
REPORT SERIES IN AEROSOL SCIENCE

N:o 236 (2021)

SNOWFALL MICROPHYSICS

IN SURFACE-BASED AND RADAR OBSERVATIONS

JUSSI TIIRA

Institute for Atmospheric and Earth System Research

Faculty of Science

University of Helsinki

Helsinki, Finland

Academic dissertation

To be presented, with the permission of the Faculty of Science

of the University of Helsinki, for public criticism in Physicum hall E204,
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Abstract

Snow has an important impact on hydrology, agriculture, climate and weather, infrastructure

and different forms of both aerial and land transportation. The accumulation and properties

of snow are inherently connected to the microphysical processes through which the falling ice

particles grow. Furthermore, snow processes affect rainfall as well, since the vast majority of

rain events originate as melted snow.

For monitoring precipitation, the spatial coverage and resolution of radar instrumentation are

unmatched. The quality of quantitative precipitation estimation using radars depends on our

ability to establish meaningful relations between microphysical and electromagnetic scattering

properties of hydrometeors. Especially for snow particles, these properties are diverse and

the relations between them complex involving prominent uncertainties and knowledge gaps.

Furthermore, the properties are constantly evolving as the falling particles undergo series of

microphysical processes including growth from vapour, aggregation and riming.

This dissertation work addresses these knowledge gaps by parametrizing microphysical prop-

erties of falling snow using ground-based measurements, investigating the links between the

properties and ice processes, and further studying their manifestations in collocated and

off-site radar observations.

A novel method is introduced for retrieving ensemble mean density of falling snow using a

video disdrometer and a precipitation gauge. These retrievals are used in identifying triple-

frequency radar signatures of rimed particles and low-density aggregates, and to develop a

method for retrieving rime mass fraction. Based on the rime mass fraction retrievals, the

effect of riming to snowfall is quantified. Using multi-frequency Doppler radar and scanning

C band radar observations we show that the downward stretching of a melting layer is linked

primarily to precipitation intensity and secondarily to riming.

Machine learning methods are employed in objectively documenting and automatically de-

tecting known polarimetric fingerprints of ice microphysical processes in vertical profiles of

radar variables. Automated ice process detection is anticipated to open the door for adaptive

radar retrieval methods of snowfall rate.

Keywords: snowfall, precipitation, radar, ice processes
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Nomenclature

Λ slope parameter of gamma functional form of N(D)

Φdp total differential phase shift

δ backscatter differential phase shift

ε measurement noise

λ wavelength

μ shape parameter of gamma functional form of N(D)

φdp differential phase shift

ρ̄ ensemble mean density

σb backscattering cross section

av prefactor of v(D) relation

bv exponent of v(D) relation

C frequency band from 4 to 8GHz

CCN cloud condensation nuclei

D diameter

D0 median volume diameter

DFIR Double Fence Intercomparison Reference

Dveq volume equivalent diameter

DWR dual wavelength ratio

fH,V forward scattering amplitude at horizontal, vertical polarization

FR rime mass fraction

G snowfall accumulation



H-M Hallett-Mossop process

HSRL High Spectral Resolution Lidar

IN ice nuclei

Ka frequency band from 27 to 40GHz

Kdp specific differential phase

Kw dielectric factor of liquid water

LWE liquid water equivalent

m mass

mur mass of unrimed snow

MWACR Marine W band ARM cloud radar

MWR Microwave Radiometer

N(D) particle size distribution function

N0 intercept parameter of gamma functional form of N(D)

Nw intercept parameter of normalized gamma functional form of N(D)

PCA principal component analysis

PIP Precipitation Imaging Package

PPI plan position indicator

PSD particle size distribution

QPE quantitative precipitation estimation

r distance

RHI range height indicator

S snowfall intensity

SVI Snowflake Video Imager



v terminal fall velocity

Vc radar measurement volume

W frequency band from 75 to 110GHz

WBF Wegener-Bergeron-Findeisen process

X frequency band from 8 to 12GHz

X/KaSACR scanning dual-frequency (X, Ka) ARM cloud radar system

Z reflectivity factor in dBZ

z reflectivity factor in linear scale

ZDR differential reflectivity

Ze equivalent reflectivity factor

ZH,V reflectivity factor at horizontal, vertical polarization
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1 Introduction

In the mid and high latitudes, heavy snowfall is an important form of severe weather

with high economic impact and, in the most severe cases, poses risks to human life.

Reduced visibility due to snowfall, accumulating snow cover and icing can be hazardous

conditions for ground transportation (Juga et al., 2012), aviation (Smith et al., 2012;

Saltikoff et al., 2018), and infrastructure. Accurate forecasting of accumulation, timing

and type of precipitation is increasingly important for maintenance, preparation and

mitigation activities such as road and airport maintenance, re-routing of flights and

removing snow from roofs to avoid collapsing under weight.

The quality and severity of these effects of snow are largely determined by the mi-

crophysical properties of the falling particles. For instance, snow density is strongly

linked to visibility and the properties of the snow cover accumulating on surfaces. An

ensemble of large fluffy aggregates has a larger impact on visibility than an ensemble

of graupel particles with equal liquid equivalent water content. Compared to the more

contained graupel particles, branched structures in the aggregates also make them stick

and accumulate on tree branches more easily, increasing the risk of the trees falling

onto power lines.

The microphysical properties, in turn, are determined by a chain of different snow

processes along the paths of the falling particles according to the ambient conditions

that drive them. The strong response of these processes to subtle changes in especially

air temperature, humidity and the availability of condensation nuclei typically allows

the evolution of a precipitation event in terms of intensity and particle types in temporal

scales of minutes.

Not only snow, but also rainfall is affected by snow microphysical processes. Apart from

drizzle, most of rainfall originates as melted snow particles in mid and high latitudes.

The processes above the melting layer have a significant impact on rainfall intensity

and drop size distribution (Lamb and Verlinde, 2011).

The global climate change is altering the climatology of precipitation through a wide

range of environmental changes affecting atmospheric temperature profiles, moisture

content and flow patterns. The most strongly affected are the polar regions due to

arctic amplification (Serreze and Barry, 2011). Changes in the climatology of snow

processes have a direct influence on water cycles (Rott et al., 2010). For example,
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the increase in seasonal snow cover in some areas may cause more severe spring time

flooding. Mitigation of and preparing for such risks relies on accurate quantitative pre-

cipitation estimation (QPE; Berne and Krajewski, 2013) and realistic representation

of the precipitation processes in numerical climate models (Briley et al., 2017). Espe-

cially winter precipitation remains one of the most significant sources of uncertainty in

climate modelling (Schiermeier, 2010).

Surface base measurements are a fundamental bearing point for microphysical studies

on snow and the related processes. They are the most viable method for performing

continuous direct measurements of precipitation rate and microphysical properties of

hydrometeors. Sometimes referred to as the ”ground truth” in the remote sensing

community, surface measurements are used as a verification and reference observations

for radar retrievals. The observed microphysical properties of hydrometeors at the

surface act as evidence for the processes through which the particles were formed aloft.

Historically, surface-based measurements have been performed manually and the hy-

drometeor properties have been studied on a particle-by-particle basis (e.g., Magono

and Nakamura, 1965; Locatelli and Hobbs, 1974; Mitchell, 1996). Such studies have

reached a high level of detail in describing the properties, but lack spatial and tempo-

ral coverage. At present, surface-based snow measurements are typically carried out

using optical disdrometers capable of measuring a range of microphysical properties

including the particle size distribution (PSD), and often also fall velocities and some

aspects of particle shapes. Additionally, automatic precipitation gauges can be used

for directly measuring liquid water equivalent (LWE) precipitation rate. Combining

disdrometer and gauge measurements allows studying a range of snow microphysical

properties in time series with temporal resolution of minutes.

The main limitation of surface-based observations, however, is their sparse spatial

coverage (Pirazzini et al., 2018). This underlines the importance of remote sensing in-

strumentation capable of covering large areas and three-dimensional structure of cloud

and precipitation systems at high spatial and temporal resolution. The use of polarime-

try in modern weather radars allows retrieving evidence on hydrometeor shapes, sizes

and dielectric properties manifested in the observed dual-polarization radar variables.

Considering these capabilities, remote sensing instruments, especially weather radars,

have enormous potential in identifying and locating precipitation processes. This abil-

ity can be utilized in improving both QPE and the representation of these processes in

numerical weather and climate models.
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Especially with snow, the connection between radar observations and the microphys-

ical properties is often ambiguous. Difficulties arise from the diverse and irregular

structure of the particles resulting in complex scattering properties. Furthermore,

the particle properties are evolving continuously through microphysical processes, and

multiple particle types and processes may even occur simultaneously in the same radar

measurement volumes. A way forward in improving QPE and parametrization of snow

microphysics in numerical models lies in better understanding of the microphysical

properties and processes and their connection to radar observations. This dissertation

work aims to address these challenges by

1. characterizing and parametrizing snow microphysical properties using surface-

based observations (Paper I),

2. linking the retrieved properties to microphysical processes, namely aggregation

and riming (Papers II and III),

3. studying interactions between different precipitation processes (Paper V),

4. based on the steps above, investigating the representation of the microphysical

properties and processes in single and multi-frequency radar signatures (Papers

II, III and V)

5. constructing an unsupervised classification of vertical profiles of polarimetric

radar variables to allow automatic detection of ice process fingerprints in radar

observations (Paper IV).

13



2 Snow microphysics

2.1 Microphysical quantities

The microphysical properties of snow are described with a number of quantities such

as size, shape, density (or mass) and fall velocity, as well as their distributions over an

ensemble of particles. The other microphysical quantities are conventionally expressed

as a function of a chosen definition of particle diameter (D) or a characteristic size

of an ensemble (Pruppacher and Klett, 2010). The choice of size definition is often

related firstly to the used measurement techniques and limitations in their observation

geometry, and secondly to the requirements posed by the retrieval methods of derived

products. For instruments recording images of particles, the diameter of an equivalent

area (Heymsfield et al., 2002; Paper I) or circumscribing sphere (Mitchell, 1996; Heyms-

field et al., 2004; Heymsfield and Westbrook, 2010) is conventionally used. Conversions

between different size definitions involve assumptions on characteristic particle shapes

(Korolev and Isaac, 2003) and orientations (Matrosov et al., 2005). In Paper I, the

disk equivalent diameter is converted to volume equivalent Dveq in order to compute

volume flux weighted ensemble mean density. An approximation of Dveq is typically

used also in studies employing instruments capable of imaging particles from multiple

angles (Brandes et al., 2007; Wood et al., 2013; Huang et al., 2015).

Commonly used quantities describing characteristic sizes of hydrometeor ensembles

include the mass weighted mean diameter (Dm) and the median volume diameter (D0;

Bringi and Chandrasekar, 2001). Half of the total volume is contributed by particles

larger than D0: ∫ D0

0

D3N(D) dD =

∫ ∞

D0

D3N(D) dD , (1)

where N(D) is the size distribution function.

The size distribution function describes the particle size distribution (PSD), i.e. the

distribution of different sizes of hydrometeors in a given volume. It is most commonly

expressed in the units of m−3 mm−1, as the measurement volume is given in cubic meters

and particle sizes in millimeters. Some precipitation processes have a characteristic

effect on the PSD, e.g. the generation of large snowflakes through aggregation results

in a wide distribution (Brandes et al., 2007; Pettersen et al., 2020b; Yu et al., 2020).

Radar observations can be sensitive to particle size distributions, as described further
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in Sect. 4. In order to express particle size distributions quantitatively, a gamma

functional formulation is typically used (Ulbrich, 1983)

N(D) = N0D
μ exp(−ΛD), (2)

where N0 is the intercept parameter in m−3 mm−1−μ
, μ is the shape parameter and

Λ is the slope parameter of the gamma distribution. Due to instrumental limitations,

this thesis mainly concerns ice particles larger than 0.2mm. The effects of consequent

PSD truncation are discussed in Paper I.

A fall velocity at which the gravitational force pulling a freely falling particle downwards

is balanced with aerodynamic drag and buoyancy, is termed the terminal velocity.

The net force on the object being zero, the terminal velocity is constant. The terminal

velocity of hydrometeors in the atmosphere depends on their mass and shape, as well as

the density of air, which increases with decreasing altitude. A lower air density allows

higher terminal velocities and, on the other hand, dense particles fall faster than fluffy

ones. An increase in vertically projected area increases drag, slowing the particle. If

two particles of different sizes have very similar shapes and densities, the larger one

will fall faster, as mass is proportional to the cube of the size while projected area is

proportional to its square. In reality, snowflakes tend to become fluffier as they grow,

causing fall speeds to saturate after the particle reaches a certain size (Barthazy and

Schefold, 2006). Due to the low inertia of hydrometeors, especially snow particles, it

can be safely assumed that the fall velocities equal their terminal velocities.

Due to recirculation in the particle wake and subsequent pressure distribution, snow

particles tend to fall in orientations that maximize drag (Mandø and Rosendahl,

2010). The symmetry axis of falling particles is pointed vertically for plates and hori-

zontally for columns. The complex structure of especially asymmetric aggregates may

cause them to tumble or swing while falling. The aerodynamics also affect falling rain-

drop shapes by widening their horizontal dimension. Raindrops become more oblate

as they grow larger.

In addition to aerodynamic effects, the orientation of an ice crystal is affected by a

local electrostatic field. However, both theoretical calculations (Weinheimer and Few,

1987) and polarimetric radar observations (Williams et al., 2015) suggest that in most

situations, the effect of an electric field to particle orientations is small compared to

aerodynamics. Vertical orientation of small ice particles due to electrification is possible

in convective thunderstorms. A commonly used measure of anisotropy of hydrometeors

15



Figure 1: Types of ice processes.

is their aspect ratio, which in this context is defined as the ratio of the horizontal

to the vertical axis. Characteristics in particle aspect ratios are especially useful in

dual-polarization radar measurements as discussed further in Section 4.

2.2 Ice processes

In clouds with cloud top temperatures below the freezing point of T0 = 0 °C, termed

cold clouds, water is often present in three phases in parallel: ice, liquid and vapour.

Transformations between these phases occur depending on ambient conditions, with

humidity, temperature, and the availability of condensation nuclei being the most im-

portant ones. The liquid and solid phases are initiated by nucleation. In most cases,

nucleation occurs heterogeneously, meaning that it is facilitated by aerosol particles

acting as cloud condensation nuclei (CCN) or ice nuclei (IN). Ice particles may

also form through homogeneous nucleation without external agents by first condensing

into liquid cloud drops, which then freeze. Homogeneous nucleation to liquid phase

mainly occurs with very high supersaturations of over 300%, when insufficient amount

of condensation nuclei are present, and is therefore improbable in the atmosphere

(Lamb and Verlinde, 2011). A cloud droplet may freeze either heterogeneously when

coming in contact with IN or homogeneously at temperatures below approximately

−38 °C (Pruppacher and Klett, 2010).

Fig. 1 illustrates notable examples of processes through which the generated ice parti-

cles grow, attach to each other and break apart. These processes are further described

in the following paragraphs and are the main processes considered in this thesis.
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Figure 2: Snow crystal morphology. Reproduced from Lamb and Verlinde (2011) with

permission.
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The observed number concentration of ice particles often exceeds the number of IN,

which has been explained by secondary ice production (Field et al., 2017). The pro-

posed mechanisms include Hallett-Mossop (H-M) rime splintering, collision

fragmentation of branched crystals with delicate structure and shattering of cloud

droplets upon freezing (Hallett and Mossop, 1974; Vardiman, 1978; Rangno and

Hobbs, 2001; Yano and Phillips, 2011; Rangno and Hobbs, 2005; Lawson et al., 2015).

Ice particles grow from vapour when there is vapour supersaturation in respect to

ice. Equilibrium vapour pressure of ice is lower than that of liquid water. Therefore,

coexistence of liquid and ice particles in a cloud leads to ice particles consuming water

vapour faster than liquid droplets. This may continue to the point where there is no

longer vapour saturation in respect to liquid. The situation where ice particles grow

at the expense of evaporating liquid droplets is called the Wegener-Bergeron-Findeisen

(WBF) process.

Depending on temperature, the growth of hexagonal crystals is greater either on the

basal or the prism face leading to the growth of columnar or plate-like crystals, respec-

tively. The preferential growth between these two main types of the primary habit

alternate with temperature, as visualized in the ice crystal morphology diagram in

Fig. 2. A sufficiently high ambient supersaturation leads to morphological instability

in the growth of ice crystals. This means that changes in particle shapes affect the

vapour field in a way that amplifies these changes. The effect is due to radial gradi-

ents in vapour concentration near the growing particle, and thus leads to preferential

growth of features that stick out (Lamb and Verlinde, 2011). Such morphological fea-

tures superimposed on the primary habit are termed the secondary habit. At high

supersaturation, hexagonal plates have the tendency to grow branches at the corners

of the hexagon resulting in dendrites. Dendritic growth is the preferential growth

mechanism at high vapour supersaturations near −15 °C.

Besides growth from vapour, ice particles can grow by collision and adhesion with other

solid or liquid particles. Differences in mass and shape of cloud and precipitation parti-

cles lead to different fall velocities, allowing such collisions to occur. The collision and

adhesion of solid particles is termed aggregation. The adhesion mechanisms involved

in aggregation include mechanical interlocking, electrostatic effects and sintering. Me-

chanical interlocking is the most important mechanism from roughly −15 °C to −12 °C
(Lamb and Verlinde, 2011). This mechanism is enhanced by the branched structure

of dendrites growing efficiently at around −15 °C. As a result, the maximum size of

18



Figure 3: Sizes of snow aggregates as a function of temperature. Reproduced from

Lamb and Verlinde (2011) with permission.

aggregates peaks at around those temperatures as seen in Fig. 3.

Sintering is an adhesion mechanism allowed by liquid-like properties of solid objects’

surfaces especially near their melting points. This is why aggregation is a particularly

important growth mechanism near 0 °C (Dias Neto et al., 2019), manifested as a cor-

responding peak in aggregate sizes as seen in Fig. 3. Surfaces of ice particles have

such quasi-liquid properties also at colder temperatures, but sintering is less effective

in such conditions. In aggregation, snow particles attach to each other in random ar-

rangements often resulting in a loose structure. The porosity and hence bulk density of

the aggregate depends on the primary particle habits. Due to the typical low density of

unrimed aggregates, the dependence of fall velocity on size is smaller than with single

crystals (Hanesch, 1999). Aggregation is linked to high precipitation rates (Moisseev

et al., 2015), making it of particular interest in microphysical studies.

A snow particle falling through a supercooled liquid cloud layer is likely to collide with

cloud droplets causing them to freeze instantaneously on its surface. This process,

called riming, thus increases the mass of the particle and may also, depending on the

initial habit and the stage of riming, affect its shape and size. With increased degree

of riming, the crystalline structure of the particle is obscured and it becomes more

19



Figure 4: Snow particles with different stages of heavy riming: a) a heavily rimed

aggregate and b) conical graupel.

roundish. However, the increase in particle size is small in proportion to the added

mass, and consequently density and fall velocity are increased. Fig. 4 displays snow

particles at different stages of riming: the original crystalline structure of the aggregate

in pane a) is partly visible, while in the graupel particles in pane b) it is completely

obscured.

In favourable conditions, the rime ice may release splinters upon freezing. There is

strong evidence of the H-M process occurring in temperatures ranging from −8 to

−3 °C in laboratory experiments (Hallett and Mossop, 1974; Choularton et al., 1980;

Saunders and Hosseini, 2001), consistent with in situ measurements (e.g., Harris-Hobbs

and Cooper, 1987; Taylor et al., 2016). However, there is no consensus on the physical

explanation of the process. An early hypothesis has been that, upon impact, the

supercooled liquid drops start freezing from their surface, surrounding the liquid core.

The expansion of water on freezing increases pressure inside the core, which may cause

the incompressible water to burst out and freeze, resulting in one or more secondary

ice particles. At the temperature range favoured by the H-M process, ice tends to grow

columnarly, resulting in needles at high supersaturations.

As the particles fall, they experience a continuum of changing conditions in terms of

temperature, moisture and the presence of other particles. A falling ice particle will

therefore likely go through a number of different processes before reaching the surface

20



or the melting layer. In a given volume there may be particles originating from different

altitudes, and have therefore gone through a different combination of conditions and

processes. Consequently, a number of different habits may coexist in the same volume.

Observing snow microphysical processes using surface-based and radar observations

always involves solving an inverse problem. In other words, physical properties have to

be inferred from their indirect manifestations. In surface-based observations, only the

final product of the microphysical processes is observed, and with radars we measure

scattered microwave radiation in different polarizations and wavelengths. The following

sections give a brief explanation on such measurements and how they can be used to

study snow microphysical properties and processes aloft.
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Figure 5: a) Precipitation gauge Pluvio2 200 with Tretyakov wind shield inside the

DFIR fence and b) the same gauge after a snowstorm on 28.-29.1.2019.

3 Surface-based snowfall measurements

In situ measurements of snowfall microphysics act as important validation reference for

remote sensing observations. As an advantage over airborne measurements, surface-

based in situ observations allow automated long-term continuous monitoring of snow

microphysical properties at fixed locations.

Snowfall accumulation (G) and intensity (S) are often expressed in terms of their

liquid water equivalents, and expressed in mm and mmh−1, respectively. The main

types of automatic instruments for directly measuring precipitation rate and accumula-

tion are gauges based on weighting or floating mechanisms, and tipping buckets (World

Meteorological Organization, 2018). Out of these types, only the weighting mechanism

is suitable for measuring all types of precipitation, while the other types are limited

to liquid only. The main challenges and error sources in gauge measurements include

evaporation and condensation, undercatch due to wind and piling of snow onto the

orifice (Fig. 5; Michelson, 2004). The regular maintenance of the gauges includes

manual emptying of the container, adding antifreeze liquid and suppressants for con-

densation and evaporation, as well as clearing possible blockages in case of piling snow.

In Papers I, II and III, two OTT Pluvio2 gauges were employed in the retrieval of

ρ̄. They are situated at the Hyytiälä measurement field surrounded by boreal forest,

with the shortest distance between a gauge and trees being approximately 20m. The

gauges have different orifices and wind shielding. The Pluvio2 200 with 200 cm2 orifice
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Figure 6: Instrumentation at the Hyytiälä measurement station in February 2019.

is located inside the DFIR with a Tretyakov wind shield, and the Pluvio2 400 outside

the DFIR with Tretyakov and Alter wind shields.

A disdrometer is a surface-based instrument for measuring PSD, and in some device

types also fall velocities and hydrometeor shapes. This data can be used for calcu-

lating hydrometeor volume flux, which in turn is useful in retrievals of density and

precipitation rate. The information on shape, density and fall velocity are used in

hydrometeor classification. Different disdrometer types include impact disdrometer

such as the Joss-Waldvogel disdrometer (JWD; Joss and Waldvogel, 1967), and optical

disdrometers based on either laser emitters and photodiodes as in the Particle Size

Velocity (Parsivel; Löffler-Mang and Joss, 2000) disdrometer, or incoherent light and

camera sensors such as in the Multi-Angle Snowflake Camera (MASC; Garrett et al.,

2012), 2D-video disdrometer (2DVD; Kruger and Krajewski, 2002) and Precipitation

Imaging Package (PIP; Pettersen et al., 2020a).

The variety of approaches in measuring particle shapes, sizes and fall velocities be-

tween the different camera-based disdrometers is rather wide. In the recently intro-

duced MASC, the hydrometeors are photographed from three angles separated by 36°
resulting in high resolution stereographic images. Fall velocity is measured from the
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detection time difference of two near-infrared emitter-detector pair arrays with vertical

separation of 32mm. The 2DVD, on the other hand, is based on two sets of horizontally

aligned line scan cameras both recording the hydrometeor shadows in two orthogonal

directions. Stacking these one-dimensional images as the particle falls through the

measurement plane results in two-dimensional images of the hydrometeor in two an-

gles. The sets of cameras are vertically separated by 6mm to allow the retrieval of fall

speed. PIP is a new generation of the Snowflake Video Imager (SVI; Newman et al.,

2009). A two-dimensional greyscale video is recorded of the shadows of hydrometeors

as they fall between a high frame rate camera and a light source. With the field of view

at focus of 48 by 64mm and a frame rate of 380 fps (frames per second), PIP is able

to record multiple frames of the same particle, allowing its fall speed to be retrieved

from the distance it fell between the frames.

In this research, PIP is the main disdrometer used. Its main benefits compared to

the other disdrometers include open structure and large sampling volume. This allows

for representative observations that are less affected by wind (Newman et al., 2009).

PIP is also both mechanically and operationally robust, allowing deployment to remote

locations with little maintenance (Souverijns et al., 2017). In Papers I, II and III, PIP

was used together with precipitation gauge observations to retrieve time series of ρ̄.

Paper I linked the retrieved ρ̄ to PIP-derived v(D) relations and to PSD parameters.

In Paper II, triple-frequency radar observations were compared to PIP snow particle

images and v(D) relations. Ensemble mean density and v(D) relation were used in

Paper III for computing the rime mass fraction (FR) of falling snow. In Paper V,

FR was derived from PIP observations using the von Lerber et al. (2017) method.

Additionally, a 2DVD was employed in PaperV for rain rate estimation and calibrating

the X band radar reflectivity.

In the Hyytiälä measurement station, surface instrumentation are collocated with re-

mote sensing instruments (Fig. 6; Petäjä et al., 2016). This allows combining direct

observations of hydrometeor microphysical properties with indirect evidence of pro-

cesses through which the particles were created aloft.

24



4 Radar measurements

Radars are the most widely used remote sensing instruments for precipitation measure-

ments. The instrument transmits electromagnetic radiation at microwave frequencies

typically in short pulses directed with a parabolic reflector resulting in a beam width in

the order of 1°. The pulse propagates at the speed of light, and a fraction of the trans-

mitted power is scattered from target objects back at the radar. The radar measures

the properties of the backscattered radiation and the elapsed time from the transmis-

sion to the receiving. The location of the scatterers is solved from this time difference

and the pointing azimuth and elevation angle of the antenna. The received power, typ-

ically converted to a quantity called reflectivity factor, depends on the size distribution

and the dielectric properties of the targets in a measurement volume. Doppler radars,

in addition, deduce the radial velocity of scatterers from the observed frequency shift.

This Doppler velocity can be used to track storm movements, estimate wind speed and

filter out stationary objects with scanning radar setups, or to study fall velocities with

vertically pointing radars.

Apart from small cloud droplets, hydrometeors are not spherical, and have preferred ori-

entations giving them different scattering properties depending on polarization. There-

fore combining information of the received signals at the two perpendicular polariza-

tions gives added information on particle shape, orientation, phase and distribution

of sizes within the observation volume. Polarimetric measurements are used for hy-

drometeor classification, attenuation correction and improving QPE (Bringi and Chan-

drasekar, 2001).

The transmit wavelength (λ) of meteorological radars ranges between 3.2mm and

11 cm. It is chosen considering the compromise between signal attenuation, measure-

ment sensitivity and various system design aspects including size of the reflector and

available power. Radars operating at millimetre wavelengths are often referred to as

cloud radars as they are highly sensitive and can be used for observing cloud particles.

On the other hand, cloud radar signal is heavily attenuated by moist air and droplets.

Moreover, at shorter wavelengths it is more difficult to satisfy the Rayleigh criteria,

meaning that particle size should be at least an order of magnitude smaller than the

wavelength for the backscattered power to be proportional to the sixth power of the

particle diameter. The most commonly used wavelengths in cloud radars are 3.2mm

(W band) and 8.6mm (Ka band). Weather radars operate at 3.2 cm, 5.5 cm or 10.7 cm
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wavelengths falling to the X, C and S frequency bands, respectively, in order to be less

affected by signal attenuation and to better meet the Rayleigh criteria for hydromete-

ors. In Papers III, IV and V, C band observations are analysed, and in Papers II and

V, multi-frequency radar setups are used.

The radar reflectivity factor is defined for spherical liquid water droplets meeting

the Rayleigh criteria as

z =
1

Vc

∑
i

D6
i , (3)

where Vc is the contributing volume and Di are the droplet diameters within the con-

tributing volume (Rauber and Nesbitt, 2018). It can be rewritten using the particle

size distribution as

z =

∫
D

D6N(D) dD . (4)

The reflectivity factor is conventionally expressed in mm6 m−3, but due to the wide

range of values, typically displayed in decibels with respect to reference level of

1mm6 m−3 (dBZ):

Z = 10 log10

( z

1mm6 m−3

)
. (5)

While the approximation of small spherical liquid water droplets is applicable for

weather radar observations of rainfall, it may not be valid at higher frequencies, and

certainly is not for ice particles or snowflakes of complex shapes. Therefore, it is often

necessary to use the generalization of equivalent reflectivity factor (Bringi and Chan-

drasekar, 2001)

Ze =
λ4

π5|Kw|2
∫
D

σb(D)N(D) dD , (6)

where σb(D) is the backscattering cross section, and the dielectric factor of liquid water,

|Kw|2, is conventionally used as the true dielectric factor within the resolution volume

is generally unknown.

Differential reflectivity, ZDR, is defined as the ratio of the horizontal and vertical

reflectivity factors in the logarithmic scale (ZH and ZV, respectively; Seliga and Bringi,

1976), and can thus be expressed as their difference

ZDR = ZH − ZV (7)

in decibels. Differential reflectivity can thus be used to detect asymmetry in hydrom-

eteor shapes. Relations linking raindrop sizes and aspect ratios can be used to infer

26



a characteristic size from ZDR signatures. Because of the strong size dependence of

reflectivity, the magnitude of ZDR is predominated by large particles. Being a ratio,

ZDR is independent of particle number concentrations and sensitive to the calibration

of the two reflectivity factors.

The speed of electromagnetic waves in liquid water and ice is slower than in air. This

is because the electric field interferes with the charges of the atoms, causing them to

oscillate and emit their own electromagnetic waves which interact with the original wave

slowing its phase speed. In a similar manner, an ensemble of hydrometeors interfere

with radar microwave radiation slowing the phase speed. As a beam transmitted by a

polarimetric radar propagates through an ensemble of oblate raindrops or statistically

anisotropic ice particles, the electromagnetic waves effectively encounter more mass in

one polarization than the other causing a corresponding difference in the phase speeds.

The resulting phase shift between the polarizations is termed the differential phase

shift, φdp. Given hydrometeors with statistically positive aspect ratios along the track

of the beam, φdp increases with range. Rather than the absolute value of φdp, it is often

more informative to estimate its rate of change along the beam. Specific differential

phase is defined as

Kdp =
1

2

dφdp

dr
, (8)

with units in ° km−1. It can be calculated for an ensemble of particles following the

equation (Rauber and Nesbitt, 2018):

Kdp = 103
(
180λ

π

)∫
D

� (fH − fV)N(D) dD , (9)

where fH and fV are the forward scattering amplitudes describing the portion of elec-

tromagnetic wave scattering in the forward direction at horizontal and vertical polar-

izations, respectively. As their difference is related to the aspect ratios of scatterers,

essentially, Kdp is a product of a factor related to the shapes of particles and number

concentration. Specific differential phase is less sensitive to PSD than ZDR. Further,

it is independent of radar calibration and not affected by attenuation or partial beam

blockage (Zrnić and Ryzhkov, 1996). These properties make Kdp valuable in snow

microphysical analysis, quantitative rain estimation and radar calibration.

Specific differential phase or, strictly speaking, even φdp cannot be directly measured

with a radar. Instead we measure the total differential phase shift:

Φdp = φdp + δ + ε, (10)
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where δ, termed the backscatter differential phase shift, is the differential phase shift

due to non-Rayleigh scattering effects and ε is noise in the measured Φdp. Typically, the

noise levels in Φdp are considerable, and the magnitude of δ can be difficult to estimate,

complicating the retrievals of Kdp. Numerous algorithms have been developed aiming

to overcome these difficulties (Hubbert et al., 1993; Hubbert and Bringi, 1995; Lang

et al., 2007; Wang and Chandrasekar, 2009; Otto and Russchenberg, 2011; Vulpiani

et al., 2012; Maesaka et al., 2012; Schneebeli et al., 2014), but nevertheless, often

especially the effects of noise pose constraints on the use of low Kdp values.

4.1 Dual-polarization signatures of snow processes

As snow processes cannot be directly observed using radar measurements, we need

ways to link radar observations to snow microphysical properties. This is based on

identifying particle types in observations and understanding the scattering properties

of ensembles of particles.

Even combined use of different dual-polarization radar variables leaves ambiguity to the

interpretation of these properties and their cause, as is typical for inverse problems. As

the snow particles go through the processes along their more or less vertical tracks, and

with the high importance of ambient temperature for the processes, it is useful and often

necessary to view changes in the polarimetric radar variables along the vertical axis in

order to analyse the processes. For this, range height indicator (RHI) scans are ideal, as

they provide high resolution vertical slices of radar observations in a chosen direction.

For combining surface-based and remote sensing observations, it is useful to study the

temporal evolution of these vertical observations over the location of interest as a series

of vertical profiles in time-height format. A method for extracting vertical profiles of

dual-polarization observations from RHI data was developed in Paper IV. A number

of other vertical profile extraction methods exist for different scanning strategies and

use cases, such as the quasi vertical profile method utilizing azimuthal averaging over

high antenna elevation scans (Ryzhkov et al., 2016).

From profiles of dual-polarization radar variables, it is possible to analyse vertically

extending patterns as fingerprints of precipitation processes, in contrast to performing

hydrometeor classification based on individual radar volumes. Since the emergence of

polarimetric radar technology, such fingerprints have been identified in observations.
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Water deposition growth at the top of the cloud can be linked to the presence of planar

crystals growing through the WBF process. The presence of these oblate crystals is

characterized by high-ZDR features near the cloud top (Williams et al., 2015; Oue et al.,

2016).

As dense oblate crystals, dendrites are characterized polarimetric radar observations

by an increase in ZDR and, if number concentration is sufficiently high, an increase in

Kdp. The presence of at least one of these characteristics near the −15 °C region is

a likely indication of dendritic growth. A high number concentration of dendrites in-

creases the likelihood of particle collisions and aggregation. Therefore, a Kdp signature

around this temperature can also be treated as an indication of the onset of aggregation

(Moisseev et al., 2015). Formation of such high concentrations of dendrites requires a

high cloud top height, such that homogeneous nucleation can occur (Moisseev et al.,

2015; Griffin et al., 2018). This type of Kdp fingerprints have been linked to heavy

surface precipitation (Kennedy and Rutledge, 2011; Bechini et al., 2013), highlighting

their importance. These properties of the radar fingerprints of dendritic growth were

confirmed statistically in Paper IV using clustering of vertical profiles of polarimetric

radar observations.

Similar Kdp bands have been reported at temperatures where the H-M process occurs

and have been linked to the presence of needles consistent with the expected outcome

of the process (Hogan et al., 2002; Grazioli et al., 2015; Sinclair et al., 2016; Kumjian

et al., 2016; Giangrande et al., 2016). Unlike in dendritic growth zones, peakKdp values

in H-M zones seem to be consistently capped at 0.2 to 0.3 ° km−1, likely due to early

onset of aggregation (Sinclair et al., 2016). This may pose challenges in automated

radar-based detection of the process as found in Paper IV.

Riming and aggregation have highly similar polarimetric fingerprints, making it dif-

ficult to tell them apart in observations. Both are often characterized by Kdp and

ZDR decreasing downwards as the particles become more spherical by growing through

collection. This coincides with an increase in reflectivity. Moisseev et al. (2015) found

early aggregates to be oblate, contributing toKdp, which may explain whyKdp peaks at

a lower altitude than ZDR. As the aggregates grow larger, they become more spherical,

less dense and tend to tumble. As particles join together, the number concentration,

and consequently Kdp, is decreased. The comparison of dual-polarization radar obser-

vations and retrievals of microphysical properties in Paper III suggest that the effect

of riming on ZDR depends on initial particle sizes indicating an underlying dependence
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on the initial habits. Apart from the use of polarimetry, the degree of riming may

be inferred in remote sensing observations by the use of Doppler velocity (Mosimann,

1995; Mason et al., 2018) and LWP measurements.

4.2 Multi-frequency signatures

Estimation of snow microphysical properties such as PSDs using radar measurements

at a single frequency involves considerable uncertainties, which further has a negative

impact on QPE (Kulie and Bennartz, 2009; Hiley et al., 2011). Simultaneous use of

collocated radar instrumentation at different frequencies has been found to significantly

improve retrievals of these properties (Matrosov, 1998; Hogan et al., 2000; Matrosov

et al., 2005). These methods are based on the relations between the effective reflec-

tivity factor and a characteristic size of the PSD, such as D0. The Ze(D0) relation

is independent of the frequency as long as the Rayleigh approximation is valid, but

becomes different when the size parameter approaches the resonance region and non-

Rayleigh scattering becomes relevant. The dual wavelength method takes advantage of

this difference by synergetic use of radars at two different frequencies. Typically, one

wavelength is selected to be at or close to the Rayleigh regime (e.g. X, C or S band) and

the other reasonably affected by non-Rayleigh effects (e.g. Ka or W; Matrosov, 1998;

Hogan et al., 2000; Liao et al., 2005). The difference between the equivalent reflectivity

factors at these two wavelengths, λ1 and λ2, is termed dual wavelength ratio (DWR)

DWR(λ1, λ2) = Ze(λ1)− Ze(λ2). (11)

Assuming snow particles as spheres or spheroids may not be sufficient for linking their

microphysical and scattering properties due to the complex connection between these

properties at high frequencies (Petty and Huang, 2010; Botta et al., 2010, 2011; Tyynelä

et al., 2011). One possible approach in analysing the performance of such models is

introducing a third frequency in the analysis, as demonstrated by Kneifel et al. (2011),

who compared simulated DWRs at Ku, Ka and W bands from different scattering

models. The study revealed a separation especially between the aggregate and spheroid

models. In Paper II, triple-frequency radar observations are used in combination with

ground-based in situ measurements to investigate connection between triple-frequency

signatures and snow microphysical structure. The results verify these characteristic

signatures of large aggregates in triple-frequency space, and further, triple-frequency
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fingerprints of rimed particles were discovered. These findings suggest a potential in

using multi-frequency observations for snow type classification.

Instead of using a third frequency, another viable approach for inferring snow particle

morphology and the related processes is through the combined use of DWR and Doppler

velocity (Mason et al., 2018). The physical basis of such approach is, firstly, in the

effect of particle densities and shapes on terminal velocity, and secondly, in the link

between DWR and characteristic particle size. In Paper V, this approach is used

for differentiating between rimed and unrimed snow aggregates using dual frequency

Doppler radar in order to study the connection between snow processes and melting

layer properties.
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5 Machine learning methods

Machine learning methods can be used, among other applications, for detecting and

objectively classifying recurring patterns, or filling gaps, in complex datasets such as

time series of radar observations. Depending on the type of problem and characteristics

of the data at hand, a machine learning approach is chosen from a large number of

different algorithms and methods that have been developed up to this date. Machine

learning methods can be categorized, firstly, between supervised, unsupervised and

reinforcement learning, and secondly, between shallow and deep learning.

In the supervised learning paradigm, prelabeled training data are used to infer the

function to map inputs to the correct outputs. In contrast, in unsupervised learning,

previously undetected patterns are sought in the data with minimal human interven-

tion. Reinforcement learning concerns finding balance between automated exploration

and exploitation of current knowledge using reward and punishment mechanisms. Typ-

ical use cases for both supervised and unsupervised learning are classification problems

(e.g., Junninen et al., 2007; Lindqvist et al., 2012) and filling data gaps (e.g., Kang

et al., 2019; van den Heuvel et al., 2020).

Unsupervised classification methods rely on cluster analysis. Notable examples of clus-

tering models are those based on centroids (k-means), connectivity, distributions and

density. A clustering strategy should be selected based on the distribution of the fea-

tures the cluster analysis is applied on. For example, a density based method that

assumes clusters of similar density may perform badly if data is in fact Gaussian-

distributed. Although less common, reinforcement learning can be employed for clas-

sification as well (Lin et al., 2020).

The depth of a machine learning architecture refers to the number of nonlinear fea-

ture transformation layers; shallow methods typically contain no more than one or

two layers, whereas deep learning methods, such as deep neural networks, consist of

several interconnected layers (Deng, 2014). Deep architectures are typically used in

classification problems with intrinsic hierarchical complexity such as computer vision,

which involves the transforming information hierarchically from the pixel matrix level

to shape and texture detection levels, and further to the conception level. On simpler

and well-constrained problems, shallow machine learning methods have been shown

effective.
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The use of shallow architectures often involves a separate feature extraction phase.

Depending on how much domain knowledge is intended to be used at this stage, features

to be extracted can be chosen completely manually, while there are also unsupervised

methods such as principle component analysis (PCA) and factor analysis. In deep

architectures, in contrast, feature extraction effectively occurs in the hidden layers,

and a separate step is typically not needed.

In Paper IV, the widely used k-means clustering algorithm is employed for snow pro-

cess detection based on features extracted using PCA. In the study, the benefits of

using machine learning techniques for explorative data analysis on radar data are also

demonstrated. The use of the clustering method revealed evidence that a second den-

dritic growth zone may sometimes be found in a strong inversion layer. It should be

noted that similar use of machine learning in explorative data analysis may be useful

even in studies that do not aim to use machine learning as their main analysis method.
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6 Summary of results

Up to the present time, quantitative snowfall estimation has remained to a great extent

an unsolved problem in radar meteorology. Further, the uncertainty in microphysical

parametrization of falling snow has a negative impact on numerical weather and cli-

mate modelling. Combined use of multisensory data from heterogeneous sources at

high temporal resolution is necessary for addressing these challenges. The focus of this

work is in investigating the manifestations of snow processes in surface based mea-

surements, and using this information for improving the physical basis of radar based

snow retrievals. A machine learning based approach is presented for the analysis of ice

processes in dual-polarization weather radar observations.

6.1 Retrieval of ρ̄ in high temporal resolution

Surface-based in situ measurements of snow microphysical properties were conducted

at the Hyytiälä measurement station, Finland. In this thesis, the video disdrometer

PIP was diversely utilized for this purpose. Ensemble mean density, ρ̄, was derived

in Paper I using a combination of PIP-retrieved PSD and v(D) relations with LWE

precipitation rate from collocated gauge measurements. The temporal resolution of

the Pluvio2 gauge corrected accumulation product varied as a function of precipitation

intensity. To fully leverage this, we used a variable integration time determined by the

accumulation product resulting in a median resolution of 5 minutes. The derived den-

sity values, and the assumption of particle shape involved, were checked against snow

depth measurements for validity. With RMSE of 0.30 cm, linear correlation coefficient

of 0.88 and normalized bias of -0.06 between PIP-derived and directly measured snow

depths, the agreement is good. The link between the retrieved ρ̄ and other microphys-

ical properties of snow were studied in Paper I, and the connection between the mean

density and triple-frequency radar observations in Paper II. In Paper III, ρ̄ was used

for quantifying the effect of riming on snowfall.
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6.2 Linking snow particle properties to microphysical pro-

cesses

In Paper I, we found that parameters of normalized gamma PSD, D0 and Nw, are

correlated with ρ̄. The dependence of D0 on ensemble mean density can be expected

as it is known that larger particles tend to be less dense (Brandes et al., 2007). The

correlation between Nw and ρ̄ was shown to stem from the link between D0 and Nw.

This indicates that aggregation is an important process in heavier precipitation.

The dependence of v(D) relation on ρ̄ was also investigated in Paper I. Both the

prefactor av and the exponent bv of the power law v = avD
bv were found to increase

with density, which is in line with the conclusions of Barthazy and Schefold (2006).

The positive correlation between ρ̄ and av signifies that denser particles fall at higher

terminal velocities.

In Paper III, the ice particle rime mass fraction was retrieved from ρ̄ and PSD. For

this purpose, a reference m(D) relation was derived for unrimed snow. The derived

rime mass fraction was used for analysing mass growth effects on snowfall. Riming was

found to be responsible for 5 to 40% of precipitation mass.

6.3 Investigating radar signatures of snow processes

Scattering signatures from triple-frequency radar observations have previously been

shown to be sometimes consistent with spheroidal particle models and in others only

explainable by complex models of aggregates. Comparisons of low-altitude triple-

frequency signature with surface-based in situ observations of snow microphysical prop-

erties in Paper II revealed a bending away in (DWR(Ka, W), DWR(X, Ka)) space from

the curve of spheroid models in the presence of large (D > 5mm) aggregates. Riming

was manifested as almost a horizontal line in the triple-frequency space.

In Paper III, the retrieved FR, ρ̄ and simulated Ze and ZDR from scattering com-

putations were compared to the low altitude reflectivity and differential reflectivity

measured by the Ikaalinen C band radar. The results from the two cases studied sug-

gest that the effect of riming on ZDR depends on the initial snow particle habits, and

whether riming affects their shapes or only increases particle densities.
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Radar signatures at X and Ka bands were linked to FR in Paper V, and used for clas-

sifying rimed and unrimed snow. The classification results are consistent with a study

by Zawadzki et al. (2005) using a single frequency. Observations using vertically point-

ing multi-frequency radar setup and RHI scans from C band weather radar revealed a

strong link between snowfall intensity above melting layer and sagging, i.e., the descent

and broadening, of the melting layer signature. Riming was found to have a secondary

effect of increased sagging in moderate and heavy precipitation. A pronounced dip in

Ze above melting layer was linked to the presence of unrimed snow suggesting that

aggregation may be suppressed by riming.

6.4 Automated analysis of snow process fingerprints in radar

observations

A novel machine learning based method for objectively classifying vertical profiles of

polarimetric radar variables in the solid precipitation medium is introduced in Pa-

per IV. A dataset of almost 200 precipitation events with temporal resolution of 15

minutes collected year-round over 3.5 years was described using a total of 26 profile

classes. The classes and features within were linked to known fingerprints of snow

microphysical processes including dendritic growth, aggregation and the H-M process.

Based on this, the profile classes were categorized into seven archetypes. The classi-

fication revealed evidence that strong temperature inversions may have an important

role on the frequency of occurrence of some ice processes.
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7 Review of papers and the author’s contribution

Paper I investigates connections between ensemble mean snow density and microphys-

ical properties of falling snow such as parameters of the particle size distribution. I

performed the snowflake density retrievals, estimated the velocity-dimensional rela-

tions and PSD parameters. I was also responsible for the case studies and wrote the

manuscript.

Paper II studies the relations between collocated triple-frequency radar signatures

and ground based in situ measurements of snowfall microphysical properties. I was

responsible for performing analysis of snowfall microphysical properties such as density

retrievals and velocity-dimensional analysis. I also took part in the analysis of the case

studies and preparation of the manuscript.

Paper III uses ground based observations to study the effect of riming on snowfall

as well as its impact on dual-polarization radar variables. I took part in designing of

the study, provided data for the retrieval of rime mass fraction and did meteorological

analysis of the case studies. I contributed to the preparation of the manuscript.

Paper IV introduces a classification method for vertical profiles of polarimetric radar

observations, and demonstrates its use for automated detection of ice processes. I had

the main responsibility in designing and implementing the data analysis and on the

writing process related to this paper.

Paper V investigates the link between melting layer properties and the ice processes

taking place above it using a combination of ground based in situ measurements and

multi-frequency radar observations. I was responsible for processing the C band radar

data, and deriving the dual-polarization profile data used in the study. I also partici-

pated in the writing process.
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8 Conclusions

Urbanization and the changing climate of precipitation highlight the increasing im-

portance of accurate quantitative precipitation estimation for hydrology, agriculture,

climate studies, aviation and other forms of transportation. In the extratropics, snow

processes have an important impact on precipitation accumulations year-round. The

spatial coverage and resolution enabled by weather radar technology and the ongoing

progress in improving microwave remote sensing measurement techniques underline

their current importance and potential in improving precipitation estimation.

Linking remote sensing observations to snow microphysical properties and processes has

remained a grand challenge in the development of the estimation techniques. The main

contribution of this thesis is in establishing these connections by developing retrieval

methods for state of the art multi instrument setups, parametrizing microphysical

properties of falling snow with surface-based in situ observations and analysing their

links to snow growth processes and further to radar observations. Moreover, it is

demonstrated how machine learning methods can pave the way for future development

in precipitation estimation applications based on the known radar fingerprints of snow

processes.

These investigations highlight the benefits of using versatile collocated surface-based

in situ and remote sensing instrumentation together with off-site radar measurements

in analysing snowfall microphysics. The studies in this thesis work employed two

video disdrometers and two precipitation gauges for in situ precipitation observations,

measurements of wind, temperature and snow depth, lidar and microwave radiome-

ter measurements of liquid water, on-site triple-frequency radar measurements, and

scanning C band weather radar measurements off-site.

From the point of view of a fixed location on the Earth’s surface, changes in the

dominating precipitation processes above often occur in time scales of minutes. In

this thesis, time series of such properties are retrieved in high temporal resolution

in order to study how they are affected by microphysical processes. Such quality-

controlled datasets act as valuable validation basis for many studies. As an example,

the ensemble mean density retrieved in Paper I was used as confirmation for triple-

frequency retrievals in Paper II, and in Paper III to construct a method for retrieving

rime mass fraction in order to quantify the effect of riming to snowfall.
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Multi-frequency radar observations have shown a great potential in observing micro-

physical properties in snowfall. Backed by surface-based in situ retrievals, the value

of triple-frequency measurements in inferring particle densities the characteristic size

of the PSD, key elements for detecting aggregation and riming, were demonstrated in

Paper II. In Paper V, multi-frequency Doppler radar observations were used to inves-

tigate the impact of precipitation intensity, aggregation, riming and dendritic growth

to the properties of melting layer. Such methods and investigations have a great value

in improving our understanding on, not only the effects of microphysics on scattering

properties, but also the interactions between different precipitation processes as well

as their climatology in order to improve their representation in numerical weather and

climate prediction models.

From the point of view of more direct applications in precipitation estimation, the key

focus should be in improving methods that are applicable for networks of scanning

dual-polarization radars. In Paper IV, this need is addressed by demonstrating how

machine learning methods can be employed in documenting and detecting fingerprints

of precipitation processes in vertical profiles of polarimetric radar observations. Auto-

mated detection of ice processes may allow developing adaptive radar retrieval methods

of snowfall rate in which parameters could be chosen based on the classification result.

Classification models trained with vertical profiles of radar variables may also prove

to be useful in extrapolating radar observations in situations where radar reception is

partially blocked by obstacles.
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Abstract. In this study measurements collected during win-

ters 2013/2014 and 2014/2015 at the University of Helsinki

measurement station in Hyytiälä are used to investigate

connections between ensemble mean snow density, parti-

cle fall velocity and parameters of the particle size distri-

bution (PSD). The density of snow is derived from mea-

surements of particle fall velocity and PSD, provided by a

particle video imager, and weighing gauge measurements of

precipitation rate. Validity of the retrieved density values is

checked against snow depth measurements. A relation re-

trieved for the ensemble mean snow density and median vol-

ume diameter is in general agreement with previous stud-

ies, but it is observed to vary significantly from one winter

to the other. From these observations, characteristic mass–

dimensional relations of snow are retrieved. For snow rates

more than 0.2 mm h−1, a correlation between the intercept

parameter of normalized gamma PSD and median volume

diameter was observed.

1 Introduction

Due to a variety of ice particle types and shapes, represen-

tation of winter precipitation in models (Woods et al., 2007;

Morrison and Milbrandt, 2015) and in ground, airborne and

satellite remote sensing retrievals (Sekhon and Srivastava,

1970; Matrosov, 1997; Wood et al., 2013) is a topic of con-

tinuous interest. Both models and retrieval algorithms rely on

a prior knowledge of snowflake mass (or density), shape and

fall velocity, which are typically expressed as functions of a

characteristic particle size (Pruppacher and Klett, 1996). Fur-

thermore, information on possible particle size distributions

(PSDs) is also required. Even though some of the micro-

physical properties of ice particles are not independent, e.g.,

fall velocity can be computed from particle mass and shape

(Böhm, 1989; Khvorostyanov and Curry, 2005; Mitchell and

Heymsfield, 2005; Heymsfield and Westbrook, 2010), the re-

maining degrees of freedom are rather numerous.

Historically, measurements of snowflake properties have

been carried out on a particle-by-particle basis (e.g., Magono

and Nakamura, 1965; Locatelli and Hobbs, 1974; Mitchell,

1996). While we may still regard such measurements as the

more precise and detailed, these studies are limited to a rel-

atively small number of observed ice particles due to the

Published by Copernicus Publications on behalf of the European Geosciences Union.
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sheer amount of time needed for such experiments and corre-

sponding data analysis. After the introduction of robust opti-

cal instruments capable of measuring particle size, shape and

in some cases fall velocity, e.g., 2-D-video disdrometer (2-

DVD; Hanesch, 1999; Schönhuber et al., 2007), particle size

velocity (Parsivel) laser-optical disdrometer (Löffler-Mang

and Joss, 2000; Löffler-Mang and Blahak, 2001), hydrom-

eteor velocity size detector (HSVD; Barthazy et al., 2004),

snow video imager (SVI; Newman et al., 2009) and multi-

angle snowflake camera (MASC; Garrett et al., 2012), con-

tinuous recording of ice particle properties became possible.

It should be noted that, in comparison to surface-based obser-

vations, aircraft measurements have a much longer history in

determining ice particle microphysical properties and were

carried out in different types of clouds and climate regimes

(Pruppacher and Klett, 1996). A typical limitation of auto-

matic observations of ice particle properties, however, is that

only a subset of needed parameters is directly measured.

By combining optical disdrometer observations with other

measurements, e.g., by radar or precipitation gauge, phys-

ical properties such as mean snow density can be derived.

Huang et al. (2010) have used a C-band weather radar obser-

vations of equivalent reflectivity factor, Ze, in combination

with a 2-DVD to derive a snow density–dimensional relation

and to infer more consistent Ze–snowfall rate relations. An-

other method for snow density retrieval is based on solving

aerodynamic equations to derive particle mass from observed

fall velocity and particle effective projected area as proposed

by Böhm (1989) and applied by Hanesch (1999) and more

recently by Szyrmer and Zawadzki (2010) and Huang et al.

(2015). Brandes et al. (2007), hereafter referred to as B07,

used a combination of a weighing gauge and a 2-DVD to

derive a relation between mean bulk density and median vol-

ume diameter and to document relations between PSD pa-

rameters for Colorado winter storms. Their approach is sim-

ilar to the one used by Heymsfield et al. (2004), who have

combined aircraft PSD and ice water content observations

to derive mean snow density and average mass–dimensional

relations for ice particles. Albeit using slightly different def-

initions, both B07 and Heymsfield et al. (2004) derive ef-

fective ice densities for ensembles of ice particles, but there

is a difference in terminology. Heymsfield et al. (2004) and

many others have used the term (particle) bulk density to re-

fer to the density of individual ice or snow particles defined

as the ratio of mass of a particle with a size D to its assumed

volume: ρ = ρ(D). In most of such cases, the word “bulk”

is used to emphasize the inclusion of hollows within parti-

cles. The term “(mean) bulk density” is sometimes used also

when referring to the mean density of an ensemble of parti-

cles representing the whole PSD, i.e., ρ = ρ(D0) (e.g., B07),

whereas Heymsfield et al. (2004) used the term “population-

mean effective density”. In this study we derive the volume

flux weighted snow density, similar to, e.g., B07, and refer to

it as ensemble mean density, ρ, to avoid possible confusion.

This paper documents the connection between ensemble

mean density and other microphysical properties of snow as

observed in Southern Finland. Using the estimated ρ, average

mass–dimensional relations characteristic to studied snow-

fall events are defined. In order to derive ensemble mean den-

sity, a method proposed by B07 was used. However, instead

of a 2-DVD, a new generation of the SVI is employed. It is

shown that, despite simpler construction compared to the 2-

DVD, this instrument’s data are suitable for such studies.

Even though this study is based on retrieval of ensemble

mean snow density and not mass–dimensional relations di-

rectly, which could be more easily applied to radar retrievals

and numerical weather prediction (NWP), there are a num-

ber of applications of such relations. Aikins et al. (2016)

used ρ(D0) to convert PSD observations to precipitation

rate. Tong and Xue (2008), Dolan and Rutledge (2009), Ma-

trosov et al. (2009), Huang et al. (2010) and Zhang et al.

(2011) used mean snow density–median volume diameter re-

lations for characterizing winter precipitation microphysics

by radar. Kneifel et al. (2015) showed a connection between

mean snow density and multi-frequency radar observations.

Thompson et al. (2008) used the density relation by B07, and

Iguchi et al. (2012) applied a similar density retrieval method

to improve parametrization of snow microphysics in NWP

models, for example.

2 Measurements

2.1 Measurement setup

Measurements were made at the University of Helsinki

Hyytiälä Forestry Field Station, Finland (61◦50′37′′ N,

24◦17′16′′ E), during the Biogenic Aerosols Effects on

clouds and Climate (BAECC) field campaign (Petäjä et al.,

2016) and during the consecutive winter of 2014/15. BAECC

was a joint experiment between the University of Helsinki,

the Finnish Meteorological Institute (FMI) and the United

States Department of Energy Atmospheric Radiation Mea-

surement (ARM) program. From 1 February through 12

September 2014 the second ARM Mobile Facility (AMF2)

was deployed to the measurement site. The measurement

setup was designed for snowfall intensive observation period

of BAECC, called BAECC Snowfall Experiment (SNEX),

which was undertaken from 1 February though 30 April 2014

and focused on measurements of snow microphysics. How-

ever, in order to extend the dataset, the measurements were

continued upon completion of BAECC. In total, 23 snow-

fall cases from winters 2013/14 and 2014/15 were used in

this study as summarized in Table 1. The snowfall cases

were selected based on measurements of liquid water equiva-

lent (LWE) precipitation accumulation by a weighing gauge,

snow depth using a laser sensor and temperature measured by

the automatic weather station of the FMI located 500 m dis-

tance from the measurement site. Only precipitation cases,
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Table 1. Liquid water equivalent precipitation accumulation measured with Pluvio2 200 and 400, change in snow depth and maximum and

minimum temperature, maximum and minimum relative humidity, mean and maximum wind speed and mean wind direction of the studied

snow events. Events before the horizontal line are recorded during the BAECC campaign.

LWE (mm) �SD Temp (◦C) RH (%) Wind (m s−1, ◦)

Event 200 400 (cm) min max min max mean max mean dir.

2014 Jan 31 21:00–Feb 01 06:00 7.4 7.3 5.1 −9.8 −8.9 84 91 1.6 2.9 138

2014 Feb 12 04:00–1:00 1.0 0.9 1.8 −1 0 96 98 0.6 2.0 170

2014 Feb 15 21:00–Feb 16 03:00 2.6 2.6 2.5 −2.1 −1 86 97 1.9 2.7 140

2014 Feb 21 16:00–Feb 22 05:00 5.5 5.2 3.6 −2.7 0 88 98 2.1 3.4 138

2014 Mar 18 08:00–19:00 4.4 4.0 7.3 −3.8 −1.8 76 96 1.2 2.7 155

2014 Mar 20 16:00–23:00 6.1 5.9 4.8 −4.3 −1.3 89 97 2.0 3.4 146

2014 Nov 06 19:00–Nov 07 14:30 10.5 – 10.3 −2.44 −1.6 95 97 0.8 1.9 238

2014 Dec 18 14:00–19:00 2.6 2.2 3.9 −2.3 −0.8 97 98 1.0 1.8 134

2014 Dec 24 08:30–13:00 1.3 1.2 1.2 −9.2 −8.9 90 91 0.7 1.5 204

2014 Dec 30 00:30–14:00 6.3 5.3 4.9 −10.4 −0.6 91 98 – – –

2015 Jan 3 09:00–23:50 7.3 7.3 11.9 −3.9 0 96 98 2.6 5.2 318

2015 Jan 7 01:00–20:10 5.4 4.8 2.2 −6.5 −0.8 92 97 1.3 2.8 181

2015 Jan 8 06:00–13:30 2.6 2.7 1.6 −1.9 0 97 99 1.0 2.2 155

2015 Jan 9 18:00–Jan 10 06:00 3.1 3.1 4.6 −3.7 −0.2 95 98 1.0 3.0 286

2015 Jan 10 22:00–Jan 11 09:00 0.7 0.6 0.7 −12.6 −4.4 88 95 1.6 3.4 207

2015 Jan 12 21:00–Jan 13 08:30 12.8 10.9 9.6 −15.7 −9.0 88 94 1.3 3.1 181

2015 Jan 13 22:00–Jan 14 07:00 –∗ 2.2 1.9 −8.0 −0.3 94 98 0.5 1.9 134

2015 Jan 16 01:30–07:30 –∗ 5.8 5.2 −1.3 −0.6 92 98 1.9 3.4 154

2015 Jan 18 16:00–21:00 1.9 1.9 2.7 −2.4 −0.3 95 97 1.2 2.6 300

2015 Jan 22 21:00–Jan 23 04:30 2.1 2.0 2.3 −13.3 −12.5 87 90 – – –

2015 Jan 23 15:00–23:00 1.4 1.2 1.4 −10.1 −8.8 91 93 0.3 1.0 205

2015 Jan 25 09:00–16:00 2.8 2.5 1.9 −2.4 −1.7 96 97 0.7 1.7 170

2015 Jan 31 12:00–Jan 31 23:15 7.0 6.6 5.7 −1.9 −0.4 92 97 1.2 2.6 175

∗ Pluvio2 400 was used because data from Pluvio2 200 were unavailable.

where temperature was below or equal to 0 ◦C, were chosen,

and the data were omitted when occasionally the temperature

during the event rose above 0 ◦C.

The experiments in both winters were organized in col-

laboration with the National Aeronautics and Space Admin-

istration (NASA) Global Precipitation Measurement (GPM)

mission ground validation program. The surface precipitation

measurements are carried out using a number of collocated

instruments, such as NASA Particle Imaging Package (PIP),

two OTT Pluvio2 weighing gauges, two Parsivel2 laser dis-

drometers (Tokay et al., 2014), a 2-DVD and a laser snow

depth sensor by Jenoptik. To minimize effects of wind, a

Double-Fence Intercomparison Reference (DFIR) wind pro-

tection (Rasmussen et al., 2012) was build on site as shown

in Fig. 1 and discussed in more detail in Petäjä et al. (2016).

Inside of the DFIR, the 2-DVD, one of the OTT Pluvio2s

and one of the Parsivel2 disdrometers were placed. In ad-

dition to the precipitation sensors, 3-D anemometers were

deployed. The wind measurements were carried out at the

heights of precipitation instrument sampling volumes. In this

study data from the NASA PIP disdrometer and both OTT

Pluvio2 gauges are used.

2.2 Particle Imaging Package

The NASA PIP is the new generation of the SVI. The PIP,

like the SVI, consists of a halogen lamp and a charge-coupled

device full frame camera with sensor resolution of 640×480

pixels. The main differences between PIP and SVI are the

camera and improved software. The camera is now capable

of imaging with a frame rate of 380 frames per second, en-

abling measurements of particle fall velocities. The distance

between the lamp and the camera lens is approximately 2 m.

The lens focus is set at 1.3 m, where the field of view (FOV)

is 64×48 mm, and the image resolution thereby 0.1×0.1 mm.

The main advantage of PIP, as well of SVI, over other dis-

drometers is the open particle catch volume, which mini-

mizes effect of wind on quantitative precipitation measure-

ments (Newman et al., 2009).

The instrument records shadows of particles as they fall

through the observation volume. Given the camera frame

rate, multiple images of a particle are recorded and used to

estimate its fall velocity. The depth of field (DOF) is deter-

mined by the processing software either rejecting or not de-

tecting particles that are out of focus. Thus, the observation

volume is defined by the FOV and the DOF. The expected
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Figure 1. Snow precipitation instruments on the measurement field in Hyytiälä. The Pluvio2 200 is inside the wind protection on a platform

and the PIP lamp can be seen at right on the ground. The view of the picture is to southwest and the distance from the platform to the treeline

behind is approximately 20 m.

particle size error due to the blurring effect is 18 % (Newman

et al., 2009). From the recorded particle images a number

of parameters describing particle geometrical properties are

calculated with National Instruments IMAQ software. The

measured diameter is given as the equivalent area diameter,

which is the diameter of a circle with the same area as the

area of a particle shadow. Other parameters, such as parti-

cle orientation, and bounding box width and height are also

recorded. The aspect ratio of a particle is derived by fitting

an ellipse to the bounding box utilizing the orientation of the

particle. The aspect ratio is the minor axis in respect to ma-

jor maxis of the fitted ellipse. The major axis also defines the

minimum circumscribing disk, and the area ratio is defined

as total area of shadowed pixels in respect to area of the cir-

cumscribing disk.

2.3 Weighing gauges and anemometers

The measurement setup includes two OTT Pluvio2 weighing

gauges, one inside and one outside the DFIR, with orifices

of 200 and 400 cm2, respectively. There are differences in

wind shielding as well. The Pluvio2 200 is equipped with a

Tretyakov wind shield and the Pluvio2 400 with a combi-

nation of Tretyakov and Alter wind shields, as seen in the

forefront in Fig. 1.

The gauges output several products of precipitation rate

and accumulation. In this study, a non-real-time accumula-

tion product is used as it is filtered for various sources of er-

rors such as changes in the bucket mass due to evaporation,

and as such should yield the most precise precipitation rate

estimate among the output products. Because of the filtering,

there is a 5 min delay in the recorded time series, which needs

to be taken into account when comparing to other instru-

ments. The precipitation accumulation values are recorded

with a resolution of 0.001 mm, but non-real-time accumula-

tion is output with a resolution of 0.05 mm.

The 3-D anemometer manufactured by Gill is located ap-

proximately at the height of the PIP on the field, respectively.

The wind parameters, horizontal and vertical speed and hori-

zontal direction, of Gill anemometer are measured every 10 s

and averaged over 60 s. The mean and maximum of the 60 s

wind speed averages and the mean wind direction for each

event are given in the Table 1.

2.4 Snow depth sensor

The laser snow depth sensor, Jenoptik SHM30, is located on

the measurement field, next to Pluvio2 400. It is an optical

sensor, which measures the snow depth by comparing signal

phase information of the modulated visible laser light. It is a

point measurement, and hence the piling of wind driven snow

or random branches and leaves drifting on the snow pack can

cause misreadings. To reduce this we have sheltered the mea-

surement spot with a small wind fence and the instrument

structure excluding the measurement pole is buried under the

ground to prevent the piling of snow. The data are recorded

every minute.

3 Retrievals of ensemble mean density,
velocity–dimensional relations and PSD

Observations from the PIP and one of the weighing gauges

are combined to retrieve snow ensemble mean density. Typi-

cally the gauge located inside of the DFIR, the Pluvio2 200,

is used for this retrieval. On a couple of days this gauge was

not operational and data from the Pluvio2 400 located out-

side of the DFIR were used instead. These dates are marked

in Table 1 with asterisks in the LWE precipitation rate col-
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Figure 2. The ratio of the diameter observed by PIP, DPIP, to vol-

ume equivalent diameter D.

umn. As seen in the Table 1 the differences in accumulated

LWE recorded by the two Pluvio2s are small, the largest be-

ing 15 %. Pluvio2 200 inside the DFIR is typically measuring

higher accumulations, which is expected because of the bet-

ter wind protection. However, the observations do not show a

clear indication that the observed precipitation accumulation

difference depends on the wind speed. However, the differ-

ence seems to increase in respect to certain wind directions.

There are two openings from the measurement field, one to

a road crossing (approx. 130◦) and the other to small field

(approx. 180◦). If the wind is blowing from these directions

the difference between the two gauges seem to increase.

The retrieval procedure is described below and is similar

to the one presented by B07, but with notable modifications.

Prior to retrieval of ρ, PSD and velocity–dimensional rela-

tions are estimated. It was found, however, that the density

retrieval is highly sensitive to the integration time. To mini-

mize this, a variable integration time determined by the pre-

cipitation accumulation is used. The same integration time

was applied to compute PSD parameters and v–D relations.

3.1 Particle size distribution

The PSDs are calculated from the PIP records of particles

that fell through the observation volume. The observed dis-

tributions are defined with respect to equivalent area diameter

DPIP, which is different from the apparent diameter of the 2-

DVD and maximum particle dimensions used in other stud-

ies (e.g., Heymsfield et al., 2004). Wood et al. (2013) stud-

ied differences between diameter definitions and found that

the diameter recorded by SVI is approximately 0.82 of max-

imum particle dimension. We performed a similar study by

examining mean dimensions of rotated ellipsoids on a single

projection, as shown in Fig. 2. The ellipsoids were defined by

a long dimension a and a short dimension b lying nominally

in the horizontal plane along the x and y-axes, respectively,

and a short vertical dimension c lying nominally along the z-

axis. The particle orientation was defined by Gaussian distri-

bution of canting angles with a standard deviation of 9◦ (Ma-

trosov et al., 2005a) and a uniform distribution of azimuth

angles. The equivalent area diameters DPIP of simulated par-

ticles were estimated from their projected areas onto the x–z

plane and the resulting values were averaged over all orienta-

tions. The ratios of mean DPIP to the particle volume equiv-

alent diameter, i.e., the diameter for which the particle vol-

ume V (D) = π
6 D3, for a number of combinations of vertical

and horizontal aspect ratios are shown in Fig. 2. Assuming

spheroids (Matrosov, 2007) and taking the typical vertical

aspect ratio c/a = 0.6 (Korolev and Isaac, 2003; Matrosov

et al., 2005b), we found that DPIP is roughly equal to 0.92 of

a volume equivalent diameter. As can be seen, the conversion

factor varies between 0.8 and 1. For ice particles with axis

ratios smaller than 0.4, i.e., pristine ice crystals, this factor

could approach 1.2. From this analysis we can conclude that

the largest expected error is associated with observations of

ice crystals. Dimensions of snowflake aggregates and grau-

pel like particles are expected to be captured with a smaller

error. In this study the same conversion factor of 0.92 is used

for all the cases. As can be seen in Fig. 3 the median area and

aspect ratios of the particles are 0.65 and 0.72, respectively.

These observations also support our choice of a mean par-

ticle shape and the corresponding diameter transformation.

Therefore, the results presented in the rest of the paper are

using this volume equivalent diameter proxy.

Prior to calculations of PSD parameters, recorded PSD

data are filtered to remove spurious observations of large par-

ticles. Following the procedure described in Leinonen et al.

(2012), records of large particles were ignored if there was

a gap of more than three consecutive PSD diameter bins.

The bin size was set to 0.25 mm during the BAECC experi-

ment and it was reduced to 0.2 mm for the winter 2014/2015.

The PIP resolution is 0.1 mm and the minimum detectable

particle diameter is approximately 0.3 mm (Newman et al.,

2009). The smallest diameter bin used in calculations is 0.25

to 0.5 mm during BAECC and 0.2 to 0.4 mm in the following

winter.

The PSD parameters were calculated using method of mo-

ments and assuming that PSD follows gamma functional

form; see for example Ulbrich and Atlas (1998) and ci-

tations therein. The normalized gamma distribution N(D)

in mm−1 m−3 was adopted following Testud et al. (2001),

Bringi and Chandrasekar (2001) and Illingworth and Black-

man (2002):

N(D) = Nwf (μ)

(
D

D0

)μ

exp(−�D), (1)

f (μ) = 6

3.674

(3.67 + μ)μ+4

�(μ + 4)
, (2)

� = 3.67 + μ

D0
, (3)

with Nw in mm−1 m−3 being the intercept parameter, D0 the

median volume diameter in mm, � the slope parameter in
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Figure 3. The distributions of snowflake (a) aspect ratio and (b) area ratio as observed using PIP with interquartile ranges visualized and

median values shown.

mm−1 and μ the shape parameter. Using the second, fourth

and sixth moments for the non-truncated gamma PSD, M2,

M4 and M6, the PSD parameters were estimated as follows:

η = M2
4

M6M2
, (4)

μ = 7 − 11η − √
η2 + 14η + 1

2(η − 1)
, (5)

� =
√

M2�(μ + 5)

M4�(μ + 3)
, (6)

D0 = 3.67 + μ

�
. (7)

3.2 Ensemble mean density retrieval

The integration time, τ(t), of the ensemble mean density

retrieval is driven by precipitation measurements of the

Pluvio2. The step of the non-real-time accumulation output

is 0.05 mm, causing the output interval to be on the order

of several minutes even at moderate snow rates. With a short

fixed integration time in timescales of minutes or tens of min-

utes, the produced ensemble mean density estimation would

hence be more unstable, the lower the precipitation rate.

Therefore, variable length time intervals driven by the gauge

output are used with a selected threshold value of 0.1 mm.

This corresponds to a τ(t) of 6 min for a LWE precipita-

tion intensity of 1 mm h−1. Effectively, the temporal resolu-

tion of the ensemble mean density retrieval is increased with

increasing precipitation intensity, and in the analysis of the

snowfall events in Table 1 the median τ(t) was 5 min.

As the integration time τ(t) is effectively driven by pre-

cipitation intensity, there is less variation in number of parti-

cles between intervals compared to a fixed time interval ap-

proach. With the selected accumulation threshold there are

typically between 103 and 104 particles within a given inte-

gration time interval. However, with low precipitation inten-

sities, τ(t) increases up to 1 h and retrieved ρ becomes less

representative for the time interval in question. With LWE

precipitation rates lower than 0.2 mm h−1, the resolution of

Pluvio2 LWE measurements is insufficient and calculations

of ρ become overly sensitive to recorded number concentra-

tions. Correspondingly, similar unwanted sensitivity to LWE

precipitation accumulation occurs when the number of parti-

cles observed by PIP within τ(t) is less than 800. Therefore,

time intervals with precipitation rates or particle counts lower

than these thresholds are excluded from our analysis.

Given a population of solid precipitation particles with

volume equivalent diameters D over the integration time

τ(t), the liquid equivalent precipitation accumulation in mil-

limeters is approximately

G(t) ≈ (8)

π

6
× 10−6 ρ

ρw

t+τ(t)∫
t

Dmax∫
Dmin

D3v(D,t)N(D,t)dDdt,

where ρ is the volume flux weighted population mean snow

density in g cm−3, ρw = 1 g cm−3 is the density of liquid

water, N(D,t) is mean particle number concentration over

the integration time in mm−1 m−3, v(D,t) is particle veloc-

ity relation in m s−1 and [Dmin,Dmax] is the size range of

snowflake observations from a disdrometer. From Eq. (8) we

can estimate volume flux weighted snow density for each ob-

servation time interval as

ρ(t) ≈ (9)

6

π
× 106ρw

G(t)∫ t+τ(t)

t

∫ Dmax

Dmin
D3v(D,t)N(D,t)dDdt

,

using liquid equivalent precipitation accumulation G(t) as

measured by the Pluvio2 gauge, and retrieving averaged

N(D,t) and volume flux using fitted v(D,t) based on mea-

surements by the PIP as described in the following sections.

It should be noted that, unlike in the retrieval of PSD pa-

rameters where gamma PSD was assumed, ρ was retrieved

without making any assumptions on the shape of the PSD

distribution and instead measured PSDs are used in the cal-

culations.
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3.3 Comparison of derived mean density to snow depth
observations

The definition of ensemble mean density here is the same as

for mean bulk density in B07. They determine the densities

for 5 min precipitation volumes derived with a 2-DVD dis-

drometer observations together with precipitation mass mea-

sured by a weighing gauge. B07 defined the volume of a sin-

gle particle by summing coin-shaped sub-volumes together,

estimated separately for both orthogonal projections and tak-

ing geometrical mean. As the diameter used in our study

is the estimated volume-equivalent diameter, our results are

comparable to B07. In Heymsfield et al. (2004), the volume

of a single particle is defined as a function of circumscrib-

ing maximum diameter, and the population mean effective

density is determined from ice water content. The estimated

ensemble mean snow density is volume-weighted and ex-

pected to have lower values than the velocity-weighted snow

density. The difference is not generally prominent especially

with low-density aggregates, whose velocity–dimensional

dependence is weak.

It should be noted that the derived density is inversely pro-

portional to the snow ratio, Rs, assuming that issues related

to packing of snowflakes on the ground can be ignored. The

snow ratio (Power et al., 1964; Ware et al., 2006) is used

by operational weather services to estimate change in snow

depth from LWE observations and can be defined as follows:

Rs(t) = 1

P · C
ρw

ρ(t)
, (10)

where ρ(t) is the volume flux weighted snow density derived

as shown in Eq. (9), P is the packing efficiency of snowflakes

and C is the snow compression. Assuming that the packing

and compression terms, or their product, are close to unity,

the derived density can be tested against the commonly used

assumption that 1 mm of LWE accumulation corresponds to

1 cm change in snow depth. In Fig. 4 the combined distri-

bution of estimated snow ratios on temporal scales defined

by the gauge accumulation for all the 23 events analyzed in

this study is shown. It can be seen that the mean and median

values, equal to 10 and 9, respectively, are very close to the

commonly assumed value.

This analysis assumes that packing efficiency of

snowflakes is 100 % and compression of snow on the

ground can be ignored or that snow compression counteracts

reduction in snow density due to packing. The packing

efficiency of snowflakes on the ground is not known.

Random packing of the same size spheres has density of

64 % and dense packing of such spheres uses 74 % of the

volume, corresponding to P = 0.64 and 0.74, respectively.

Packing efficiency of equal spheroids depends on axis ratios,

exceeding that of spheres, and could exceed 77 % (Donev

et al., 2004). It is not unreasonable to expect that irregular

shaped particles of variable sizes, such as snowflakes, would

pack more efficiently than equal spheroids. At least, packing

Figure 4. Distribution of snow ratios, ratio of snow depth change

to LWE, calculated from retrieved ensemble mean densities with

interquartile range, and median and mean values.

efficiency in excess of 90 % can be expected for spheres of

several radii (de Laat et al., 2014). The packing efficiency

of 70 % would mean that density of freshly fallen snow

would be 30 % lower than that of falling snowflakes. The

packing efficiency of 80 % would correspond to 20 % bias in

estimated snowflake density from snow depth measurements

or in 25 % underestimation of the snow depth change by

using ρ(t). We do not know the exact value of the snow

packing, but we could expect that in the worst case scenario

it is about 70 % and probably closer to 80 % or even higher.

It should also be noted that the snow compression would

counteract this, but we are considering only freshly fallen

snow and expect that the compression factor C is very close

to unity.

One of the major uncertainties in the density retrieval is the

assumption about particle volume. In this study we have as-

sumed that snowflakes are spheroids with axis ratios of 0.6.

Given this assumption, a conversion factor relating volume

equivalent and observed disc equivalent diameters was de-

fined. Figure 2 shows that for a reasonable range of ellip-

soid axis ratios this conversion factor can range between 0.8

and 1. This range of values implies that the uncertainty in

the density estimation can range from an overestimation by

as much as 50 % to an underestimation by about 20 %. This

range of uncertainty is much larger than what is expected

from a comparison of the retrieved volume-flux weighted

density and snow depth measurements, as was discussed pre-

viously. Therefore, by comparing the PIP derived and the di-

rectly measured snow depths, the validity of the derived val-

ues of ρ, and assumption of particle shape, can be checked.

In Fig. 5 hourly change in the snow depth measured by the

Jenoptik SHD30 is compared to the PIP derived snow depth.

It can be seen that the agreement is good, with RMSE of

0.30 cm, linear correlation coefficient of 0.88 and normalized

bias as low as −0.06. This comparison also gives confidence

about the validity of the derived ensemble mean densities.
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Figure 5. Scatterplot of the hourly change of snow depth measured

with Jenoptik SMH30 and estimated from volume flux using PSD

and fall velocities as measured by PIP. The data include all the stud-

ied cases except 10–11 January 2015.

3.4 Effect of PSD truncation on derived ensemble
mean snow density

The observed PSDs are truncated on left and right sides (Ul-

brich and Atlas, 1998). They are truncated on the right side

because of the instrument finite sampling volume and be-

cause natural sizes of hydrometeors do not extend to infin-

ity. The truncation on the left, on the small-diameter side,

is due to instrumental limitations and possible wind ef-

fects (Moisseev and Chandrasekar, 2007). Ulbrich and Atlas

(1998) have presented a comprehensive analysis on how the

right-side truncation affects the derived gamma PSD param-

eters. A similar study on the effects of the left-side truncation

and other instrumental effects was presented by Moisseev

and Chandrasekar (2007). Here we apply the method pre-

sented by Moisseev and Chandrasekar (2007) to estimate im-

pact of PSD truncation on the derived mean snow density.

To investigate the impact of the PSD truncation on retrieval

of mean snow density, a simulation study was performed. To

initiate the simulation, the PSD parameters Nw, D0 and μ,

together with parameters of m–D and v–D, are used. Dur-

ing the study it was found that the density estimation error

is most sensitive to D0 and μ and virtually independent of

the other input parameters. Therefore, the results presented

here assume that Nw is constant and equal to 104 mm−1 m−3.

Further, only one m–D relation representative of all BAECC

cases, as presented in Sect. 4.3.1, is selected, and v–D repre-

sentative of the snowfall with mean density ranging between

100 and 200 g cm−3 is utilized. The D0 values were varied

between 0.5 and 4 and μ values between −0.9 and 3.

At the first stage of the simulation, the number of ob-

served particles was computed, assuming a Poisson distri-

bution, with the expected number of particles being deter-

mined by PIP sampling volume and τ(t). Given this num-

ber of particles, their diameters were found by sampling a

gamma probability density function, parameters of which are

determined by the input PSD. To simulate the left-side trun-

cation all particles with diameters smaller or equal to 0.25

mm, the PIP sensitivity threshold, were rejected. The right-

side truncation was achieved by rejecting particles with sizes

exceeding 3D0. For each D0 and μ pair, 50 simulated PSDs

were computed. Given the simulated truncated PSD the den-

sity is estimated in the same way as was presented above.

This estimated density is compared to the one that is directly

derived from the simulation input parameters and the results

of their comparison is shown in Fig. 6. As one can see, the

derived ensemble mean snow density is biased. The bias is

largest for small D0, which is explained by the left-side PSD

truncation. For D0 larger than 1 mm, the bias decreases and

approaches 2 %. Given that the error associated with PSD

truncation is rather small for D0 > 1 mm, and that most of

the observations fall within this range, the truncation error is

not corrected in this study.

3.5 Velocity–dimensional analysis

For the retrieval of volume flux weighted snow density,

velocity–dimensional relations of falling snow need to be es-

timated. For each integration time interval, v(D) = avD
bv

is fitted for velocity–diameter data from the PIP. The v(D)

power-law fits to unfiltered data tend to be strongly biased

by outliers. To address this problem, Gaussian kernel den-

sity estimation (KDE; Silverman, 1986) is used to find the

most probable velocity for each diameter bin, and only ob-

servations with velocities within half width at half maximum

from the bin peak KDE value are included in calculating the

fit. Using the linear least squares method, a fit is performed

for the data points in log–log scale to derive a power-law

relation. It should be noted that using linear regression in

log–log space does not optimally minimize residuals in lin-

ear space, but the method is used here as it does not overly

emphasize the large end of the size spectrum. The retrieved

velocity fits are shown for selected integration time intervals

of the 18 March 2014 and the 22–23 January 2015 cases in

the bottom of Figs. 7 and 8, respectively.

It should be noted that the power-law model, albeit widely

used, may not necessary represent correctly velocities of ice

particles over the complete range of diameters (Mitchell and

Heymsfield, 2005). In many cases the fit can also be uncer-

tain either because of narrow PSD or in presence of multiple

particle types.
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Figure 6. Computed normalized bias and standard deviation of estimated mean snow density as a function of μ and D0. The shaded area

indicates data that are not included in the analysis because derived D0 is smaller than 0.6 mm. The increased values of bias at low D0 values

is due to left side truncation of the observed PSD, which is caused by the instrument sensitivity. At larger D0 values the bias approaches

value of 0.02.

4 Results

4.1 Case studies

4.1.1 18 March 2014

During the 18 March, Finland was covered in a continental

polar air mass. In the morning, a warm occluded front asso-

ciated with a weak low pressure center approached South-

ern Finland from the southwest, bringing light snowfall. In

the afternoon, Hyytiälä was in the warm sector of the frontal

system and the relative humidity dropped, halting the snow-

fall around 12:00 UTC. Later in the evening there was a 1 h

snowfall from a squall line, associated with a cold front pass-

ing over Southern Finland.

Time series of LWE snow rate, ensemble mean density and

PSD parameters for the 18 March case are shown in Fig. 7.

The bottom panels show measured fall velocities for selected

integration time intervals, representing observations with dif-

ferent ensemble mean densities. Between the red dotted lines

is the region where KDE is higher than half maximum for

a given particle size. The fits are applied for data points be-

tween these lines. There is considerable scatter in particle fall

velocity throughout the case and a bimodal PSD is present

momentarily in the morning as can be seen in fall velocity

panel Fig. 7a.

During the snow shower in the evening, liquid equiva-

lent precipitation rates were recorded on average roughly 3

times more intense than earlier during the day, allowing re-

trievals of ρ and PSD parameters at high time resolutions.

Strong short timescale variations of ρ and PSD parameters

are recorded during this shower. The lowest ensemble mean

density value of the case, 0.035 g cm−3, is retrieved for time

interval from 16:35 to 16:39, with concurrent D0 value of

5.5 mm and Nw of roughly 700 mm−1 m−3. The correspond-

ing fall velocity distribution visualized in Fig. 7b is charac-

terized by low values of velocity fit coefficients av and bv.

Within the following 20 min, D0 decreases down to roughly

2 mm, Nw increases to 2 × 104 mm−1 m−3 and retrieved val-

ues of ρ peak at over 0.2 g cm−3 between 16:54 and 16:58

and again from 17:05 to 17:08. Corresponding fall velocity

distribution between 16:54 and 16:56, shown in Fig. 7c, is

characterized by substantially higher values of av and bv than

20 min earlier, which possibly indicates the onset of riming.

4.1.2 22–23 January 2015

During 22 January 2015, similarly to the 18 March 2014

event, a warm occluded front associated with a weak low

moved northwards over the Gulf of Finland. However, due

to a blocking high over northwestern Russia, the low and the

associated front were sustained over Southern Finland for the

whole day of 23 January, causing weak continuous precipi-

tation in the area.

Time series of LWE snow rate, ρ and PSD parameters

for the 22–23 January 2015 case, with velocity–diameter fits

from selected time intervals, are shown in Fig. 8. The case is

characterized by continuous snowfall at LWE precipitation

rates lower than 1 mm h−1 throughout the case. The veloc-

ity distribution for a given time interval has substantially less

scatter compared to the 18 March 2014 case. The evolution
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Figure 7. Evolution of snowfall intensity, ensemble mean density

and particle size distribution parameters during 18 March 2015 with

associated (v, D) from three selected time intervals (highlighted in

gray). The red dashed lines mark the upper and lower velocity limits

where for a given D the KDE value is higher than half maximum.

of ρ and Nw, as shown in Fig. 8, shows considerable similar-

ities, suggesting a strong correlation.

The velocity–diameter fits shown represent a low en-

semble mean density (ρ = 0.05 g cm−3) time interval of

01:03–01:16 (Fig. 8b) and two intervals of 22:30–22:52 and

02:06–02:14 (Fig. 8a, c) with higher values of ρ, 0.10 and

0.12 g cm−3, respectively. Notable is the higher modal fall

velocities and the absence of particles larger than 3 mm in

the high density time intervals compared to the distribution

in Fig. 8b.

4.2 v–D and density

In Fig. 9, particle fall velocity versus diameter data points

combined from all the cases in Table 1 are divided into three

categories according to the snow ensemble mean density of

the time interval during which particles were observed. A

least squares fit is applied to observations in each ρ range us-

ing the same procedure as for velocity–dimensional fits for

integration time intervals, as described in Sect. 3.5. The total

number of observed particles is roughly 4 440 000, and for

Figure 8. Evolution of snowfall intensity, ensemble mean density

and particle size distribution parameters during the night between

the 22 and 23 January 2015 with associated (v, D) from three se-

lected time intervals (highlighted in grey). The red dashed lines

mark the upper and lower velocity limits where for a given D, the

KDE value is higher than half maximum.

each density category numbers of particles included in the

fitting process (within the red lines in Fig. 9) are approxi-

mately 1 140 000, 1 190 000 and 360 000, respectively. The

fitted relations for ensemble mean density ranges are

v(D) = 0.834D0.217 0.0 < ρ ≤ 0.1gcm−3, (11)

v(D) = 0.895D0.244 0.1 < ρ ≤ 0.2gcm−3 and (12)

v(D) = 0.906D0.256 ρ ≥ 0.2gcm−3, (13)

with RMSE values of 0.30, 0.30 and 0.35 m s−1, respectively.

The coefficient is increased with density indicating higher

fall velocities with more dense particles. There is also a

clear increase in the slope of the fitted curve from the low-

est density range to the 0.1–0.2 g cm−3 range indicated by

the increase in the power term. With particles in the high-

est density range the observed size distribution is narrow and

hence the correlation between particle size and fall velocity

is weak, and it is difficult to find an unambiguous relation be-

tween them. All things considered, the results are in line with

the conclusion made by Barthazy and Schefold (2006) that
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Figure 9. Probability densities of (D,v) in three ensemble mean density ranges ([ρ] = g cm−3). Dashed lines mark the full width at half

maximum KDE in each diameter bin. Power-law functions are fitted for data between those lines.

the prefactor and power terms increase with riming degree,

which in turn are strongly connected with density (Power

et al., 1964).

Considering the definition of the volume equivalent diam-

eter, relations in the form of Eqs. (11)–(13) should be ideal

for velocity–dimensional parametrization of radar observa-

tions as the average size of hydrometeors as observed by

radar are largely defined by their volumes rather than their

shapes.

4.3 Connection between PSD parameters and density

From the analysis of PSD parameters and their relations to

ensemble mean density we have excluded data points rep-

resenting integration time intervals where D0 < 0.6 mm, as

lower values of median volume diameter would imply that

a substantial fraction of particles are too small to be ob-

served with PIP. Applying this restriction, along with min-

imum thresholds set for particle count and LWE precipita-

tion rate in density retrievals, as described in Sect. 3.2, all in

all 101 time intervals were discarded from the total of 1141

intervals of observations, leaving 7173 min of snow observa-

tions for the analysis.

4.3.1 Density and D0

In Fig. 10, observed distributions of D0 for the three different

density regimes are shown. For the low-density particles, the

maximum D0 value rarely exceeds 5 mm, which is in agree-

ment with observations of snow aggregates presented by Lo

and Passarelli Jr. (1982). It can also be seen that D0 distribu-

tion depends on density. Low-density particles are generally

larger and vice versa. This dependence of D0 on ensemble

mean density is not surprising, given that they are related as

was previously shown by B07 and discussed in more detail

below.

Relation between ρ and size (D0) is illustrated in Fig. 11.

The areas of individual data points are proportional to the

particle counts of the corresponding observation time inter-

vals. The overlaid black solid curve, a least squares fit applied

Figure 10. Normalized frequency (bars) and kernel density (line)

of median volume diameter D0 in three ensemble mean density

ranges, [ρ] = g cm−3.

for all cases in Table 1, is given by

ρ(D0) = 0.226D−1.004
0 , (14)

where D0 is in mm and ρ is in g cm−3. As the two examined

winters were seen to have notable differences between each

other in the snowfall type and average ρ, corresponding rela-

tions were also calculated separately for the winters and are

given by

ρ(D0) = 0.273D−0.998
0 and (15)

ρ(D0) = 0.209D−0.969
0 (16)

for BAECC events and for events of winter 2014/15, respec-

tively. A relation by B07, given by ρ(D) = 0.178D−0.922
0 ,

is plotted in Fig. 11 for comparison. As their definitions of

particle diameter and ρ are close to ours, the relations are
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Table 2. The prefactors and exponents of m = amDbm derived for exponential PSD with different values of exponent bv of velocity relation.

The mass given in grams and the volume-equivalent diameter proxy in millimeters.

am (×10−5)

Dataset bm bv = 0.217 bv = 0.244 bv = 0.256

All cases 1.996 10.36 10.45 10.49

BAECC cases 2.002 12.54 12.64 12.69

Winter 2014–2015 cases 2.031 9.679 9.757 9.792

easy to compare. Especially Eq. (16) is in good agreement

with B07’s results. The ensemble mean density is on aver-

age higher for snow events recorded during BAECC, which

suggests more riming occurred during those events. Indica-

tion to this is that the ARM AMF2 dual-channel microwave

radiometer located on the same measurement field detected

the presence of liquid water more than 80 % of the BAECC

SNEX campaign time (Petäjä et al., 2016) and the pres-

ence of supercooled liquid layers could also be observed in

the backscatter coefficient and circular depolarization ratio

measurements of the co-located ARM HSRL (High Spec-

tral Resolution Lidar) in the majority of the BAECC cases

(Goldsmith et al., 2014). In general the BAECC winter was

milder than the next winter 2014–2015, and the case dura-

tion weighted average of maximum recorded temperatures

was almost 1 ◦C higher for BAECC events compared to the

value for winter 2014–2015 cases. The temperatures closer

to 0 ◦C could mean increased aggregation as stated in B07,

and therefore decreased density values, as well as different

snow habits compared to colder cases.

The mass–dimensional relation in power-law format m =
amDbm can be derived from the retrieved ρ–D0 relations

(Eqs. 14–16) by assuming gamma PSD and describing the

ensemble mean density approximately as

ρ ≈
∫ ∞

0 m(D)v(D)N(D)dD∫ ∞
0 V (D)v(D)N(D)dD

, (17)

=
∫ ∞

0 am(D)bmavD
bvN0D

μ exp(−�D)dD∫ ∞
0

π
6 (0.1D)3avDbvN0Dμ exp(−�D)dD

, (18)

= 6

π
103am

�(bm + bv + μ + 1)

�(bv + μ + 4)

(
1

3.67

)bm−3

D
bm−3
0 . (19)

The integration limits are defined from 0 to infinity for deriv-

ing the analytic solution, though the true range is narrower

because of left and right truncation of the observed size spec-

trum. As shown in Fig. 6, the ensemble mean density is over-

estimated because of the truncation. The estimation bias of

density ranges between 20 % for D0 smaller than 0.75 mm

and about 2 % for D0 larger than 2 mm. Since for the esti-

mation of the m–D relation most of the observed D0 values

are higher than approx. 1 mm as shown in Fig. 10, there is

only minor contribution of the smaller D0 values, and we as-

sume our error in ensemble mean density to be close to 2 %

W

Figure 11. (D0, ρ) for all cases listed in Table 1. Area of each dot

is proportional to the number of particles in corresponding integra-

tion time interval. Power-law fits are shown separately for BAECC

winter cases (blue) and cases from the following winter (green).

because of truncation. This corresponds to an error of 2 % in

the prefactor am as well, if it is assumed that the truncation

does not introduce significant changes in the exponents of the

ρ–D0 and m–D relations.

Taking the three velocity exponents from Eqs. (11)–(13),

and assuming exponential PSD, the derived prefactors and

exponents of mass relation are shown in Table 2, having the

volume-equivalent diameter proxy in millimeters and mass

given in grams. The factor 0.1 in Eq. (18) is derived from

unit conversion, as ρ is in g cm−3. The values of prefactor

am are not sensitive to the changes in the velocity exponent

bv (changes in bv are resulting less than 1 % deviation am

values), though there is a small increase in am with increasing

bv. The prefactor is more sensitive to shape parameter μ of

the gamma PSD; the value of am increases by 24 % as μ is

increased from 0 to 1. With value of μ = 3 the increase in the

prefactor am value is 48 %. The shape factor of snow PSD is
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Figure 12. Derived m–D relations assuming exponential PSD in

comparison relations presented in literature are shown in Table 3. A

conversion of maximum dimension to volume equivalent diameter

is done by assuming axis ratio of 0.6.

Table 3. The prefactors and exponents of m = amDbm of literature

values for comparison plotted in Fig. 12. A conversion from maxi-

mum dimension to volume equivalent diameter is done by assuming

axis ratio of 0.6.

Study bm am (×10−5)

Matrosov (2007), 0.12mm < D ≤ 2.4mm 2.0 4.2172

Matrosov (2007), 2.4mm < D ≤ 24mm 2.5 3.2430

Heymsfield et al. (2004) 2.04 7.5814

Mitchell et al. (1990) 2.0 3.0926

Locatelli and Hobbs (1974) 1.9 5.1134

known to be noisy and thus often exponential distribution

is assumed. With bv = 0.217 the derived mass–dimensional

relations for all cases and for both studied winters separately

are plotted against literature values in Fig. 12. The derived

exponent bm for the studied cases is in line with literature

values, close to 2, but the prefactor am values are higher than

in the presented relations in Table 3. The highest value of

am is for the BAECC cases, indicating conditions of riming.

The high prefactor values might manifest the Finnish winter

conditions. Because of the vicinity of the Baltic Sea, the air

is more moist than, for example, in continental conditions.

4.3.2 Nw and density

Distributions of observed Nw values also exhibit depen-

dence of Nw on the ensemble mean density, as shown in

Fig. 13; i.e., Nw increases with density. The modal values of

Nw are approximately 5000, 40 000 and 80 000 mm−1 m−3

for ensemble mean density ranges 0.0–0.1, 0.1–0.2 and

> 0.2 g cm−3, respectively, with the vast majority of Nw val-

ues spanning less than 2 orders of magnitude for a given ρ

range. This dependence of Nw on density is somewhat unex-

Figure 13. Frequency of Nw in three ensemble mean density

ranges, [ρ] = g cm−3.

pected. There is no obvious reason to expect that Nw would

depend on density. However, because D0 and density are re-

lated, dependence of Nw on density potentially arises from

the dependence of Nw on D0.

To verify this, the partial correlation analysis of the rela-

tion between log values of Nw and density while controlling

for log value of D0 was carried out. It was found that there

is a moderate negative partial correlation, −0.33, between

Nw and density while controlling for D0. However, the zero-

order correlation between Nw and density is 0.52. The analy-

sis confirms that the observed relation between Nw and den-

sity is due to their relation to D0. It is not clear, however,

what the meaning is of the found negative partial correlation

between Nw and density.

A relation between Nw and snow particle size is shown

in Fig. 14a. A linear least squares fit is applied for (D0,

log(Nw)), and the corresponding relation between Nw and

D0 is given by

Nw = 2.492 × 105 × 10−0.620D0 . (20)

Bringi and Chandrasekar (2001) show that there is a weak

tendency for Nw to decrease with increasing D0 for rain

(their Fig. 7.17), but to our knowledge this is the first at-

tempt to find a climatological relation between D0 and Nw

for snow. It should be noted, however, that the observed re-

lation is partially caused by data filtering, which removes

low precipitation rate data. There is a high amount of scat-

ter when Nw < 1 × 103 mm−1 m−3. The data points in this

area are more contained when D0 is multiplied with ρ
1/3 as

shown in Fig. 14b. Making a fit to the resulting data points
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Figure 14. (D0, Nw) and (D0ρ
1/3 , Nw) with fitted relations.

Figure 15. Normalized frequency (bars) and kernel density (line)

of the gamma PSD shape factor μ in three ensemble mean density

ranges, [ρ] = g cm−3.

gives

Nw = 7.072 × 105 × 10−1.783D0ρ
1/3

. (21)

However, the difference in correlation coefficients for the

fits in Fig. 14a and b, given by −0.87 and −0.85, respec-

tively, is minimal. The lower scatter in Fig. 14b for Nw in

the sub 103 mm−1 m−3 range seems to be compensated by

slightly more scatter in the higher end of the distribution.

4.3.3 PSD shape parameter, μ

In Fig. 15 the normalized frequencies of the gamma PSD

shape factor μ are visualized in the three ensemble mean

density ranges. Unlike D0 and Nw, μ does not seem to have a

clear correlation with ensemble mean snow density, although

a weak tendency for μ to increase with density is possible. In-

stead, the values of μ are scattered around approximately 0,

with deviation increasing with density. In the ensemble mean

density ranges 0.0 to 0.1 and 0.1 to 0.2 g cm−3 the kernel

densities peak at −0.15 and 0.62, with standard deviations

of 0.97 and 1.58, respectively. For the integration intervals

with ρ > 0.2gcm−3, the distribution of μ is more spread,

with standard deviation of 2.0 and median of 0.76. The ob-

servations support the findings of B07 and Heymsfield et al.

(2008), who have found that low-density particles generally

have exponential or slightly super-exponential distributions.

This suggests that the exponential PSD would be most appro-

priate for describing low-density aggregated snow and less so

when strong riming occurs.

5 Conclusions

Microphysical properties of snow in Southern Finland were

documented using observations from PIP and a weighing

gauge. The data were collected during US DOE ARM funded

BAECC campaign and the consecutive winter. It is shown

that there is a detectable difference in measured snow prop-

erties between consecutive winters. Snow observed during

BAECC is denser than during the next winter. The derived

m–D relations from two winters are also different, and the

difference is namely in the prefactor of the power-law rela-

tions.

It is found that D0 and Nw parameters of gamma PSD are

correlated with ρ. While the relation between ensemble mean
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density and D0 is not surprising, since these two parame-

ters are related, the correlation between Nw and ρ is inter-

esting. This correlation arises from the observed connection

between Nw and D0. It should be noted that this observed

connection is partially due to data filtering that removes low

precipitation rate data from the analysis. However, it indi-

cates that for heavier precipitation aggregation is an impor-

tant snow growth process. During snow growth by aggrega-

tion, Nw should decrease while D0 increases, as was found

by (Lo and Passarelli Jr., 1982). The shape parameter of the

gamma PSD, μ, does not seem to depend on ensemble mean

density and its average value is close to 0, which is in line

with studies reported in literature.

Dependence of v–D relation on ensemble mean density

was also studied. It was found that the prefactor of the v–D

power law depends on density. It is higher for higher den-

sities. This result is in agreement with the conclusion made

by Barthazy and Schefold (2006): the coefficient and power

terms increase with riming degree.

The presented study uses the newly developed instrument

Particle Imaging Package, which is a new generation of SVI.

It is shown that data collected by this instrument are adequate

for such studies. While the instrument only observes particle

shapes projected to single 2-D plane, as opposed to 2-DVD

or MASC, it has a larger sampling volume and its observa-

tions are less affected by wind (Newman et al., 2009). Ad-

ditionally, the instrument itself is operationally more robust

and requires less maintenance, enabling deployment in sites

with remote locations and harsh field conditions.

6 Data availability

The data of the video distrometer (PIP), the precip-

itation gauges and the snow depth sensor used in

this study are available at http://www.arm.gov/campaigns/

amf2014baecc#data or by request from D. Moisseev

(dmitri.moisseev@helsinki.fi).

Acknowledgements. We would like to acknowledge the Hyytiälä

station and University of Helsinki personnel for the daily tasks

with measurements, in particular Matti Leskinen and Janne Levula.

The research of Jussi Tiira and Dmitri N. Moisseev was supported

by Academy of Finland (grant no. 263333) and the Academy of

Finland Finnish Center of Excellence program (grant no. 272041).

Annakaisa von Lerber was funded by grant of the Vilho, Yrjö

and Kalle Väisälä Foundation and by SESAR Joint Undertaking

Horizon 2020 grant agreement no. 699221 (PNOWWA). The

instrumentation used in this study was supported by NASA Global

Precipitation Measurement Mission ground validation program and

by the Office of Science of the US Department of Energy ARM

program.

Edited by: G. Vulpiani

Reviewed by: A. Heymsfield and two anonymous referees

References

Aikins, J., Friedrich, K., Geerts, B., and Pokharel, B.: Role of a

Cross-Barrier Jet and Turbulence on Winter Orographic Snow-

fall, Mon. Weather Rev., 144, 3277–3300, doi:10.1175/MWR-

D-16-0025.1, 2016.

Barthazy, E. and Schefold, R.: Fall velocity of snowflakes of differ-

ent riming degree and crystal types, Atmos. Res., 82, 391–398,

2006.

Barthazy, E., Göke, S., Schefold, R., and Högl, D.: An Optical

Array Instrument for Shape and Fall Velocity Measurements

of Hydrometeors, J. Atmos. Ocean. Tech., 21, 1400–1416,

doi:10.1175/1520-0426(2004)021<1400:AOAIFS>2.0.CO;2,

2004.

Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Ras-

mussen, R. M.: A statistical and physical description of hydrom-

eteor distributions in Colorado snowstorms using a video dis-

drometer, J. Appl. Meteorol. Climatol., 46, 634–650, 2007.

Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather

radar: principles and applications, Cambridge University Press,

2001.

Böhm, H. P.: A General Equation for the Terminal Fall Speed

of Solid Hydrometeors, J. Atmos. Sci., 46, 2419–2427,

doi:10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2,

1989.

de Laat, D., de Oliveira, F., Fernando, M., and Vallentin, F.: Upper

bounds for packings of spheres of several radii, Forum of Math-

ematics, Sigma, 2, e23 42 pp., doi:10.1017/fms.2014.24, 2014.

Dolan, B. and Rutledge, S. A.: A theory-based hydrom-

eteor identification algorithm for X-band polarimet-

ric radars, J. Atmos. Ocean. Tech., 26, 2071–2088,

doi:10.1175/2009JTECHA1208.1, 2009.

Donev, A., Stillinger, F., Chaikin, P., and Torquato, S.: Unusually

dense crystal packings of ellipsoids, Phys. Rev. Lett., 92, 255506,

doi:10.1103/PhysRevLett.92.255506, 2004.

Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall

speed measurement and high-resolution multi-angle photogra-

phy of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–

2633, doi:10.5194/amt-5-2625-2012, 2012.

Goldsmith, J., Ermold, B., and Eloranta, E.: High Spectral Reso-

lution Lidar (HSRL), ARM Mobile Facility (TMP), University

of Helsinki Research Station (SMEAR II), Hyytiälä, Finland,

doi:10.5439/1025200, 2014.

Hanesch, M.: Fall velocity and shape of snowflakes, PhD thesis,

Swiss Federal Institute of Technology, Zurich, 1999.

Heymsfield, A. and Westbrook, C.: Advances in the estimation of

ice particle fall speeds using laboratory and field measurements,

J. Atmos. Sci., 67, 2469–2482, 2010.

Heymsfield, A. J., Bansemer, A., Schmitt, C., Twohy, C., and Poel-

lot, M. R.: Effective Ice Particle Densities Derived from Air-

craft Data, J. Atmos. Sci., 61, 982–1003, doi:10.1175/1520-

0469(2004)061<0982:EIPDDF>2.0.CO;2, 2004.

Heymsfield, A. J., Field, P., and Bansemer, A.: Exponential

Size Distributions for Snow, J. Atmos. Sci., 65, 4017–4031,

doi:10.1175/2008JAS2583.1, 2008.

Huang, G.-J., Bringi, V. N., Cifelli, R., Hudak, D., and Petersen,

W. A.: A Methodology to Derive Radar Reflectivity–Liquid

Equivalent Snow Rate Relations Using C-Band Radar and a

2D Video Disdrometer, J. Atmos. Ocean. Tech., 27, 637–651,

doi:10.1175/2009JTECHA1284.1, 2010.

www.atmos-meas-tech.net/9/4825/2016/ Atmos. Meas. Tech., 9, 4825–4841, 2016



4840 J. Tiira et al.: Ensemble mean density and its connection to other microphysical properties

Huang, G.-J., Bringi, V., Moisseev, D., Petersen, W., Bliven, L.,

and Hudak, D.: Use of 2D-video disdrometer to derive mean

density–size and Ze–SR relations: Four snow cases from the light

precipitation validation experiment, Atmos. Res., 153, 34–48,

doi:10.1016/j.atmosres.2014.07.013, 2015.

Iguchi, T., Matsui, T., Shi, J. J., Tao, W.-K., Khain, A. P., Hou, A.,

Cifelli, R., Heymsfield, A., and Tokay, A.: Numerical analysis

using WRF-SBM for the cloud microphysical structures in the

C3VP field campaign: Impacts of supercooled droplets and re-

sultant riming on snow microphysics, J. Geophys. Res.-Atmos.,

117, D23206, doi:10.1029/2012JD018101, 2012.

Illingworth, A. J. and Blackman, T. M.: The Need to Rep-

resent Raindrop Size Spectra as Normalized Gamma Distri-

butions for the Interpretation of Polarization Radar Obser-

vations, J. Appl. Meteorol., 41, 286–297, doi:10.1175/1520-

0450(2002)041<0286:TNTRRS>2.0.CO;2, 2002.

Khvorostyanov, V. I. and Curry, J. A.: Fall Velocities of Hy-

drometeors in the Atmosphere: Refinements to a Continu-

ous Analytical Power Law, J. Atmos. Sci., 62, 4343–4357,

doi:10.1175/JAS3622.1, 2005.

Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P.,

and Leinonen, J.: Observed relations between snowfall mi-

crophysics and triple-frequency radar measurements: TRIPLE-

FREQUENCY SIGNATURES OF SNOWFALL, J. Geophys.

Res.-Atmos., 120, 6034–6055, doi:10.1002/2015JD023156,

2015.

Korolev, A. and Isaac, G.: Roundness and aspect ratio of particles

in ice clouds, J. Atmos. Sci., 60, 1795–1808, 2003.

Leinonen, J., Moisseev, D., Leskinen, M., and Petersen, W. A.:

A Climatology of Disdrometer Measurements of Rainfall in

Finland over Five Years with Implications for Global Radar

Observations, J. Appl. Meteorol. Climatol., 51, 392–404,

doi:10.1175/JAMC-D-11-056.1, 2012.

Lo, K. and Passarelli Jr., R.: The Growth of Snow in Winter Storms:.

An Airborne Observational Study, J. Atmos. Sci., 39, 697–706,

doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2,

1982.

Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid

precipitation particles, J. Geophys. Res., 79, 2185–2197, 1974.

Löffler-Mang, M. and Blahak, U.: Estimation of the equiv-

alent radar reflectivity factor from measured snow size

spectra, J. Appl. Meteor., 40, 843–849, doi:10.1175/1520-

0450(2001)040<0843;EOTERR>2.0.CO;2, 2001.

Löffler-Mang, M. and Joss, J.: An optical disdrometer for

measuring size and velocity of hydrometeors, J. At-

mos. Ocean. Tech., 17, 130–139, doi:10.1175/1520-

0426(2000)017<0130;AODFMS>2.0.CO;2, 2000.

Magono, C. and Nakamura, T.: Aerodynamic Studies of Falling

Snowflakes, J. Meteorol. Soc. Jpn. Ser. II, 43, 139–147, 1965.

Matrosov, S., Reinking, R., and Djalalova, I.: Inferring fall attitudes

of pristine dendritic crystals from polarimetric radar data, J. At-

mos. Sci., 62, 241–250, doi:10.1175/JAS-3356.1, 2005a.

Matrosov, S. Y.: Variability of Microphysical Parameters in High-

Altitude Ice Clouds: Results of the Remote Sensing Method, J.

Appl. Meteor., 36, 633–648, doi:10.1175/1520-0450-36.6.633,

1997.

Matrosov, S. Y.: Modeling Backscatter Properties of Snowfall

at Millimeter Wavelengths, J. Atmos. Sci., 64, 1727–1736,

doi:10.1175/JAS3904.1, 2007.

Matrosov, S. Y., Heymsfield, A. J., and Wang, Z.: Dual-frequency

radar ratio of nonspherical atmospheric hydrometeors, Geophys.

Res. Lett., 32, L13816, doi:10.1029/2005GL023210, l13816,

2005b.

Matrosov, S. Y., Campbell, C., Kingsmill, D., and Sukovich, E.: As-

sessing snowfall rates from X-band radar reflectivity measure-

ments, J. Atmos. Ocean. Tech., 26, 2324–2339, 2009.

Mitchell, D. L.: Use of Mass- and Area-Dimensional Power

Laws for Determining Precipitation Particle Terminal Ve-

locities, J. Atmos. Sci., 53, 1710–1723, doi:10.1175/1520-

0469(1996)053<1710:UOMAAD>2.0.CO;2, 1996.

Mitchell, D. L. and Heymsfield, A. J.: Refinements in the Treatment

of Ice Particle Terminal Velocities, Highlighting Aggregates, J.

Atmos. Sci., 62, 1637–1644, doi:10.1175/JAS3413.1, 2005.

Mitchell, D. L., Zhang, R., and Pitter, R. L.: Mass-Dimensional

Relationships for Ice Particles and the Influence of Rim-

ing on Snowfall Rates, J. Appl. Meteor., 29, 153–163,

doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2,

1990.

Moisseev, D. N. and Chandrasekar, V.: Examination of the

mu–Lambda Relation Suggested for Drop Size Distribu-

tion Parameters, J. Atmos. Ocean. Tech., 24, 847–855,

doi:10.1175/JTECH2010.1, 2007.

Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Mi-

crophysics Based on the Prediction of Bulk Ice Particle Proper-

ties. Part I: Scheme Description and Idealized Tests, J. Atmos.

Sci., 72, 287–311, doi:10.1175/JAS-D-14-0065.1, 2015.

Newman, A. J., Kucera, P. A., and Bliven, L. F.: Presenting the

Snowflake Video Imager (SVI), J. Atmos. Ocean. Tech., 26, 167–

179, doi:10.1175/2008JTECHA1148.1, 2009.

Petäjä, T., O’Connor, E. J., Moisseev, D., Sinclair, V. A., Man-

ninen, A. J., Väänänen, R., von Lerber, A., Thornton, J. A.,

Nicoll, K., Petersen, W., Chandrasekar, V., Smith, J. N., Winkler,

P. M., Krüger, O., Hakola, H., Timonen, H., Brus, D., Laurila, T.,

Asmi, E., Riekkola, M.-L., Mona, L., Massoli, P., Engelmann,

R., Komppula, M., Wang, J., Kuang, C., Bäck, J., Virtanen, A.,

Levula, J., Ritsche, M., and Hickmon, N.: BAECC A field cam-

paign to elucidate the impact of Biogenic Aerosols on Clouds

and Climate, B. Am. Meteorol. Soc., doi:10.1175/BAMS-D-14-

00199.1, online first, 2016.

Power, B. A., Summers, P. W., and D’Avignon, J.: Snow Crystal

Forms and Riming Effects as Related to Snowfall Density

and General Storm Conditions, J. Atmos. Sci., 21, 300–305,

doi:10.1175/1520-0469(1964)021<0300:SCFARE>2.0.CO;2,

1964.

Pruppacher, H. and Klett, J.: Microphysics of Clouds and Pre-

cipitation, Atmospheric and Oceanographic Sciences Library,

Springer Netherlands, https://books.google.fi/books?id=1mXN_

qZ5sNUC, 1996.

Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt,

S., Fischer, A. P., Black, J., Thériault, J. M., Kucera, P., Gochis,

D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann, E.:

How Well Are We Measuring Snow: The NOAA/FAA/NCAR

Winter Precipitation Test Bed, B. Am. Meteorol. Soc., 93, 811–

829, doi:10.1175/BAMS-D-11-00052.1, 2012.

Schönhuber, M., Lammer, G., and Randeu, W. L.: One decade

of imaging precipitation measurement by 2D-video-distrometer,

Adv. Geosci., 10, 85–90, doi:10.5194/adgeo-10-85-2007, 2007.

Atmos. Meas. Tech., 9, 4825–4841, 2016 www.atmos-meas-tech.net/9/4825/2016/



J. Tiira et al.: Ensemble mean density and its connection to other microphysical properties 4841

Sekhon, R. S. and Srivastava, R. C.: Snow Size Spectra and Radar

Reflectivity, J. Atmos. Sci., 27, 299–307, doi:10.1175/1520-

0469(1970)027<0299:SSSARR>2.0.CO;2, 1970.

Silverman, B. W.: Density estimation for statistics and data analysis,

vol. 26, CRC press, 1986.

Szyrmer, W. and Zawadzki, I.: Snow Studies. Part II: Av-

erage Relationship between Mass of Snowflakes and Their

Terminal Fall Velocity, J. Atmos. Sci., 67, 3319–3335,

doi:10.1175/2010JAS3390.1, 2010.

Testud, J., Oury, S., Black, R. A., Amayenc, P., and Dou, X.:

The Concept of “Normalized” Distribution to Describe Rain-

drop Spectra: A Tool for Cloud Physics and Cloud Remote

Sensing, J. Appl. Meteorol., 40, 1118–1140, doi:10.1175/1520-

0450(2001)040<1118:TCONDT>2.0.CO;2, 2001.

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.:

Explicit forecasts of winter precipitation using an improved

bulk microphysics scheme, Part II: Implementation of a new

snow parameterization, Mon. Weather Rev., 136, 5095–5115,

doi:10.1175/2008MWR2387.1, 2008.

Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the New

Version of the Laser-Optical Disdrometer, OTT Parsivel2, J. At-

mos. Ocean. Tech., 31, 1276–1288, doi:10.1175/JTECH-D-13-

00174.1, 2014.

Tong, M. and Xue, M.: Simultaneous estimation of microphysical

parameters and atmospheric state with simulated radar data and

ensemble square root Kalman filter, Part I: Sensitivity analysis

and parameter identifiability, Mon. Weather Rev., 136, 1630–

1648, doi:10.1175/2007MWR2070.1, 2008.

Ulbrich, C. W. and Atlas, D.: Rainfall Microphysics and

Radar Properties: Analysis Methods for Drop Size Spec-

tra, J. Appl. Meteorol., 37, 912–923, doi:10.1175/1520-

0450(1998)037<0912:RMARPA>2.0.CO;2, 1998.

Ware, E. C., Schultz, D. M., Brooks, H. E., Roebber, P. J., and Bru-

ening, S. L.: Improving Snowfall Forecasting by Accounting for

the Climatological Variability of Snow Density, Weather Fore-

cast., 21, 94–103, doi:10.1175/WAF903.1, 2006.

Wood, N. B., L’Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.:

Characterization of video disdrometer uncertainties and impacts

on estimates of snowfall rate and radar reflectivity, Atmos. Meas.

Tech., 6, 3635–3648, doi:10.5194/amt-6-3635-2013, 2013.

Woods, C. P., Stoelinga, M. T., and Locatelli, J. D.: The IMPROVE-

1 Storm of 1–2 February 2001, Part III: Sensitivity of a

Mesoscale Model Simulation to the Representation of Snow

Particle Types and Testing of a Bulk Microphysical Scheme

with Snow Habit Prediction, J. Atmos. Sci., 64, 3927–3948,

doi:10.1175/2007JAS2239.1, 2007.

Zhang, G., Luchs, S., Ryzhkov, A., Xue, M., Ryzhkova, L., and

Cao, Q.: Winter precipitation microphysics characterized by

polarimetric radar and video disdrometer observations in cen-

tral Oklahoma, J. Appl. Meteorol. Climatol., 50, 1558–1570,

doi:10.1175/2011JAMC2343.1, 2011.

www.atmos-meas-tech.net/9/4825/2016/ Atmos. Meas. Tech., 9, 4825–4841, 2016









Journal of Geophysical Research: Atmospheres

Observed relations between snowfall microphysics
and triple-frequency radar measurements

Stefan Kneifel1, Annakaisa von Lerber2, Jussi Tiira3, Dmitri Moisseev2,3,

Pavlos Kollias1, and Jussi Leinonen4

1Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada, 2Finnish Meteorological
Institute, Helsinki, Finland, 3Department of Physics, University of Helsinki, Helsinki, Finland, 4Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, California, USA

Abstract Recently published studies of triple-frequency radar observations of snowfall have
demonstrated that naturally occurring snowflakes exhibit scattering signatures that are in some cases
consistent with spheroidal particle models and in others can only be explained by complex aggregates.
Until recently, no in situ observations have been available to investigate links between microphysical
snowfall properties and their scattering properties. In this study, we investigate for the first time relations
between collocated ground-based triple-frequency observations with in situ measurements of snowfall at
the ground. The three analyzed snowfall cases obtained during a recent field campaign in Finland cover
light to moderate snowfall rates with transitions from heavily rimed snow to open-structured, low-density
snowflakes. The observed triple-frequency signatures agree well with the previously published findings
from airborne radar observations. A rich spatiotemporal structure of triple-frequency observations
throughout the cloud is observed during the three cases, which often seems to be related to riming
and aggregation zones within the cloud. The comparison of triple-frequency signatures from the lowest
altitudes with the ground-based in situ measurements reveals that in the presence of large (>5 mm) snow
aggregates, a bending away in the triple-frequency space from the curve of classical spheroid scattering
models is always observed. Rimed particles appear along an almost horizontal line in the triple-frequency
space, which was not observed before. Overall, the three case studies indicate a close connection of
triple-frequency signatures and snow particle structure, bulk snowfall density, and characteristic size of the
particle size distribution.

1. Introduction

Multifrequencymeasurements usingmillimeter-wavelength radars have been found to considerably improve
retrievals of snowfall properties compared to single-frequency applications [e.g.,Matrosov, 1998;Hogan et al.,
2000;Matrosov et al., 2005]. These techniques are based on the fact that the effective radar reflectivity factor
Ze (hereafter called reflectivity) from an ensemble of snow particles is a function of the characteristic size of
the particle size distribution (PSD). A common measure of the characteristic size of the PSD is the median
volume diameterD0 defined as the diameter which partitions the PSD into two equal volume parts. However,
the relation between Ze and D0 will be different for different frequencies if non-Rayleigh scattering effects
become relevant.Matrosov [1992] showed thatonecanderiveD0 usingone radarwavelength inor close to the
Rayleigh region (e.g., S or X band) and a second one which is sufficiently affected by non-Rayleigh scattering
(e.g., Ka or W band).

Scattering simulations using spheroid particlemodels in combinationwith effectivemediumapproximations,
for example, the Maxwell-Garnett mixing rule [Matrosov, 1992, 1998], predict that the difference of the loga-
rithmic Ze from two frequencies f1 and f2 (hereafter called dual wavelength ratio, DWRf1 ,f2 = Zef1 − Zef2 ) is not
sensitive to snow density but only weakly dependent on the particle’s aspect ratio. Hogan et al. [2012] con-
firmed that oblate spheroids can consistently represent scattering properties observed at 3 and 94 GHz and
are also able to reproduce observed polarimetric signatures of nonprecipitating ice clouds.

Leinonen et al. [2011] extended the DWR methodology and demonstrated that if spheroid particle models
are assumed to be correct, observations at two frequencies (e.g., C and W bands) can be used to compute
reflectivity at a third frequency (for example, at Ka band). Studies of scattering properties of complex
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Figure 1. Exemplary simulated DWRKa,W and DWRX,Ka for a
selection of recently published PSDs and scattering models for
snow particles (for a more detailed discussion see section 1):
Sector snowflakes (SEC, black solid line) and dendrites (DEN,
black dashed line) up to 5 mm particle size from the Liu [2008]
database and rosette aggregates (AGC, black dashed-dotted
line) [Nowell et al., 2013] up to 12 mm particle size and
exponential PSDs as used in Kneifel et al. [2011]. Average of an
ensemble of dendrite aggregate structures (AGG, blue solid
line), averaged (spheroidal shapes (SPH), solid red line), and
5%/95% percentiles (dashed red lines) obtained from spheroidal
shapes assuming a homogeneous mixture of ice and air with
different PSDs, axis ratios, and canting angles, as described by
Leinonen et al. [2012]. Self-similar Rayleigh-Gans approximation
(SRG, yellow solid line) using the parameters given for
aggregates of bullet rosettes and columns by Hogan and
Westbrook [2014] and assuming aggregates up to 20 mm
maximum size and exponential PSDs as in Kneifel et al. [2011].

aggregate particles by, e.g., Petty and Huang
[2010], Botta et al. [2010, 2011], and Tyynelä et al.
[2011] have revealed that simple spheroid mod-
els of ice particles may not be sufficient for
linking microphysical properties of snowflakes
and their scattering signatures and may result
in errors up to the order of 20 dB in calcula-
tions of W band reflectivities. This was further
confirmed by Ori et al. [2014] and Nowell et al.
[2013]. In a comprehensive analysis, Kneifel et al.
[2011] compared simulatedDWRs (Ku, Ka, andW
bands) obtained from different scattering mod-
els including realistically shaped ice particles
and aggregates to the DWRs calculated with
spheroid models. For small D0 (below 2 mm for
DWRKu,Ka and smaller than 1.5 mm for DWRKa,W)
the differences between the scattering mod-
els are small and agree well with the findings
of the aforementioned observational studies.
However, the particle habit cannot be neglected
for larger D0: A combination of DWRs using
all three frequencies (e.g., by plotting DWRKu,Ka
against DWRKa,W) revealed a separation espe-
cially between the aggregate models and the
spheroid models. The DWRs from dendrite and
needle aggregateswhichwere basedon scatter-
ing computations from Petty and Huang [2010]
revealed a characteristic “hook” or “comma”
shape in the triple-frequency space similar to
the example shown in Figure 1. The typical hook
feature in the triple-frequency space was also

found by Leinonen et al. [2012], Tyynelä and Chandrasekar [2014], and Leinonen andMoisseev [2015] for snow
aggregates composed of a variety of different primary crystal habits including needles, rosettes, hexagonal
plates, dendrites, and fern-like dendrites. Leinonen and Moisseev [2015] analyzed in a comprehensive scat-
tering modeling study the influence of habit and size of the primary crystal composing the aggregate on
the triple-frequency signature: While the influence of the primary crystal habit is almost negligible, the pri-
mary crystal size influences the lowest DWRKa,W value where the aggregates start to bend away from the
spheroidal models. This might also partly explain the larger spread between the different aggregate types in
the triple-frequency space found in Kneifel et al. [2011]: In order to change the size of the aggregates, Petty
and Huang [2010] simply scaled the dipole structures which resulted in an unrealistic large exponent of the
mass-size relation and also a likely overestimation of the size of the primary particles for large aggregate sizes.

Tyynelä et al. [2013] have shown that scattering properties from realistically shaped snowflakes can be cal-
culated using Rayleigh-Gans theory with an accuracy comparable to other uncertainties inherent to radar
measurements. Based on this study, Leinonen et al. [2013] have shown that the backscattering property of a
snowflake can be directly linked to the mass distribution within the snowflake. Hogan andWestbrook [2014]
have further developed this methodology and presented a simple analytic solution based on self-similarity
of snowflakes. In contrast to the complex mass distribution found for snow aggregates, a homogeneous mix-
ture of ice and air is usually assumed in “soft” spheroid approximations. This difference might partly explain
the discrepancy between aggregate and spheroidal scattering models.

The first experimental proof of the existence of aggregate-like and spheroid-like triple-frequency signatures
was recently found by Leinonen et al. [2012] and Kulie et al. [2014]. Despite the significant spatial averaging
needed to correct, e.g., for radar beamwidthdifferences, these airborne observations confirm that at least two
distinct scattering regimes in the triple-frequency space exist. Nevertheless, the lack of in situ observations
has limited so far our ability to map the triple-frequency space to real snowfall properties.
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Figure 2. Part of the measurement site with in situ and remote sensing instruments deployed during the BAECC
campaign 2014 at Hyytiälä, Finland. All radars (SACRs and MWACR) are mounted on top of the containers; the
microwave radiometers (MWR) were installed close to the radars. On the field are the PIP video imager with its bright
halogen lamp, the Parsivel 1-D disdrometer, and the Pluvio2 weighing gauge. Other surface instruments are placed
inside a wind fence (DFIR) about 30 m to the left from the containers (not shown).

In order to understand better the relation between physical snowfall properties and triple-frequency radar
signatures, we analyze three case studies from collocated ground-based X, Ka, and W band zenith-pointing
radar observations together with a comprehensive data set of in situ observations from the ground.

2. Data, Instruments, and Methods

The data used in this study were collected during the Biogenic Aerosols Effects on Clouds and Climate
(BAECC) field campaign that took place at the University of Helsinki Hyytiälä Forestry Field Station, Fin-
land (61∘50’37.114’’N, 24∘17’15.709’’E, 150 m above mean sea level). BAECC was organized in collaboration
between the University of Helsinki, the Finnish Meteorological Institute, and the United States Department
of Energy Atmospheric Radiation Measurement (ARM) program, which deployed the second Mobile Facility
(AMF2) from 1 February to 12 September 2014. Between 1 February and 30 April 2014, an intensive obser-
vation period (IOP) was organized in collaboration with the National Aeronautics and Space Administration
(NASA) Global Precipitation Measurement (GPM) ground validation program and Colorado State University
focusing on winter precipitation; in total, 20 snowfall events were recorded during the IOP. The AMF2 and a
part of the in situ precipitation sensors are shown in Figure 2.

The measurement field is a 60 by 70 m wide clearing surrounded by trees. Most of the precipitation instru-
ments were located in the middle of the field at about 20 m distance from the nearest trees. The trees act as
the first wind shield andmake the site favorable for snowmeasurements. To achieve the best possible quality
of snowmeasurements, a custom-designedDouble-Fence Intercomparison Reference (DFIR) wind protection
[Rasmussen et al., 2012] was built at the site. The ground-based precipitation data set includes PSDs, terminal
fall velocities, and particle shapes measured with 1-D and 2-D optical disdrometers and a 2-D imaging video
camera. Furthermore, the liquid equivalent precipitation rate, total accumulation, and snow depthweremea-
sured.Wind conditionswere obtainedwith 2-D and 3-D anemometers at the heights of the in situ instruments
both inside the wind fence and on the measurement field.

The remote sensing instruments were collocated with the precipitation measurement equipment as can
be seen in Figure 2. All ARM radars were mounted on top of containers; the ARM microwave radiometers
(MWR) were installed on the field between the surface observations instruments and the radar containers.
The atmospheric state was derived from radio soundings (RS) launched 4 times a day.

2.1. Cloud Radars

For this analysis we are using data from the scanning dual-frequency ARM cloud radar system (X/KaSACR)
and from the Marine W band ARM cloud radar (MWACR). All radar observations used in this study were
collected during zenith-pointing operations. For optimal volume matching, the radar beams need to be
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Table 1. Technical Specifications and Settings of the AMF2 Cloud Radar Systems

Specifications XSACR KaSACR MWACR

Frequency (GHz) 9.7 35.3 95.0

3 dB beam width (∘) 1.27 0.33 0.38

Sensitivity at 1 km (dBZ)a −30 −50 −50
Range gate spacing (m) 25 25 30

Nyquist velocity (m s−1) 5.9 6.1 6.0

Temporal sampling (s) 2 2 2
aSensitivity for 2 s integration time and for nominal ARM radar settings.

properly aligned. The beam alignment can be assumed to be best for the X/KaSACR system for which both
antennas aremounted on the samepedestal. The X/KaSACRperformed alternating scans and zenith-pointing
observations; the MWACR was continuously zenith pointing during the campaign. The MWACR system has
been mounted on a different container in approximately 17 m distance from the X/KaSACR (Figure 2). All
radars have been carefully aligned to zenith direction during installation of the AMF2 at the site.

The temporal and range resolution of the three radar systems has also been closely matched; differences
between the center range gates are less then 16 m (Table 1). The half-power beam width of the MWACR and
KaSACR are similar while the XSACR beamwidth is 3 to 4 times larger due to antenna size limitations required
to allow scanning together with the KaSACR. In order to account for the slightly different center range gates
and radar volumes, the radar observations are low-pass filtered using a boxcar averaging window over two
range gates. Further, the data from KaSACR and MWACR have been averaged over three temporal sampling
intervals (approximately 6 s) to compensate for the larger XSACR beam width.

2.2. Offset and Attenuation Correction

Absolute calibrations of the radar systems have been performed at the beginning of the campaign with a
corner reflector (Nitin Bharadwaj, ARM radar engineer, personal communication). This study is based on DWR
measurements at two frequency pairs (X-Ka and Ka-W bands); thus, the relative calibration of the three ARM
radar systems is important. Before we consider instrument specific differences due to absolute calibration or
radome attenuation, we first analyze atmospheric attenuation effectsmainly due towater vapor, liquidwater,
and absorption by frozen hydrometeors.

We derived the two-way attenuation profile due to water vapor by using the measurements from the closest
RS and the water vapor absorptionmodel by Rosenkranz [1998] which includes also recently proposedmodi-
fication of the water vapor continuum absorption [Turner et al., 2009] and the 22 GHz line width modification
proposed by Liljegren et al. [2005]. Due to the relatively moist atmosphere (vertically integrated water vapor
amounts were in the range of 10–13 kg m−2), water vapor attenuation especially affects the W band with
two-way attenuation within the lowest 5 km of up to 1 dB, while at Ka band the water vapor attenuates the
signal by less than 0.2 dB; at X band water vapor attenuation is below 0.02 dB and thus can be neglected.

Attenuation due to supercooled liquid water (SLW) strongly increases with frequency but also depends
slightly on temperature. Although there are still uncertainties in the correctmodeling of the absorption index
of SLW, two-way attenuation due to a liquid water path (LWP) of 500 g m−2 (as, for example, observed during
the snowfall case on 16 February) are in the range of 5 dB/1 dB/0.09 dB at W/Ka/X band, respectively [e.g.,
Kneifel et al., 2014]. The attenuation effect at X band is within the noise level of the XSACR, and thus, we
only correct for SLW attenuation at W and Ka band. For this, we use the LWP derived from the collocated
two-channel MWR [Cadeddu et al., 2013]. Ideally, we would need to know the vertical distribution of SLW
in order to accurately calculate the SLW attenuation profile. Lidar and airborne in situ observations indicate
the SLW to be often concentrated in distinct layers within snow clouds rather than following a continuous
(adiabatic) SLW profile [e.g., Verlinde et al., 2013]. Unfortunately, the lidar data cannot be used in our cases
due to complete signal attenuation close to the ground caused by intense snowfall and/or SLW close to the
surface. Lacking better information about the vertical SLW distribution, we assume the LWP to be homoge-
neously distributed within the cloud. We estimate the SLW absorption coefficient with a recent absorption
model provided by Ellison [2007] and use the temperature profile from the closest RS. Given the observed LWP
values during our three cases, we estimate the uncertainty of a different SLW profile due to the temperature
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dependence of the liquid water absorption coefficient to be in the range of 0.2 dB for W band and 0.4 dB for
Ka band.

Average snowfall attenuation coefficients have been measured by Nemarich et al. [1988] using a horizontal
radar link to be 0.9 dB km−1 (g/m3)−1 at W band. At Ka band, attenuation due to snowfall is in general 1 order
of magnitude lower [e.g.,Matrosov, 2007]. For our attenuation correction, we calculate the vertical profiles of
ice water content (IWC) using the XSACR observations and applying the Ze-IWC relation IWC = 0.015Ze0.44

derived by Boudala et al. [2006] based on in situ observations and X band reflectivity observations for temper-
atures larger than −15∘C. The attenuation profile due to snowfall has then be obtained with the IWC profiles
and the attenuation coefficient measured by Nemarich et al. [1988]. The path integrated W band attenuation
values found for our three cases are in theorder of 1dBwhich is similar to thefindings for dry snowfall reported
inMatrosov [2007]. Thus, only W band reflectivities are corrected for attenuation due to snowfall.

The remaining offsets due to radome attenuation or absolute calibration differences are derived by compar-
ing the radar measurements in regions close to cloud top where we can expect the ice hydrometeors to be
mostly Rayleigh scatterers, and thus, their reflectivity factors should be frequency independent [Hogan et al.,
2000]. In order to exclude potentially aggregated particles (indicated, e.g., by increased Ze and DWR values),
we therefore only consider reflectivities smaller than −5 dBZ and only from cloud regions above 4 km height
where DWR signatures are generally found below 1 dB. The relative offsets are derived assuming the XSACR
data as our reference. Due to its lowest frequency of the three radar systemand frequent tilting of the antenna
during scanning periods, we expect radome attenuation effects by accumulated snow or liquid water to be
smallest. The remaining offsets derived separately for every case are below 1.5 dB for the KaSACR-XSACR
comparison and less than 3 dB for MWACR-XSACR. We also analyzed the noise floor at range gates with-
out cloud particles, which can be expected to vary due to emission by liquid water included in a wet snow
layer accumulating on the radome; during all three cases and for all three radars, the noise floor indicated no
significant changes.

2.3. In Situ Sensors

One of the core instruments used in this study is the Particle Imaging Package (PIP), which is the next genera-
tion versionof the SnowVideo Imager (SVI) [Newmanetal., 2009]. As in theprevious version, themeasurement
unit of PIP includes a halogen lampand a video systemof lens and a charge-coupleddevice full-frame camera.
The frame rate of PIP is 380 frames per second enablingmeasurements of particle fall velocities. The distance
between the camera and the lamp is approximately 2m, and the focal plane is 1.3 m from the end of the lens;
therefore, the field of view is 64× 48mm at this distance resulting in a resolution of 0.1× 0.1mm for the gray
scale images. PIP records particle diameter D which is defined as an equivalent diameter of a disk that has
the same area as the shadow of the particle. Further, terminal fall velocity and other particle image properties
are derived according to the SVI particle detection algorithm described in Newman et al. [2009]. The particles
which are out of focus are excluded according to thresholds based on increased blurring and reduced con-
trast values. The estimated error in sizing due to this effect is 18% [Newman et al., 2009]. PIP measurements
areminimally affected bywind-induced errors due to the open structure of the instrument. The averagewind
speed during the three case periods at the height of the PIP measured with Gill anemometer were 1.3, 1.8,
and 2.1 m s−1 for 7, 16, and 24 February 2014, respectively.

In addition to the optical disdrometers, two Pluvio2 weighing gauges were part of the instrumentation: The
Pluvio2-200 with an area of the orifice AG = 200 cm2 and Tretyakov wind shield were placed inside the DFIR
wind fence; the Pluvio2 400 with an orifice AG = 400 cm2 and a combination of Tretyakov and Alter wind
shields were installed on the measurement field outside the DFIR fence. The differences of snowfall rate or
snowfall accumulation measured with the two gauges are found to be on average smaller than 10%. The
factory-made filtered data output of bucket nonreal-time accumulation is utilized. This output is selected
because of its higher accuracy, though the data output has a time delay of 5 min from the occurring precip-
itation event. Due to problems with the proper synchronization of the system time of the data acquisition
computer for the Pluvio2s, the time shift due to the nonreal-time output and the drifting system time was
obtained by cross correlating the Pluvio2 time series of precipitation rate with the values derived from PIP for
each case.

Prior to calculations of the PSD parameters, the PSDs recorded by PIP are filtered to exclude spurious mea-
surements of large particles. Also, particles smaller than 0.375 mm are ignored, since these measurements
are deemed to be unreliable. PIP sorts the observed particles into 105 bins ranging from 0.125 to 26.125mm.
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The PSDs observed during the three cases are close to an exponential distribution, and the derived PSD
parameters agree well with the measured PSDs from a Parsivel on the site [Löffler-Mang and Joss, 2000;
Löffler-Mang and Blahak, 2001; Battaglia et al., 2010]. Characteristic parameters of the PSD are derived every
minute and are then averaged over 6 min periods. The averaging time is selected to be long enough for the
accumulationmeasured with the Pluvio2s to reach the sensitivity limit of> 0.1mm and short enough to cap-
ture the transitions of snowfall properties (e.g., changes in degree of riming). The median volume diameter
D0 and total particle concentration NT are calculated based on the 6 min averages; the maximum diame-
ter Dmax is the largest area-equivalent diameter observed during the 6 min period. From the nonaveraged
6 min observations of terminal fall velocities v and D, fall velocity-diameter power law relations in the form
v(D) = aDb are calculated. Prior to carrying out the nonlinear regression fit with Levenberg-Marquardt algo-
rithm, a two-dimensional probability density distribution of velocity-diameter observations is calculatedwith
the kernel density estimation method [Silverman, 1986]. The main reason for selecting this method is to pro-
vide a consistent approach of reducing impacts of limited observations of the larger particles and outliers that
are present in velocity observations of particles of all sizes. Tominimize the influence of outliers on the v-D fit,
but also to utilize the most of the reliable observations, for each diameter bin, the velocity observations that
fall within the half width from each side of the peak of themeasured velocity density function are used for the
regression. It should be noted that the half widths are calculated for each side of the distribution, therefore,
allowing for nonsymmetrical density functions.

The observed PSDs, velocity-diameter relations, and snowfall accumulation measurements from the Pluvio2s
are combined to calculate bulk densities of the observed snowfall for the 6 min averaging periods. The bulk
snowfall density 𝜌b in kg m

−3 can be determined from the liquid equivalent precipitation accumulation GPIP
in mm estimated with PIP as

GPIP(T) = 10−6
𝜋

6

𝜌b

𝜌w ∫
T+6min

T ∫
Dmax

Dmin

D3v (D, t)N (D, t)dDdt, (1)

where diameter D, minimum Dmin, and maximum Dmax-resolved diameter are in mm, the observed time
interval t is in s, the fall velocity relation v(D, t) is inm s−1, and the PSD averaged over t,N(D, t) is inmm−1 m−3.

The value for 𝜌b is retrieved by comparing GPIP to the accumulation GG measured with an OTT Pluvio
2 gauge

GG(T) = 10
1

𝜌wAG ∫
T+6min

T
m(t)dt, (2)

with bucket mass change in observed time intervalm(t) in kg s−1 and density of water 𝜌w = 1000 kg m−3.

A correlation of the found velocity-size relation and bulk snowfall density is detected, which is in accor-
dance with previous studies [e.g., Locatelli and Hobbs, 1974; Barthazy and Schefold, 2006; Garrett and Yuter,
2014]. During certain time periods, especially on 16 February (Figure 10) between 00:44 and 00:56 UTC,
a bimodal distribution of particles with different velocity-size distributions is observed; in these cases the
derived velocity-size relation and thebulk snowfall density represent the averageof bothparticle populations.

2.4. Time Lag Between Lowest Radar Ranges and Surface Level

For analyzing the relation between triple-frequency signatures and in situ properties of snowfall, we use the
lowest 200 m observed by the three radars (380–580 m). Depending on the horizontal advection speed, we
expect a temporal lag between the snowfall signaturesmeasured at the lowest range gates and the according
in situ signatures measured at the surface. We estimated the time lag with three different methods which
are similar in some parts to the methods described in Wood et al. [2014]: The theoretical X band time series
of reflectivity close to the surface is calculated using the sixth moment of the observed PSD. The time lag
is derived by finding the best cross correlation between calculated surface X band reflectivity and observed
XSACR reflectivities at the middle of the 200 m thick layer (480 m). In the second method, the temporal shift
of the observed X band reflectivity time series within the lowest 200 m is estimated by cross correlation of
the Ze time series of subsequent altitudes; the vertical profile of the time lag is then extrapolated toward
the surface. In the third method, we use the profile of horizontal wind from the nearest RS and the observed
meanDoppler velocity (MDV) as average terminal velocity of the snowfall.We simulate the resulting fall streak
pattern in the radar time-height observation space similar toHoganandKew [2005]; and assume the height of
the generating level close to cloud top. The time lag is estimated by extending the simulated fall streak down
to surface level assuming theMDVs below the lowest radar range to be equal to the observed values at 380m.
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Figure 3. Vertical profiles of (left) air temperature (red), dew point (blue), and (right) relative humidity (black) from the
radiosonde ascent launched at 23:54 UTC on 7 February 2014 in Hyytiälä. The red line in the right panel represents the
relative humidity at which the air would be saturated with respect to ice; height layers with supersaturated conditions
with respect to ice are shaded in light grey.

The time lag estimates obtained by the threemethods differ by less than 0.5min for the three analyzed cases.
We shifted the averaging time window for the in situ data according to the average lag obtained by the three
methods of 2.5, 3.8, and 1.0 min for 7, 16, and 21 February 2014, respectively (in all three cases the time shift
is in the same direction, i.e., the snowfall signatures appear first in the lowest radar range gates and later in
the in situ data).

3. Triple-Frequency Case Studies

In this section we present three snowfall case studies observed during February 2014 comprising different
triple-frequency signatures, snowfall rates, and degrees of riming. A short description of theweather situation
of each case will be followed by an analysis of the time-height 2-D structure observed by the triple-frequency
radars. Finally, the in situ data collected at ground level are compared with triple-frequency signatures from
the lowest radar range gates.

3.1. Case 1: 7 February 2014

3.1.1. Weather Situation and Radar Time-Height Structure

On 7 February 2014, a low pressure system over the Eastern Atlantic causes a southerly flow advecting rela-
tively mild air (temperatures close to ground level between−5 and−0.5∘C) over Hyytiälä. Between 12:00 and
20:30 UTC, only a thin mixed-phase cloud with cloud top at 2 km is present. At 20:30 UTC ice clouds from an
approaching warm front are detected by the radars; the ice clouds steadily descend and finally merge with
the underlying mixed phase cloud at 22:45 UTC.

We focus our analysis of triple-frequency signatures on the time period between 22:45 and 24:00 UTC, where
a distinct snowfall band descends toward the ground. Temperatures at ground level are close to 0∘C, increas-
ing from −1∘C at 22 UTC up to −0.3∘C at 24 UTC. The vertical structure of temperature and relative humidity
up to 5 km are shown from the closest RS at 23:54 UTC in Figure 3. The temperature profile reveals the first
and strongest temperature inversion between 400 and 500 m above ground level (AGL) reaching largest val-
ues of 0.1∘C. Due to the slightly positive temperature within this narrow layer, the ice and snow particles
could experience slight melting. However, the vertical structure of Ze or MDV and also the time series of LWP
does not show any significant enhancement that would be an indicator of melting (Figure 4). According to
Rasmussen and Pruppacher [1982], it is quite likely that in this case the onset of melting is suppressed due to
the slightly subsaturated (relative humidity only 96%) conditions at the level of 0.1∘C. Therefore, we conclude
that the snow particles are still unmelted while their sticking efficiency might be large due to the near 0∘C
temperatures, thus favoring formation of large aggregates [e.g., Brandes et al., 2007].

The relative humidity profile is rather complex due to the merging of the two cloud systems. Based on the
RS data, we also derived the relative humidity values that would be needed under the given temperature
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Figure 4. Radar and MWR observations from 7 February 2014 between 22:45 and 24:00 UTC. Radar reflectivities from vertically pointing (a) XSACR, (b) KaSACR,
and (c) MWACR have been corrected for attenuation and calibration offsets (see more detailed description in the text). Time-height images of (d) DWRKa,W and
(e) DWRX,Ka have been derived from these corrected reflectivity fields. (f ) Field of MDV from the XSACR. (g) Time series of LWP derived from the collocated
two-channel MWR.

conditions to allow saturation with respect to ice. Combinedwith the ambient relative humidity profile, areas
of saturated/subsaturated conditions with respect to ice favoring depositional growth or sublimation can be
identified. Besides several areas close to liquid water saturation (e.g., 300 m and 1000 m AGL), we find a large
layer saturated onlywith respect to ice (between 2.0 and 4.3 km) and distinct sub-saturated areaswith respect
to ice (e.g., between 1.2 and 2.0 km).

Themost prominent structure visible in the time-height overview plots of radar reflectivities, DWRs, andMDV
(Figure 4) is a band of high reflectivity starting at altitudes between 3 and 4 km steadily descending down to
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Figure 5. Time series of surface snowfall in situ observations derived from PIP and Pluvio2 averaged over 6 min periods
from 7 February 2014 between 22:45 and 24:00 UTC: (a) Liquid equivalent snowfall rate (mm −1), (b) bulk snowfall
density (kg m−3), (c) dual-wavelength ratios (dB) averaged over the lowest 200 m radar ranges (380–580 m AGL),
(d) total number concentration NT (m

−3), (e) median volume diameter D0 (mm), and (f ) maximum particle diameter Dmax
(mm). Note that the time interval for the in situ averages has been shifted by the estimated time lag (see section 2.4)
to be easier to compare with the radar observations.

ground. In the RS from 23:54 UTC (Figure 3) we find the temperature of the region where the snowfall band

seems to form to be around −13 to −15∘C. This temperature region together with high supersaturation is
known to favor growth of dendritic ice particles, which are particularly effective at aggregating quickly due

to their branched structure. The descending snowfall band causes significantly different reflectivities at the

three radar frequencies: Themaximum reflectivities at the center of the snowfall band are found at the Xband,

with maximum values of up to 25 dBZ, while the signal is weaker by up to 10 dB at the Ka band and by up

to 14 dB at the W band. These strong differences can only be explained by non-Rayleigh scattering effects

because after the intense snowfall band reaches the ground both DWRX,Ka and DWRKa,W are close to 0 dB.

The observed MDVs are in the range of 0.8–1.4 m s−1, which are typical terminal fall velocities of unrimed

or only lightly rimed aggregates [Barthazy and Schefold, 2006]. Only at the end of the period do we find an

increase of MDV up to 2 m s−1 within the lowest 1 km, coinciding with an increase of LWP up to 120 g m−2.

This signature is very likely connected to riming processeswithin this layer. Interestingly, this riming signature

is slightly correlated with a significant increase of DWRKa,W while the DWRX,Ka values remain below 3 dB.
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Figure 6. Comparison of low-level triple-frequency radar observations with surface measurements from the PIP for the case on 7 February 2014 shown in
Figure 4: (top row) Plots of DWRKa,W against DWRX,Ka for 6 min periods obtained from the lowest 200 m radar ranges (380–580 m AGL); the color scaling of every
point indicates the MDV from the XSACR. All radar data have been restricted to observations with Ze >−5 dBZ in order to exclude potential DWR artifacts due to
different radar sensitivities. The black dashed line indicates the average curve obtained from the spheroidal scattering model (same as the solid red curve in
Figure 1). (middle row) Two-dimensional histograms of the PIP observed velocity-size relation together with the best power law fit to the distribution. (bottom
row) Example images observed by the PIP during the 6 min time periods. Note that the time intervals for the in situ periods have been shifted by the estimated
time lag (see section 2.4) to account for the altitude difference between the lowest radar gates and the surface level.

3.2. Comparison to Ground-Based In Situ Observations

The high-reflectivity band (Figure 4) approaches the lowest radar gates between 23:22 and 23:28 UTC. The in
situ measurements (Figure 5) reveal during this time (note that the time of the in situ data have been shifted
by the estimated time lag of 2.5 min between lowest range gates and surface level according to section 2.4)
a low number concentration of large aggregates with D0 and Dmax of 3.5 mm and 7 mm, respectively. The
low-bulk snowfall density and low concentration of snowparticles result in only a light snowfall at the ground
with less than0.2mmh−1 liquid equivalent snowfall rate. The actualmaximum in snowfall rate of 0.4mmh−1 is
measured at the groundmore than 10min later at 23:40 UTC, concurrentwith a higher number concentration
(up to 1600 m−3), decreasing D0 (1 mm), smaller Dmax (3.5 mm), and increasing bulk snow density (from 100
to 300 kg m−3).

The triple-frequency data from the lowest 200 m layer (Figure 6) show also very different signatures before
and after 23:28UTC: During the time 23:16–23:28UTC,we find very largeDWRX,Ka values reaching up to 13dB,
while the DWRKa,W values range between 3 and 10 dB. The observed signatures in the DWR space are quite
similar to theoretical curves assuming aggregate scatteringmodels (Figure 1), although some of the observa-
tions reveal an even stronger decrease of DWRKa,W values than any of the aggregatemodels predict. It should
be noted that the DWR values are independent of particle concentration and thus only dependent on D0

and specific particle scattering behavior. The example PIP images (Figure 6, bottom) confirm the presence of
large aggregates (sometimes up to 10mm) with a very open or “fluffy” structure, i.e., an inhomogeneous and
widespreaddistribution of icewithin theparticle’s circumscribed volume.Due to the limited image resolution,
it is, however, rather difficult to identify the primary particles that build the aggregates in this case.

After 23:28 UTC, both the triple-frequency signatures and in situ observations change considerably: While
the total number concentration increases by a factor of eight accompanied by a steady increase of snow-
fall rate, D0 and Dmax drop to values below 2 mm and 5 mm, respectively. It is unlikely that the particles are
strongly rimed considering that the LWP is still very small, and the terminal fall velocities seen by the PIP are
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Figure 7. Same as Figure 3 but for the radio sounding on 15 February 2014, 23:18 UTC.

not significantly enhanced. In accordancewith the decrease of particle sizes, the formerly very strongDWRX,Ka
falls below 5 dB, while the DWRKa,W values are found to range between 1 and 6 dB following closely the area
predicted by scattering models of low-density particles with a homogenous ice-air mixture (soft spheroids).
However, the PIP images only indicate a decrease of the overall aggregate size rather than a transition from
open-structured aggregates to particles with more homogeneous ice-air mixture. In fact, in this area of low
DWR values, different particle habits and their mixtures can produce very similar triple-frequency signatures
[Kneifel et al., 2011; Leinonen et al., 2012; Tyynelä and Chandrasekar, 2014; Leinonen andMoisseev, 2015].

The DWR signatures almost completely disappear in the period between 23:35 and 23:50 UTC, while the total
number concentration and snowfall rate reach their maximum within this period. The PIP images indicate
the presence of small, open-structured aggregates rather than single crystals and small number of spherical,
probably rimed particles. As expected, the DWR values seem to be independent on the increase in number
concentration,while the decrease in bothDWRs correlateswell to the lowD0 andDmax values observedduring
this time.

After 23:50 UTC, DWRKa,W increases up to 9 dB while DWRX,Ka remains below 3 dB. This increase in DWRKa,W is
well correlatedwith an increase inMDV up to 1.6m s−1 (with largerMDV for larger DWRKa,W). At the same time
the LWP increases by 60 g m−2, and the slope of the velocity-size relation steepens which strongly indicates
presence of rimed particles. Also, the PIP images indicate a change from small, open-structured aggregates
to more compact, spheroidal habits.

3.3. Case 2: 16 February 2014

3.3.1. Weather Situation and Time-Height Structure

The atmospheric composition and cloud fields during the night of 15 to 16 February 2014 over Hyytiälä are
influenced by a weakening low pressure system with its center at Northern Norway which moves further in
northeasterly direction. A well-developed warm type occlusion associated with the cyclone moves from SW
to NE, finally reaching the ground level at the SW corner of Finland at around 00 UTC on 16 February. Similar
to 7 February case, a long-lasting thinmixed-phase cloud can be identified in the radar images of 15 February
with its cloud top around 1 km AGL. At 12 UTC 15 February, first ice clouds at 6–8 km can be identified which
continuously deepenwith time, and finally at 21:15UTC the ice particles fall into the lowermixed-phase cloud.

The RS from 23:18 UTC (Figure 7) shows the remaining cloud top temperature inversion and high relative
humidity below 1 km associated with the former mixed-phase cloud layer. Most of the layers above 1 km are
close to saturation with respect to ice but between 2 and 3 km, and also above 4 km the air is supersaturated
with respect to ice. The temperature close to ground is only slightly lower compared to the 7 February case
and varies between −0.7 and −1.2∘C at our focus time between 00:00 and 01:00 UTC.

The radar observations (Figure 8) reveal a very complex precipitation pattern: When looking at the structure
of the entire cloud (not shown), it seems the snowfall is initiated in cellular structures between 4 and 5 km.
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Figure 8. Same as Figure 4 but for 16 February 2014, 00:00–01:00 UTC.

The snow particles that fall out of these generating cells are advected by the horizontal wind which strongly
varies with height. This variable wind shear leads to complex fall streak patterns with changing slopes in the
time-height radar display (Figure 8). Generating cells and their corresponding fall streak structures is typical for
snowfall clouds and have been observed since the early days of radarmeteorology [e.g.,Marshall, 1953;Gunn
andMarshall, 1955]. Themost prominent of these snowfall trails can be found around 00:50UTC accompanied
with a local peak in LWP and a maximum in reflectivity of 28 dBZ at the X band. It is plausible that the LWP
increase is connected to a slight updraft, but the constant downwardmovement of the snowparticles seen in
theMDV indicates that the updraftmust have been smaller than the typical average snowfall terminal velocity
of 1 m s−1.
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Figure 9. Same as Figure 5 but for 16 February 2014, 00:00–01:00 UTC.

The fall streak patterns appear also in the DWR fields: In the reflectivity differences of the two higher radar
frequencies DWRKa,W, we find the fall streak structures starting just below the generating cells. This indicates
that shortly after the particles are released from the generating cells, riming and/or aggregation processes
must have taken place which were able to cause this differential scattering signatures between the W and Ka
bands. Such rapid aggregation and riming processes connected to generating cell activity have also recently
been observed with aircraft in situ probes and polarimetric radar observations [Kumjian et al., 2014]. These
fine fall streak structures starting at the generating cells cannot be observed in theDWRX,Ka (except the strong
plume structures at the end of the period). The most significant increase in DWRX,Ka, however, occurs in the
lowest 2 km.

Detecting and evaluating the strength of riming is challenging in this case: The LWP ranges between 150 and
300 g m−2 during most of the hour. At the end of the period (00:42 until 01:00 UTC) the LWP increases up to
500 g m−2. These LWP values are much higher than those observed for the 7 February case. The likelihood of
rimingcan thereforebeexpected tobehigher in this casewhich seems tobeconfirmedby the increaseofMDV
up to 2m s−1 within the lowest 2 kmafter 00:42 UTC. However, theMDVduring the entire hour reveals a rather
complex pattern which seems to be connected to the overall reflectivity pattern only in certain areas. Clearly,
microphysical processes like riming are superimposed over dynamical effects like the wave-like upward and
downward motion detected in the MDV of the lowest 1 km during the first half of the focus period.

During the later period, when LWP further increases, we also note an increasing number of small, localized
DWR maxima especially in the DWRKa,W field. In some areas it seems like these maxima are related to the
fall streak patterns where we can expect size sorting effects due to the wind shear and increased variability
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Figure 10. Same as Figure 6 but for 16 February 2014, 00:00–01:00 UTC.

in terminal fall velocities. This assumption is somewhat confirmed by the slightly different location of the
maxima between DWRX,Ka and DWRKa,W (for example, in the vicinity of the strongest plume-like structure
around 00:50UTC)which could be causedby size sorting of different particle populationswithin the fall streak
which will then appear differently in the two DWRs.

3.4. Comparison to Ground-Based In Situ Observations

The observed snowfall rates at the surface (Figure 9) reach their maximum values of 1.6 mm h−1 during the
second half of the focus period. During this second half also, D0, Dmax, and Ntot reach their maximum values
of 3.4 mm, 12 mm, and 103 m−3, respectively. The overall snow density, however, drops to a minimum value
of 80 kg m−3 when the other parameters reach their peaks. This indicates that the period associated with the
largest snowfall rate during this event was also composed of the “fluffiest,” i.e., least dense aggregates.

For the analysis of the relation between lowest radar range gate observations and in situ snowfall parame-
ters, we again focus on five selected time periods were we find significant changes in the triple-frequency
signatures (Figure 10). The time lag between the lowest radar range gates and ground level is estimated to be
around 4 min.

The first time period between 00:08 and 00:14 UTC (Figure 10) is characterized by enhanced X/Ka-band reflec-
tivity but low snowfall rate and only moderate values of DWRX,Ka. As expected from the radar overview plot
(Figure 8), we find the DWRKa,W clearly enhanced up to 9 dBwhile DWRX,Ka ranges between 2 and 8 dB follow-
ingmostly the average soft spheroid line; only a weak comma feature is found for the radar pixels with largest
MDV (1.1–1.5 m s−1) and largest DWRKa,W.

Visual analysis of the PIP images (Figure 10) reveals the presence of three major particle populations: Sin-
gle needles (1–2 mm), small (1.5–2 mm) spherical aggregates, and a lower concentration of larger (> 2 mm)
needle aggregates. This mixture of rimed particles, needles, and needle aggregates could be related to ice
multiplicationmechanism like rime splintering (Hallett-Mossop) process [HallettandMossop, 1974] in the layer
below 800m altitude: high values of relative humidity close to water saturation (Figure 7) might have favored
the existence of SLW, and the temperatures are close to −5∘C; these are both important condition for the
Hallett-Mossop process to be effective. The measured histogram of particle velocity and diameter reveals at
least twoof theseparticle populations indifferent clusters of points. Despite thedifferentparticle populations,
the velocity-size relation can be fitted surprisingly well using a single power law.
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Figure 11. Same as Figure 3 but for the radio sounding on 21 February 2014, 23:20 UTC.

The DWRs during 00:20–00:26 UTC follow fairly well the curve predicted by the soft spheroids. It is also inter-
esting that the radar pixels with MDV around 1 m s−1 are now almost equally distributed along the range of
DWR values. The in situ time series (Figure 9) show that D0 reaches its minimum values (1.7 mm) during this
period. Thismight also explainwhy theDWRvalues are also very small: Only if all range gateswithin the 200m
layer during the 6min are filled with similarly small particles with low differential scattering behavior can low
DWR values be reached. In fact, when we split the radar data for this particular time period into shorter time
periods, the DWR values are indeed be found to move along the line of the average spheroids reaching a
minimum in both DWRX,Ka and DWRKa,W at the time where the minimum in D0 is observed at the ground.

Thenext timeperiodwe focuson is from00:38 to 00:44UTC: Asmentionedbefore, during this period themaxi-
mumsnowfall rate, particle concentration, andD0 are reachedwhile thebulk snowfall density is found to reach
its minimum of 80 kgm−3. Also the exponent of the power law fit for the velocity-size relation decreases from
0.32 to 0.22which is likely tobe connected to lower density particles. In accordancewith the increase inD0 and
decrease in bulk snowfall density, the DWRX,Ka values increase to 10 dB, and the triple-frequency signatures
bend away from the average spheroid line toward the area expected for aggregates. The PIP images show the
presence of large needle aggregates of sometimes more compact and sometimes very open structure.

During the following time period (00:44 to 00:50 UTC), the overall aggregate signatures remain almost con-
stant in the triple-frequency space. However, a new family of points with DWRX,Ka values below 3 dB, DWRKa,W
up to 6 dB but with MDV between 0.9 and 1.6 m s−1 appears during this period. The velocity-size scatterplot
shows indeed evidence for a new, separated population of rimed particles with clearly enhanced terminal
velocities reaching 1.3–1.5 m s−1 with sizes of only 1.0 to 2.0 mm. Similar to the end of the 7 February case,
there seems to be a close connection of the presence of riming and an increase of DWRKa,W together with low
DWRX,Ka values (<3 dB).

Only 6 min later (00:50–00:56 UTC), the number of large aggregates further decreases, while the number
of increasingly rimed particles with sizes of 1.5 to 2.0 mm and terminal velocities up to 2 m s−1 increases.
As a result of the increasing density of the small particle population, the velocity-size scatterplot becomes
progressively bimodal. The reduction in the number of larger aggregates also reduces the DWRX,Ka values
below 3 dB while the DWRKa,W measurements are still found up to 9 dB. This almost horizontal curve in the
triple-frequency space and the presence of rimed particles is similar to the last time period observed at the 7
February case (Figure 6).

3.5. Case 3: 21 February 2014

3.5.1. Weather Situation and Time-Height Structure

Theweather situation on 21 February is characterizedby aweakened cyclone located over northeastern Scan-
dinavia and a warm-type occlusion moving in northeasterly direction over Hyytiälä. Similar to the other two
cases, a thin mixed-phase cloud with cloud top at 1 km exists almost continuously during the day. At 5 UTC,
thicker ice clouds can be seen in the radar images between 4 and 7 km, slowly descending and deepen-
ing before they merge with the low mixed-phase cloud at 16 UTC. In the RS from 23:20 UTC (Figure 11) the
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Figure 12. Same as Figure 4 but for 21 February 2014, 22:53–23:18 UTC.

signature of the mixed-phase cloud can still be detected in the temperature inversion at 800 m and the peak
in relative humidity at the same height. A second temperature inversion together with a small peak in relative
humidity is also visible at 2.9 km. The layer between 800m and 2.3 km shows slightly subsaturated conditions
with respect to ice in contrast to the ice supersaturated layer above. The temperatures close to surface during
our focus time period were close to −2∘C.

The selected focus time period from 22:53 to 23:18 UTC is shorter (25 min) compared to the other two cases
because the X/KaSACR was frequently scanning during this day. In the radar reflectivity time-height image
(Figure 12), the cloud appears to be relatively stratiform and only a few generating elements with their asso-
ciated fall streaks can be found above 3 km. This case again exhibits significant signatures of riming and a
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Figure 13. Same as Figure 5 but for 21 February 2014, 22:53–23:18 UTC.

transition from rimed small particles to aggregate snowfall: The enhancedMDVof up to 2.5m s−1 corresponds
well to the enhanced LWP (up to 350 g m−2) during the first half of the focus period.

During the timeperiodof enhancedMDVandLWP,we also find very largeDWRKa,W values of up to 14dBwhich
are the largest values found in all three cases. In contrast, the DWRX,Ka is found continually below 3 dB inmost
of these areas. Theweak DWRX,Ka signatures do, however, resemble the strong DWRKa,W structures. We expect
a certain correlation of the two DWRs because they both generally increase with increasingD0. It is thus likely
that the strong DWRKa,W structures are not only a product of riming but also due to slightly increasing D0.

After the LWP decreased to low values of 50 gm−2 (23:05 UTC), DWRX,Ka increases in the lowest 2 km to 11 dB.
TheDWRKa,W values, on theother hand, continuously decrease especially above2 kmcoincidingwith adecline
of MDV to values smaller than 1.5 m s−1.

3.6. Comparison to Ground-based In Situ Observations

The in situ data (Figure 13) reveal a similar two-part separation of the snowfall event as found in the radar data:
During the first half (before 23:05UTC), the snowfall rate is relatively low (below0.5mmh−1) and composedby
a low concentration of small-sized (Dmax < 3mm) particles with high density (estimated bulk snowfall density
up to 600 kgm−3). Although the density estimate has to be interpreted with care due to the low snowfall rate
and particle concentration, the in situ data indicate the presence of heavily rimed particles withmostly spher-
ical shape (Figure 14). A further confirmation of strong riming is the observed velocity-size relation during this
time which resembles well those found for lump graupel [e.g., Barthazy and Schefold, 2006].
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Figure 14. Same as Figure 6 but for 21 February 2014, 22:53–23:18 UTC.

The characteristics of the snowfall event are very different during the second period (23:05–23:18 UTC): The
snowfall rate reaches its maximum of 2.2 mm h−1 around 23:17 UTC; this is the largest snowfall rate observed
for all three cases. The peak in snowfall rate is connected to a strongly broadened PSD (D0 up to 4.7 mm
and Dmax > 12 mm), increasing particle concentration, but also to a sharply decreased bulk snowfall density
(90–150 kg m−3).

This transition from light, graupel-like snowfall to moderate aggregate snowfall appears to be strongly corre-
lated to changes in the triple-frequency space as can be seen in the temporal development of the low-level
radar observations and in situ data (Figure 14): During the first 6 min (22:53–22:59 UTC), we find the DWRKa,W
values filling in the entire range between 2 and 12 dB; this means that the particle ensembles in the different
low-level radar pixels must have been composed of very different realizations of D0 and/or degree of riming.
Visual analysis of the PIP images reveals the presence ofmostly spherical particlesmixedwith a small number
of columnar particles.

Only 6 min later (22:59–23:05 UTC), the velocity-size relation is significantly different (note the almost 50%
smaller velocity-size exponent b) and aggregates with sizes up to 5 mm are found. The different PSD also
changes the distribution in the triple-frequency space: The small DWRKa,W values found in the previous period
completely disappear and all DWRKa,W values are now found between 8 and 14 dB. The DWRX,Ka slightly
increased up to 5 dB which can be explained by the increasing D0.

The increase of size and number of aggregates further intensifies during the following 6 min
(23:05–23:11 UTC). During this time period, the maximum in X band reflectivity, DWRX,Ka, D0, and Dmax are
also reached. Unlike for 16 February, it is much more difficult in this case to identify the primary particles
forming the aggregates. Although the aggregates’ terminal velocities between 1 and 1.5 m s−1 are not
strongly enhanced, they appear in the PIP images to bemore dense compared to the former two cases. In the
triple-wavelength space, the increasing number of large aggregates causes an increase of DWRX,Ka ranging
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Figure 15. Schematic illustration of the effect of changes of
PSD characteristic size D0 and snow particle density 𝜌 on
triple-frequency signatures. The light blue and dark blue line
represent the most extreme curves observed in this study for
large, low-density aggregates (7 February) and heavily rimed
particles (21 February), respectively.

now between 3 and 10 dB, while DWRKa,W
remains large similar to the previous time
period. The data points appear to separate into
two populations: One cloud of points is located
around the average spheroid line andwithmost
of the MDV being larger than 1.2 m s−1. The
second population bends away from the aver-
age spheroid line and shows MDV close to
1.2 m s−1. An analysis of the DWR data from
shorter time intervals reveals that the first pop-
ulation of spheroidal particles is associated with
thefirst 3min,while thebendedcluster of points
only appears during the second 3 min. There-
fore, a fast transition of the snowfall from rimed,
spheroidal particles to slower, aggregate-type
scattering particles must have taken place dur-
ing these 6 min.

During the last period (23:11–23:17 UTC), D0

and also Dmax of the aggregates remain almost
constant while the exponent of the velocity-size
relation further decreases. The extremeDWRKa,W

values disappear, and the triple-frequency data points bend further away from the average spheroid line;
also, their MDV are now almost entirely below 1.2 m s−1 indicating a further transition from rimed to
lower-density and aggregate-dominated snowfall. Although the increase in DWRX,Ka due to the broadened
PSD (increase of D0) is similar to the other two cases, the DWRKa,W values between 8 and 12 dB are signif-
icantly larger than in the previous cases. Without being able to analyze the structure of the aggregates in
more detail (e.g., investigating whether aggregates are composed of a mixture of heavily rimed particles
and other unrimed aggregate components), it is difficult to fully explain the origin of these high DWRKa,W
values in this case.

4. Discussion and Conclusions

The long-termdeployment of theAMF2with its triple-frequency radar capabilities at theUniversity of Helsinki
Hyytiälä Forestry Field Station, Finland, combinedwith the availability of excellent in situ ground-based snow
particle measurements, provided an unprecedented snowfall data set. The potential of this data set for snow
studies is illustrated here using three events that cover light tomoderate snowfall rates from0.2 to 2.2mmh−1

capturing a wide range of snow habits from low-density, open-structured aggregates to heavily rimed par-
ticles. All three snowfall cases were observed at a relatively narrow temperature range between −2 and 0∘C
close to ground.

The focus of this study was less on evaluating theoretical triple-frequency radar signatures but rather on con-
necting them to snow particle properties using the combination of remote-sensing and in situ observations.
To this extend, the BAECC data set is a step forward compared to previous airborne data sets. The observed
triple-frequency features found in this study clearly resemble the main triple-frequency features found in
Leinonen et al. [2012] and Kulie et al. [2014]. The signatures from the current study are, however, more pro-
nounced in termsof themagnitudeof the triple-frequency signals, and they also appear tobe less noisy,which
can be explained by the smaller amount of averaging needed thanks to improved radar volume matching.
A typical bending away from the average spheroid line was found to be connected to the presence of larger
(>5 mm) aggregates in the in situ data. Besides the hook or comma feature associated with aggregates and
the average spheroid region connected to compact, spheroidal aggregates, we were able to identify signa-
tures of rimed particles. They appear in the triple-frequency space as nearly horizontal curves which were not
observed before. These signatures agreewell with scattering computations of graupel particles in Tyyneläand
Chandrasekar [2014] using discrete dipole approximation. Also initial experiments with Tmatrix and different
snow densities (not shown) revealed a tendency to a flatter curve with increasing density consistent to our
observations. However, a more detailed analysis of the scattering signatures of increasingly rimed particles is
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Figure 16. Two-dimensional histograms of triple-frequency signatures from all three cases including all heights
below 4 km AGL. The color represents the absolute number of observations per pixel. The colored frames represent
approximate areas in the triple-frequency space that were found to be related to the presence of large aggregates
(light blue) or rimed particles (purple) in the surface in situ observations.

certainly needed to better understand the observed triple-frequency signatures and their relation to changes

in shape and density.

As previously stated, the goal of this study is to remappart of the triple-frequency space to snowfall properties

(e.g., density and characteristic size). While more observations and data analysis combined with scattering

calculations are needed for a more comprehensive remap, a first attempt based on the data analyzed here

is shown in (Figure 15). Considering the almost flat curve found for the largest bulk snowfall density at the

beginning of the 21 February case (Figure 14) and the extreme bending of the low-density aggregates at the

beginning of the 7 February case (Figure 6), we can conclude in a very schematic way that changes in snowfall

density are recovered by a “rotation” in the triple-frequency space while the characteristic size is increasing

along the specific particle curves (Figure 15).

Based on our comparison of the triple-frequency signatures close to the surface with in situ data, we believe

that at least two basic hydrometeor regimes can be distinguished from triple-frequency observations (indi-

cated by the colored boxes in Figure 16): A combination of DWRKa,W values larger than 3 dB together with

DWRX,Ka lower than 3 dB has been found to be connected to rimed particles. The region with DWRX,Ka values

larger than 4 dB can be generally assigned to aggregates, while a combination with low DWRKa,W indicates a

decrease in aggregate density. The regionwith small DWR values at both frequency combinations reveals low

values of D0 (<2 mm). However, a distinction between single crystals, or rimed particles, seems not feasible

based on the overlapping scattering properties in this region and limited radar sensitivity. It should be noted,

however, that simulated DWR combinations including higher frequencies (e.g., 150 or 220 GHz) indicate a

possible distinction of particle properties also in the low D0 region [Battaglia et al., 2014].

Therefore, the observations and recent scattering modeling studies suggest that triple-frequency observa-

tions bear the potential to derive two fundamental properties of snowfall microphysics: Bulk snowfall density

and characteristic size of the PSD. These two important parameters can be potentially derived inside clouds

even in regionswere standardmethods for identification of riming, e.g., usingMDV, are infeasible due to large

turbulence and intense vertical winds (e.g., within convective clouds).

A quantitative retrieval of these essential quantities from triple-frequency observations requires, however,

a further increasing understanding of the overall connection of microphysical snowfall parameters to their

scattering properties. Up to now, not only scattering approximations using effective medium theories (often

called soft spheroid approximation) but also scattering computations using more realistic ice particles are

unable to reproduce the whole space of observed triple-frequency signatures. Future improvements could

be obtained by specifically designed closure studies including detailed in situ observation of the inner aggre-

gate structure and snowfall PSD together with a large set of scattering computations which are increasingly

available in recent years thanks to optimized scattering codes and increasing computing resources. The three

case studies also reveal thatmixtures of different snowparticles can produce very similar triple-frequency sig-

natures. Future studies will have to investigate whether it is important to quantify these particle populations

separately or if bulk snowfall quantities can be derived independent of the overall snowfall composition.
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Quantifying the effect of riming on snowfall using
ground-based observations
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Abstract Ground-based observations of ice particle size distribution and ensemble mean density
are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these
measurements by following the approach that is used in a single ice-phase category microphysical scheme
proposed for the use in numerical weather prediction models. One of the characteristics of the proposed
scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined
by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a
mass-dimensional relation representative of unrimed snow is also determined. To check the validity of
the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water
path that is compared to microwave radiometer observations. Since dual-polarization radar observations
are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for
differential reflectivity measurements. It is shown that the relation between rime mass fraction and
differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be
considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit
riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is
responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki
field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate
(BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed
analysis of two events is presented to illustrate the study.

1. Introduction

In middle to high latitudes majority of precipitation originates from snow [Field and Heymsfield, 2015]. Ice
particles grow by vapor deposition, aggregation, and riming. Riming is an important precipitation process,
given that a large percentage of cloud systems contain supercooled liquid water [Hogan et al., 2003;Moss and
Johnson, 1994]. Borys et al. [2003, 2000] have shown that in midlatitude orographic clouds both riming and
snowfall rates are affected by anthropogenic aerosol pollution. Saleeby et al. [2013] have further investigated
this phenomenon and found that the local aerosol effect on snowfall can be significant, though synoptic con-
ditions may have larger influence. Lohmann [2004] has shown that the aerosol impact on riming could have
climatic implications. Given this potential sensitivity of precipitation and climate, there is a need to quantify
how important riming is for surface precipitation. Mitchell et al. [1990] and Harimaya and Sato [1989] have
shown that riming could explain 30% to 100%of surface snowfallmass. Furthermore,Grazioli et al. [2015] have
found that there is also an apparent positive correlation between a precipitation rate and riming occurrence
during winter storms.

Typically, riming is quantified either by using manual observations of individual snow particles [e.g.,Mitchell
et al., 1990; Harimaya and Sato, 1989; Mosimann et al., 1994] or by utilizing automatic optical observations
[Garrett and Yuter, 2014; Grazioli et al., 2015]. From automatic optical observations riming is detected by iden-
tifying visual particle features that are caused by riming. For example, by visually inspecting rime coverage
of an ice particle surface, Mosimann et al. [1994] introduced the degree of riming, a parameter that defines
what part of the particle surface is covered by frozen drops. They have also shown a connection between the
degree of riming and rime mass fraction, which is used in numerical weather prediction models.

Dual-polarization radar observations are often used to identify ice precipitation regions affected by rim-
ing [e.g., Straka et al., 2000; Liu and Chandrasekar, 2000; Chandrasekar et al., 2013; Giangrande et al., 2016].
Accurate identification of such regionswould improve our understanding of precipitation processes aswell as

RESEARCH ARTICLE
10.1002/2016JD026272

Key Points:

• Rime mass fraction and unrimed snow
mass-size relation are derived
• Riming is responsible for 5% to 40% of
snowfall mass
• Depending on particle size, riming
can either increase or decrease the
differential reflectivity

Correspondence to:

D. Moisseev,
dmitri.moisseev@helsinki.fi

Citation:

Moisseev, D., A. von Lerber,
and J. Tiira (2017), Quantifying
the effect of riming on snowfall
using ground-based observations,
J. Geophys. Res. Atmos.,
122, 4019–4037,
doi:10.1002/2016JD026272.

Received 18 NOV 2016

Accepted 28 MAR 2017

Accepted article online 4 APR 2017

Published online 12 APR 2017

©2017. American Geophysical Union.
All Rights Reserved.

MOISSEEV ET AL. THE EFFECT OF RIMING ON SNOWFALL 4019



Journal of Geophysical Research: Atmospheres 10.1002/2016JD026272

improve aviation safety [Ellis et al., 2012], among other applications. Unfortunately, the connection between
dual-polarization radar observations and riming is not always unambiguous and further studies are needed
to establish a better link.

Recently, a new microphysical scheme based on a single ice-phase category was proposed for the use in
numerical weather predictionmodels [Morrison andGrabowski, 2008;Morrison andMilbrandt, 2015]. This new
microphysical scheme allows a continuous representation of changes of ice particle properties and avoids
abrupt and artificial transition from one ice particle type to another. The scheme assumes that during rim-
ing, particle maximum dimension stays the same, while mass increases [Heymsfield, 1982; Erfani andMitchell,
2017]. The particle maximum dimension will eventually increase by riming, but this will happen at the grau-
pel stage. Morrison and Grabowski [2008], Morrison and Milbrandt [2015], and Erfani and Mitchell [2017] have
explained that this conceptualmodelwould result in a power lawmass-dimensional relation,m = 𝛼D𝛽 , where
the exponent, 𝛽 , remains constant, while the prefactor, 𝛼, increases. Therefore, themass-dimensional relation
can be written as a function of the rime mass fraction.

Thispaperpresents analysis of 22eventsobservedduring twoconsecutivewinters, 2013/2014and2014/2015.
The assumption that only the prefactor of them(D) relation is reacting to riming is converted to a method to
retrieve rime mass fraction from surface-based snowfall measurements. As a part of the developed method,
a mass-size relation that can be treated as representative of unrimed snowflakes is also determined. The
validity of the proposed retrieval method is checked by estimating particle-effective liquid water paths that
correspond to the computed rime mass fractions and comparing these to microwave radiometer observa-
tions. Furthermore, the computed rimemass fraction in combinationwithprecipitation rate andaccumulation
observations are used to quantify impact of riming on precipitation mass. Finally, the impact of riming on
dual-polarization radar variables is investigated.

2. Data and Methods
2.1. Observations

This study is based on observations carried out during the Biogenic Aerosols Effects on clouds and Climate
(BAECC) field experiment [Petäjä et al., 2016] and the winter of 2014/2015. During the experiment U.S.
Department of Energy Atmospheric Radiation Measurement (ARM) deployed the second ARM mobile facil-
ity (AMF2) to the University of Helsinki Research Station located in Hyytiälä, Finland (61∘50’37’’N, 24∘17’16’’E).
In addition to the remote sensing instruments of the AMF2, an extensive suite of surface-based precipita-
tion instrumentation was placed at the measurement site 20–30 m away from the remote sensors. A part
of the surface-based precipitation instrumentation is provided by the NASA Global Precipitation Mission
Validation program.

Data from two AMF2 remote sensing instruments are used in this study. Microwave radiometer (MWR)-
retrieved liquid water path (LWP) [Cadeddu et al., 2013] is used to cross validate the derived rime mass frac-
tion. High spectral resolution lidar (HSRL) observations of backscatter and linear depolarization ratio are
employed for detection of embedded supercooled-liquid water layers [e.g., Hogan et al., 2003; Shupe et al.,
2006; Westbrook and Illingworth, 2011], which appear as thin bright layers in the backscatter coefficient
measurements.

In addition to the AMF2 remote sensors, data from Finnish Meteorological Institute (FMI) C band dual-
polarization weather radar are employed in this study. The FMI radar, which is located in Ikaalinen about
64 km west of the measurement site, performed range height indicator scans over the measurement site
every 15min. From theseobservations vertical profiles of reflectivity anddifferential reflectivity are computed.
To compute these profiles, reflectivity and differential reflectivity measurements for each ray were averaged
using range gates locatedwithin 1 kmground rangeof themeasurement site. It should be noted that because
of the availability of the range height indicator (RHI) scans, quasi-vertical profiles [Ryzhkov et al., 2016] were
not used.

The presented method and data analysis is based on observations of volume flux weighted ensemble mean
density andparticle sizedistributionparameters of falling snow. Theseobservations started inDecember 2013
and being carried continuously since. The ensemble mean density is retrieved using particle volume flux
computed fromNASAParticle ImagingPackage (PIP) and liquidwater equivalent (LWE)precipitation ratemea-
sured by a weighing gauge [Tiira et al., 2016]. The particle size distribution (PSD) parameters are computed
from PIP observations. Because the density retrieval is sensitive to precipitation accumulation, the PSD
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Figure 1. Scatterplot of volume flux weighted ensemble mean snow
density, 𝜌, versus median volume diameter D0 as retrieved by Tiira et al.
[2016]. For the comparison, computed mean snow density—D0 curves
based on m-D relations of Brown and Francis [1995] (blue solid line),
Heymsfield et al. [2004] (blue dashed line), and Brandes et al. [2007]
(black solid line) 𝜌-D0 relations are also plotted. The black dashed and
dash-dotted lines depict 𝜌-D0 relations found for BAECC and 2014/2015
winters. The blue diamonds, red crosses, and yellow stars show relations
for rime mass fraction, FR, values of 0.2, 0.3, and 0.45, respectively.

parameters and ensemble mean density
values are retrieved from observations
which were collected with a temporal
resolution determined by the precipita-
tion accumulation. It was required that
the precipitation accumulation exceeds
0.1 mm. This way it was insured that
the retrieval error is minimized [Tiira
et al., 2016]. The PSD parameters were
computed using a standard technique,
[see, e.g., Bringi and Chandrasekar, 2001;
Leinonen et al., 2012].

Prior to 24 November 2016, the date on
which the PIP software was updated, the
PIP diameter bin size was set to 0.25 mm.
After the date it was set to 0.2 mm. This
also affected the minimum recorded par-
ticle size: before the software update it
was 0.25mm, and it became 0.2mm. Tiira
et al. [2016] have shown the impact of
the PSD truncation on the retrieved den-
sity. It is shown that for cases where the
median volume diameter, D0, is less than
1mm, the density is expected to be over-
estimated by at most 20%. For larger D0

cases this error becomes smaller than 5%.

The PIP records videowith 380 fps, whichmeans that typically more than two observations of the same parti-
cle are recorded. From these records the particle fall velocity is computed. It should be noted that the number
of records is determinednot only by the vertical velocity of the particles but also by horizontalwind. During all
of our observations wind speeds did not exceed 4 m/s. The observed relation between the snow density and
median volumediameter is shown in Figure 1. The density and PSDparameters are derived fromobservations
from winters of 2013/2014 and 2014/2015 as discussed in Tiira et al. [2016].

Since PIP records snowflake shadows on a single side plane only, the observed particle dimensions are not
necessarily matching the true ones [Wood et al., 2013; Tiira et al., 2016]. The PIP-measured diameter is the
equivalent area diameter, which is the diameter of a circle with the same area as the area of a particle shadow.
Following Tiira et al. [2016], in this study the PIP-observed diameter is converted to the volume equivalent
diameter, Dveq, and to the maximum particle diameter Dmax. The conversion is done by applying a correction
factor of 1∕0.92 forDpip toDveq conversion. Tiira et al. [2016] found that this correction factor is suitable for the
data set used in this study and represents the average particle shape, which can be assumed to be spheroidal
with the axis ratio, AR, of 0.6. The Dmax is computed from the Dveq as follows:

Dmax = 0.6−1∕3Dveq. (1)

This yields that Dpip ≈ 0.8Dmax, which is similar to whatWood et al. [2013] have derived.

There are two reasons why we assume that snowflakes can be modeled as spheroids with the axis ratio,
AR, of 0.6, which is a good model for mature snow aggregates as was shown by analyzing multifre-
quency radar observations [Matrosov et al., 2005] and through theoretical studies of the aggregation process
[Westbrook et al., 2004]. First, the goal of this study is to investigate the connection between riming and
snowfall accumulation. During the studied events, highest precipitation rates were recorded during the peri-
ods where relatively large snowflakes were observed. These snowflakes are typically aggregates or rimed
aggregates. Second, as will be discussed later in the paper, the largest uncertainty in the rime mass frac-
tion retrieval occurs during the cases where majority of precipitation occurs in the form of crystals. In these
cases, the error caused by the assumption of the particle shape is relatively minor compared to the other
error sources.
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2.2. Method

Aparticle video imager, such as thePIP,measuresparticle sizedistribution and fall velocity. Theseobservations
can be used to compute the particle volume flux. The volume flux in combination with precipitation rate
measurements yield a bulk density [Brandes et al., 2007] or ensemble mean density of snow [Tiira et al., 2016].
It should be noted that the snow densities derived by Brandes et al. [2007] and Tiira et al. [2016] are the same,
despite having different names. The notation, ensemble mean density, was adopted by Tiira et al. [2016] to
be consistent with numerous aircraft studies, see, for example, Heymsfield et al. [2004]. In these studies the
notation bulk density is reserved for a density of individual ice particle and not to the mean density of a
distribution of snowflakes.

Assuming that snow PSD can be represented in a Gamma functional form

N(D) = N0D
𝜇exp(−ΛD) = N0D

𝜇exp
(
−3.67 + 𝜇

D0
D

)
, (2)

where N0 is the intercept parameter, D0 is the median volume diameter, and 𝜇 is the shape parameter; the
particle volume flux, Fv , can be expressed as a function of PSD parameters, N0 andΛ, and the parameters of a
velocity-dimensional, v(D), relation:

FV = 𝜋

6 ∫ AR ⋅ D3 ⋅ avD
bv ⋅ N0D

𝜇exp(−ΛD)dD = 𝜋

6
⋅ AR ⋅ avN0 ⋅

Γ(4 + bv + 𝜇)
Λ4+bv+𝜇

(cms−1), (3)

where av and bv are the prefactor and exponent of the v(D) relation. Here and later in the text D stands for
Dmax; therefore, the particle axis ratio AR is used to compute the volume. Following the same notation, the
precipitation rate, or the mass flux Fm, can be expressed as

Fm = ∫ 𝛼D𝛽 ⋅ avD
bv ⋅ N0D

𝜇exp(−ΛD)dD = 𝛼avN0 ⋅
Γ(𝛽 + bv + 𝜇 + 1)

Λ𝛽+bv+𝜇+1
(g cm−2s−1) (4)

This equation is derived expressing the mass-size relation in the power law formm = 𝛼D𝛽 .

Heymsfield [1982] have proposed a conceptual model that describes how ice particle properties evolve dur-
ing riming. At the initial stage, a particle, a planar ice crystal or an aggregate, is formed. The second stages,
the first stage of riming growth for the planar ice crystal and aggregate, are different. The ice crystal growth
mainly occurs by riming at the underside, which changes the aspect ratio of the particle while maintaining
themaximumdimension. Given tumbling andgyration of aggregates, the aggregates growby filing an imagi-
nary spherical shell. At this stage the shell diameter is the particlemaximumdimension, which stays constant.
Both for the crystal and aggregate the second growth stage ends when the particles reach spherical shapes.
At the last stage, the particles continue to grow in a spherical form and from this stageDmax starts to increase.
This stage manifests the beginning of the graupel growth stage.

We are proposing a small modification to this conceptual model. This modification concerns with the
transformation of the aggregate shape during the second growth stage. We assume that the shape of an
aggregate during this stage does not change. The riming just fills unoccupied places while not affecting the
snowflake shape, as summarized in Table 1. This assumption can be tested, since it has a direct implication
for dual-polarization radar observations. It wouldmean that values of dual-polarization radar variables would
increase due to riming, as will be presented later inmore detail. Aswas discussed by Erfani andMitchell [2017],
Morrison and Grabowski [2008], and Morrison and Milbrandt [2015], snowflake growth during the first riming
stage will lead to a snowflake mass-size relation where the exponent remains constant, while the prefactor
changes. Therefore, them(D) relation can be written as a function of the rime mass fraction, FR, as

m = 𝛼D𝛽 =
𝛼us

1 − FR
D𝛽 (g), (5)

wheremus = 𝛼usD
𝛽 is themass-dimensional relation of unrimed snowflakes. The rimemass fraction is the ratio

of the rimemass to the snowflakemass, FR = mrime∕m = (m−mus)∕m. By combining (3)–(5) andassuming the
FR is independent of size, we can express the ensemblemean density as a function of the rimemass fraction:

𝜌 =
Fm
FV

= 6
𝜋

𝛼us

1 − FR

Γ(𝛽 + bv + 𝜇 + 1)
AR ⋅ Γ(4 + 𝜇 + bv)

Λ3−𝛽 (gcm−3) (6)
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Table 1. Schematic Summary of Riming Growth Stages and
Expected Changes in Particle Maximum Dimension, Dmax, and
Aspect Ratio, AR

Crystal Aggregate

Stage 0 Crystal Formation and Growth

— Aggregation

Stage 1 Riming: Fill-In Stage

Dmax is preserved Dmax and AR are preserved

AR increases

Stage 2 Riming: Graupel Growth Stage

Dmax increases Dmax and AR increase

This leads to the expression of the rime mass
fraction as a function of the retrieved ensem-
blemean snow density,Λ, the exponent of the
v-D relation and coefficients of the unrimed
snowm(D) relation.

FR = 1 − 6
𝜋
⋅
𝛼us

𝜌

Γ(𝛽 + bv + 𝜇 + 1)
AR ⋅ Γ(4 + 𝜇 + bv)

Λ3−𝛽 (7)

The exponent of the v(D) relation varies
between 0.217 and 0.256 as was presented
by Tiira et al. [2016]. However, the derived FR
values depend weakly on bv . The FR value
changes by less than 1% due to changes in bv .
Therefore, bv can be assumed to be constant.
It was selected to be equal to 0.22. This value

is close to what was found by Zawadzki et al. [2010]. To derive the rime mass fraction, given observations of 𝜌
and Λ, parameters 𝛼us and 𝛽 have to be estimated.

Using observations from two winters the ensemble mean snow density and median volume diameter were
estimated [Tiira et al., 2016]. The scatterplot between the two is shown in Figure 1. From these observations
a mass-size relation of unrimed snow is defined as follows. It is assumed that snow particles with the small-
est mass for a given diameter represent unrimed snow. This means that the lowest edge of the scatterplot in
Figure 1 should correspond to unrimed snow. To take into account possible uncertainties in the retrievals of 𝜌
andD0, wehave split the data intoD0 intervals rangingbetween0.1 and0.6 cmwith a stepof 0.02 cm. For each
interval, data that have density values belonging to the lowest 5% were selected. Using equation (6), where
FR = 0, the parameters of the mass-dimensional relation were estimated using a linear fit in the log𝜌-logD0

space. It was found that the relationm = 0.0075D2.05
veq , orm = 0.0053D2.05

max if expressed as a function of Dmax,
represents the unrimed snow. It should be noted that the assumed value of bv has a negligible error on the
retrieved relation. Tiira et al. [2016] have discussed impact of PSD truncation on the retrieval of 𝜌. This discus-
sion also applies here. It was found that for D0 values larger than 0.1 cm the bias in the computed ensemble
mean density values, due to the small size truncation of PSD [Moisseev and Chandrasekar, 2007], is less than

Figure 2. The m(D) relations reported in literature are shown by lines:
light blue lines show relations for crystals and early aggregates, yellow
lines for aggregates, and red lines for graupel. The dark gray-shaded
region presents the ad hoc m(D) region representative of aggregates.
The light gray region depicts the region of rimed particles as retrieved in
this study. Two dark blue lines are Heymsfield et al. [2004] and Brown and
Francis [1995] relations which are also used in Figure 1.

5%. Therefore, it is expected that the
derived m(D) overestimates unrimed
snowflake masses by a maximum of
5%.Of course, there is a possibility that
during collected observations that
span over two winters, no unrimed
snowflakes were observed. This possi-
bility is difficult to quantify, given the
lack of other supporting observations.

The comparisonof thederivedm(D) to
other relations presented in Figure 1
shows a relatively good agreement.
The derived relation represents heav-
ier ice particles than those observed
by Brown and Francis [1995], for exam-
ple. It can be seen in Figure 1 that
the vast majority of our observations
are located above Brown and Francis
[1995] curve. The relation found by
Heymsfield et al. [2004], on the other
hand, is very close.

To assess the potential uncertainty
associated with the selection of the
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unrimed snow m(D) relation, a comparison of relations reported in literature is performed and summarized
in Figure 2. The figure shows m(D) relations for crystals (P1e, P1a, P1c, and C1h according to Magono and
Nakamura [1965] classification) [Pruppacher and Klett, 1996], early aggregates (P1e and P1a) [Kajikawa, 1989],
lump graupel [Locatelli and Hobbs, 1974], aggregates of planar polycrystals and aggregates of side planes
[Mitchell, 1996], aggregates of unrimed assemblages of dendrites [Locatelli and Hobbs, 1974], and relations of
Brownand Francis [1995] andHeymsfield et al. [2004]. If the relations for different particle types are considered
separately, the biggest spread of masses for a given Dmax is given by crystals. The masses of aggregates fall
within a much narrow range of values shown by the dark gray-shaded region. The Brown and Francis [1995]
curve (dark blue solid line) falls well within this region, while our relation depicted by the black line and
Heymsfield et al. [2004] relation (dark blue dashed line) can be considered as the upper boundaries of the
aggregate region. The boundaries of this ad hoc region can be given by the prefactor values ofm(D), which
vary between 0.0024 and 0.0053. Here we are assuming that 𝛽 = 2.05.

This analysis indicates that if the proposed relation for unrimed snow is used and riming is detected, i.e., FR is
larger than zero, then there is a very high probability that riming actually occurs. The amount of riming may
be underestimated. Since higher precipitation rates are typically associated with larger particles, in stratiform
precipitation systems these particles are mainly aggregates at various stages of riming. In these cases the
retrieval uncertainty is contained to the range of 𝛼 values defined by the aggregation region.

Given the derived mass-dimensional relation for the unrimed snow and utilizing equation (7), the observed
spread in the 𝜌-D0 scatterplot can be explained in terms of the rime mass fraction. For example, the 𝜌-D0

relation proposed by Brandes et al. [2007] matches well with the relation derived usingmus(D) and FR = 0.2,
as shown by the blue diamonds in Figure 1. In a similar way, observations collected during BAECC campaign
match well with FR = 0.45 curve. The snow during winter 2014/2015 was less dense, FR = 0.3, and closer to
the one recorded in Colorado by Brandes et al. [2007]. The maximum observed value measured during our
observation period lies in the range between 0.7 and 0.8.

To summarize, the proposed method can be presented as the following steps:

1. At the first step, the ensemble mean density should be retrieved from observations of PSD, v(D), and
snowfall rate, SR, as described in Tiira et al. [2016] or Brandes et al. [2007].

2. At the second step, a mass-dimensional relation of unrimed snow should be estimated for a given climate
or geographical location. This step can be potentially omitted and the relationmus = 0.0053D2.05

max derived
in this study can be used instead.

3. At the third step, the retrieved mean density,mus(D), 𝜇,Λ, and the exponent of v(D) relation are applied to
equation (7) to retrieve the rime mass fraction. It should be noted that changes in 𝜇 and the exponent of
v(D) values have a minor effect on FR. They can be fixed to be 0 and 0.22, respectively, without making a
significant error.

3. Results
3.1. Case Studies

3.1.1. The 21 February 2014 Event

To demonstrate how the retrieved rime mass fraction relates to the other falling snow microphysical param-
eters, analysis of two events is performed. The first analyzed snowfall case took place on 21 February 2014. A
wide low-pressure area from theNorthAtlanticwas approaching Scandinaviawith a trough and an associated
frontal system passing over Hyytiälä from the southwest during the night of 21–22 February. Around mid-
night UTC, the occlusion point of the systempassed near the southwestern coast of Finlandwhere also largest
snow accumulations were recorded. In Figure 3, time series of PSD parameters, snowfall rate, the ensemble
mean snow density, and rime mass fraction are presented. Analyses of parts of this storm are already pre-
sented in literature [Kneifel et al., 2015; Petäjä et al., 2016; Kalesse et al., 2016]. Kneifel et al. [2015] have studied
triple-frequency radar signatures and coinciding surface observations to infer a connection between multi-
frequency radar and microphysical properties of snow. As a part of the presented analysis, it was found that
around 2300 UTC there is a transition from light, graupel-like snowfall to a moderate aggregate snowfall. This
transition is also clearly visible in Figure 3. The FR reaches 0.7 at 2305 UTC, meaning that 70% of the parti-
cle mass is determined by collected supercooled liquid drops. This indicates very heavy riming. At the same
time D0 value is not very high, 0.15 cm, that is a characteristic value for relatively small ice particles. Just a
fewminutes later, D0 value doubles and at the same time the liquid water equivalent (LWE) precipitation rate
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Figure 3. Overview of the precipitation event that took place on 21 February 2014. The panels show measurements of
snowfall LWE rate, SR, PSD intercept parameter, N0, median volume diameter, D0, bulk density, 𝜌, and rime mass fraction,
FR. The shaded area shows the time period during which the precipitation rate was low, and the density and
correspondingly FR retrieval were not stable.

exceeds 3 mm/h. During this period, which ends at around 2350 UTC, the retrieved rime mass fraction value
drops below 0.5, and at some instances it goes below 0.2. At the same time there is also a reduction inDoppler
velocity values, at the low levels, which also supports the idea of lower FR values. After 2350 UTC the FR
increases again.

This short period of relatively heavy snowfall and lower FR values coincides with ice phase seeder-feeder pro-
cess [Hobbs, 1978; Matejka et al., 1980] discussed in Petäjä et al. [2016] and can be seen in Figure 4. The ice
particles falling out of the cirrus cloud seed lower clouds, where riming is taking place. The evidence of rim-
ing is reported in Kalesse et al. [2016], who have used a combination of radar Doppler spectra, microwave
radiometer, and riming model to analyze a part of this event. The intensive seeder-feeder process depletes
supercooledwater and almost halts riming. TheHSRLmeasured backscatter coefficient, presented in Figure 4,
shows smaller values during this period supporting the conclusion that the liquid layer is depleted. At the
same time, aggregation growth of snowflakes becomes more active [Moisseev et al., 2015; Hobbs et al., 1974].
The seeding stops just before 0 UTC, as can be seen in Figure 4, and the supercooled water starts to restore
and riming replaces aggregation as the dominating snow growth process.

Before the discussed period, the rime mass fraction was steadily increasing starting from 1900 UTC. It should
be noted that between 2130 and 2305 UTC, the shaded area in Figure 3, the precipitation rate was rather
low and the density retrieval was unreliable. Because of this, the FR values are also unreliable, and the values
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Figure 4. KAZR reflectivity, Doppler velocity, and HSRL measurements for 21–22 February 2014 event.

presented in the figure are just a linear interpolation between the values retrieved immediately before and
after the abovementioned period. It should be noted thatmost of the precipitation accumulation during this
event was between 2300 and 0000 UTC, when aggregation was taking place.
3.1.2. The 20 March 2014 Event

The second case study is of the snowfall event that took place on 20March 2014. The total precipitation accu-
mulation during this event is 4.3 mm. The event is a textbook example of a typical winter precipitation event
in Southern Finland, where similarly to the 21 February event, there is a wide low-pressure area approaching
Scandinavia from the west, and an associated frontal system passes over the Gulf of Finland from the south-
west. The heaviest snowfall in Hyytiälä originated from the thick cloud area associated with a warm front
reaching the area in the evening.

In Figure 5 the summary of derived snow microphysical properties is shown. As can be seen the ensemble
mean snow density varies between 0.1 and 0.3 g/cm3. In many cases the high values are reached during the
time periods when the median volume diameter approaches 0.1 cm. Furthermore, the low-density values
coincide with periods when relatively large snowflakes are observed. This pattern is the same for the previ-
ously discussed event. The rime mass fraction values do not exhibit a correlation with D0. This mean density
behavior is not surprising, since it is the function not only of FR but also of D0.

The radar and lidar observations recorded during this event are presented in Figure 6. The KAZR vertical
Doppler velocity shows particle fall velocities ranging from 1.5 to 2m/s between 1730 and 1830UTC and after
1900 UTC. These velocities indicate that the snowflakes observed during these periods are rimed [Mosimann,
1995; Barthazy and Schefold, 2006]. The rime mass fraction shows a local maximum of 0.2 starting just before
1630 and lasting until 1720 UTC, after which FR decreases to zero. At 1800 UTC the FR starts to increase again
and continues until the end of the event, where it reaches the value of 0.7. The comparison of FR and Doppler
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Figure 5. Similar to Figure 3 but for 20 March 2014.

velocity indicates that even though both observations indicate the presence of rimed particles at about the
same times, these times do not match exactly.

3.2. Connection Between FR and LWP

The proposed retrieval procedure relies on the assumption that differences in snowflake masses for particles
of the same dimensions are due to different rime mass fractions. This assumption explicitly ignores possible
changes in a particle mass linked to the presence of different crystal habits; the associated uncertainty is
discussed in section 2. To test how viable this approximation is, a connection between derived FR and another
measurable quantity needs to be established. Given that the rime mass is determined by the mass of swept
supercooled liquid droplets, FR can be expressed as a function of the effective liquid water path, ELWP, which
can be written as

ELWP =
mrime

Er(𝜋∕4)D2
max

=
𝛼usD

𝛽
max

Er(𝜋∕4)D2
max

⋅
FR

1 − FR
≈ 4

𝜋
𝛼us

FR
1 − FR

(g cm−2) (8)

wheremrime is the change in theparticlemass due to riming and Er is the rimingefficiency. Thefinal equation is
derived assuming that Er = 1. It is known that Er is likely to vary considerably depending on cloud conditions,
whichmay account for somediscrepancies between ELWPand LWPvalues,whichwill be shown later. Also, it is
assumed that the area perpendicular to the direction of fall is circular, which is a reasonable approximation for
planar crystals and aggregates. Given that the exponent ofm(D) relation is very close to 2, dependence of (8)
on Dmax is also ignored.
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Figure 6. KAZR reflectivity, Doppler velocity, and HSRL measurements for 20 March 2014 event.

Following (8) ELWP values were computed for the two case studies. In Figure 7 the ELWP is plotted for the
21–22 February 2014 event. For the comparison, LWP observations by the AMF2 MWR are also presented in
the figure. Overall, the ELWP and LWP agree rather well. The ELWP is lower, but follows LWP, two curves raise
and fall at about the same time. It is not surprising that the ELWP is lower. First, the actual Er is probably lower
than 1. Second, the path of a falling particle is different from the vertical path used in MWR observations. This
also explains why ELWP and LWP curves sometimes behave differently as, for example, before 2000 UTC. The
difference in paths could also explain a slight temporal shift between the curves; this is clearly visible in areas
of large LWP gradients.

The observations of 20 March 2014 also show a relatively good agreement, as can be seen in Figure 8. The
temporal shift between the curves is larger in this case. It was found that if the ELWP curve is shifted by 30min,
the agreementwith LWP ismuch better. As in the February case, LWP and ELWP are correlated. Not all features
visible in the LWP curve can be found in the ELWP. The temporal resolutions are different, and paths where
particles travel in the atmosphere are expected to be different from the vertical. It should be noted that the
applied temporal shift also improves the comparison with the radar observations, as was discussed in the
previous section. It is interesting to see that LWPvalues belowor close to theMWRdetection limit canproduce
detectable riming signatures as can be observed in Figure 8 around 1700 UTC. There is a clear peak in FR
reaching 0.2, but both ELWP and LWP values are smaller than 30 g m−2. This indicates that for detection of
riming, a dual-channel MWR should be used with care.

A comparison of FR, ELWP, and LWPwas performed for all BAECC cases. The results of this comparison are pre-
sented in Figure 9. As was noted from the case studies, both FR and ELWP are related to LWP. The correlations
between ELWP and LWP or FR and LWP are not very high, the presented scatterplots are rather wide. This is
not surprising, however, since no temporal adjustments tomatch theobservationswereperformed.Nonethe-
less, the presented analysis show that the derived rimemass fraction reacts to the changes in LWP indicating
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Figure 7. Comparison of rime mass fraction,FR, derived effective liquid water path (ELWP), and microwave radiometer
measured LWP for the event of 21–22 February 2014.

that both represent same processes that take place in the cloud system. The computed ELWP is about 2 times
lower than LWP. It can also be seen that if LWP values exceed 400 gm−2, then we can expect heavily rimed ice
particles with rime mass fractions exceeding 0.6.

3.3. Impact of Riming on Surface Precipitation

From observations of two snow events that took place in the Sierra Nevada mountains, Mitchell et al. [1990]
have found that riming is responsible for 30% to 40% of accumulated snow mass. Harimaya and Sato [1989]

Figure 8. Same as Figure 7 but for the event of 20 March 2014.
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Figure 9. Scatterplots of FR versus LWP and ELWP versus LWP for all BAECC events.

Table 2. Summary of the Studied Eventsa

Event Date LWE (mm) Tmin (
∘C) Tmax (

∘C)
1 2014 Feb 1 00:00–03:30 3.9 −9.8 −8.9
2 2014 Feb 12 05:30–07:45 0.6 −1 0

3 2014 Feb 15 21:50 to Feb 16 01:00 2.3 −2.1 −1
4 2014 Feb 21 17:30 to Feb 22 05:00 4.7 −2.7 0

5 2014 Mar 18 08:50–18:45 4.3 −3.8 −1.8
6 2014 Mar 20 16:05–20:40 5.4 −4.3 −1.3
7 2014 Nov 6 19:15 to Nov 7 13:50 9.9 −2.4 −1.6
8 2014 Dec 18 15:00–18:40 2.4 −2.3 −0.8
9 2014 Dec 24 08:45–12:45 1.2 −9.2 −8.9
10 2014 Dec 30 02:50–13:50 6.1 −10.4 −0.6
11 2015 Jan 3 09:35–23:30 7.2 −3.9 0

12 2015 Jan 7 02:00–20:00 3.7 −6.5 −0.8
13 2015 Jan 8 09:00–13:30 2.6 −1.9 0

14 2015 Jan 9 19:55 to Jan 10 03:50 2.9 −3.7 −0.2
15 2015 Jan 12 22:00 to Jan 13 07:50 11.9 −15.7 −9.0
16 2015 Jan 14 02:15–04:20 2.0 −8.0 −0.3
17 2015 Jan 16 01:50–07:30 5.8 −1.3 −0.6
18 2015 Jan 18 16:15–20:45 1.8 −2.4 −0.3
19 2015 Jan 22 21:15 to Jan 23 03:30 2.1 −13.3 −12.5
20 2015 Jan 23 16:00–22:30 1.2 −10.1 −8.8
21 2015 Jan 25 09:00–15:45 2.7 −2.4 −1.7
22 2015 Jan 31 13:40–23:15 6.4 −1.9 −0.4

aFor each event a total LWE accumulation, minimum and maximum temperatures are given. The first six events were
recorded during the BAECC experiment.
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Figure 10. Precipitation liquid water equivalent (LWE) accumulations
and rime precipitation fractions for all analyzed events.

estimate that this value is higher for
the coastal region of Japan and ranges
between 50% and 100%. Grazioli et al.
[2015] have shown that there seems to
be a correlation between occurrence of
riming and precipitation accumulation.

To analyze the impact of riming on
snowfall, we have computed total pre-
cipitation accumulations, A, for the
recorded 22 events, summarized in
Table 2, and corresponding rime pre-
cipitation accumulation, AFR. The total
accumulation and rime precipitation
accumulation are defined as

A =
∑
j

SRj ⋅ ΔTj

AFR =
∑
j

FRj ⋅ SRj ⋅ ΔTj
(9)

where j stands for a time integration period during which PSD parameters, SR and FR are estimated and ΔTj
is the corresponding integration time.

In Figure 10 the accumulations for all events are shown. The observations show that riming is an important
factor and responsible for 5% to 40% of snowmass accumulation. The found rime precipitation accumulation
fraction,AFR∕A, is in linewith theMitchell etal. [1990] findingand is lower than that foundbyHarimayaandSato
[1989]. There also appears tobea tendency that thehigher accumulationeventshave larger rimeprecipitation
accumulations, for example, events 15 and7. There are exceptions aswell, events 10, 11, 17, and22have above
average accumulations, close or exceeding 6 mm, while having below average AFR. The Pearson correlation
coefficient between A and AFR is 0.83 as shown in Figure 11. It could be higher, if events like 10, 11, 17, and
22 can be considered outliers, or it can be significantly lower if events like 15 and 7 are rare. Given that the
conclusion whether presence of riming would enhance precipitation accumulation depends very much on a
fewevents, it is too early tomake a decisive statement. It should further be noted that the correlation between
averageprecipitation rate,A, dividedby the event duration andAFR∕A ismuch smaller. The Pearson correlation
coefficient is just 0.33, see Figure 11. This seems to point to the conclusion that riming does not enhance
precipitation, at least in Southern Finland.

3.4. Riming and Dual-Polarization Radar Observations

Dual-polarization radar variables depend on hydrometeor shape and refractive index [Bringi and
Chandrasekar, 2001]. In the case of an ice particle, the refractive index is directly related to the particle den-
sity [Sihvola, 1999]. We should note that in the radar community the definition of particle density is different

Figure 11. Scatterplots showing relations (left) between rime precipitation accumulation and precipitation
accumulations and (right) between rime precipitation accumulation fraction and average precipitation rate.
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Figure 12. Ikaalinen radar VPT plots of reflectivity and differential reflectivity for 20 March 2014 case. The VPT plots are
generated from the RHI scans that were carried out every 15 min.

from the bulk density used in connection with aircraft studies. The particle density, used to compute the
particle refractive index and radar variables, is the mass of the particle divided by the volume of a prolate or
oblate spheroid. The length of a spheroid major axis typically coincided with the particle maximum dimen-
sion. The minor axis is determined such that the spheroid closely approximates the particle shape, see, e.g.,
Hogan et al. [2012] for the discussion on how the spheroidal dimensions can be defined. The particle density
defined in this way is typically larger than the bulk density and can be used for computations of the particle
refractive index.

During the fill-in stage of riming growth, see Table 1, the particle mass is increasing while the maximum
dimension stays constant. If the particle shape is also not changing as was hypothesized to be the case
for aggregates, the measured differential reflectivity, Zdr, should increase as FR increases, see Bringi and
Chandrasekar [2001, p. 63] for an explanation of the connection between the particle density and values of
dual-polarization radar variables. On the other hand, if the particle becomes more spherical, as expected to
be the case for crystals, the Zdr should decrease with an increase in FR. Therefore, dual-polarization radar
observations can be used to test the conceptual model describing the evolution of particle shape during
riming growth.

To test the conceptual model, Ikaalinen radar observations of reflectivity, Z, and differential reflectivity are
compared to FR,mean snowdensity, and computeddifferential reflectivity values for the twoanalyzed events.
From the RHI measurements that are performed every 15min, a time series of vertical profiles (VPT) of reflec-
tivity and differential reflectivity above the measurement site were constructed. Both the reflectivity factor
and differential reflectivity values were averaged over 1 km range. Time series of Z and Zdr values were also
computed from observations of PSD and FR. To compute the radar variables Leinonen [2014] implementa-
tion of T-matrix code [Mishchenkoand Travis, 1994;Wielaard et al., 1997] is utilized. Since the dual-polarization
radar observations are sensitive to particle aspect ratios, AR, the computation are performed for various
AR values.

In Figure 12 VPT observations of reflectivity anddifferential reflectivity for the 20March 2014 event are shown.
From the lowest reliable altitude, which is about 500 m above the ground, time series of measured Z and
Zdr values are selected. These values are then compared to the computed ones as shown in Figure 13. It can be
seen that the computed andmeasured reflectivity values agree rather well. In this case, the computed reflec-
tivity values did not change much with AR and the ones computed using AR=0.6 are shown. The differential
reflectivity, as expected, reacts strongly to changes in AR. In the figure two curves with AR of 0.4 and 0.6 are
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Figure 13. Comparison of Zdr, FR, D0, and ensemble mean density. The Zdr time series are taken from the lowest reliable
height, which is about 500 m above the measurement station.

Figure 14. Same as Figure 12 but for the case of 21 February 2014.
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Figure 15. Same as Figure 13 but for 21 February 2014. The gray shading shows the time where graupel growth is
detected, Zdr decreases while FR increases.

shown. Between 1600 and 1800 UTC, the Zdr curve computed with AR = 0.4 agrees better with the measure-
ments. Between 1800 and 2000 UTC the 0.6 curve is in better agreement with the data. During this time the
FRwas steadily increasing from 0.1 to 0.5, while at the same time Zdr has also increased. The Zdr computations
show that this increase in Zdr is due to the change in density, which is partially caused by the change in FR.
Furthermore, the computations show that the particle shape stays constant during this time. This observation
supports the conceptual model of riming growth of snow aggregates.

A different story can be deduced from 21 to 22 February 2014 event. The corresponding observations are pre-
sented in Figures 14 and 15. The agreement between measured and computed reflectivity values are not as
good as for the 20 March event. It should be noted, however, that the agreement during the heavy precipi-
tation period, between 2300 and 0000 UTC, is rather good. The other interesting time period is between just
before 2000 UTC and just after 2300 UTC, this period is marked by gray shading in the Zdr plot. During this
period the Zdr decreases while FR increases. The Zdr computations indicate that this decrease is due to the
change in AR, which changes from 0.6 to 0.8 during this time period. This pattern is consistent with riming
growth of planar crystals, as was hypothesized in the conceptual model. During this period the observed D0

values are close to 1 mm, which are also consistent with presence of crystals/rimed crystals.

Often, it is assumed that differential reflectivity and other dual-polarization radar variables should decrease
because of riming [Straka et al., 2000; Liu and Chandrasekar, 2000; Giangrande et al., 2016]. The motivation for
this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have a
quasi-spherical shape, and therefore, the differential reflectivity will become smaller. The presented analysis
indicates that care should be taken while making conclusions about riming presence from the analysis of
dual-polarization radar measurements, since riming growth of aggregates could produce the opposite to the
expected pattern.
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4. Discussion and Conclusions

Following the assumption proposed for a new ice particle property-based microphysical scheme [Morrison
and Grabowski, 2008; Morrison and Milbrandt, 2015], the ice particle rime mass fraction was retrieved from
ensemble mean snow density measurements. At the first step of the retrieval, a reference m(D) relation,
deviations fromwhich couldbe interpretedas snowflakemassgrowthby riming,wasdetermined. The relation
represents particles with the masses belonging to the fifth percentile for a given dimension. The selection of
the particles is somewhat arbitrary, but follows a rule that these particles should be the lightest observed. The
derived relationm = 0.0053D2.05

max can be treated as a relation of unrimed snowflakes. Since the relation is com-
puted from observations recorded during 22 events that took place in Southern Finland, we cannot exclude
potential differences, if one uses it for a characterization of snowfall taking place in a different geographical
region. It should also be noted that the relation is different from the ones listed in literature. For example, it
gives heavier particles than Brown and Francis [1995] but agrees relatively well with Heymsfield et al. [2004].

To verify the proposed rimemass fraction retrieval approach, a method to link FR and microwave radiometer
liquidwater path observationswas proposed. Given that the exponent of the retrievedm(D) is very close to 2,
the dependence of the computed effective liquid water path on D can be ignored. The comparison between
ELWP and LWP showed that they react to the same processes that take place in the observed precipitation
systems. The computed ELWP is about half of LWP. There are also differences in timings and appearances of
certain features, which could be attributed to the deviation of effective paths of snowflakes from the vertical.

Using the derived rime mass fraction, analysis of riming mass growth effects on snowfall was analyzed. From
observations of 22 events, it was found that riming is responsible for 5% to 40%of precipitationmass. Further-
more, a correlation between rime precipitation fraction and precipitation accumulation was observed. This
correlation, however, is determined by just two events andmay not be statistically significant. Amuchweaker
correlation between the average precipitation rate and rime precipitation fraction also points in the direction
that there is no strong link between average precipitation amount and riming for an event.

The comparison of dual-polarization radar observations and retrieved snowflake microphysical properties
was also carried out. It was shown that this comparison can be used to test the validity of the conceptual
rimingmodel. In this study the conceptualmodel ofHeymsfield [1982] wasmodified slightly by hypothesizing
that shapes of aggregates would not change during riming. Therefore, it is expected that Zdr should increase
with riming, as was observed on 20 March 2014. For crystals, on the other hand, the opposite is expected
and was observed on 21 February between 2000 and 2300 UTC where the Zdr was decreasing while FR was
increasing. This behavior is expected to be more common for smaller ice particles. The overall connection
between dual-polarization radar observations and riming is therefore expected to be more complex than
currently expected. In some cases Zdr will increase, while in the other it will decrease, depending on initial
particle sizes.
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Abstract. Vertical profiles of polarimetric radar variables can

be used to identify fingerprints of snow growth processes. In

order to systematically study such manifestations of precipi-

tation processes, we have developed an unsupervised classi-

fication method. The method is based on k-means clustering

of vertical profiles of polarimetric radar variables, namely

reflectivity, differential reflectivity and specific differential

phase. For rain events, the classification is applied to radar

profiles truncated at the melting layer top. For the snowfall

cases, the surface air temperature is used as an additional in-

put parameter. The proposed unsupervised classification was

applied to 3.5 years of data collected by the Finnish Me-

teorological Institute Ikaalinen radar. The vertical profiles

of radar variables were computed above the University of

Helsinki Hyytiälä station, located 64 km east of the radar.

Using these data, we show that the profiles of radar variables

can be grouped into 10 and 16 classes for rainfall and snow-

fall events, respectively. These classes seem to capture most

important snow growth and ice cloud processes. Using this

classification, the main features of the precipitation forma-

tion processes, as observed in Finland, are presented.

1 Introduction

Globally, the majority of precipitation during both winter

and summer originates from ice clouds (Field and Heyms-

field, 2015). At higher latitudes winter precipitation occurs

in the form of snow, which can have a dramatic impact on

human life (Juga et al., 2012). There are a number of chal-

lenges in remote sensing of winter precipitation or ice clouds,

i.e., quantitative estimation of ice water content or precip-

itation rate (von Lerber et al., 2017), identification of dan-

gerous weather conditions, etc. To address these challenges,

advances in identifying and documenting the processes that

take place in ice clouds are needed.

There are several pathways by which ice particles grow,

such as vapor deposition, aggregation and riming. Occur-

rence of these processes depends on environmental condi-

tions. Interpretation of radar observations is based on our un-

derstanding of the link between microphysical and scattering

properties of hydrometeors. By identifying particle types in

observations, we may conclude what processes took place.

Currently, dual-polarization radar observations are used in

fuzzy logic classification to identify the dominant hydrom-

eteor type present in a radar volume (e.g., Chandrasekar

et al., 2013; Thompson et al., 2014). Such methods work very

well for classification of hydrometeors of summer precipita-

tions and some features of winter precipitation types. The

main challenge is the lack of distinction in dual-polarization

radar variables between some ice particle habits. For exam-

ple, large low-density aggregates and graupel may have sim-

ilar radar characteristics. Furthermore, these methods per-

form classification on radar volume by volume basis, with-

out taking into account surrounding observations. Recently,

a modification for the hydrometeor classifiers was proposed

to make the algorithms aware of the surroundings by in-

corporating measurements from neighboring radar volumes

(Bechini and Chandrasekar, 2015; Grazioli et al., 2015b).

This step has greatly improved classification robustness, but

it aims to identify particle types instead of fingerprints of mi-

crophysical processes.

In the past 10 years, a number of studies reported sig-

natures of ice growth processes in dual-polarization radar
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observations. Kennedy and Rutledge (2011) have reported

bands of increased values of specific differential phase, Kdp,

and differential reflectivity, ZDR, in Colorado snowstorms.

These bands took place at altitudes where ambient air tem-

perature was around −15 ◦C and their occurrence was at-

tributed to growth of dendritic crystals. Andrić et al. (2013)

have implemented a simple steady-state single-column snow

growth model to explain the main features of the bands. It

was also observed that the occurrence of Kdp bands can be

linked to heavier surface precipitation (Kennedy and Rut-

ledge, 2011; Bechini et al., 2013). Moisseev et al. (2015)

have advocated that the Kdp bands occur only in precipita-

tion systems with high enough cloud-top heights, where a

large number of ice crystals can be generated by either het-

erogeneous or homogeneous ice nucleation. Using a larger

dataset, Griffin et al. (2018) have shown that the Kdp bands

can be linked to formation of ice by homogeneous ice nucle-

ation at cloud tops. Furthermore, it was shown that the Kdp

bands can be linked to onset of aggregation (Moisseev et al.,

2015), which tends to occur more frequently in environments

with higher water vapor content (Schneebeli et al., 2013).

In addition to the above-listed studies, different aspects of

these bands were presented by Trömel et al. (2014), Oue

et al. (2018), and Kumjian and Lombardo (2017). Besides

Kdp bands in the dendritic growth zone, several studies (e.g.,

Grazioli et al., 2015a; Sinclair et al., 2016; Kumjian et al.,

2016; Giangrande et al., 2016) have reported Kdp observa-

tions in the temperature region where Hallett–Mossop (H–

M; Hallett and Mossop, 1974) rime-splintering secondary

ice production takes place (Field et al., 2016). Sinclair et al.

(2016) have shown that such observations can be used to test

representation of the secondary ice production in numerical

weather prediction models. Other dual-polarization observa-

tions that show notable features are high-ZDR regions sur-

rounding the cores of snow-generating cells (Kumjian et al.,

2014) and at the top of ice clouds which can be linked to the

presence of planar crystals and further to the presence of su-

percooled liquid water, providing very favorable conditions

for their growth at these temperatures (Williams et al., 2015;

Oue et al., 2016).

As presented above, the fingerprints of snow growth pro-

cesses can occur in the form of bands in stratiform clouds, ei-

ther embedded in the precipitation or on top of a cloud, or in

the form of convective generating cells. To identify and docu-

ment such features, a classification method that uses vertical

profiles of dual-polarization radar observations can be used.

In this study, we have developed such an unsupervised classi-

fication method based on k-means clustering of vertical pro-

files of polarimetric radar variables, namely reflectivity, dif-

ferential reflectivity and specific differential phase. The pro-

posed classification is applied to 3.5 years of data collected

with the Finnish Meteorological Institute Ikaalinen radar.

The paper is structured as follows. Section 2 describes po-

larimetric radar and temperature data and their preprocess-

ing. The unsupervised classification method is presented in

Sect. 3. Section 4 is dedicated to the analysis and interpreta-

tion of the classification results and Sect. 5 presents the con-

clusions.

2 Data

In this study, we use vertical profiles of polarimetric radar

observables of precipitation over the Hyytiälä forestry sta-

tion in Juupajoki, Finland, collected using Ikaalinen weather

radar, hereafter IKA. The radar is located 64 km west from

the station. The measurements were performed between

January 2014 and May 2017, partly during the Biogenic

Aerosols – Effects on Clouds and Climate (BAECC; Petäjä

et al., 2016) field campaign which took place at the measure-

ment site in 2014.

The classification training material includes all precipita-

tion events from this period, where, after preprocessing (see

Sect. 2.2), there were no major data quality problems identi-

fied. Since synoptic conditions may be similar even in cases

where there are gaps in observed precipitation, we define any

two precipitation events to be separate from each other if

a continuous gap in reflectivity between them exceeds 12 h.

See Sect. 4 for more discussion. During the observation pe-

riod, we identified 74 snow and 123 rain events that meet

these conditions. Generally, the full temporal extent of an

event includes radar profiles in which precipitation has not

reached the ground. A list of the precipitation events is given

in the Supplement.

In order to link features identified in vertical profiles of

radar variables to precipitation processes, information on the

ambient temperature is needed. For this purpose we use ver-

tical profiles of temperature from the National Center for

Environmental Prediction (NCEP) Global Data Assimilation

System (GDAS) output for Hyytiälä interpolated to match

the temporal and vertical resolution of the vertical profiles of

radar variables used in this study. The original temporal res-

olution of the NCEP GDAS data over Hyytiälä is 3 h, and the

vertical resolution is 25 hPa between the 1000 and 900 hPa

levels and 50 hPa elsewhere.

2.1 Vertical profiles of dual-polarization radar
observables

The radar profiles are extracted from IKA C-band radar range

height indicator (RHI) measurements. IKA performs RHI

scans directly towards Hyytiälä station every 15 min. The

values of the radar profiles above Hyytiälä are estimated as

horizontal medians over a range of 1 km from the station.

The medians are taken over constant altitudes using linear

spatial interpolation between the rays. The target bin size of

the height interpolation is 50 m.

In this investigation, vertical profiles of equivalent reflec-

tivity factor, Ze, differential reflectivity, ZDR, and specific

differential phase, Kdp, are considered in the classification.
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The Kdp values were computed using the Maesaka et al.

(2012) method as implemented in the Python ARM Radar

Toolkit (Py-ART; Helmus and Collis, 2016). The method

assumes that propagation differential phase, φDP, increases

monotonically with increasing range from the radar. In this

study, we mainly focus on precipitation processes typically

occurring in stratiform precipitation, where negative Kdp is

not important. The Maesaka et al. (2012) algorithm should

be avoided when studying precipitation events with lightning

activity, where negative Kdp may occur due to electrifica-

tion (Caylor and Chandrasekar, 1996). Negative Kdp has also

been reported during events of conical graupel which have

been linked to observations of generating cells (Oue et al.,

2015). The total fraction of profiles analyzed in this study

where conical graupel appear or which represent strong con-

vective cells with a possibility for lightning activity is ex-

pected to be marginal, as discussed further in Sect. 4.

2.2 Radar data preprocessing

Prior to training or using the polarimetric radar vertical pro-

file data for the classification, noise and clutter filtering is

applied to the binned profiles, which is followed by normal-

ization and smoothing. Additionally, there are different pre-

processing procedures for rain and snow events that allow

ambient temperature to be taken into account in the classi-

fication. This section describes the mentioned preprocessing

steps in more detail.

2.2.1 Profile truncation

This paper focuses on identifying, characterizing and inves-

tigating the frequencies of different types of vertical struc-

tures of dual-polarization radar variables specifically from

the perspective of detecting, documenting and studying ice

processes. Therefore, before the classification, vertical pro-

files of radar variables are truncated at the top of the melting

layer (ML), if one is present. Cases where melting layer sig-

natures were not identified and surface air temperature was

1 ◦C or lower are placed in the snowfall category and inves-

tigated separately.

Following Wolfensberger et al. (2015), who have used gra-

dient detection on a combination of normalized ZH and ρhv

for ML detection, we combine ρhv and standardized Ze and

ZDR into a melting layer indicator:

IML = ẐeẐDR(1 − ρhv). (1)

The same standardization of Ze and ZDR is used here as in

classification, as described in Sect. 3.1. In this study, instead

of gradient detection, we use peak detection on smoothed

IML to find the ML. Peaks are defined as any sample whose

direct neighbors have a smaller amplitude and are found in

three steps.

1. Peak detection is performed with thresholds for absolute

peak amplitude and prominence (HIML, as described be-

low), with chosen values of 2 and 0.3, respectively. The

SciPy (version 1.3; Virtanen et al., 2020) implementa-

tion of the peak detection algorithm1 is used here.

2. Median ML height, h̃ML, is computed as the weighted

median of the peak altitudes, hi , using the product of

peak absolute amplitude and HIML as weights. Peaks

above a chosen height threshold of hthresh = 4200 m are

ignored in this step.

3. Step 1 is run again, this time only considering data

within h̃ML ± �hML with a chosen �hML value of

1500 m. If multiple peaks exceed the threshold values

within a profile, the one with the highest amplitude is

used.

The ML top height hML,top is estimated as the altitude cor-

responding to the 0.3HIML upper contour of the peak. Peak

prominence, H , is a measure of how much a peak stands out

from the surrounding baseline value and is defined as the dif-

ference between the peak value and its baseline. The base-

line is the lowest contour line of the peak encircling it but

containing no higher peak (Virtanen et al., 2020).

It should be noted that in steps 2 and 3, the analysis height

is limited to reflect the climatology of temperature profiles

on the measurement site. In step 2, we assume the ML to

be always below hthresh, and in step 3 we expect melting

layer height not to change more than �hML during an event.

Such use of domain knowledge allows more robust ML de-

tection in situations where IML has high values elsewhere.

This may occur in the dendritic growth layer (DGL), for ex-

ample, where the crystals can be pristine enough to cause a

significant increase in ZDR and a decrease in ρ.

Sensitivity of the retrieved hML,top is tested for small

changes in peak detection parameters discarding inconsis-

tent values. A moving window median threshold filter is ap-

plied on time series of hML,top in order to discard rapid high-

amplitude fluctuations caused by noise in ZDR, for example.

A rolling triangle mean with a window size of five profiles,

corresponding to 1 h, is used for smoothing. Finally, linear

interpolation and constant extrapolation is applied to hML,top

on a per-precipitation-event basis to make the estimate con-

tinuous. This robust, albeit fairly complex, procedure pro-

duces a smooth estimate for melting layer top height. The

results from the ML detection were analyzed manually and

the events with errors were discarded. In 90 % of events in

the original dataset, the ML was detected without errors.

The analysis of rain profiles is limited to a layer from

�hmargin = 300 m to 10 km above hML,top. The purpose of

the margin �hmargin is to prevent properties of the melting

layer from leaking to the clustering features. The truncation

described in this section has no effect on the height bin size.

1Function scipy.signal.find_peaks.
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Table 1. Standardization of radar variables, [a,b] → [0,1].

Rainfall Snowfall

a b a b

Ze, dBZ −10 38 −10 34

ZDR, dB 0 3.1 0 3.3

Kdp, ° km−1 0 0.25 0 0.11

2.2.2 Absence of melting layer

Cutting the rain profiles at the top of the melting layer effec-

tively provides information about the ambient temperature at

the profile base. As temperature is a key factor driving the ice

processes, such information should also be included in the

classification process when there is no ML present. In order

to introduce corresponding information on ambient temper-

ature at the profile base, we use surface temperature as an

extra classification parameter for events with snowfall on the

surface. While it would be possible to use whole temperature

profiles from soundings or numerical models as classification

parameters, we feel that this may not be feasible for many

potential key use cases of the classification method. With the

wide availability of surface temperature observations in high

temporal resolution and in real time, presumably this choice

makes the classification method more accessible, especially

for operational applications.

The analysis of snow profiles is limited to a layer between

0.2 and 10 km above ground level.

3 Classification method

The unsupervised classification method used in this study is

based on clustering of dual-polarization radar observations,

namely vertical profiles of Kdp, ZDR and Ze. Feature extrac-

tion is performed by applying principal component analy-

sis (PCA) on standardized profiles. Clustering is applied to

the principal components of the profiles using the k-means

method (Lloyd, 1982). A flowchart of the whole process is

shown in Fig. 1.

While the core method is identical for processing of all

radar profiles, information on temperature is included in a

slightly different way based on if it is raining or snowing

on the surface. These differences are explained in Sect. 2.2.1

and 2.2.2 and highlighted in Fig. 1: for rain events, the pro-

files are cut at the top of the melting layer, and for events

without a ML surface temperature is included as an extra

classification variable. Using this approach, information on

profile base ambient temperature is included in the classifi-

cation process, and the analysis is limited to ice processes.

3.1 Feature extraction

The vertical resolution of the interpolated data is 50 m with

bins from 200 m to 10 km altitude for snow events and from

300 m to 10 km above the melting layer top for rain events.

Thus, with the three radar variables, each profile is described

by a vector of 588 and 582 dimensions for snow and rain

events, respectively. In this study, we apply PCA to standard-

ized profiles of the polarimetric radar variables to extract fea-

tures for the clustering phase.

A standardization of the preprocessed polarimetric radar

data is performed to allow adequate weights for each vari-

able in clustering. This was done separately for the snow and

rain datasets in order to account for seasonal differences in

the average values. We used standardization similar to that

of Wolfensberger et al. (2015), normalizing typical ranges of

values [a,b] → [0,1], with the additional condition that the

standardized variables should have approximately equal vari-

ances. The values a,b used in this study are listed in Table 1.

The values of the standardized variables are not capped, but

values greater than 1 are allowed when the unscaled values

exceed b. Without the standardization, the dominance of each

variable in classification would be determined by their vari-

ance.

The number of components explaining a significant por-

tion of the total variance for the two training datasets was de-

termined considering the scree test (Cattell, 1966), the Kaiser

method, and the component and cumulative explained vari-

ance criteria. However, these criteria alone would allow such

a low number of components that the inverse transformation

from principal component space to the original would result

in unrealistic profiles. Thus, the number of components was

increased such that, visually, the inverse transformed pro-

files presented the significant features in the original profiles,

up to the point where adding more components seemed to

start explaining trivial features such as noise. For both rain

and snow profile classification, the first 30 components are

used as features. The high number of significant components

suggests that reducing the dimensionality of radar observa-

tions is not trivial. An advantage of using PCA over simply

sampling the profiles is that the former interconnects data

from different heights and radar variables such that the com-

ponents effectively represent features in the profile shapes,

while sampling would rather be driven by absolute values at

the individual sampling heights.

With snow profile classification, a proxy of the surface

temperature, P(Ts) = aTs, where a is a scaling parameter,

is used as an additional feature. Thus, essentially, σTs within

a cluster is decreased with increasing a. In this study, the

value of a was determined in an iterative process during

the clustering phase, described in Sect. 3.2, such that, over

the clusters, median(2σTs) ≈ 3 ◦C. Thus, assuming Ts is nor-

mally distributed within a given cluster, approximately 95 %

of the values of Ts would be typically within a range of 3 ◦C
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Figure 1. Vertical profile clustering method for creating classification models for rain and snow events.

from the cluster mean. A value of a = 0.75 was used in this

study.

3.2 Clustering

In the present study, the widely used k-means method was

chosen for clustering. The algorithm is known for its speed

and easy implementation and interpretation. Limitations of

the method include the assumption of isotropic data space,

sensitivity to outliers (Raykov et al., 2016) and the possibil-

ity to converge into a local minimum which may result in

counterintuitive results. In our analysis, the anisotropy of the

data space is partly mitigated by the PCA transformation. Af-

ter the transformation, there is still anisotropy, but the transi-

tions in density of the data points in PCA space are smooth

(not shown), such that the k-means method seems to pro-

duce clusters of meaningful sizes and shapes. The problem

of local minima is addressed using the k-means++ method

(Arthur and Vassilvitskii, 2007) to distribute the initial clus-

ter seeds in a way that optimizes their spread. The k-means++

is repeated 40 times and the best result in terms of the sum of

squared distances of samples from their closest cluster center

is used for seeding.

3.3 Selecting the number of classes

An important consideration in using k-means clustering is

the choice of number of clusters, k. A good model should

explain the data well while being simple. Several methods

exist for estimating the optimal number of classes. Neverthe-

less, often domain- and problem-specific criteria have to be

applied for the best results.

The optimal number of clusters depends on variability in

the data and correlations between different variables. The

more variability and degrees of freedom, the more clus-

ters are generally needed to describe different features in a

dataset. Since one important use case for the method is ice

process detection, particular attention is paid in separation of

fingerprints of different processes between classes. An opti-

mal set of classes would maximize this separation without in-

troducing too many classes to make their interpretation com-

plicated.

As the problem of the number of classes is complex, it

is difficult to find an unambiguous quantitative measure for

evaluating the correct number of classes. Attempts to create

a scoring function for optimizing the separation of ice pro-

cesses alone did not yield satisfactory results, but were rather

used to support the manual selection process.

Silhouette analysis (Rousseeuw, 1987), which is a method

for measuring how far each sample is from other clusters

(separation) compared to its own cluster (cohesion), was

also considered for selecting k. The metric, silhouette co-

efficient s, takes values between −1 and 1. The higher the

value, the better the profile represents the cluster it is as-

signed to. A profile with s = 0 would be a borderline case be-
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tween clusters, and negative values indicate that the profiles

might have been assigned to wrong clusters. Silhouette score

s = 1
k

∑k
i=1si can generally be used for choosing k. Unfor-

tunately, when applied to the radar profile clustering results,

s decreases almost monotonically with increasing k in the

ranges of k analyzed and thus did not prove very useful for

this purpose. Rather, in this study, we calculate s for each

profile classification result individually as a measure of how

well the profile represents the class it is assigned to.

The process of selecting the number of rain and snow pro-

file clusters, kR and kS, respectively, was as follows. First,

the k-means clustering was repeated 12 times for each k in

[5,21] with 40 k-means++ initializations. This is where the

above-described silhouette analysis was performed for each

set of clusters and the stability of the initialization process

was analyzed for each k. Between the 12 repetitions, the clus-

tering converges to identical results for each kR < 12 and

kS < 10. With higher values of k, there are multiple solu-

tions to the clustering problem with only minor differences

between them. Moreover, the properties of the cluster cen-

troids are not highly sensitive to k. Clustering performed with

k = k0 and k = k0+1 would typically result in sets of clusters

sharing k0 − 1 to k0 very similar centroids.

This stability of the clustering results makes it convenient

to select k manually. In the second stage, we analyzed each

separate clustering solution for differences between the clus-

ters from the point of view of snow processes and surface

precipitation. Specifically, an important criterion was to sep-

arate the typical Kdp signatures of dendritic growth (e.g.,

Kennedy and Rutledge, 2011) and the H–M process (Field

et al., 2016) into different classes. On the other hand, the use

of an unsupervised classification method should also allow

us to discover previously undocumented features in the radar

profiles if they are present in the data in significant numbers.

The goal in this step is to find as many significant unique

fingerprints with as low k as possible by manual evaluation.

Significant differences between clusters in this context in-

clude variations in profile shapes and altitudes of charac-

teristics such as peaks, clear differences in echo-top heights

or differences of cluster centroid Ts of more than 3 ◦C. The

most common trivial difference between a pair of clusters

was a difference in the intensity of polarimetric radar vari-

ables while the shapes of the cluster centroid profiles were

almost identical. Altitude differences between fingerprints of

overhanging precipitation were also considered trivial.

During this process, allowing some profile classes with

only trivial characteristics was inevitable in order to include

others with significant unique fingerprints. For this reason,

some classes likely reflect natural variability of the same mi-

crophysical process rather than unique processes and need to

be combined. However, the optimal way of combining the

classes may depend on the application. Thus, we present the

classes uncombined in this paper.

In snow profile clustering, Ts as an extra classification

parameter adds a significant additional degree of freedom.

Figure 2. Class centroid profiles of the R model. Profile counts per

class are shown at the bottom omitting the count for low-reflectivity

class R0. Between the panes, each class has been assigned a color

code.

Thus, a larger number of snow profile classes are needed to

meet the criteria described above. In clustering, there is a

distinguishable separation between clusters representing Ts

close to 0 ◦C and around −10 ◦C. The vast majority of pro-

files belong to the warmer group.

Taking all the mentioned considerations into account, we

chose to use 10 and 16 classes for rain and snow profiles,

respectively. In 12 of the snow profile class centroids, Ts >

−5 ◦C. In this paper, the rain and snow profile classification

models are termed the R model and S model, respectively.

In this section we have described our approach for opti-

mizing the number of classes with the main criteria of sep-

arating the main profile characteristics and the fingerprints

of ice processes into individual classes. It should be noted,

however, that there is a large spectrum of research problems

and operational applications where an unsupervised profile

classification method such as the one described in this paper

could be potentially useful. The optimal number of classes

may depend on the application.

4 Results

Class centroids of rain and snow profile classes are shown

in Figs. 2 and 3, respectively. The centroid profiles of dual-

polarization radar variables are inverse transformed from cor-

responding centroids in PCA space. Classes are numbered in

the ascending order by the value of the first principal compo-

nent in the class centroids. By definition, the first component

has the largest variance and therefore has the biggest influ-

Atmos. Meas. Tech., 13, 1227–1241, 2020 www.atmos-meas-tech.net/13/1227/2020/



J. Tiira and D. Moisseev: Unsupervised classification of vertical profiles 1233

Figure 3. Class centroid profiles of the S model. The top panel

shows class centroid surface temperatures. Profile counts per class

are shown at the bottom omitting the count for low-reflectivity class

S0. Between the panes, each class has been assigned a color code.

ence on the clustering and classification results. The value of

this component is strongly correlated with intensities of Kdp

and Ze.

A number of class centroids in both classification models

display distinct features in dual-polarization radar variables

often linked to snow processes, such as peaks and gradients

in Kdp and ZDR. Such features and their connection to other

characteristics in the vertical structure of the profiles and fi-

nally to the precipitation processes are discussed in this sec-

tion.

As a general pattern in Figs. 2 and 3 we see that the high-

est values of ZDR are associated with low echo tops while

the highest Kdp values occur in deeper clouds. This is in

line with the previously reported findings (Kennedy and Rut-

ledge, 2011; Bechini et al., 2013; Moisseev et al., 2015;

Schrom et al., 2015; Griffin et al., 2018) that echo tops in the

DGL are associated with high ZDR and low Kdp in the layer,

whereas high Kdp in the DGL with low ZDR is associated

with echo tops in T < −37 ◦C where homogeneous freezing

occurs. Using the NCEP GDAS model output, we analyzed

the echo top temperatures, Ttop, of each vertical profile radar

observation. The results, grouped by profile class, are visu-

alized in Fig. 4. It should be noted that in the summer cold

echo tops may be caused by strong updrafts in convection,

whereas during the winter, echo tops colder than approxi-

mately −37 ◦C are a more unambiguous indication of ho-

mogenous freezing. Inspecting the class centroids in Figs. 2

and 3, and comparing them to echo top heights in Fig. 4, it is

evident that Kdp layers, especially elevated ones, are strongly

associated with high echo tops.

The clustering results expose a prominent seasonal differ-

ence in Kdp intensity: consistently lower values are present in

snow events. There are four rain profile classes in contrast to

only two snow profile classes with peak cluster centroid Kdp

exceeding 0.1 ◦ km−1. They represent total fractions of 13 %

and 4 % of rain and snow profiles, respectively. Correspond-

ing to this difference, in Figs. 2 and 3, as well as in Figs. 7

and 8 introduced later, Kdp is visualized in different ranges in

relation to rain and snow profiles. The seasonal differences in

ZDR and Ze intensities are less prominent. High Kdp in the

summer may be linked to higher water content during the

season. Additionally, the seasonal variability of vertical mo-

tion could impact the ZDR and Kdp enhancements.

Convection in the summer, especially in the presence of

hail, is linked to extreme values of radar variables and high

echo tops (Voormansik et al., 2017), which may also have a

small contribution to the seasonal differences (Mäkelä et al.,

2014). However, convective rainstorms are of short duration

and thus typically present in just a couple of profiles per con-

vective cell. Therefore, their impact on the class properties is

expected to be limited. Manual analysis revealed that classes

R6 and R9 have the highest and R5 the lowest fractions of

profiles measured in convective cells. Further details of this

analysis are presented in Sect. 4.2.

Class frequencies are presented in the bottom panels of

Figs. 2 and 3. Classes S0 and R0 represent very low values

of Ze throughout the column, i.e., profiles with very weak or

no echoes. Therefore their frequencies depend merely on the

subjective selection of observation period boundaries and are

thus omitted in the figures. Boundaries of the precipitation

events are partly based on these two 0 classes. Events are

considered independent and separate if between them there

are profiles classified as S0 or R0 continuously for at least

12 h.

With respect to Kdp intensity, classes in the R model can

be divided into four categories: R0 through R3 with negli-

gible Kdp, low-Kdp classes R4 and R5 with max(Kdp,c) ≈
0.04 ◦ km−1, high-Kdp classes R6 and R7 with max(Kdp,c) >

0.11 ◦ km−1, and classes R8 and R9 representing extreme

values (max(Kdp,c) ≈ 0.5 ◦ km−1). The subscript “c” denotes

a class centroid value as opposed to values in individual pro-

files. The peak Kdp,c of both R6 and R9 is at 3 km, cor-

responding to class mean GDAS temperatures of −16 and

−18 ◦C, respectively. Essentially, these two classes represent

clear Kdp features in the DGL.

Classes R7 and R8 feature considerable Kdp in 2–3 km

thick layers right above the ML, with centroid values slightly

below 0.2 ◦ km−1 and around 0.4 ◦ km−1, respectively. Es-

sentially, both classes represent Kdp signatures in both the

DGL and temperatures favored by the H–M process. Sinclair

et al. (2016) found that the typical Kdp values for the H–M

process are capped at 0.2. . .0.3 ◦ km−1 for the C band due to
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Figure 4. Cloud-top temperature distributions by class (gray) with the green line marking the medians. For S classes, surface temperature

distribution is also shown (blue) with red lines marking the class centroid and yellow lines marking the median. Boxes extend between the

first and the third quantiles, and whiskers cover 95 % of the data.

Figure 5. The class S13 centroid is visualized in the three rightmost panes. Individual class member profiles are marked with thin lines. The

pane on the left shows corresponding NCEP GDAS temperature profiles. The areas between the first and the third quantiles are shaded, radar

data is in blue and GDAS is in gray.

onset of aggregation. Based on this, it can be argued that R7

is a more likely indicator of H–M than R8.

Classes R3 and R4 were found to often coexist in precipi-

tation events. Both are characterized by low Kdp and a layer

of ZDR in the DGL. In Fig. 4, we see that the echo tops are

lower for the R3 profiles, typically in the DGL. Therefore,

we would expect growth of pristine crystals in low num-

ber concentrations and consequently with no significant ag-

gregation. This would explain why peak ZDR values from

3 to 5 dB are common in relation with R3. Profiles classi-

fied as R4, on the other hand, have slightly higher echo tops

(T < −20 ◦C), which are expected to result in higher num-

ber concentrations, leading to aggregation. The R4 profiles

are characterized by much lower ZDR values.

In the S model (Fig. 3), classes S0 through S3 represent

profiles with low values of all three radar variables, each with

max(Ze,c) < 0 dBZ, max(ZDR,c) < 1 dB and max(Kdp,c) <

0.01 ◦ km−1. These four low-reflectivity classes represent

different surface temperatures, which is likely a major driver

for the separation of these classes in the clustering process.

Classes S4 and S5 represent low echo top profiles with high

ZDR, with class centroid surface temperatures of −9.0 and

−0.6 ◦C, respectively. Further analysis of NCEP GDAS tem-

perature profiles reveals that, across the board, there is an in-

version layer present where radar profiles are classified as S4,

typically with temperatures below −10 ◦C within the low-

est kilometer. This corresponds well with the bump in ZDR,c

close to the surface, suggesting possible growth of pristine

dendrites within a strong inversion layer. In contrast, there is

no inversion in connection with profiles belonging to S5, and

the enhancement in ZDR occurs already at 2 to 3 km above

the surface, where the median NCEP GDAS temperature for

S5 profiles is roughly between −18 and −10 ◦C. S5 is the

second most common class in S-model classification results.
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Figure 6. Comparing classes R5 (a, b, c) and S11 (d, e, f) shows

evident similarities. Individual class member profiles are marked

with thin blue lines and the areas between the first and the third

quantiles are shaded with blue.

Classes S6 and S8 represent situations where precipitation

is detached from the surface. These types of profiles are typi-

cally present in association with approaching frontal systems

before the onset of surface precipitation. The most frequent

class of the S model is S9 covering 13 % of the profiles. It

represents moderate values of polarimetric radar variables

and cloud-top height. The most extreme values of reflectiv-

ity and Kdp values in the S model are represented by classes

S14 and S15. For both classes, Kdp,c peaks above 3 km, sug-

gesting dendritic growth in the member profiles. Values of

ZDR,c are significantly lower compared to other high echo

top classes with weaker Kdp,c. Class S15 can be seen as a

more extreme variant of S14 with much stronger Kdp,c and

Ze,c. In addition, S15 represents lower values of ZDR near

the DGL, having slightly elevated values in the bottom 3 km

instead. These differences are likely due to even higher ice

number concentrations in S15 profiles, which lead to more

intense aggregation.

Comparing class centroid Ts and class frequencies in Fig. 3

it can be seen that most snowfall occurs at Ts ≈ 0 ◦C. Fur-

ther analysis of GDAS temperature profiles for the snow

events revealed that typically cold surface temperatures (Ts <

−6 ◦C) are heavily contributed to by strong inversion layers.

The centroid and members of S13 are visualized in Fig. 5,

along with the member GDAS temperature profiles. The pro-

file class is characterized by a thick layer of considerable Kdp

from 2 to 3 km to the surface, and Ts ≈ −10 ◦C. As seen in

the left panel of Fig. 5, S13 represents conditions where T

typically falls below −10 ◦C close to the surface. This find-

ing suggests that a second DGL may occur in a strong inver-

sion layer.

Using the double-moment Morrison microphysics scheme

(Morrison et al., 2005), Sinclair et al. (2016) showed that

Kdp at the −8 to −3 ◦C temperature range can be used for

identifying the H–M process. Such fingerprints are present in

particular in profiles classified as R7 or S12. However, man-

ual analysis of the profile data revealed that both of these

classes represent a mixture of fingerprints indicating H–M,

dendritic growth or the co-presence of both processes. In sev-

eral events, there were continuous time frames of profiles

classified as either R7 or S12 during which the altitude of

the Kdp signal was changing from profile to profile between

the DGL and 0 ◦C level and was occasionally bimodal. One

example of such a time frame is shown in Fig. 7 and dis-

cussed further in Sect. 4.1.1. Some bimodality is also present

in the centroid Kdp,c of both classes, suggesting that the el-

evated Kdp,c values in the H–M region cannot be explained

solely by sedimenting planar crystals generated aloft but are

contributed by the H–M process.

While there are no classes with clear-cut Kdp,c peaks at al-

titudes corresponding to temperatures preferred by the H–M

process in either rain or snow profile classification, there are,

in contrast, several classes with strong elevated Kdp,c layers.

The proposal of Sinclair et al. (2016) that Kdp fingerprints of

the H–M process are not very pronounced may explain the

tendency of the classification method not to produce more

pure H–M classes. Nevertheless, R7 and S12 can be used as

indicators for conditions where H–M may occur.

Despite the differences in the classification methods for

rain and snow profiles, there are prominent similarities be-

tween the two models and profile classes therein. Archetypal

classes such as high echo tops in the presence of elevated Kdp

layers (R6, R9, S14, S15) or high ZDR in shallow precipita-

tion (R3, S4, S5) exist in both classification models. Frequent

classes R5 and S11, visualized side by side in Fig. 6, can

be considered direct counterparts of each other. The vertical

structure of polarimetric radar variables above the ML in R5

match strikingly well with S11. The two classes are charac-

terized by weak Kdp and typical values of ZDR slightly above

1 dB aloft, decreasing towards the altitude corresponding to

0 ◦C. Presumably, this indicates the presence of aggregation.

4.1 Case studies

In Figs. 2 and 3, each class is assigned a color code (between

the panels). This color coding is used in Figs. 7 and 8 to mark

classification results in a rain and a snow case, respectively.
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Figure 7. Classification analysis of a rain case with silhouette

scores. The automatically detected melting layer is marked with a

dashed line, the solid lines show the NCEP GDAS temperature con-

tours and the colors between the panes denote classification results.

Note that the same set of colors is used for denoting rain and

snow profile classification, but they should not be confused

with each other.

4.1.1 12 August 2014

In Fig. 7, rain profile classification has been applied to a

precipitation event from 12 August 2014. During this event,

echo tops repeatedly exceed 10 km. Only the parts of the pro-

files above the melting layer top are analyzed here, since ev-

erything below that level is invisible to the classifier. The first

two and the last two profiles shown in the figure are charac-

terized by low Ze and low Kdp, while ZDR has values around

1 dB. These profiles are classified as R5 (dark green). Be-

tween 02:30 and 03:00 UTC, a significant increase in Kdp

occurs, followed by an increase in reflectivity and decrease

in ZDR. The temperature (altitude) of the downward increase

in Kdp varies from the −20 ◦C level to closer to the ML. In

this phase, there is also a small increase in ZDR in the DGL

whenever the increase in Kdp also occurs in the DGL. This

phase in the event is sustained until around 05:00 UTC and

is classified as R7 (dark red). It is followed by approximately

an hour of a weaker elevated Kdp layer at around 4 to 6 km

altitude with profiles classified as class R6 (light green). The

silhouette coefficient is positive throughout the event indicat-

ing good confidence of the classification results. The silhou-

ette of the profiles classified as R6 is not very high, though,

which is likely due to lower values of Ze compared to the

class centroid.

Similar analysis of more rain events in the dataset reveals

that, similar to the 12 August event, R7 typically coincides

with an increase in Kdp in the DGL, H–M layer or both, often

Figure 8. Classification analysis of a snow case with silhouette

scores. Solid lines show the NCEP GDAS temperature contours and

the colors between the panes denote classification results.

with varying altitude. Without in situ observations or analysis

of Doppler spectra, it is not trivial to tell whether this vari-

ability is due to co-presence of dendritic growth and H–M or

simply fall streaks. Class R6, on the other hand, is more spe-

cific to a Kdp fingerprint in the DGL. The more infrequent

profiles with clear Kdp bands above the DGL are typically

also classified as R6 or R9.

4.1.2 15–16 February 2014

Classification results for 15–16 February 2014 are shown

in Fig. 8. The event has a clear structure of an approach-

ing frontal system. Between 17:00 and 18:00 UTC Ze is very

low, corresponding to class S0, which is marked with white

color between the panels. Between 18:00 and 21:00 UTC,

the event starts with overhanging precipitation, classified as

S6 (light green). This is followed by light precipitation with

echo tops at roughly 7 to 8 km and relatively high ZDR near

the echo top, decreasing downwards. This corresponds well

with class S11 (dark brown). After 23:30 UTC, The echo top

height is decreased to roughly 6 km, ZDR is decreased and

Kdp signals appear close to ground level. The increase in Kdp

occurs within the −8 to −3 ◦C temperature range, suggest-

ing the presence of the H–M process. Indeed, Kneifel et al.

(2015) report needles, needle aggregates and rimed particles

on the surface at the measurement site during this period and

favorable conditions for rime splintering. Further, using the

Weather Research and Forecast (WRF) model, Sinclair et al.

(2016) showed that secondary ice processes are needed to

explain the observed number concentrations during this time

period. The corresponding profiles are classified as S12 (light
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brown). Within this case study, two profiles, marked with

dark purple, are classified as S9, likely due to the momen-

tary absence of any strong Kdp or ZDR signals.

4.2 Statistics

Frequency statistics of the profile classes are presented in

Fig. 9. We analyzed a subset of rain events as either con-

vective or stratiform using a number of sources of publicly

available satellite and numerical model data. Out of 70 events

analyzed, 15 were convective and 55 stratiform. Panel (a2) in

Fig. 9 shows the ratios of the number of profiles in convec-

tive cases per class to the expected value in uniform distri-

bution. On average, twice as many profiles are classified as

R6 and R9 in convective situations compared to their aver-

age frequencies. Both classes are characterized by high echo

tops and elevated Kdp bands. On the other hand, classes

R7 and R8, also representing high Kdp values, but closer

to the melting layer than R6 and R9, appear in lower-than-

average frequency in convective situations. Class R5 is most

pronouncedly characteristic for stratiform events, with fre-

quency in convective events roughly one-third of the average

value.

Panels (a3) and (b3) of Fig. 9 show the fractions of in-

dependent precipitation events in which each class occurs.

With rain events, this frequency correlates inversely with

Kdp,c. Rain profiles classified as R8 and R9, which repre-

sent the strongest Kdp signatures, occur in 20 % and 19 % of

the events, respectively, with at least one of the two occurring

in 25 % of the events. Classes R6 and R7, representing more

modest Kdp features, occur in 45 % and 57 % of cases, re-

spectively, and the rest of the classes between 67 % and 92 %

of the cases.

With snow events, the likelihood of a given class occur-

ring within an event correlates not only with peak Kdp,c but

also with surface temperature. Any class representing low

Kdp values and surface temperature close to 0 ◦C occurs in

more than half of the snow events.

The per precipitation event class persistence is visualized

in the bottom panels of Fig. 9. Profile classes representing

the highest values of Ze at the surface, namely R6–R9, S12,

S14 and S15, are short-lived, whereas snow profile classes

characterized by cold surface temperatures are the most per-

sistent. Profiles classified as R0 or S0 omitted, the median

durations of rain and snow events in the dataset are 5.5 and

11.5 h, respectively. This difference explains why S classes

are on average more persistent than R classes.

5 Conclusions

A novel method of dual-polarization radar profile classifi-

cation for investigating vertical structure of snow processes

in the profiles was presented in this paper. The method is

based on clustering of PCA components of vertical profiles

of Kdp, ZDR and Ze and surface temperature. It was applied

to vertical profile data extracted from C-band RHI scans over

Hyytiälä measurement station in southern Finland. We ap-

plied separate versions of the method based on if surface

precipitation type was rain (R model) or snow (S model).

In the R model, profiles are truncated at the melting layer

top, and in the S model surface temperature is used as an

additional classification feature. The content of the vertical

profile classes was manually interpreted.

In the present investigation, some class centroids resem-

bled textbook examples of previously documented snow pro-

cess fingerprints, while others may represent a mixture of dif-

ferent conditions. If temperature profiles from either sound-

ings or numerical models are available, the interpretation can

be done in the absence of surface crystal type reports. No-

tably, this is prerequisite in cases of rainfall when direct ob-

servations of crystal types cannot be performed at the sur-

face.

The year-round variability in the vertical structure of Kdp,

ZDR and Ze can be described using a total of 26 profile

classes: 10 and 16 in the presence and absence of the ML,

respectively. One of the main goals of this study was to

associate profile classes with snow processes for their au-

tomated identification. It should be noted, though, that the

profile classification is not based on expressly selected char-

acteristics of radar fingerprints of the processes, but rather

the general, complete structure of the profiles. Nevertheless,

some profile classes seem to be strong indicators of specific

processes or their combinations within the vertical profiles.

From both classification models we can identify a total of

seven archetypes with the following characteristics.

1. Profiles have a strong Kdp peak in the DGL, while the

peak in ZDR is not pronounced. This archetype appears

in deep precipitation systems with homogeneous freez-

ing at the cloud top. It is associated with intensified den-

dritic growth leading to aggregation and high precipita-

tion rate. (Classes R6, R9, S14, S15)

2. There is a Kdp signature between the DGL and the 0 ◦C

level, possibly due to simultaneous occurrence of den-

dritic growth and secondary ice production. Homoge-

neous freezing occurs at the cloud top. (R7, R8, S12)

3. Profiles are characterized by high echo tops, negligi-

ble Kdp, and ZDR > 1 dB, which decreases closer to

the melting level due to aggregation. Typically, Ze <

20 dBZ. (R5, S11)

4. The cloud top is between the −30 and −20 ◦C levels,

and there is only a weak ZDR band present at the −15 ◦C

level. Ze is moderate at roughly 20–30 dBZ, and Kdp is

weak. (R4, S9)

5. ZDR is typically higher than 1.5 dB at the cloud to at

around −15 ◦C and is associated with the growth of

pristine planar crystals in low number concentrations.
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Figure 9. Statistics on frequency of each profile class. Classes are identified by class centroid Ze (a1, b1) and class centroid Ts for snow

profile classes (b2), with color codes between the panels and class IDs at the bottom. Panel (a2) has the ratios of the number of profiles

in convective cases per class to the expected value in uniform distribution. In (a4, b4), the class frequencies are given as percentage of

events (a3, b3) and total durations (a4, b4) within events.

No Kdp is present, and low values of Ze indicate the

absence of aggregation. (R3, S5)

6. The radar echo is detached from the surface either due

to snow particles not having reached the surface yet or

because they are sublimating due to a dry layer. (R2, S3,

S6, S8)

7. Ze is weak throughout the profile. (R0, S0–S2)

In addition to these archetypes found in both summer and

winter storms, there are S classes representing situations

where strong inversions interfere with snow processes. No-

tably, we found indications of dendritic growth in strong in-

version layers, manifested as class S13. As the colder arctic

air mass seldom occurs in southern Finland, Ts < −10 ◦C can

usually be attributed to a strong lower-level inversion. Such

inversions may have an important effect on the frequency

of occurrence of some ice processes. Further, this implies

that temperature information near the surface is necessary in

order to determine whether a low altitude Kdp signature in

the winter is an implication of the H–M process or dendritic

growth.

Our approach to the classification problem is pro-

nouncedly data-driven. This way, if the training material rep-

resents the climatology of ice processes and their radar sig-

natures, as was the aim in this study, the resulting classes

will reflect the statistical properties of this climatology. Hand

picking the training material, on the other hand, would intro-

duce human bias into the class boundaries.

However, there are possible drawbacks in the data-driven

approach. The typical radar fingerprints of the H–M process

were found to be much more scarce than those of dendritic

growth, and often less pronounced. This negatively affects

how the typical fingerprints of the H–M process are repre-

sented in the classes. This could be enhanced by introducing

a larger fraction of H–M profiles in the training data.

Another disadvantage in the data-driven approach is that

covering a meaningful collection of unique fingerprints re-

quires a large number of clusters, some of which do not rep-

resent unique microphysical processes. This problem may be

mitigated to some extent by further optimizing the scaling

of the radar variables such that the clustering would be less

driven by differences in the intensities of the signatures in

contrast to their shapes. Another way to address this issue is

to simply combine classes that seem to represent the same

processes, in like manner of the archetypes presented above.

Reducing the number of classes by simply choosing a smaller

k in the k-means clustering would reduce the amount of man-

ual work involved in defining the class boundaries at the cost

of decreased detail and accuracy in separating the processes.

With a smaller k, the clustering would be driven by more

general features of the profiles such as the overall shape and

intensity of the polarimetric radar variables, whereas espe-

cially the typical characteristics of the H–M process finger-

prints involve a higher level of detail.

The classification method presented in this study should

be considered a starting point in studying vertical profiles

of radar variables using unsupervised classification. As such,
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there is a vast range of potentially useful opportunities for

further development of the method. The method is built on

reasoned use of well-known, proven algorithms such as PCA

and k-means. We showed that this combination of machine

learning algorithms allows both identification of known fin-

gerprints and a more explorative approach in studying the

characteristics of a regional climatology of precipitation pro-

cesses. Limitations of the k-means method include the spher-

ical shape and similar area occupied by the clusters, which

involve a risk of suboptimal separation of the microphysi-

cal processes to different classes. In this study, we addressed

these limitations by allowing a rather large number of ini-

tial classes and combining similar ones by identifying the

archetypes based on known fingerprints of the processes. An-

other possible approach would be to explore the numerous

alternative clustering methods for a more optimal separation

of the precipitation processes. A comprehensive comparison

of such methods, however, is outside the scope of this study.

In the present classification method, ambient temperature

is known only at the profile base. Compared to the use of

full temperature profiles, this simplifies the method and, per-

haps even more importantly, the requirements for the input

data. However, future studies should investigate if the use of

full temperature profiles allows more accurate separation of

precipitation processes into different classes.

The unsupervised nature of the classification method is ex-

pected to allow extension of its application to the detection

of ice processes not covered in this study. Recently, Li et al.

(2018) showed that certain combinations of Ze, ZDR and Kdp

signatures can potentially be used for detecting heavy riming.

Furthermore, the process is frequently observed in Finland,

highlighting the potential of using an unsupervised method

for its identification.

It should be noted that wind shear effects induce differen-

tial advection of hydrometeors at different altitudes, affect-

ing the gradients in the vertical profiles of radar variables

(Lauri et al., 2012). Therefore caution should be used in inter-

preting microphysical processes corresponding to class cen-

troid profiles. The wind shear effects are difficult to correct

for using vertical profile or RHI radar observations due to

the limitations in horizontal sampling. Such adjustments be-

come more viable if classification is performed on profiles

extracted from volume scans, which will be investigated in

future work.

The ability to describe a climatology of vertical structure

of dual-polarization radar variables and, further, precipita-

tion processes using a finite number of classes has evident

potential in improving quantitative precipitation estimation.

We anticipate that automated detection of ice processes may

allow the development of adaptive relation for snowfall rate

S = S(Ze), in which the parameters could be chosen based

on the profile classification result. Adaptive S(Ze) relations,

in turn, have potential in improving the vertical profile of re-

flectivity correction methods. Future work will be devoted to

investigating the use of unsupervised profile classification in

such applications.
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Abstract. In stratiform rainfall, the melting layer (ML) is of-

ten visible in radar observations as an enhanced reflectivity

band, the so-called bright band. Despite the ongoing debate

on the exact microphysical processes taking place in the ML

and on how they translate into radar measurements, both

model simulations and observations indicate that the radar-

measured ML properties are influenced by snow microphys-

ical processes that take place above it. There is still, how-

ever, a lack of comprehensive observations to link the two.

To advance our knowledge of precipitation formation in ice

clouds and provide new insights into radar signatures of snow

growth processes, we have investigated this link. This study

is divided into two parts. Firstly, surface-based snowfall mea-

surements are used to develop a new method for identify-

ing rimed and unrimed snow from X- and Ka-band Doppler

radar observations. Secondly, this classification is used in

combination with multifrequency and dual-polarization radar

observations collected during the Biogenic Aerosols – Ef-

fects on Clouds and Climate (BAECC) experiment in 2014

to investigate the impact of precipitation intensity, aggre-

gation, riming and dendritic growth on the ML properties.

The results show that the radar-observed ML properties are

highly related to the precipitation intensity. The previously

reported bright band “sagging” is mainly connected to the

increase in precipitation intensity. Ice particle riming plays

a secondary role. In moderate to heavy rainfall, riming may

cause additional bright band sagging, while in light precipi-

tation the sagging is associated with unrimed snow. The cor-

relation between ML properties and dual-polarization radar

signatures in the snow region above appears to be arising

through the connection of the radar signatures and ML prop-

erties to the precipitation intensity. In addition to advancing

our knowledge of the link between ML properties and snow

processes, the presented analysis demonstrates how multifre-

quency Doppler radar observations can be used to get a more

detailed view of cloud processes and establish a link to pre-

cipitation formation.

1 Introduction

Stratiform precipitation is prevalent in middle to high lati-

tudes. In such precipitation systems, ice particles nucleated

at the cloud top descend and grow on their way down by

going through various microphysical processes, e.g., vapor

deposition, aggregation and/or riming (Lamb and Verlinde,

2011). In the case of rainfall, these ice particles transform

into raindrops in the melting layer (ML). The melting of ice

particles is capable of modulating the thermal structure of

the ML through the exchange of latent heat with the envi-

ronment (Stewart et al., 1984; Carlin and Ryzhkov, 2019)

and, as a result, can change the dynamics of precipitation

(e.g., Heymsfield, 1979; Szeto et al., 1988; Fabry and Za-

wadzki, 1995). It has shown that ML properties are modified

by the ambient environment such as relative humidity (RH;

Willis and Heymsfield, 1989; Battaglia et al., 2003; Carlin

and Ryzhkov, 2019), as well as microphysical processes tak-

ing place in the ML (Heymsfield et al., 2015), and by snow

microphysical processes occurring above, e.g., aggregation

and riming (Stewart et al., 1984; Klaassen, 1988; Fabry and
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Zawadzki, 1995; Zawadzki et al., 2005; von Lerber et al.,

2014; Kumjian et al., 2016; Xie et al., 2016; Wolfensberger

et al., 2016; Trömel et al., 2019). In addition, the microwave

attenuation in the ML is sensitive to the parameterization of

snow microphysics (von Lerber et al., 2014) and can be sig-

nificant at millimeter wavelengths (Matrosov, 2008; Haynes

et al., 2009; Li and Moisseev, 2019).

To centimeter-wavelength weather radars, the ML appears

as a band of the increased reflectivity, the so-called bright

band, while to millimeter-wavelength radars, such an ap-

pearance is less distinct (e.g., Lhermitte, 1988; Sassen et al.,

2005; Kollias and Albrecht, 2005). Properties of the ML and

its radar manifestation bright band are influenced by cloud

dynamics and microphysics, which can be directly probed by

aircraft-mounted in situ measurements (e.g., Stewart et al.,

1984; Willis and Heymsfield, 1989; Heymsfield et al., 2015)

despite the inability to conduct continuous long-term oper-

ations with such setups. Remote sensing of the ML with

radars dates back to the 1940s (Ryde, 1946). Atlas (1957) has

found that the strength of the bright band is weakened when

melting graupel particles are present, which was further con-

firmed by Klaassen (1988) and Zawadzki et al. (2005). A

comprehensive long-term analysis of the ML appearance in

vertically pointing X-band radar and ultra high frequency

(UHF) wind profiler observations has been performed by

Fabry and Zawadzki (1995). They have compiled a record

of the main ML features that were later used in modeling

studies (e.g., Szyrmer and Zawadzki, 1999; Zawadzki et al.,

2005; von Lerber et al., 2014). As the ML bridges snow and

rain, the raindrop size distributions below the ML seem to be

related to the bright band’s reflectivity values (Huggel et al.,

1996; Sarma et al., 2016). As presented by Wolfensberger

et al. (2016), the thickness of the ML depends on riming,

particle fall velocities and the bright band intensity. Mean-

while, the downward extension of the bright band, called the

saggy bright band, may be linked to riming as suggested by

previous studies (Trömel et al., 2014; Kumjian et al., 2016;

Ryzhkov et al., 2016; Xie et al., 2016; Erlingis et al., 2018).

Recently, Carlin and Ryzhkov (2019) have incorporated the

cooling effects of melting snowflakes in the ML model and

proposed that the saggy bright band may be explained by a

combination of processes instead of a single factor. From the

perspective of observation, there seems to be a lack of sta-

tistical studies untangling the impacts of snow growth pro-

cesses on the observed ML properties.

Over the last few years, multifrequency radar measure-

ments of clouds and precipitation have become more eas-

ily attainable, which has led to the proliferation of stud-

ies demonstrating the advantages of using these observa-

tions for the investigation of snow microphysical processes

(e.g., Kneifel et al., 2011, 2015; Leinonen et al., 2012a;

Leinonen et al., 2013, 2018; Tyynelä and Chandrasekar,

2014; Leinonen and Moisseev, 2015; Leinonen and Szyrmer,

2015; Grecu et al., 2018; Chase et al., 2018; Mason et al.,

2018, 2019). The potential dependence of dual-wavelength

ratios (DWRs) at Ka–W-bands and X–Ka-bands on riming

was observed by Kneifel et al. (2015). Dias Neto et al. (2019)

have presented the strong aggregation signatures close to the

ML using multifrequency radar observations. This rapid ag-

gregation could manifest itself as a dark band in W-band

cloud radar observations, namely the dip in radar reflectiv-

ity just above the ML top (Lhermitte, 1988; Sassen et al.,

2005, 2007; Heymsfield et al., 2008). Such a reflectivity dip

just above the ML may even be present in X-band radar

measurements of light precipitation (Fabry and Zawadzki,

1995) but has not been well addressed. Mason et al. (2018)

have incorporated the Doppler velocity and radar reflectiv-

ity observations from vertically pointing Ka- and W-band

radars into an optimal estimation scheme to infer the rim-

ing fraction, among other parameters. In addition to multi-

frequency radar observations, dual-polarization radar mea-

surements show promise in improving our understanding of

ice precipitation processes (e.g., Bechini et al., 2013; Gian-

grande et al., 2016; Kumjian et al., 2016; Ryzhkov et al.,

2016; Moisseev et al., 2015, 2017; Li et al., 2018; Oue et al.,

2018; Vogel and Fabry, 2018; Moisseev et al., 2019; Tiira

and Moisseev, 2020). Therefore, the utilization of collocated

multifrequency and dual-polarization radar observations may

pave the way for a better understanding of the connection be-

tween dry and melting snow microphysics.

The detailed properties of ice particles are complex as

manifested by the extraordinary variety in their habit, size,

mass and concentration (Korolev et al., 2000, 2003; Bai-

ley and Hallett, 2009). This complexity is exacerbated by

the diversity of ice growth processes that take place in ice

clouds (Li et al., 2018; Oue et al., 2018; Barrett et al.,

2019; Moisseev et al., 2015, 2017, 2019; Tiira and Moisseev,

2020). Despite the recent attempts to resolve the ice micro-

physics (e.g., Mason et al., 2018, 2019; Barrett et al., 2019),

direct characterization of ice particles and their growth pro-

cesses is still challenging. In some cases, ML properties

could emphasize radar signatures of such processes (Za-

wadzki et al., 2005; Kumjian et al., 2016; Li and Moisseev,

2020) and therefore provide additional information. How-

ever, there is an ongoing debate on the link between snow

growth processes, such as riming and aggregation, their radar

signatures and ML properties (e.g., Kumjian et al., 2016;

Carlin and Ryzhkov, 2019; Heymsfield et al., 2015). This

study aims to advance our understanding of the link and re-

solve at least some of the discussed topics. During the Bio-

genic Aerosols – Effects on Clouds and Climate (BAECC)

experiment (Petäjä et al., 2016), vertically pointing X-, Ka-

and W-band cloud radars were deployed at the University

of Helsinki research station in Hyytiälä, Finland. These

observations were supplemented by range–height indica-

tor (RHI) scans carried out by the Finnish Meteorological In-

stitute (FMI) C-band dual-polarization radar, providing a set

of unique synergistic observations ideally suited for studying

the connection between the growth and melting processes of

snowflakes.
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The paper is organized as follows. Section 2 introduces the

instrumentation used in this study, followed by the illustra-

tion of detecting the ML and separating unrimed and rimed

snow in Sect. 3. A sanity check of the snow classification and

the statistical results of multifrequency and dual-polarization

radar observations are provided in Sect. 4. Conclusions are

presented in Sect. 5.

2 Measurements

The BAECC field campaign was conducted at the Univer-

sity of Helsinki’s Hyytiälä Station from February to Septem-

ber 2014 (Petäjä et al., 2016). This experiment provides com-

prehensive vertically pointing multifrequency radar rainfall

observations, which are used in this study. A 2D video dis-

drometer (2DVD) was used to measure rain rate and calibrate

X-band radar reflectivity. The collocated observations were

aided by the FMI C-band dual-polarization weather radar.

In addition to the radar setup during BAECC, long-term

snow observations were made by a National Aeronautics

and Space Administration (NASA) Particle Imaging Pack-

age (PIP; Newman et al., 2009; Tiira et al., 2016; von Lerber

et al., 2017).

2.1 2DVD and vertically pointing radars

The Atmospheric Radiation Measurement 2DVD

(ARM 2DVD) used in this study is the new generation

of the one described in Kruger and Krajewski (2002). It

relies on two cameras and two light sources placed in orthog-

onal directions and records image projections of raindrops as

they fall cross the cameras’ field of view. The 2DVD is often

used for recording the size distributions, fall velocities and

shapes of raindrops. Based on this information, the rain rate

and reflectivity at a given radar frequency can be derived.

The X- and Ka-band scanning ARM cloud radar (X/Ka-

SACR) and W-band ARM cloud radar (MWACR) have the

range gate spacing of 25, 25 and 30 m, respectively (Kollias

et al., 2014; Kneifel et al., 2015; Falconi et al., 2018). The

original time resolution of 2 s was averaged to 10 s for these

radars. The half-power beam widths of X-SACR, Ka-SACR

and MWACR are 1.27, 0.33 and 0.38◦, respectively. X- and

Ka-SACR are dual-polarization radar systems installed on

the same pedestal, recording the co-polar (e.g., ρhv, Zdr) and

cross-polar (e.g., cross-polar correlation coefficient and lin-

ear depolarization ratio, LDR) measurements, respectively.

MWACR had a small antenna pointing error of 0.5 to 1◦,

which may lead to significant error in the vertical Doppler

velocity but which does not affect reflectivity measurements.

To mitigate the potential attenuation from wet radome

and raindrops, the simulated X-band radar reflectivity from

2DVD data was used to match the measured X-band re-

flectivity at 500 m where the near-field effect is minimized

(Sekelsky, 2002; Falconi et al., 2018). As the Ka-band reflec-

tivity can be significantly affected by the attenuation from

the ML, rain and a wet radome (Li and Moisseev, 2019),

the relative calibration was made at precipitation top where

the Rayleigh assumption can be applied at Ka- and X-bands.

During BAECC, a radiosonde was launched four times per

day, out of which the temporally closest one was used as in-

put to the millimeter-wavelength propagation model (Liebe,

1985) to correct for the gaseous attenuation at all radar fre-

quencies.

2.2 Dual-polarization weather radar

The FMI C-band dual-polarization weather radar located in

Ikaalinen, 64 km west from the Hyytiälä station, operates in

the simultaneous transmission and receiving mode (Doviak

et al., 2000). This radar performs RHI scans over the mea-

surement site every 15 min. The range and azimuth resolu-

tions are 500 m and 1◦, respectively. The dual-polarization

measurements used in this study are Zdr, which was cali-

brated during light rainfalls (Bringi and Chandrasekar, 2001;

Li et al., 2018). For data analysis, the Python ARM Radar

Toolkit (Helmus and Collis, 2016) was used.

2.3 NASA particle imaging package

The PIP is an improved version of the Snowflake Video Im-

ager (Newman et al., 2009), which uses a high frame rate

camera operating at 380 frames per second to record the

silhouettes of precipitation particles. The field of view of

this camera is 48 mm×64 mm with a spatial resolution of

0.01 mm2. The focal plane of this camera is 1.3 m. Because

the measurement volume is not enclosed, the wind-induced

effects on the measurements are minimized (Newman et al.,

2009). The data-processing software defines the size of each

particle using the disk-equivalent diameter (Ddeq), which is

the diameter of a disk with the same area of a particle shadow.

Particle size distribution (PSD) and fall velocity are recorded

as a function of Ddeq in the PIP software. Based on these PIP

products, von Lerber et al. (2017) have derived particle mass

and fall velocity as a function of the observed maximum par-

ticle diameter (Dmax,ob), which is obtained by fitting an el-

lipsoid model to each particle. Here and hereafter, D rep-

resents Dmax,ob. The snowfall measurements started as part

of the BAECC field campaign were continued, and data col-

lected during the experiment and an additional three winters

were used in this study. The collected data were processed

using the method by von Lerber et al. (2017).
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3 Methods

3.1 Detection of ML boundaries

The height where melting starts ranges from the surface to

several kilometers above, mainly depending on the temper-

ature profiles. Thus, prior to addressing the general char-

acteristics of ML, it is important to detect ML bound-

aries. Fabry and Zawadzki (1995) have employed the gra-

dient of reflectivity to determine the ML boundaries using

single-polarization X-band radar measurements. The verti-

cally pointing X- and Ka-band radars used in this study pro-

vide dual-polarization observations, i.e., ρhv and LDR, re-

spectively. These observations supply additional information

to estimate the ML boundaries (Giangrande et al., 2008).

However, care should be taken in how this information is

used. Wolfensberger et al. (2016) have suggested that the use

of ρhv could underestimate the ML top as the significant drop

in ρhv may not happen until a significant amount of ice has al-

ready melted. To mitigate this issue, we determined the upper

boundary of ML by finding the local minimum of the X-band

reflectivity gradient around the ρhv-detected ML top, which

is similar to Wolfensberger et al. (2016). The validity of uti-

lizing the radar reflectivity in determining the ML top is fur-

ther confirmed in our recent study (Li and Moisseev, 2020).

The ML bottom was determined in a similar way to derive

the radar reflectivity at the melting bottom. Note that cases

in which precipitation fall streaks are significantly slanted,

as shown in Fabry and Zawadzki (1995), were excluded.

3.2 Diagnosing snowflake rime mass fraction

The rime mass fraction (FR), defined as the ratio of accreted

ice mass by riming to the total snowflake mass, has been used

to quantify the riming extent in ice microphysical schemes

(Morrison and Milbrandt, 2015) and in observational studies

(e.g., Moisseev et al., 2017; Li et al., 2018). The rime mass

fraction can be defined as

FR = 1 −

Dmax∫
Dmin

N(D)mur(D)dD

Dmax∫
Dmin

N(D)mob(D)dD

, (1)

where Dmax and Dmin are maximum and minimum parti-

cle sizes, respectively, mob(D) and mur(D) are masses of

observed and unrimed snowflakes as a function of D, re-

spectively, and N(D) is the PSD. In this study, FR was

computed using ground-based observations of PSD and

snowflake masses retrieved from PIP observations, as de-

scribed in von Lerber et al. (2017). The masses of unrimed

ice particles were derived assuming the following. Firstly,

unrimed snowflakes were present in PIP observations. Sec-

ondly, the ice particles belonging to the lightest 5 % are rep-

resentative of unrimed snowflakes. Following these assump-

tions, the mass of unrimed snowflakes can be expressed as

mur(D) = 0.0053D2.05. This relation is similar to the one de-

rived from aircraft measurements (Heymsfield et al., 2004).

A further discussion on the definition of mur(D) is found in

Moisseev et al. (2017) and Li et al. (2018).

Mason et al. (2018) have shown that the extent of rim-

ing can be retrieved using radar-measured DWR (Matrosov,

1998; Hogan et al., 2000) and mean Doppler velocity (V ). If

the radar reflectivity is expressed in decibels (dB), then the

DWR can be written as

DWR(λ1,λ2) = Zλ1 − Zλ2 , (2)

where Zλ1 and Zλ2 are observed radar reflectivities at the

wavelengths of λ1 and λ2, respectively. Zλ can be expressed

as

Zλ = 10log10

⎛
⎜⎝

Dmax∫

Dmin

λ4

π5|Kλ|2 N(D)σb,λ (D,mob(D))dD

⎞
⎟⎠,

(3)

where |Kλ|2 is the dielectric constant of liquid water

and σb,λ(D,mob(D)) is the backscattering coefficient of

snow particles at a given wavelength. In X-SACR, Ka-

SACR and MWACR data files, |Kλ|2 is set to 0.93, 0.88

and 0.70, respectively. The values of σb,λ were taken from

the single-scattering databases (Leinonen and Moisseev,

2015; Leinonen and Szyrmer, 2015; Tyynelä and von Ler-

ber, 2019). These three datasets were combined into a sin-

gle lookup table of ice particle scattering properties de-

fined as a function of maximum diameter and mass. For a

given D and mob, the backscattering cross section was es-

timated using linear interpolation in the log–log space. The

mean Doppler velocity can be derived in the same way:

Vλ =

Dmax∫
Dmin

v(D)N(D)σb,λ (D,mob(D))dD

Dmax∫
Dmin

N(D)σb,λ (D,mob(D))dD

, (4)

where v(D) is the fall velocity of snowflakes which was used

to derive m(D) (von Lerber et al., 2017). To minimize the im-

pact of varying air density (ρair), Vλ was adjusted to the air

condition of 1000 hPa and 0 ◦C (air density ρair,0) with a fac-

tor of (
ρair,0

ρair
)0.54 (Heymsfield et al., 2007). ρair was derived

from the temperature and relative humidity obtained from the

temporally closest sounding.

Dias Neto et al. (2019) have shown that the size growth

of snowflakes close to the ML is accelerated due to the en-

hanced aggregation. Therefore, relatively large aggregates

are prevalent snow types close to the ML and are better rep-

resented by DWR(X, Ka) than DWR(Ka, W) (see the com-

parison by Barrett et al., 2019). The use of a lower radar

frequency (X- and Ka-bands) avoids estimating the non-

neglectable W-band attenuation caused by ML, as well as su-

percooled liquid water (Li and Moisseev, 2019). Therefore,
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the potential link between FR and simulated Doppler radar

measurements at X- and Ka-bands was accessed with the uti-

lization of in situ snowfall observations from BAECC to the

winters of 2014–2018.

The dependence of DWR(X, Ka) and VX on FR can

be computed using Eqs. (1), (2) and (4). For comparison,

the mob − D and v − D relations of aggregates of unrimed

radiating assemblages, side planes, bullets, and columns

(LH74 unrimed), aggregates of densely rimed radiating as-

semblages of dendrites (LH74 rimed), and lump graupel

(LH74 graupel) presented in Locatelli and Hobbs (1974)

were used. To compute the DWR(X, Ka) and VX using re-

lations from the literature, we assumed that N(D) can be pa-

rameterized as

N(D) = N0e
−�D, (5)

where the intercept parameter N0 is canceled out while com-

puting DWR and VX, so the radar variables depend on �,

which controls the average size of ice particles in N(D). We

have varied �−1 between 0 and 11 mm to mimic different

snowfall conditions, which is similar to what was done in

Leinonen and Szyrmer (2015). Table 1 summaries the fit-

ted expressions of DWR(X, Ka) = aV b
X for these three par-

ticle types. Since snow microphysics and the corresponding

radar measurements can significantly change with precipita-

tion intensity (Moisseev et al., 2017), the computed values

were separated into four subgroups according to precipita-

tion rate (PR).

Simulations of DWR(X, Ka)-VX for four groups of pre-

cipitation rate are presented in Fig. 1. Most cases with

FR ≤ 0.2 are centered around the curve of LH74 unrimed,

whose velocity–diameter relation is similar to low-density

snowflakes (Tiira et al., 2016). It seems that riming hap-

pens more frequently in heavier precipitation. In contrast,

far fewer unrimed cases are present in heavier precipitation

(Fig. 1c and d). Heavily rimed snowflakes (FR > 0.5; red

dots) are characterized by low DWR(X, Ka) and high VX,

contrasting with the unrimed/lightly rimed cases (blue dots).

Specifically, snowflakes with large sizes and low velocities

usually are rather slightly rimed (FR ≤ 0.2). For the cases

where FR exceeds 0.5, most DWR(X, Ka) values are be-

low 3 dB, indicating that heavily rimed particles are usu-

ally associated with small snowflakes. Inspired by this dis-

tinct feature, we have fitted the DWR(X, Ka) = aV b
X rela-

tions for cases with FR ≤ 0.2 and 0.4 ≤ FR ≤ 0.6 (shown in

Table 1), which separate the observations into three types:

unrimed, transitional and rimed snow. For the sake of com-

parison, the power b for unrimed snow was adopted from the

fit for LH74 unrimed. In this study, these fitted relations were

employed for classifying unrimed and rimed snow. The pres-

ence of supercooled liquid water does not significantly affect

X-band reflectivity but may lead to appreciable attenuation

at Ka-band which translates to enhanced DWR(X, Ka) after

the relative calibration at precipitation top. For the liquid wa-

ter path of 500 g m−2, the estimated Ka-band attenuation is

in the order of 1 dB (Kneifel et al., 2015). Therefore, cases

with DWR(X, Ka) < 1 dB were rejected when identifying un-

rimed snow.

4 Results

To study how ML properties depend on the precipitation

intensity, snowflake riming fraction and PSD, all rainfall

cases observed during the BAECC experiment were ana-

lyzed. Given the need for coinciding multifrequency ver-

tically pointing radar measurements and the radar scans

performed during the experiment, we have identified 4147

vertical profiles of observations in 24 stratiform rainfall

events corresponding to about 11.5 h. Table 2 summaries

the dates used in this study (quicklooks are available at

https://doi.org/10.5281/zenodo.3979103). Due to the peri-

odic changes in radar scans, the multifrequency radar mea-

surements recorded in the vertically pointing mode were

available only in some inconsecutive time periods for an

event. During the analysis, the mean radar Doppler velocity

was scaled to the air density at 1000 hPa and 0 ◦C, as pre-

viously described. It should be noted that the RHI scans by

the FMI C-band weather radar were performed every 15 min.

Therefore, the profiles of specific differential phase and dif-

ferential reflectivity are recorded much less frequently than

the vertically pointing radar observations. The RHI obser-

vations are nonetheless presented here in order to link the

features observed in this study to the previous reports (Gi-

angrande et al., 2016; Kumjian et al., 2016; Li et al., 2018;

Vogel and Fabry, 2018). Figure 2 shows the flow chart of the

data process in this study.

4.1 Sanity check of the snow classification

At the first step of our data analysis, the classification of

unrimed and rimed snow using DWR(X, Ka)-VX observa-

tions at the ML top, proposed in the previous section, was

evaluated against previous studies. As shown in Fig. 3, both

DWR(X, Ka) and VX tend to increase as the precipitation

intensifies. Most cases of rimed snow fall in the region of

DWR(X, Ka) < 4 dB and VX being higher than for unrimed

snow. The VX of unrimed snow rarely exceeds 1.5 m s−1.

Those outliers of rimed snow in Fig. 1a may be attributed

to the local vertical air motions, which contaminate the mea-

sured mean Doppler velocity. It should be noted that the snow

observations in Fig. 1 are limited to PR ≤ 4 mm h−1; namely,

the maximum radar reflectivity at the ML bottom (ZX,rain) is

around 33 dBZ, as computed by using the localized Z–R re-

lation (Leinonen et al., 2012b).

The reflectivity enhancement in the ML, which is defined

as the difference between the ZX maximum in the ML and

the ZX at the melting bottom (ZX,rain), was also studied. Za-

wadzki et al. (2005) have analyzed the UHF Doppler wind

profiler observations in VUHF,snow/VUHF,rain reflectivity en-
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Figure 1. Scatter plot of DWR(X, Ka) versus VX (1000 hPa and 0 ◦C) colored with FR. Mass–size and velocity–size relations from Locatelli

and Hobbs (1974) are adopted for reference (dashed lines). Observed mass–size and velocity–size relations are derived using the approach

developed by von Lerber et al. (2017), and the particle backscattering coefficient σb,λ is adopted from Leinonen and Moisseev (2015) and

Leinonen and Szyrmer (2015). The solid blue and red curves separate unrimed (light blue shading), transitional (no shading) and rimed snow

(light red shading) in our classification scheme.

Table 1. Fitted parameters for DWR(X, Ka) = aV b
X. Aggregates of unrimed radiating assemblages, side planes, bullets, and columns

(LH74 unrimed), aggregates of densely rimed radiating assemblages of dendrites (LH74 rimed), and lump graupel (LH74 graupel) in Lo-

catelli and Hobbs (1974) are shown for reference. The last column shows the root mean square error (RMSE) of fitting. The confidence

interval is marked by “\” when the parameter is manually fixed.

Fitted parameters a (95 % b (95 % RMSE

confidence confidence (dB)

interval) interval)

LH74

Unrimed 2.6 (2.2 3) 7.3 (6.1 8.5) 1.9

Rimed 0.2 (0.09 0.31) 9.8 (8.1 11.5) 1.8

Graupel 0.35 (0.19 0.51) 2.5 (2.03 2.97) 0.8

PR ≤ 0.15 mm h−1 FR ∈ [0 0.2] 1.3 (1.02 1.58) 7.3 (\) 2

FR ∈ [0.4 0.6] 0.2 (0.14 0.26) 2.96 (2.26 3.66) 0.5

0.15 mm h−1 < PR ≤ 0.5 mm h−1 FR ∈ [0 0.2] 0.75 (0.64 0.86) 7.3 (\) 2.4

FR ∈ [0.4 0.6] 0.47 (0.37 0.57) 3.1 (2.7 3.5) 1.1

0.5 mm h−1 < PR ≤ 1 mm h−1 FR ∈ [0 0.2] 0.69 (0.61 0.77) 7.3 (\) 2.2

FR ∈ [0.4 0.6] 0.52 (0.4 0.64) 2.9 (2.3 3.5) 0.85

1 mm h−1 < PR ≤ 4 mm h−1 FR ∈ [0 0.2] 0.6 (0.59 0.61) 7.3 (\) 2.3

FR ∈ [0.4 0.6] 0.75 (0.59 0.91) 2.85 (2.16 3.54) 1.2
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Figure 2. Flow chart of the data process in this study. The snow classification part as discussed in Sect. 3.1 is in light blue. Variables used in

snow classification are in green. Radar observations during BAECC are in black. The sanity check in the next section is represented by the

dashed black diagram.

Table 2. Summary of the studied events.

Event Date Event Date

1 9 May 2014 13 10 August 2014

2 11 May 2014 14 12 August 2014

3 16 May 2014 15 13 August 2014

4 19 May 2014 16 14 August 2014

5 31 May 2014 17 18 August 2014

6 4 June 2014 18 19 August 2014

7 6 June 2014 19 20 August 2014

8 12 June 2014 20 24 August 2014

9 13 June 2014 21 25 August 2014

10 15 July 2014 22 26 August 2014

11 16 July 2014 23 27 August 2014

12 30 July 2014 24 9 September 2014

hancement space and found that the augmentation of rimed

snowflake mass can increase VUHF,snow/VUHF,rain and de-

crease reflectivity enhancement. As shown in Fig. 4, de-

spite the scattered distribution of reflectivity enhancement,

the majority of cases with high VX,snow/VX,rain is domi-

nated by rimed snow, while most unrimed cases are below

VX,snow/VX,rain = 0.25. Such dependence of VX,snow/VX,rain

on riming is in line with the results in Zawadzki et al. (2005),

Figure 3. Distribution of (a) DWR(X, Ka) and (b) VX above the ML

as a function of ZX,rain. Note that no transitional snow type between

unrimed and rimed is presented.

indicating the reasonable snow classification employed in

this study.
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Figure 4. Scatter plot of VX,snow/VX,rain versus reflectivity en-

hancement in the ML. The reflectivity enhancement is defined as

the difference between the reflectivity peak in the ML and the re-

flectivity in rain just below the ML.

4.2 Vertical profiles of multifrequency radar
measurements in the ML

To obtain a general idea of how the ML is modulated by rim-

ing and aggregation, statistics of vertically pointing radar ob-

servations were made. As the ML properties are modulated

by precipitation intensity (Fabry and Zawadzki, 1995; Carlin

and Ryzhkov, 2019), the observations were grouped by PR.

For ease of comparison, the vertical axis is shifted such that

the reference height is the ML top.

4.2.1 X-band reflectivity, ρhv and DWR(X, Ka)

Figure 5 shows the profiles of radar reflectivity and ρhv mea-

sured by X-SACR and grouped by PR. Note that to gener-

alize the observations, the vertical axis is shifted such that

the ML top is the reference height of 0 m, and each reflec-

tivity profile was normalized by offsetting the difference be-

tween ZX,rain and the median value of ZX,rain in the corre-

sponding PR group. The same procedure was made to ρhv

and the following measurements. For most cases, the rela-

tive humidity (RH) around the ML top is above 95 % with

no dependence on PR. Thus, the effect of dry air infiltration,

e.g., decreasing reflectivity and ML thickness and descend-

ing dual-polarization measurements (Carlin and Ryzhkov,

2019), should be minimized. Considering the general aspects

of Fig. 5, it is clear that the ML thickness and reflectivity

peak increase with PR, which is in line with previous re-

sults (Fabry and Zawadzki, 1995; Wolfensberger et al., 2016;

Trömel et al., 2019).

The ρhv and radar reflectivity have been used in identifying

the bright band sagging (Kumjian et al., 2016; Ryzhkov et al.,

2016; Xie et al., 2016). When PR is greater than 1 mm h−1,

the level of ρhv minimum of rimed snow seems to be lower

than the unrimed; however, the opposite holds when PR is

less than or equal to 1 mm h−1, which seems controversial to

the expectation that the bright band sagging is mainly caused

by riming (Kumjian et al., 2016). In our observations, both

ρhv dip and reflectivity peak descend with the increase in PR.

Therefore, it appears that precipitation intensity is an impor-

tant factor affecting the formation of the saggy bright band.

This finding is in line with a recent simulation study (Carlin

and Ryzhkov, 2019), which proposes that the saggy bright

band can also be attributed to other factors, such as the ag-

gregation process, the increased precipitation intensity and

the sudden decrease in RH. For unrimed snow, the response

of ρhv to the melting is obviously later than X-band reflec-

tivity, which indicates that the utilization of ρhv for detecting

the ML top should be applied with caution.

The reflectivity peak is smaller for rimed snow than un-

rimed for a given PR provided that the Rayleigh scattering

is not violated. When PR is greater than 1 mm h−1, the re-

flectivity peaks of rimed and unrimed snow are closer, which

can be explained by the non-Rayleigh scattering of very large

aggregates at X-band, as discussed by Fabry and Zawadzki

(1995). Another notable finding is that the ZX at the ML top

for rimed snow is smaller than unrimed, which indicates that

rimed snowflakes may have smaller sizes for a given PR. This

is further confirmed in the DWR(X, Ka) profiles as shown

in Fig. 6. From the aggregation region to the ML top, the

DWR(X, Ka) of rimed snow is significantly smaller than un-

rimed snow. In particular, very weak DWR(X, Ka) for rimed

snow could be identified just above the ML. This indicates

that the aggregation process, the dominating factor of grow-

ing snow size close to the ML (Fabry and Zawadzki, 1995),

can be heavily suppressed for rimed snow. Heymsfield et al.

(2015) have reported the enhanced maximum particle size

below the 0 ◦C isotherm using in situ measurements and at-

tributed it to the continuing aggregation in the ML. Such con-

tinuing aggregation in conjunction with the changing scatter-

ing properties (the water coating) may be responsible for the

continuing increase in DWR(X, Ka) in the ML.

Interestingly, the DWR(X, Ka) profile below the ML is

higher for the rimed cases and progressively converges to-

wards the unrimed profile as PR increases. For light pre-

cipitation, the rain drops are small enough to be Rayleigh

scatterers at Ka-band; thus the difference of DWR(X, Ka)

in rain between unrimed and rimed cases is rooted in the

differences in attenuation. If the supercooled liquid water

attenuation of rimed cases is more significant, the corre-

sponding DWR(X, Ka) in rain would be smaller than the

unrimed cases. However, the reverse is observed. von Ler-

ber et al. (2014) have shown that the melting layer atten-

uation of rimed snowflakes is smaller than unrimed ones,

which could possibly explain the larger DWR(X, Ka) of

rimed cases in rain. With the increase in precipitation inten-

sity, the DWR(X, Ka) of rimed cases in rain decreases to-

wards the unrimed profile. This can be attributed to several

factors, such as the enhanced liquid attenuation above the

melting layer and the non-Rayleigh scattering of large rain-

drops at Ka-band. We hesitate to determine the role of non-

Rayleigh scattering in rain since raindrops characterized by
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Figure 5. Normalized X-band radar profiles grouped by PR. tunrimed and trimed indicate the total observing time in each group for unrimed

and rimed cases, respectively. The median values of X-band reflectivity at the ML bottom for unrimed (ZX,unrimed) and rimed (ZX,rimed)

cases are marked just below the ML bottom with the standard values in brackets. The median and standard deviations (in parentheses) of

relative humidity (RH) at the ML top for unrimed (RHunrimed) and rimed (RHrimed) cases in each group are presented near the ML top. The

median and standard deviations (in parentheses) of PR for unrimed (PRunrimed) and rimed (PRrimed) cases in each group are presented in the

lower part. Shaded regions represent the standard derivation.

Figure 6. Same as Fig. 5 but for DWR(X, Ka). Note that the radar

calibration is made by matching the X- and Ka-band radar reflectiv-

ities at precipitation top.

different non-Rayleigh scattering size regions can lead to op-

posite effects on DWR(X, Ka), as shown by Li and Moisseev

(2019).

4.2.2 Ka-band LDR and reflectivity

LDR usually increases in the ML as melting increases the di-

electric constant of nonspherical ice particles. Figure 7 shows

the profiles of LDR (Ka-SACR) and ρhv (X-SACR). Both

LDR peak and ρhv dip in rimed snow are lower than un-

rimed snow when PR is greater than 1 mm h−1, while the re-

verse is observed for lighter precipitation. Despite the rather

good agreement between LDR and ρhv observations, it ap-

pears that LDR systematically reveals a lower ML bottom

than ρhv, indicating that LDR can be suitable in discriminat-

ing between rain and melting snow (Illingworth and Thomp-

son, 2011; Dias Neto et al., 2019). The smaller LDR peak

for rimed snow is correlated with the smaller X-band reflec-

tivity enhancement as shown in Fig. 5, which is consistent

with Illingworth and Thompson (2011) and Sandford et al.

(2017).
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Figure 7. Same as Fig. 5 but for LDR observed by Ka-SACR.

As shown in Fig. 8, the Ka-band reflectivity enhancement

in the ML decreases as the precipitation intensifies. This

is similar to the observations presented by Fabry and Za-

wadzki (1995) who found that the reflectivity peak in the

ML observed by an X-band radar is less pronounced than that

measured by an UHF radar when the reflectivity in rain ex-

ceeds 25 dBZ. With the increase in precipitation intensity, the

size of snowflakes generally grows. Therefore, there are less

hydrometeors satisfying the Rayleigh criteria, and the non-

Rayleigh scattering becomes more significant. As a result,

the reflectivity peak in the ML is not as pronounced as in the

scenario of Rayleigh scattering. In addition, the ML atten-

uation increases as PR intensifies (Li and Moisseev, 2019),

which further impedes the increase in reflectivity in the ML.

This also explains the lower reflectivity enhancement in the

ML for rimed snow when PR is greater than 0.5 mm h−1.

As shown in Fig. 6, rimed snowflakes are usually smaller;

thus the non-Rayleigh effect and ML attenuation (von Ler-

ber et al., 2014) are not as significant as the larger unrimed

ice particles.

When PR is less than or equal to 0.15 mm h−1, a weak re-

flectivity dip, the dark band, appears at the top of the ML for

unrimed snow, which may also be observed by centimeter-

wavelength radars (Fabry and Zawadzki, 1995). In the lit-

erature, the dark band has different definitions. For ground-

based radars, Kollias and Albrecht (2005) referred the dip in

radar reflectivity below the ML top as dark band. The dark

band which is present just above the ML top, as observed by

the spaceborne W-band radar, can be caused by the strong

signal attenuation from large snow aggregates, as discussed

in Sassen et al. (2007). Meanwhile, the change of PSD during

the aggregation process can also contribute to this reflectiv-

ity dip, which is named dark band by Sassen et al. (2005)

and dim band by Heymsfield et al. (2008). In this study, the

dark band is identified as the decrease in radar reflectivity just

above the ML top, as shown in Sassen et al. (2005, 2007) and

Heymsfield et al. (2008).

4.2.3 W-band reflectivity

W-band reflectivity can be heavily affected by a wet radome,

rain, ML, supercooled liquid water and gaseous attenuation

(Kneifel et al., 2015; Li and Moisseev, 2019). Such attenu-

ation coupled with precipitation microphysical processes, as

well as the change of particle scattering regimes, can modu-

late the W-band reflectivity profiles. As shown in Fig. 9, the

decrease in W-band reflectivity with height is mainly caused

by rain attenuation. This effect is enhanced as PR increases,

which has been adopted to retrieve PR (Matrosov, 2007).

From dry to melting snow, there is a jump in W-band reflec-

tivity, and the extent of such a jump seems dependent on PR.

The bright band signature is partially visible when PR is less

than or equal to 0.15 mm h−1 but is absent as the precipita-

tion intensifies. This is expected, given the increased non-

Rayleigh scattering at W-band for large snowflakes (Sassen

et al., 2005). When PR is less than or equal to 0.15 mm h−1,

the dark band is present for both unrimed and rimed snow,

while the reflectivity dip near the ML top for unrimed snow

is stronger than rimed. Below 1 mm h−1, the dark band is

present for unrimed snow, in contrast with its absence for

rimed snow when PR is greater than 0.15 mm h−1, which

may indicate that the dark band is more frequently observed

for the scenario of unrimed snow.

Sassen et al. (2005) have proposed that the dark band

observed by W-band radars is due to the combination of

Rayleigh and non-Rayleigh scattering effects modulated by

the PSD. Heymsfield et al. (2008) have pinpointed that such

a reflectivity dip is linked to the aggregation process, which

consumes small ice while growing large snowflakes whose

backscattering cross sections at W-band are much smaller

than the scenario of Rayleigh scattering. This statement is ev-

idenced in our statistical results since the dark band feature is

more significant for unrimed snow and is more distinct at W-

band than at Ka-band. Furthermore, the obscured dark band

for rimed snow may indicate that the aggregation of rimed

snow can be weaker than unrimed snow.

4.3 Weather radar measurements

Recent studies have demonstrated the potential of polarimet-

ric measurements in revealing cloud microphysics and im-

proving precipitation forecasts (Tiira and Moisseev, 2020;

Trömel et al., 2019). Given the importance of precipitation

intensity to the ML, it is necessary to address how the dual-

polarization observations are dependent on PR. Therefore,

we have analyzed the statistical profiles of Zdr and Kdp ob-

served by the RHI scan of the FMI C-band dual-polarization

radar. The vertical axis of weather radar RHI observations

was shifted to the same level as we did for vertically pointing

radars.
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Figure 8. Same as Fig. 5 but for Ka-band radar. Note that the calibration is made by matching the Ka-band reflectivity with X-band at

precipitation top, while the attenuation in the profile is not accounted for. To be in line with Fig. 5, ρhv observed by X-SACR is presented

instead of the LDR measured by Ka-SACR.

Figure 9. Same as Fig. 5 but for W-band. Note that the reflectivity

profiles at W-band are shifted by matching the radar reflectivity at

the ML bottom (ZW,rain), while the value of ZW,rain is not shown

due to the unknown W-band attenuation.

Significant dependence of Zdr and Kdp on PR can be found

in Fig. 10. In cases when PR is greater than 0.15 mm h−1,

Zdr decreases significantly to around 0 dB just above the ML.

This is mainly due to the aggregation process, which leads

to increased particle size and decreased density. In contrast,

Zdr does not change just above the ML when PR is less than

or equal to 0.15 mm h−1, indicating that very weak aggre-

gation happens in light precipitation. Li et al. (2018) have

shown that Zdr is a function of snow shape, canting angle

distribution and density, and it generally decreases with the

increase in radar reflectivity. It would be interesting to study

the riming impact on Zdr profiles (Vogel and Fabry, 2018);

unfortunately, we were not able to perform such a compar-

ison due to the very limited number of RHI profiles during

the studied events. It should be noted that the beam width of

FMI C-band radar is 1◦, resulting in a vertical projection of

around 1.1 km over the Hyytiälä station. This explains why

the height at which Zdr starts increasing is approximately

500 m higher than the ML top determined by X-SACR.

High Kdp values were observed when PR exceeds

1 mm h−1, while no detectable Kdp signal can be found when

PR is less than or equal to 1 mm h−1. This is in line with the

previous finding that the enhanced Kdp is indicative of in-

tense precipitation (Bechini et al., 2013). When PR is greater

than 1 mm h−1, the enhanced Kdp starts at around 3000 m

above the ML with the expected temperature of around

−20 ◦C, which is related to the dendritic growth region (Be-

chini et al., 2013; Moisseev et al., 2015). Overall, these ob-

servations indicate that the dependence of ML properties on

the dual-polarization signatures above may mainly be due to

the correlation of these signatures with precipitation inten-

sity.
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Figure 10. Normalized Zdr and Kdp profiles observed by FMI C-

band radar with RHI scanning. Number of RHI profiles is presented

at the bottom. The ML top (as retrieved from X-SACR observa-

tions) is used as the reference height in the vertical axis.

5 Conclusions

In this work, the connection between the precipitation melt-

ing layer and snow microphysics was studied using ver-

tically pointing multifrequency Doppler radar and C-band

dual-polarization weather radar observations. Using surface-

based snowfall measurements collected over five winters at

the University of Helsinki measurement station and supple-

mented by the single particle scattering datasets of aggre-

gated snowflakes and rimed ice particles, a connection be-

tween rime mass fraction and radar observations at X- and

Ka-bands was established and used in classifying unrimed

and rimed snow. The sanity checks show that the results

of this classification are consistent with the previous study

using single-frequency radar observations (Zawadzki et al.,

2005). Statistics of vertically pointing multifrequency dual-

polarization radars and RHI scans of C-band polarimetric

weather radar show the following.

1. The radar-observed melting layer properties show a de-

tectable connection to the precipitation intensity. The in-

crease in precipitation intensity can lead to the saggy

bright band, i.e., the descending of reflectivity peak

and ρhv dip.

2. Riming can affect melting layer properties in the fol-

lowing ways.

a. In moderate to heavy rainfall, riming may cause ad-

ditional bright band sagging. However, the oppo-

site effect is observed in light precipitation, namely,

such sagging is associated with unrimed snow.

b. X-band radar reflectivity peak is smaller for rimed

snow than unrimed for a given precipitation inten-

sity if the non-Rayleigh scattering effect is not sig-

nificant.

c. If the non-Rayleigh scattering effect is distinct,

e.g., at Ka- or W-band, the reflectivity peak can be

larger for rimed snow.

d. The reflectivity dip at the melting layer top (dark

band) is obscured for rimed snow, while it is pro-

nounced for unrimed snow. This suggests that the

aggregation process may be suppressed by riming.

3. The decrease in Zdr towards the melting layer is pro-

nounced in heavy precipitation but is insignificant in

light precipitation.

A well-calibrated triple-frequency radar setup has been

shown potential in studying the microphysics of snowfall.

However, such measurements may not be well suited to rain-

fall due to the highly uncertain W-band attenuation caused

by the melting layer, as well as the supercooled water. The

approach presented explores the possibility of adding the

Doppler velocity to distinguish between unrimed and rimed

conditions and is less affected by the attenuation from su-

percooled water. Such instrumentation as the X/Ka-SACR

mounted on the same platform takes much less effort in

pointing alignment. Its application may also be expanded

to space-borne radars. For example, instead of launching

triple-frequency radars, implementing the Doppler capability

with sufficient sensitivity on either of the radars on a dual-

wavelength platform may be served as an option.

A coordinated radar setup as employed during BAECC fa-

cilitates the synergy of multiple radar frequencies and polari-

metric observations at various scan modes. Due to the peri-

odical changes of radar scanning modes during BAECC, the

total stratiform rainfall cases are limited to ∼ 11.5 h. More of

such observations can be utilized to evaluate and consolidate

the presented conclusions. If such coordinated measurements

with high time resolutions can be obtained in the future, our

understanding of snow microphysical processes may be fur-

ther advanced.

Data availability. Quicklooks of radar observations used in this

study are available at https://doi.org/10.5281/zenodo.3979103 (Li,

2020).

The FMI radar data are available from the Atmospheric Ra-

diation Measurement (ARM) Climate Research Facility (https:

//iop.archive.arm.gov/arm-iop/2014/tmp/baecc/moisseev-radar_

cband/?uid=LIH2&st=5f32748d&home=arm-archive, last access:

11 August 2020) (von Lerber, 2020).

The ARM data used in this study are available from Atmospheric

Radiation Measurement (ARM) Climate Research Facility (ARM

Climate Research Facility, 2006, 2010, 2011).

PIP data are available from https://doi.org/10.5281/zenodo.3977959

(Moisseev, 2020).
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