution. Electronmicroscopy (EM) resolved
the structure of these channels, identifying a continuous
plasma membrane and a constricted form of the endo-
plasmic reticulum (ER), the desmotubule, running
across the pore between the two cells (Lopez-Saez et al.,
1966; Robards, 1971). More recently, with the applica-
tion of electron tomography, variable apposition of
plasma membrane-ER membranes was shown (Nicolas
et al., 2017b; Yan et al., 2019). Classical EM can also be
used to study PD occurrence. An inventory of PD
densities along the Arabidopsis (Arabidopsis thaliana)
root highlighted interesting variation between cellu-
lar interfaces, which might underpin qualitative or
quantitative differences in PD-mediated communica-
tion between cells (Zhu et al., 1998). However, EM
approaches, when looking at single or separate slices,
largely lose information about the positions of PD rel-
ative to each other and only capture approximate
densities. This is problematic because the distribution
of PD across an interface is predicted to have a signifi-
cant impact on flow properties (Deinum et al., 2019).
Limited alternatives to comprehensively address the
presence of PD have since emerged. Confocal micros-
copy was applied in leaves, using specific PD markers,
to show that the development and distribution of par-
ticular PDmorphologies in the epidermis were strongly
increased by treatments eliciting nutrient, osmotic, and
pathogen stresses (Fitzgibbon et al., 2013). Fluorescent
approaches are, however, limited to relatively accessible
cell-cell interfaces and often cannot resolve the signal
from individual PD. Faulkner et al. (2008) used freeze-
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fractured trichomes and EM to analyze PD distributions
across the entire fractured surface. They observed that
new PD (not generated during cell division) seemed to in-
sert themselves in close proximity to existing PD, suggest-
ing the use of the latter as nucleation centers. The process
ultimately results in clusters of PD pit fields. A method to
obtain similar interface-level estimates of PD densities, in
this case in the mesophyll layer of leaves, was introduced
by Danila et al., (2016), combining 3D immunolocalization,
to determine the area of the pit field relative to that of the
interface, and scanning EM, to assess the number of PDper
pit field. However, both immunochemistry-scanning EM
and freeze-fracture approaches remain confined to tissues
that are readily accessible to such sample processing.

Serial block face electron microscopy (SB-EM; Denk
and Horstmann, 2004) can overcome these limitations,
offering the opportunity to look at interfaces deep in
tissues. A block of fixed and embedded tissue is
mounted inside a scanning EM device and the upper
face of the block is cut away using an internal micro-
tome. After each slice, the newly exposed block sur-
face is imaged. The process is repeated, ultimately
generating a stack of images along a z-axis with the
z-resolution defined by the thickness of the slices. Im-
portantly, the positions of cellular objects are retained
relative to one another, and the data sets are good
starting points for 3D reconstruction (for review, see
Kittelmann et al., 2016). SB-EM technology has been
successfully employed to study PD, demonstrating
defects in sieve pore (a modified form of PD) structure
and distribution (Dettmer et al., 2014) and allowing the
quantification of PD densities at the interfaces of the
sieve element (SE; Ross-Elliott et al., 2017) and at the
endodermal (EN) face of phloem pole pericycle (PPP)
cells (Yan et al., 2019). Both SE and PPP cells are key
players in the process of phloem unloading, largely
mediated by PD (for review, see Truernit, 2017). These
data sets are, however, underexploited in part due to
limitations in the technology to extract such informa-
tion from them. Consequently, important parameters,
such as the specific distributions of PD and the cell wall
environment of the pores, despite being contained in
these data sets, have so far been ignored.

Here, we address these two biological aspects. Dense
clustering of PD into pit fields is often assumed as a
general feature of these structures (Sager and Lee,
2014). However, while this is certainly the case at
some interfaces (Faulkner et al., 2008; Danila et al.,
2016), additional evidence is needed to support a gen-
eralization. Recent modeling efforts have highlighted
how the arrangement of PD in clusters might actually
reduce flow between cells (compared with a random
arrangement; Deinum et al., 2019). Having detailed
information on distributions in actual cells would greatly
inform these models. The local wall environment in
which PD reside is also of relevance for flow. The thick-
ness of the wall at PD defines the length the path sub-
stances have to travel before entering the neighboring
cell. Thinning at PD is often assumed, but the evidence is
not comprehensive and quantifications are not available.

Correlations between wall thicknesses and different PD
ultrastructures have been reported (Nicolas et al., 2017b),
and this is now being integrated into models, with pre-
dicted effects on flow (Deinum et al., 2019). We also
know that the PD environment is peculiar in terms of
wall polysaccharides, with an enrichment in callose and
pectins and a concomitant reduction in cellulose (for re-
view, see Knox and Benitez-Alfonso, 2014). Overall, the
properties generated by wall components have not been
extensively explored in planta, partly due to the diffi-
culty of efficiently imaging phenotypic effects.

To extract the relevant information from SB-EM data
sets, we developed novel computational and visualization
tools dedicated to PD analysis. We deployed the SB-EM
data sets from Yan et al. (2019) as a study case. We first
address the spatial distribution of PD. We detected clus-
ters of PD at the PPP-EN interface, while we did not see
signs of clustering at the SE-PPP interface. We quantified
the number and size of the clusters.We quantified specific
wall thinning at PD positions and detected changes in the
wall environment in the plm-2 Arabidopsis mutant.

RESULTS

SB-EM Allows Spatial Positioning of PD over
Wall Interfaces

SB-EM data sets can cover large portions of a tissue.
The data sets from Yan et al. (2019) employed here
cover an area encompassing the cells around the pro-
tophloem of Arabidopsis roots. The data sets can be
visualized either in a longitudinal orientation (Fig. 1A)
or in an axial one (Fig. 1B). In the latter, PD at various
radial interfaces are more easily detectable due to better
xy resolution of the SB-EM technique (Fig. 1, C and D,
showing PD at SE-PPP and PPP-EN interfaces, respec-
tively). The image resolution of the specific data sets
employed here is good enough to identify individual
PD within those areas but not to distinguish the de-
tailedmorphology of the PD. A unique aspect of SB-EM
is that such annotated PD positions (relative to the cell
surface) can be addressed globally within the full length
of cells.While density calculation approaches have taken
advantage of this (Yan et al., 2019), the spatial compo-
nent, namely the 3D distribution of PD, has been largely
neglected. Traditional bidimensional visualizations fail
to convey the distribution of PD over the interfaces.
Here, we show that identified PD can be exported (as
clouds of dots) alongside the segmentedwall, generating
effective 3D spatial representations that capture the
distribution. We show this both at the SE-PPP and PPP-
EN interfaces (Fig. 1, E and F). The rendering can also be
stored as movies (Supplemental Video S1).

Rendering of PD in the Cellular Context

SB-EM data sets also contain data on various organ-
elles within the cells, putting PD in a wider and more
realistic context. We can generate highly structured
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and dense cellular models. By segmenting an area of
the data sets (represented in the overall data set in
Fig. 1H, inset) and color coding the different organelles
(Fig. 1G), the 3D model can be eventually exported in
visualization programs (Fig. 1H). We can show the ER
strands of PD crossing into the wall (Fig. 1I) and then
merging on either side to the wider ER network system.
Various animations can then be applied to the 3D
model (Supplemental Video S2). Models such as these
highlight how symplastic transport needs to navigate a
dense cytoplasm before reaching the PD.

Signs of Clustering of PD at the PPP-EN Interface in
the Root

Taking advantage of the spatial information on PD
contained in the SB-EM data sets, we studied their
distribution at selected interfaces. To describe the

distribution of PD on the cell wall, we calculated pair-
wise Euclidean distances between each of them, using
the x, y, and z coordinates available in the data sets. This
revealed a multimodal distribution of distances (red
lines in Fig. 2A, where we show two examples of cells).
To provide a meaningful comparison, an equal number
of points with a uniform distribution was generated on
the same surface using the SpatialControlPoints tool
described in “Materials and Methods.” One thousand
simulations were generated for each cell. We calculated
Euclidean distances for each of the simulations and
observed that in each case the distributions of distances
approximated a normal distributions (yellow lines in
Fig. 2A, for the two example cells). The surfaces are not
perfectly flat, resulting in deviations from full normal-
ity. This immediately suggests some overall differences
compared with the distances between real points. Next
to each plot for the distribution of distances we also
show the original 3D distribution of points, to give an

Figure 1. Overviewof SB-EM technology and its spatial capabilities on a Columbia (Col-0) data set. A, Example data set slice seen
in xz orientation. The SE is in the center. Its interfacewith the PPP is shown in green, and the interface between the PPPand the EN
is in blue. The dashed line shows the relationship to the view in B. B, Extract of the same data set visualized in xy orientation. The
inset displays the acquired area relative to an overview of the root. The dashed line shows the relationship to the view in A. C and
D, Zoomed areas of the SE-PPP (C) and PPP-EN (D) interfaces showing PD within the red rectangles. E and F, 3D visualization in
the Amira software of SE-PPP (E) and PPP-EN (F) interfaces in four cells (color-coded green or blue as in A). The wall is segmented,
and PD are represented as red dots. G, 2D view of an area along the PPP-EN interface with organelles and structures highlighted
(ER in yellow, mitochondria in green, Golgi in red, and wall in blue). H, 3D visualization in the Amira software of the segmented
organelles and structures from G. The inset displays the position of the model (top right) relative to the area of interest in B. I,
Zoomed-in area of the model shown in H, seen from the sides, showing ER strands crossing the PPP-EN wall.
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Figure 2. Detection of spatial clustering at cellular interfaces using SB-EM data sets. A, Distribution of Euclidean distances
between points at the PPP-EN interface in two cells (top and bottom). The red line represents distances between PD, while each of
the 1,000 yellow lines represents the distance between uniformly distributed control points (in each simulation). B, 3D visual-
ization of PD positions (red, left) and the uniformly distributed control positions in one of the simulations (yellow, right) for the two
cells shown in A (top and bottom). C, Distribution of P values of KS tests at the PPP-EN and SE-PPP interfaces for the Col-0 cells
(8,000 P values for each interface: 8 cells 3 1,000 simulations each). The black vertical bar highlights the 0.05 value, used as a
significance threshold. D, Distribution of KS test values at the PPP-EN interface for the Col-0 cells (8,000 P values in total). The red
bar highlights the 0 value, representing identity between real and simulated distributions. The left dark gray curve represents data
from the top cell in A, and the right dark gray curve represents data from the bottom cell in A. E, Comparison of KS test values at the
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appreciation of the biases in point distribution between
real data and simulation (Fig. 2B, showing the same two
example cells). At the PPP-EN interface, in addition, an
excess of short distances between PD points was always
visually detectable compared with the distributions of
distances of the simulated points. This suggests some
form of clustering (Fig. 2A). Note that PD present in
kinked areas of the wall (Fig. 2B, PPP to the right),
which represent a minority of cases, would result in
some diagonal Euclidean distances outside of the wall
surface. However, simulated points on that same wall
would experience similar effects, making them com-
parable. For each of the eight cells tested for Col-0 or the
five cells tested for plm-2 (the mutant available in the
data sets of Yan et al. [2019]), pairwise Kolmogorov-
Smirnov (KS) tests of the distribution of real points
against each one of the 1,000 simulated point sets were
performed. The distribution of P values is shown in
Figure 2C (in pink for the PPP-EN interface). All cells
fell below a P value of 0.05 (black vertical line), sug-
gesting a nonuniform distribution of PD. To give a
quantitative appreciation of variation across cells in
spatial distributions, the distribution of the KS test re-
sult values can be plotted (Fig. 2D). Overall, test values
for the single comparisons ranged from 0.025 to 0.347.
Figure 2, A and B, actually display the two most ex-
treme cases among cells of the Col-0 genotype: we took
the cell with the distribution most shifted to lower KS
values (PPP1-ENa) and that shifted to higher values
(PPP2a-EN), and these are shaded in a darker gray in
the figure. The spatial plots in Figure 2B match well
with the expectations. Comparisons between geno-
types can be performed by plotting mean KS test values
for each cell of both genotypes (Fig. 2E). Summary
values per cell remove the otherwise present problem of
interdependencies of points, which would complicate
statistical comparisons. The plm-2 genotype did not
show appreciable shifts compared with the wild type
(medians of 0.09 and 0.08, respectively).

Lack of PD Clustering at the SE-PPP Interface in the Root

At the SE-PPP interface in Col-0, conversely, there
was no evidence to reject the null hypothesis of a uni-
formdistribution for the PD. The P values for the KS test
comparison between real and simulated points were
shifted toward or above 0.05 in Figure 1C (light blue
curves). Mean P values for each cell were above 0.05.
We show the distribution of Euclidean distances for one
of the cells. The distribution of distances for the real
points appeared less diverse relative to the simulated
points, compared with those observed at the PPP-EN
interface. In addition, no visual excesses of shorter

distances could be detected (Supplemental Fig. 1A).
The 3D distributions of real and simulated points are
shown in Supplemental Figure 1B. The distributions of
the KS test values, while being at times higher than
those at the PPP-EN interface in terms of absolute
values, were much shallower (Supplemental Fig. 1C;
the dark shaded cell in this image was used as the ex-
ample in Supplemental Fig. 1, A and B).
Because the SE-PPP interface has a lower number of

PD comparedwith the PPP-EN interface (Supplemental
Fig. 1D), we tried to assess if the high P values at the SE-
PPP interface were just due to lower statistical test
power or were an indication of actual lack of clustering.
We sampled a lower number of PD (and simulated
points) at the PPP-EN to achieve the same PD density as
that seen at the SE-PPP interface. The number of new
points was calculated by multiplying the density of PD
at the SE-PPP interface by the surface area at the PPP-
EN interface (Supplemental Fig. 1D). We then tested if a
difference between the distribution of Euclidean dis-
tances of real points and simulated ones could still be
detected.While the P values did indeed on average shift
toward higher values, in six of eight cells of Col-0 the
mean P value was still below 0.05 (red vertical line;
Supplemental Fig. 1E). In only two cells (purple ones in
the figure), the PD distribution could no longer be ro-
bustly differentiated from a uniform one. Overall, this
suggests that at the SE-PPP interface there are indeed
no obvious signs of PD clustering, and this highlights
differences between this interface and the PPP-EN
interface.

Describing the Organization of PD in Pit Fields at the
PPP-EN Interface

Upon establishing the presence of a nonuniform dis-
tribution of PD over the PPP-EN interface, we attempted
to characterize the potential clusters. Namely,we tried to
address the number of clusters, the number of PD per
cluster, and the cluster sizes relative to the surface of the
interface. To determine the number of clusters, we used
two different clustering algorithms, a k-means-based
method and a model based one, within the R environ-
ment. Variationwas visible, as should be expected due to
the relatively arbitrary computational classification, be-
tween the single cells and between clustering algorithms
with median values of 11.5 (Col-0) and 10 (plm-2) using
the mclust package and with median values of 11.5
(Col-0) and 14 (plm-2) in the silhouette approach (Fig. 3A).
Differences between genotypes were not statistically sig-
nificant, so, overall, a working range of 10 to 14 PD
clusters can be suggested at the PPP-EN interface. As an
example, we color-coded the PD of a cell according to

Figure 2. (Continued.)
PPP-EN interface between the Col-0 and plm-2 genotypes. Values for single cells (eight for Col-0 and five for plm-2) are rep-
resented with symbols (different symbols for different roots), with medians shown as horizontal bars. Statistical comparisons
between genotypes were performed using the nonparametric Mann-Whitney U test for two samples; ns 5 P . 0.05.
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the cluster they had been assigned with two methods
(Fig. 3, B and C). In the image, the 3D coordinates had
been reduced to 2D via PCA. Some of the strengths
and pitfalls of these clustering methods are illus-
trated in this example, with the silhouette approach
being possibly overly conservative while mclust
assigned one PD to the wrong cluster (the olive green
dot in the bright green cluster in Fig. 3B, highlighted

with an asterisk). We strongly emphasize that cluster
number values should be used as working ranges
rather than absolute values. The number of PD in
each cluster was similar between the two clustering
methods, with a median of eight to 10 PD per cluster
(Fig. 3D). Once again, no strong trends in the plm-2
mutant from the datasets of Yan et al. (2019) were
detectable.

Figure 3. Quantification of clustering parameters at the PPP-EN interface using SB-EM data sets. A, Number of clusters identified
in the Col-0 (eight cells) and plm-2 (five cells) genotypes using the mclust or the silhouette approach. B and C, Visualizations of a
principal component analysis (PCA) reduced interface (from a cell) with different cluster assignments. The surface is rendered in
gray, while PD belonging to different clusters and the area they occupy are color-coded. D, Number of PD per cluster in Col-0 and
plm-2 genotypes. The total clusters are 95 (mclust) and 96 (silhouette) for Col-0 and 52 (mclust) 55 (silhouette) for plm-2. E, Total
percentage of the surface occupied by clusters. F, Percentage of the surface occupied by individual clusters. G, Absolute surface in
micrometers squared of cells. H and I, 3D visualizations in the Imaris program of the same interface shown in B and C. The surface
is rendered in gray, while PD belonging to different clusters are color-coded with the same scheme used previously. Note that D
and F have logarithmic y axes. In the graphs, individual values are represented as dots, distributions as violin plots, andmedians as
horizontal bars. Cells fromdifferent roots are shown using different symbols. For each clustering approach, statistical comparisons
between genotypes were made using the nonparametric Mann-Whitney U test for two samples; ns 5 P . 0.05.
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To assess the conductive surfaces provided by these
PD clusters, we calculated the area occupied by each
of these clusters and that occupied in total by all the
clusters on a cell interface. These areas were calculated
and reported as percentages of the total surface of the
interface on which they occur, as delimited by the most
extreme cluster points in the PCA space (shaded gray
area in Fig. 3, B andC).While this is an underestimate of
the total surface, we feel it is more appropriate to cal-
culate these scaling factors than attempting to use the
cluster surfaces as absolute values (the data are indeed
scaled and reduced by the PCA, so the units are no
longer true mm2). For the total conductive surface (i.e.
the proportion occupied by the clusters relative to the
overall surface), the mclust method suggests medians
of 14% for both Col-0 and plm-2 while the silhouette
approach provides median values of 15% and 18%,
respectively (Fig. 3E). Each cluster accounts for a me-
dian surface of 1% in both genotypes using the mclust
method or 0.7% (Col-0) and 0.8% (plm-2) with the sil-
houette approach (Fig. 3F). No differences between the
two genotypes were highlighted by statistical testing
for any of these parameters.
While these might be sufficient for some purposes,

we also wanted the possibility to relate these percent-
ages to the actual surface values in mm2. To do so, we
had to employ the original image data within the MIB
software, rather than the R-processed and PCA-
reduced ones. Using an updated version of the Surfa-
ceArea3D plugin employed by Yan et al. (2019), we
calculated the actual total surface of the PPP-EN inter-
faces in MIB (for details, see “Materials and Methods”).
Median surface areas of 91.1mm2 for Col-0 and 119 mm2

for plm-2were determined (Fig. 3G). Given the variance
in the data, this difference is not robust. Relating the
median surface area values to the scaling factors de-
scribed above, we can obtain the actual surfaces of the
individual clusters. The surface can be exported to
Imaris for visualization (Fig. 3, H and I, mirroring Fig. 3,
B and C).

Extracting and Visualizing Wall Thickness at PD, Controls,
and Every (Other) Position

The SB-EM data sets contain information on many
components of a cell, and in the context of PD, a rele-
vant one is the cell wall and its thickness. To do that, we
developed the CellWallThickness plugin, which can ex-
tract the thickness of a given segmented wall at posi-
tions of interest (see “Materials and Methods”). As an
example, we employ the plugin on one of the Col-0 cells
available (the one used in Fig. 3, B and C). By using an
equal number of random uniformly distributed points
(median of 117 nm), one can accurately capture the
thickness of the overall all-other wall (median of 123
nm) in a computationally effective manner. These
values are not statistically significantly different. The
data also show a clearly thinner wall in the proximity of
PD (median of 46 nm; Fig. 4A). The thickness of the wall

at the interface of interest can also be visualized
graphically, by exporting the midline thickness map
(generated by the plugin) into 3D rendering software
such as Imaris (Fig. 4B). The wall color intensity
matches the calculated thickness value at that position,
brightermeaning thicker. The PD positions and those of
the controls can also be exported as dots and their rel-
ative size made to match the wall thickness value. The
thinning at PD positions is visually confirmed and
shown to extend beyond the precise position of the
channels, to the entire pit field PD are grouped into.
Cell wall thickness comparisons between genotypes

are also possible with our tools, using mean thickness
values for the three categories of points in each cell.
At PD positions, the median thickness of the resulting
values was 53 nm for Col-0 and 62 nm for plm-2
(Fig. 4C). The difference is supported by statistical
testing. Conversely, no difference was supported for
the random uniformly distributed points (132 nm in
Col-0 versus 141 nm in plm-2) or for the all-other-
points category (131 nm in Col-0 versus 142 nm in
plm-2), despite a trend for increased thickness in plm-2
(Fig. 4C).
To test if the difference at PD positions between gen-

otypes could be independently confirmed, we looked at
another data set described by Yan et al. (2019). Elec-
tron tomography, a different technique, had been
employed to study the ultrastructure of single PD at
the PPP-EN interface in the two genotypes. When we
redeployed those data, this time extracting the wall
thicknesses in the immediate proximity of PD, we
obtained median values of 66 nm in Col-0 and 85 nm
for the plm-2 mutant (Fig. 4D). Statistical testing sup-
ported a difference. These values are remarkably close
to those obtained with our plugin: an absolute match
was unlikely considering the difference in scale of
observation (individual PD compared with the entire
tissue). Both techniques therefore agree in showing a
trend of thicker walls at PD (and possibly across the
entire wall) in the plm-2 mutant.
To further validate the reliability of the data gener-

ated, we assessed if known biological features could be
detected in our data sets and if the values obtained
matched those from different techniques. The wall of
enucleated SEs is thicker compared with that of nucle-
ated SEs or of surrounding cells. This reinforcement is
likely necessary to withstand the pressure of sap flow
(Furuta et al., 2014). The plugin output was able to ef-
fectively capture and quantify this difference using the
all-points category. Themedian thickness of the SE-PPP
wall, using averages per single cells, was 207 nm
compared with 131 nm for the PPP (Fig. 4E). Note that
here all points are used rather than all other points, as
there is no need to exclude PD positions.

DISCUSSION

PD perform a key role in cell-cell transport across
plant cells. We developed new computational tools to
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explore aspects of their distributions and of the wall
they span. We performed this in part with the aim of
informing future models of flow across PD with relevant
experimental data. Published modeling approaches have
so far studied PD transport in relation to the overall
single-pore structure (Blake, 1978), phloem flow (Jensen
et al., 2012), phloem-loading mechanisms (Comtet et al.,
2017), and unloading flow type (Ross-Elliott et al., 2017).
One modeling study tried to address some complexities
of PD, integrating ultrastructure parameters for the cyto-
plasmic sleeve in their models (Liesche and Schulz, 2013).

The assumptions of that article, however, have been
challenged by experimental data (Ding et al., 1992;
Nicolas et al., 2017b), highlighting the difficulty of
modeling flow across PD when limited experimental
data are available. Only recently, the spatial distribu-
tion of the PD at interfaces, namely the assumption of
clustering in pit fields, is starting to be included in
models. Unequal distribution was shown to reduce the
effective symplastic permeability of the interface
(Deinum et al., 2019). However, detailed experimental
data for distribution parameters, such as those we

Figure 4. Assessments of cell wall thickness using SB-EM data sets. A,Wall thickness for the PPP-EN interface in one Col-0 cell at
PD positions, random uniform control positions, and at all other points (n 5 129 for PD positions and random uniform control
positions, n5 222,864 for all points). B, 3D visualization in the Imaris program of a PPP-EN interface in Col-0, as in Figure 3. The
surface is rendered in shades of blue, on a scale matching the thickness of the wall. PD are shown as colored dots (red for real PD
positions and yellow for those of a simulationwith a randomuniform distribution). The size of the dots relates to thewall thickness
at that position. C, Comparison of wall thickness in Col-0 (eight cells) and plm-2 (five cells) genotypes. D, Comparison of wall
thickness at PD positions in Col-0 and plm-2 genotypes using tomography data (n 5 30 for Col-0 and n 5 49 for plm-2). E,
Comparison of overall wall thickness at the SE-PPPand PPP-EN interfaces in Col-0 (eight cells). In the graphs, average values for
single cells are represented with symbols (different symbols for different roots), distributions as violin plots, and medians as
horizontal bars. Note that A, C, and D have logarithmic y axes. Statistical comparisons between two samples (or two samples
within a category) were performed using the nonparametric Mann-Whitney U test, and those for more than two samples were
performed using the nonparametric Dunn’s test. Supported differences are highlighted by an asterisks (*P, 0.05); ns5 P. 0.05.
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present here, are lacking. Including PD spatial ar-
rangements in models is a significant advancement
from the use of the same spatial parameters (number of
clusters and PD per cluster) to estimate the total con-
ductive surface alone. Using traditional microscopy
approaches, Kuo et al. (1974) had calculated assimilate
fluxes in wheat (Triticum aestivum) leaves, and, more
recently andmore comprehensively, Danila et al. (2016)
had used immunolabeling in accessible leaf tissues to
compare fluxes in C3 and C4monocot leaves. However,
such studies might have underestimated the impedi-
ment to flow such PD arrangements may impose.
Using our first new plugin and its analysis pipeline,

we show that at an interface important for postphloem
unloading in the Arabidopsis root, that of PPP-EN (Yan
et al., 2019), there is clear spatial clustering of PD (Fig. 2,
A–C). We determined and visualized the numbers of
pit fields at the PPP-EN interface, with a median of 10
to 14 clusters (Fig. 3A). Computer-driven clustering
methods present their own limitations in terms of ab-
solute value generation, possibly explaining part of the
observed variation within and between clustering
approaches. However, pit field numbers in different
cells might also be affected by the surface and age of the
actual cell. This in turn would explain the clustering
metric variation observed in Figure 2A.We do not have
enough cells spanning the z direction to empirically test
such a hypothesis, but it remains plausible and inter-
esting for future research. Overall, we recommend us-
ing these values as working ranges rather than absolute
values. The remarkably stable median value for the
number of PD per pit field, around 10 with all methods
(Fig. 3D), might conversely hint at some biological
process eventually constraining cells to create new
clusters as they expand. There might be an upper
boundary for secondary PD formation within a cluster.
Lastly, in cells, the orientation of the PD and the over-
arching clusters (Figs. 1F and 3, H and I) often seem to
follow the direction of vertical cell elongation.
We also calculated the median surface area of the

clusters and related it to the total surface (Fig. 3, E and
G). An approximate median conductive surface of 15%
(each cluster accounting for amedian of around 1%) is a
remarkably low percentage and certainly suggests the
possibility that flow in and out of a cell might not be
uniform but rather resembles more a series of water
currents in a cytoplasmic ocean. It will be extremely
interesting to apply such a concept to modeling studies
of flow between cells, as started in Deinum et al. (2019).
Percentages can be related to actual surface areas using
our second plugin.
In our data, we do not observe clustering at the SE-

PPP interface (Fig. 2C; Supplemental Fig. 1, B and C),
which is fundamental for phloem unloading in the root
(Ross-Elliott et al., 2017). A more uniform distribution
of PDmight reflect the enucleated nature of SEs (Furuta
et al., 2014) and the impact this might have on sec-
ondary PD formation or a unique feature of the funnel
PD at this interface, known to perform batch unloading
(Ross-Elliott et al., 2017). It is interesting that in the

study of Deinum et al. (2019), clustering of PD had the
largest negative effect on parameters regulating flow at
lower PD densities. The lower density of PD at the SE-
PPP interface compared with neighboring tissues (Yan
et al., 2019) might impose limits to clustering if this was
to compromise the extensive flow that needs to take
place at this interface. Overall, this result at least chal-
lenges the broad assumption that all PD might be
grouped into pit fields. The distribution tools presented
in this article could be used for more systematic studies
within tissues.
In addition to the spatial distribution of PD, param-

eters describing the environment surrounding PD can
also be of high value. We address wall thicknesses, af-
fecting flow between cells in relation to the structure of
PD in recent modeling studies (Deinum et al., 2019),
with our third tool. The overall wall thickness is in the
same order of magnitude as the estimation by Kramer
et al. (2007). The value of around 200 6 30 nm was
actually derived from a figure published by Andème-
Onzighi et al. (2002), focused on root epidermal cells.
We detect a thinner wall around PD at the PPP-EN in-
terface in the root, by a factor of about 2.5 times
(Fig. 4C), matching assumptions in the literature that
PD lie in wall depressions. The agreement of wall
thickness values at PD between SB-EM and electron
tomography (a technique that focuses on the area of one
PD) is extremely satisfactory, although we still caution
on using these values as absolute. Thinner walls at PD
might be the consequence of cell wall modifications
required for PD de novo insertion (Faulkner et al., 2008)
or a prerequisite for PD insertion at all. Regardless of
the ontological reason of this wall thinning (or lack of
thickening), it is likely that it carries functional rele-
vance for conductivity (Thompson andHolbrook, 2003;
Barratt et al., 2011). A few reports from other plant
species mention that the sieve pores (highly modified
forms of PD) in mature plates connecting SEs lie in wall
depressions. This was correlated to callose deposition
inhibitingwall thickening (Evert et al., 1966; Deshpande,
1974, 1975). Whether that is a shared mechanism to all
PD, also rich in callose, is unknown. Inmodeling studies,
a relative arbitrary value of 100 nm is employed as the
wall thickness for PD (Liesche and Schulz, 2013). This
is compatible with the averages for our PPP-EN cells
(Fig. 4, C and D). However, our work flow might be
highly valuable in future studies to inform cell-cell per-
meability models of differences between interfaces. For
instance, we quantify the known biological difference of
SE wall thickness (Furuta et al., 2014) compared with
PPP cells (Fig. 4E).
Our tool could easily be applied to broad cell wall

questions. For instance, to our knowledge, in the liter-
ature there are no tissue-specific studies of cell wall
thickness in the Arabidopsis root. In addition, although
SB-EM is not yet high throughput enough to allow
mutant screens, targeted validation of mutants can be
performed. We detected thicker walls around PD (and
possibly globally) in the plm-2 mutant compared with
the wild type (Fig. 4, C and D). The mutant is defective
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in the biosynthesis of very-long-chain fatty acid-containing
sphingolipids (Yan et al., 2019). Glycosylinositol phos-
phorylceramide sphingolipids, known to be enriched at
PD (Grison et al., 2015), are cross-linked via boron
bridges with pectins (Voxeur and Fry, 2014), also likely
enriched at PD (for review, see Knox and Benitez-
Alfonso, 2014). It is therefore reasonable to speculate
that there may be feedback effects on wall structure
from lipid perturbations. The detected thicker wall
emphasizes the importance of PD type change ob-
served in this mutant for flow: it must provide a sig-
nificant ease of trafficking to achieve the reported
increase in communication (Yan et al., 2019). Alterna-
tively, modeling studies suggest that different types of
PD might be more suitable in different types of walls
(Deinum et al., 2019).

Overall, interesting new lines of research might de-
velop from a more systematic use of SB-EM and the
associated analysis tools we provided in this article. We
also envisage that future developments of the plugins
will be able to expand the quantitative efforts to more
aspects of the data sets.

MATERIALS AND METHODS

Data Sets

For details on the equipment and settings for SB-EM image acquisition, we
refer to the original article by Yan et al. (2019), for which the data sets were
generated. Briefly, chemically fixed roots of 5-d-old Arabidopsis (Arabidopsis
thaliana) plants were sectioned and imaged with cutting steps of 40 nm and xy
resolutions of 7 to 10 nm. The collected images were assembled into a single
calibrated, aligned, and contrast-normalized image stack. The resulting data
sets are available at EMPIAR, the Electron Microscopy Public Image Archive
(Iudin et al., 2016), with the accession code EMPIAR-10442. Images were loaded
into the MIB software (Supplemental Fig. 2A; Belevich et al., 2016), down-
loadable at http://mib.helsinki.fi/ (last accessed March 2020), and they were
filtered to reduce noise using deep neural network algorithms, which preserve
the edges of the organelles (Supplemental Fig. 2B; Zhang et al., 2017). Tutorials
on how to operate the software and its tools are available on the Web site. For
the analysis presented here, we trimmed the original data sets, each relating to a
root and containing multiple cells, into separate data sets for each cell (eight for
Col-0 and five for plm-2). One of the original data sets for the plm-2mutant had
to be discarded, as the image quality was not sufficient for the specific purposes
of this study, reducing the available cell number. Removal of the data set was
performed before data analysis.

Annotations of PD and Cell Wall Segmentations

For PD annotations, we redeployed those from Yan et al. (2019). These are
contained in the annotation layer ofMIB, each annotation including the x, y, and
z coordinates of the corresponding PD. For analysis, all coordinates were
recalculated from pixels to physical units of the data set (micrometers) relative
to the bounding box of each data set. In order to avoid duplicate counts, no new
PD were annotated within 160 nm (12 or 22 slices from a central one) of an
existing annotation, which provides a conservative estimate (Supplemental
Fig. 2B). Within the MIB environment, we fully segmented the cell walls of
interest by employing black-and-white thresholdingwithin preselectedmasked
areas (Supplemental Fig. 2C). Selection of the masked area encapsulating the
cell wall was done using the brush tool and an interpolation process to infer the
drawn areas on intermediate slices. Resulting models were smoothed and fil-
tered so that the cell wall formed one continuous object in the 3D space. The
final model was manually checked for any possible impurities. Small (less than
five pixels in size) 2D profiles within the 3D model that might not be reliable
were removed. High-quality segmentations and careful annotations of PD
are the basis of any analysis employing the plugins we describe in this article.

They are the most time-consuming components of the pipeline, as they involve
manual work from the user.

Plugins

All the computational tools employed in this article were written in Matlab
language, but they do not require this proprietary software to operate. They are
implemented as plugins for the freely available MIB software (Belevich et al.,
2016). The plugins are included in the stand-alone version of the MIB software
at http://mib.helsinki.fi/downloads.html (last accessed March 2020) or sepa-
rately from https://github.com/AndreaPaterlini/Plasmodesmata_dist_wall
(last accessedMarch 2020). In the latter case, they need to be saved in the Plugin
folder of the MIB software. The plugins are provided with help sections. The
research community can improve or tweak these plugins, according to their
specific needs, by editing the source code. An overview of the type of file
outputs generated by the plugins is provided in Supplemental Figure 2. The
plugins require as inputs the initial manual steps described in previous sections.

The SpatialControlPoints Plugin

In order to ask questions relating to the distribution of PD, we felt that a
comparable (in terms of points) simulated distribution had to be generated. The
simulated distribution differs from the real PD one in that the points are placed
with a spatially uniformpattern. Togenerate such adistribution,wedevelopeda
computational tool, the SpatialControlPoints plugin, capable of creating the
control point distributions over the same surface as those present in the SB-EM
data sets. A segmented wall and a list of annotated PD are fed into the plugin.
The tool, in return, finds the midline of the wall by thinning the model to a
single centerline without branches (Supplemental Fig. 2D). The thinning mor-
phological operation (Lam et al., 1992) is applied to each slice, and then a
function detects the longest available pathwithin the thinned lines and removes
all the others. The resulting single thin centerline is placed in the mask layer of
the MIB interface. On this centerline surface, this tool generates an equal
number of points to that of the PD,whose positions are sampled from a uniform
distribution, with a randomly placed starting point. For reproducibility of re-
sults, in the user interface we provide an option to specify the random seed used
by the sampling algorithm. The number of simulated distributions can be de-
fined in the user interface; here, we employed 1,000 simulations. Matlab and csv
file formats are available as outputs (Supplemental Fig. 2E).

The SurfaceArea3D Plugin

To calculate the surface of interfaces of interest in the SB-EM data sets, we
employed an edited and improved version of the plugin used by Yan et al.
(2019) for the same purpose. The plugin finds the midline of a supplied seg-
mented wall on each slice of the model. This step is the same as that described
for the SpatialControlPoints plugin (Supplemental Fig. 2D). This plugin then,
additionally, connects such midlines across the slices, generating a surface
(Supplemental Fig. 2F). The plugin employs the triangulateCurvePair function
from the MatGeom toolbox for geometric computing with Matlab (https://
github.com/mattools/matGeom; last accessedMarch 2020). Matlab, Excel, and
csv file formats are available for the numerical output of the surface. The surface
itself can be exported as an object to Matlab, Amira, and Imaris programs.

The CellWallThickness Plugin

In order to explore the environment surrounding PD, namely the cell wall
they span, we developed the CellWallThickness plugin to extract wall thickness
from SB-EM data sets (Supplemental Fig. 2G). The plugin is fed a segmented
wall and finds its centerline, as described for the SpatialControlPoints plugin
(Supplemental Fig. 2D). A distance map, which assigns a value to each model
pixel based on its distance to the closest edge of the model, is calculated at each
slice using the Euclidean distance transformation algorithm (Maurer et al., 2003;
Supplemental Fig. 2H). The values at each point of the masked centerline are
then obtained by placing the centerline over the distance map image
(Supplemental Fig. 2I). The values are expressed in pixels. Since the image is
calibrated, the plugin then recomputes those numbers to actual physical
thickness of the wall as thickness (in mm) 5 value (in pixels) 3 pixel size 3 2.
The doubling factor is introduced to obtain wall thickness (and not just half
thickness). The masked centerline, where each pixel encodes the rounded
thickness of the cell wall at the corresponding point, can also be saved as an
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image file. Employing the annotated PD positions, the plugin looks for the
closest position on the midline. A line over the wall to show one-half of the
distance is displayed (Supplemental Fig. 2J). In addition to PD position, if
requested, it generates a random uniform distribution over the same surface
(employing the SpatialControlPoints plugin; Supplemental Fig. 2E) and samples
an equal number of points to those of the PD. It can also extract the wall
thickness at all points. Depending on the task, the values of real PD and ran-
domly placed PD can be excluded from the list of all points using the corre-
sponding option checkboxes. This ensures the independence of classes for
statistical comparisons. Matlab, Excel, and csv file formats are available as
outputs (Supplemental Fig. 2G).

R Scripts and Guided Pipeline Availability

Thedataobtained fromMIBand itspluginswere then importedandanalyzed
in R (RCore Team, 2017) to obtain a range of descriptive statistics.We stress that
the data-analysis pipeline we employed here is one of many possible ones (from
the same data outputs of the plugins). For instance, we calculated pairwise
Euclidean distances between PD (or simulated points) to describe PD distri-
butions. The approach was chosen because it is independent of the surface that
PD sit in (and its boundaries). It rather focuses on the relationship between the
individual points alone. Alternative spatial analyses, such as Ripley’s K func-
tion, are also in principle possible. However, they will require specific imple-
mentations. The scatterplot3d package (Ligges and Mächler, 2003; version 0.3-
41) was used to visualize PD in 3D space. KS tests were used to assess signs of
clustering relative to the uniform distributions. We favored the broadly appli-
cable KS test as its metric output is easy to interpret (higher KS test values relate
to stronger differences between the real and simulated distributions), and this
facilitates quantitative comparisons. Two clustering algorithms were employed
to detect the number of clusters present at the PPP-EN interface in root cells. The
first is a k-means method with a silhouette approach for estimating optimal
cluster number (termed silhouette in the figures), which was implemented
using the factoextra package (version 1.0.5; Kassambara and Mundt, 2017). The
second one is a Bayesian Information Criterion for expectation-maximization,
initialized by hierarchical clustering for parameterized Gaussian mixture
models (termed mclust), which was implemented using the mclust package
(version 5.4.2; Scrucca et al., 2016). In both cases, we arbitrarily defined the
maximum numbers of clusters to 20, believing the 1:20 range to be biologically
meaningful. In the case of the k-means algorithm, we additionally repeated the
initial seed placing 100 times, in order to reduce the possibility of inaccurate
clustering due to biases in initial seed placement. To determine the surface areas
occupied by the identified clusters, we projected the 3D coordinates of the PD
onto a 2D space using PCA. No significant loss of information in the distribu-
tion of the PD occurred (likely relating to the fact that the cell walls were mostly
flat planes). The two first principal components of PCS captured more than 90%
of the variance in the xyz coordinates of the original data in all cases reported
here. The areas of the convex hulls delimited by the outer points of each cluster
(or the outer points in general, in the case of the total surface) were extracted
using the splancs package (version 2.01-40; Rowlingson and Diggle, 2017).
Lastly, we estimated the cell wall thickness around PD. A guided tutorial with
all the necessary code for this analysis is available at https://andreapaterlini.
github.io/Plasmodesmata_dist_wall/ (last accessed March 2020). The Col-0 data
sets used in this article, with correspondingmodels and annotations, are available
on Figshare (https://doi.org/10.6084/m9.figshare.12488702.v1). They can be
used as example data sets to test our pipeline. In addition to the specific packages
listed above, we also employed the broader tidyverse environment (version 1.3.0;
Wickham, 2017) and the data.table (version 1.12.0; Dowle and Srinivasan, 2019)
and ggbeeswarm (version 0.6.0; Clarke and Sherrill-Mix, 2017) packages.

3D Visualizations

For 3D visualization, we employed both Imaris (version 8.4.2; Oxford Instru-
ments) and Amira (version 2019.1; Thermo Scientific) imaging software. Export of
features from theMIB environment is compatible with both visualization packages.
For segmentations involving cellular organelles (ER, Golgi, and mitochondria),
morphological features across the 3D stacks were used for organelle classification.

Accession Numbers

SB-EM image data sets are available at EMPIAR, the Electron Microscopy
Public Image Archive, with the accession code EMPIAR-10442.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Analysis of the SE-PPP interface in terms of spa-
tial clustering using SB-EM data sets.

Supplemental Figure S2. Overview of the plugins developed for this
article.

Supplemental Video S1. SB-EM data set with annotated PD on segmented
walls.

Supplemental Video S2. Segmented cellular features in proximity of PD.
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