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1Nokia Bell Labs, Tampere, Finland
2University of Helsinki, Helsinki, Finland

3University of Lugano, Lugano, Swizerland
4Tampere University, Tampere, Finland

antero.taivalsaari@nokia.com, tommi.mikkonen@helsinki.fi,

cesare.pautasso@usi.ch, kari.systa@tuni.fi

Abstract. The programming capabilities of the Web can be viewed as
an afterthought, designed originally by non-programmers for relatively
simple scripting tasks. This has resulted in cornucopia of partially over-
lapping options for building applications. Depending on one’s viewpoint,
a generic standards-compatible web browser supports three, four or five
built-in application rendering and programming models. In this paper,
we give an overview and comparison of these built-in client-side web ap-
plication architectures in light of the established software engineering
principles. We also reflect on our earlier work in this area, and provide
an expanded discussion of the current situation. In conclusion, while the
dominance of the base HTML/CSS/JS technologies cannot be ignored,
we expect Web Components and WebGL to gain more popularity as the
world moves towards increasingly complex web applications, including
systems supporting virtual and augmented reality.
Keywords—Web programming, single page web applications, web com-
ponents, web application architectures, rendering engines, web rendering,
web browser

1 Introduction

The World Wide Web has become such an integral part of our lives that it is often
forgotten that the Web has existed only about thirty years. The original design
sketches related to the World Wide Web date back to the late 1980s. The first
web browser prototype for the NeXT computer was completed by Tim Berners-
Lee in December 1990. The first version of the Mosaic web browser was made
available publicly in February 1993, and the first commercially successful browser
– Netscape Navigator – was released in late 1994. Widespread commercial use
of the Web took off in the late 1990s.

In the end of the 1990s and in the early 2000s, the web browser became
the most commonly used computer program, sparking a revolution that has
transformed not only commerce but communication, social life and politics as



well. In desktop computers, nearly all the important tasks are now performed
using the web browser. Even mobile applications today can be viewed merely as
“mirrors into the cloud”. While native mobile apps may still offer UI frameworks
and widgets that are (at least for now) better suited to the limited screen size
and input modalities of the devices, valuable content has moved gradually away
from mobile devices to cloud-based services, thus reducing the original role of
the mobile apps considerably.

Interestingly, the programming capabilities of the Web have largely been
an afterthought – designed originally by non-programmers for relatively simple
scripting tasks. Due to different needs and motivations, there are many ways to
make things on the Web – many more than people generally realize. Further-
more, over the years these features have evolved in a rather haphazard fashion.
Consequently, there are various ways to build applications on the Web – even
without considering any extensions or thousands of add-on libraries. Depending
on one’s viewpoint, the web browser natively supports three, four or five different
built-in application rendering and development models. Thousands of libraries
and frameworks have then been implemented on top of these built-in models.
Furthermore, in addition to application architectures that partition applications
more coarsely into server and client side components, it is increasingly possible
to fine-tune the application logic by moving code flexibly between the client and
the server, as originally noted in [15].

Even though a lot of the application logic in web applications may run on the
server, the rendering capabilities of the web browser are crucial in creating the
presentation layer of the applications. In this paper, we provide a comparison
of the built-in client-side web application architectures, i.e., the programming
capabilities that the web browsers provide out-of-the-box before any additional
libraries are loaded. This is a topic that has received surprisingly little atten-
tion in the literature. While there are countless articles on specific web devel-
opment technologies, and thousands of libraries have been developed on top of
the browser, there are few if any papers comparing the built-in user interface
development models offered by the browser itself. The choice between these al-
ternative development models has a significant impact on the overall architecture
and structure of the resulting web applications. The choices are made more dif-
ficult by the fact that the web browser offers a number of overlapping features
to accomplish even basic tasks, reflecting the historical, organic evolution of the
web browser as an application platform.

This paper is motivated by the recent trend toward simpler, more basic ap-
proaches in web development. According to a study carried out a few years ago,
the vast majority (up to 86%) of web developers felt that the Web and JavaScript
ecosystems have become far too complex (http://stateofjs.com/2016). There
is a movement to go back to the roots of web application development by build-
ing directly upon what the web browser can provide without the added layers
introduced by various libraries and frameworks. The “zero framework manifesto”
crystallizes this desire for simplicity [3]. However, as will be shown in this pa-
per, even the “vanilla” browser offers a cornucopia of choices when it comes to
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application development. The paper is based on our earlier articles [29,27], and
it has been extended from those to provide a more comprehensive view to web
development in general as well as deeper technical discussion on the implications.

The structure of this paper is as follows. In Section 2, we provide an overview
on the evolution of the web browser as an application platform. In Section 3, we
dive into the built-in user interface development and rendering models offered by
modern web browsers: (1) DOM, (2) Canvas, (3) WebGL, (4) SVG, and (5) Web
Components. In Section 4, we provide a comparison and presumed use cases of
the presented technologies, and in Section 5, we list some broader considerations
and observations. In Section 6, we revisit our earlier predictions made in [29,27],
followed by avenues for future work in Section 7. Finally, Section 8 concludes
the paper with some final remarks.

2 Evolution of the Web Browser as an Application
Platform

The history of computing and the software industry is characterized by disrup-
tive periods and paradigm shifts that have typically occurred every 10-15 years.
Back in the 1960s and 1970s, mainframe computers gave way to minicomputers.
In the early 1980s personal computers sparked a revolution, making computers
affordable to ordinary people, and ultimately killing a number of very success-
ful minicomputer manufacturers such as Digital Equipment Corporation as a
side effect. In the 1990s, the emergence of the World Wide Web transformed
personal computers from standalone computing “islands” to network-connected
web terminals. In the early 2000s, mobile phones were opened up for third party
application development as well. Today, the dominant computing environment
clearly is the Web, with native apps complementing it in various ways especially
in the mobile domain [17,18].

Over time, the World Wide Web has evolved from its humble origins as a
document sharing system to a massively popular hypermedia application and
content distribution environment – in short, the most powerful information dis-
semination environment in the history of humankind. This evolution has not
taken place in a fortnight; it has not followed a carefully designed master plan
either. Although the World Wide Web Consortium (W3C) has seemingly been
in charge of the evolution of the Web, in practice the evolution has been driven
largely by dominant web browser vendors: Mozilla, Microsoft, Apple, Google and
(to a lesser degree) Opera. Over the years, these companies have had divergent,
often misaligned business interests. While browser compatibility has improved
dramatically in recent years, the browser landscape is still truly a mosaic or
cornucopia of features, reflecting organic evolution – or a tug of war if you will
– between different commercial vendors over time.

Before delving into more technical topics, let us briefly revisit the evolution
of the web browser as a software platform [26,24,1].

Classic Web. In the early life of the Web, web pages were truly pages,
i.e., page-structured documents that contained primarily text with interspersed

3



images, without animation or any interactive content. Navigation between pages
was based on simple hyperlinks, and a new web page was loaded from the web
server each time the user clicked on a link. There was no need for asynchronous
network communication between the browser and the web server. For reading
used input some pages were presented as forms, with simple textual fields and
the possibility to use basic widgets such as buttons and combo (selection) boxes.
These types of “classic web” pages were characteristic of the early life of the
Web in the early 1990s.

Hybrid Web. In the second phase, web pages became increasingly interac-
tive. Web pages started containing animated graphics and plug-in components
that allowed richer, more interactive content to be displayed. This phase co-
incided with the commercial takeoff of the Web during the dot-com boom of
the late 1990s when companies realized that they could create commercially
valuable web sites by displaying advertisements or by selling merchandise and
services over the Web. Plug-in components such as Flash, RealPlayer, Quicktime
and Shockwave were introduced to make it possible to construct web pages with
visually enticing, interactive multimedia, allowing advanced animations, movie
clips and audio tracks to be inserted in web pages.

With the introduction of DHTML – the combination of HTML, Cascading
Style Sheets (CSS), the JavaScript language [6], and the Document Object Model
(DOM) – it became possible to create interactive web pages with built-in support
for more advanced graphics and animation. The JavaScript language, introduced
in Netscape Navigator version 2.0B almost as an afterthought in December 1995,
made it possible to build animated interactive content by scripting directly the
web browser.

In this phase, the Web started moving in directions that were unforeseen by
its original designer, with web sites behaving more like multimedia presentations
rather than static pages. Content mashups and web site cross-linking became
popular and communication protocols between the browser and the server be-
came increasingly advanced. Navigation was no longer based solely on hyperlinks.
For instance, Flash apps supported drag-and-drop and direct clicking/events on
various types of objects, whereas originally no support for such features existed
in browsers.

The Web as an Application Platform. In the early 2000s, the concept
of Software as a Service (SaaS) emerged. Salesforce.com pioneered the use of
the Web as a CRM application platform in the early 2000s, demonstrating and
validating the use of the Web and the web browser as a viable target platform for
business applications. At that point, people realized that the ability to offer soft-
ware applications seamlessly over the Web and then perform instant worldwide
software updates could offer unsurpassed business benefits.

As a result of these observed benefits, people started to build web sites that
behave much like desktop applications, for example, by allowing web pages to
be updated partially, rather than requiring the entire page to be refreshed. Such
systems often eschewed link-based navigation and utilized direct manipulation
techniques (e.g., drag and drop features) borrowed from desktop-style applica-
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tions instead. Interest in the use of the browser as an application platform was
reinforced by the introduction of Ajax (Asynchronous JavaScript and XML) [8].
The key idea in Ajax was to use asynchronous network communication between
the client and the server to decouple user interface updates from network re-
quests. This made it possible to build web sites that do not necessarily block
when interacting with the server and thus behave much like desktop applica-
tions, for example, by allowing web pages to be updated asynchronously one
user interface element at a time, rather than requiring the entire page to be
updated each and every time something changed. Although Ajax was primarily
a specific technique rather than a complete development model or platform, it
fueled further interest in building “Web 2.0” applications that could run in a
standard web browser. This also increased the demand for a full-fledged pro-
gramming language that could be used directly from inside the web browser
instead of relying on any external plug-in components.

After the introduction of Ajax and the concept of Single Page Applications
(SPAs) [12], the number of web development frameworks on top of the web
browser has exploded. Today, there are over 1,400 officially listed JavaScript
libraries (see http://www.javascripting.com/).

Server-Side JavaScript. The use of client-side web development tech-
nologies has spread also to other domains. For instance, after the introduction
of the V8 high-performance JavaScript engine (https://developers.google.
com/v8/), the use of the JavaScript language has quickly spread into server-side
development as well. As a result, Node.js (https://nodejs.org/) has become a
vast ecosystem of its own; according to a popular saying, there is an “NPM mod-
ule for nearly everything”. In fact, the NPM (Node Package Manager) ecosys-
tem has been growing even faster in recent years than the client-side JavaScript
ecosystem. According to npmjs.com, there are more than 800,000 NPM packages
at the time of this writing.

As already mentioned earlier, in this paper we shall focus only on client-side
technologies and only on those technologies that have been included natively in
standards-compatible web browsers. We feel that this is an area that is surpris-
ingly poorly covered by existing research.

Non-Standard Development Models and Architectures. For the sake
of completeness, it should be mentioned that over the years web browsers have
supported various additional client-side rendering and development models. For
instance, Java applets were an early attempt to include Java language and Java
virtual machine (JVM) support directly in a web browser. However, because of
the immaturity of the technology (e.g., inadequate performance of early JVMs)
and Microsoft’s vigilant resistance, applets never became an officially supported
browser feature. For years, Microsoft had their alternative technologies, such as
ActiveX, available (only) in Microsoft Internet Explorer. For a while, the use of
various browser plug-in components offering application execution capabilities –
such as Adobe Flash or Shockwave – was extremely popular.

In the late 2000s, so called Rich Internet Application (RIA) platforms such
as Adobe AIR or Microsoft Silverlight were very much in vogue. RIA systems
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were an attempt to reintroduce alternative programming languages and libraries
in the context of the Web in the form of browser plug-in components that each
provided a complete platform runtime. For a comprehensive overview of RIA
systems, refer to Castelyn’s survey [4]. However, just as it was predicted in [24],
the RIA phenomenon turned out to be rather short-lived. The same seems to
be true also of various attempts to support native code execution directly from
within the web browser. For instance, Google’s Native Client offers a sandbox for
running compiled C and C++ code in the browser, but it has not become very
popular. Mozilla’s classic NPAPI (Netscape Plugin Application Programming
Interface) – introduced originally by Netscape in 1995 – has effectively been
removed from all the major browsers; for instance, Google Chrome stopped sup-
porting it already in 2015. Although there are some interesting ongoing efforts in
this area – such as the W3C WebAssembly effort (http://webassembly.org/),
it is now increasingly difficult to extend the programming capabilities of the
web browser without modifying the source code of the browser itself (and thus
creating non-standard, custom browsers).

3 Client-Side Web Rendering Architectures – An
Underview

As summarized above, the history of the Web has undergone a number of evo-
lutionary phases, reflecting the document-oriented – as opposed to application-
oriented – origins of the Web. Nearly all the application development capabilities
of the Web have been an afterthought, and have emerged as a result of divergent
technical needs and business interests instead of careful planning and coordina-
tion.

As a result of the browser evolution that has occurred in the past two decades,
today’s web browsers support a mishmash of complementary, partially overlap-
ping rendering and development models. These include the dominant “holy trin-
ity” of HTML, CSS and JavaScript, and its underlying Document Object Model
(DOM) rendering architecture. They also include the Canvas 2D Context API
as well as WebGL. Additionally, there are important technologies such as Scal-
able Vector Graphics (SVG) and Web Components that complement the basic
DOM architecture.

The choice between the rendering architectures can have significant impli-
cations on the structure of client-side web applications. Effectively, all of the
technologies mentioned above introduce their own distinct programming models
and approaches that the developers are expected to use. Furthermore, all of them
have varying levels of framework, library and tool support available to simplify
the actual application development work on top of the underlying development
model. The DOM-based approach is by far the most popular and most deeply
ingrained, but the other technologies deserve a fair glimpse as well.

Below we will dive more deeply into each technology. We will start with
the DOM, Canvas and WebGL models, because these three technologies can be
regarded more distinctly as three separate technologies. We will then dive into
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SVG and Web Components, which introduce their own programming models
but which are closely coupled with the underlying DOM architecture at the
implementation level.

3.1 DOM / DHTML

In web parlance, the Document Object Model (DOM) is a platform-neutral API
that allows programs and scripts to dynamically access and update the content,
structure and style of web documents. Document Object Model in the foundation
for Dynamic HTML – the combination of HTML, Cascading Style Sheets (CSS)
and JavaScript – that allows web documents to be created and manipulated using
a combination of declarative and imperative development styles. Logically, the
DOM can be viewed as an attribute tree that represents the contents of the web
page that is currently displayed by the web browser. Programmatic interfaces
are provided for manipulating the contents of the DOM tree from HTML, CSS
and JavaScript.

In the web browser, the DOM serves as the foundation for a retained (au-
tomatically managed) graphics architecture. In such a system, the application
developer has no direct, immediate control over rendering. Rather, all the draw-
ing is performed indirectly by manipulating the DOM tree by adding, removing
and modifying its nodes; the browser will then decide how to optimally lay out
and render the display after each change.

Over the years, the capabilities of the DOM have evolved significantly. The
evolution of the DOM has been described in a number of sources, including
Flanagan’s JavaScript “bible” [6]. In this paper we will not go into details, but
it is useful to provide a summary since this evolution partially explains why the
browser offers such a cornucopia of overlapping functionality.

– DOM Level 1 specification – published in 1998 – defines the core HTML (and
XML) document models. It specifies the basic functionality for document
navigation.

– DOM Level 2 specification – published in 2000 – defines the stylesheet ob-
ject model, and provides methods for manipulating the style information
attached to a document. It also enables traversals on the document and pro-
vides support for XML namespaces. Furthermore, it defines the event model
for web documents, including the event listener and event flow, capturing,
bubbling, and cancellation functionality.

– DOM Level 3 specification – released as a number of separate documents in
2001-2004 – defines document loading and saving capabilities, as well as pro-
vides document validation support. In addition, it also addresses document
views and formatting, and specifies the keyboard events and event groups,
and how to handle them.

– DOM Level 4 specification refers to a “living document” that is kept up to
date with the latest decisions of the WHATWG/DOM working group1.

1 https://dom.spec.whatwg.org/
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DOM attributes can be manipulated from HTML, CSS, JavaScript, and to
some extent also XML code. As a result, a number of entirely different develop-
ment styles are possible, ranging from purely imperative usage to a combination
of declarative styles using HTML and CSS. For instance, it is possible to cre-
ate impressive 2D/3D animations using the CSS animation capabilities without
writing a single line of imperative JavaScript code.

Below is a “classic” DHTML example that defines a text paragraph and an
input button in HTML. The input button definition includes an onclick event
handler function that – when clicked – hides the text paragraph by changing its
visibility style attribute to ’hidden’.

1 < !DOCTYPE html>
2 <html><body>
3 <p id=” text ”>This i s a p i e c e o f t ex t .</p>
4

5 <input type=” button ” value=”Hide text ”
6 o n c l i c k=”document . getElementById ( ’ text ’ ) . s t y l e . v i s i b i l i t y =’

hidden ’ ”>
7

8 </body></html>

In practice, very few developers use the raw, low-level DOM interfaces di-
rectly nowadays. The DOM and DHTML serve as the foundation for an ex-
tremely rich library and tool ecosystem that has emerged on top of the base
technologies. The manipulation of DOM attributes is usually performed us-
ing higher-level convenience functions provided by popular JavaScript / CSS
libraries and frameworks.

3.2 Canvas

The Canvas (officially known as the Canvas 2D Context API ) is an HTML5 fea-
ture that enables dynamic, scriptable rendering of two-dimensional (2D) shapes
and bitmap images (https://www.w3.org/TR/2dcontext/). It is a low level,
imperative API that does not provide any built-in scene graph or advanced event
handling capabilities. It that regard, Canvas offers much lower level graphics sup-
port than the DOM or SVG APIs that will automatically manage and (re)render
complex graphics elements.

Canvas objects are drawn in immediate mode. This means that once a shape
such as a rectangle is drawn using Canvas API calls, the rectangle is immediately
forgotten by the system. If the position of the rectangle needs to be changed, the
entire scene needs to be repainted, including any objects that might have been
invalidated (covered) by the rectangle. In the equivalent DOM or SVG case, one
could simply change the position attributes of the rectangle, and the browser
would then automatically determine how to optimally re-render all the affected
objects.

The code snippet below provides a minimal example of Canvas API usage. In
this example, we first instantiate a 2D canvas graphics context of size 100x100
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after declaring the corresponding HTML element. We then imperatively draw a
full circle with a 40 pixel radius in the middle of the canvas using the Canvas
2D Context JavaScript API.

1 < !DOCTYPE html>
2 <html><body>
3

4 <canvas id=”myCanvas” width=”100” he ight=”100”>
5 <s c r i p t>
6 var c = document . getElementById ( ”myCanvas” ) ;
7 var ctx = c . getContext ( ”2d” ) ;
8 ctx . beginPath ( ) ;
9 ctx . arc (50 ,50 ,40 ,0 ,2∗Math . PI ) ;

10 ctx . s t r oke ( ) ;
11 </ s c r i p t>
12

13 </body></html>

Note that in these simple examples we are mixing HTML and JavaScript
code. In real-world examples, it would be a good practice to keep declarative
HTML code and imperative JavaScript code in separate files. We will discuss
programming style implications later in Section 4.

The event handling capabilities of the Canvas API are minimal. A limited
form of event handling is supported by the Canvas API with hit regions (https:
//developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Hit_

regions_and_accessibility).

Conceptually, Canvas is a low level API upon which a higher-level rendering
engine might be built. Although canvas elements are created in the browser as
subelements in the DOM, it is entirely possible to create just one large canvas
element, and then perform all the application rendering and event handling inside
that element. There are JavaScript libraries that add event handling and scene
graph capabilities to the canvas element. For instance, with Paper.js (http:
//paperjs.org/) or Fabric.js (http://fabricjs.com/) libraries, it is possible
to paint a canvas in layers, and then recreate specific layers, instead of having
to repaint the entire scene manually each time. Thus, the Canvas API can be
used as a full-fledged application rendering model of its own.

The Canvas element was was initially introduced by Apple in 2004 for use
inside their own Mac OS X WebKit component in order to support applications
such as Dashboard widgets in the Safari browser. In 2005, the Canvas element
was adopted in version 1.8 of Gecko browsers and Opera in 2006. The Canvas API
was later standardized by the Web Hypertext Application Technology Working
Group (WHATWG).

The adoption of the Canvas API was originally hindered by Apple’s intellec-
tual property claims over this API. From technical viewpoint, adoption was also
slowed down by the fact that the Canvas API expressiveness is significantly more
limited than the well-established, mature immediate-mode graphics APIs that
were available in mainstream operating systems already a decade or two earlier.
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Microsoft’s DirectX API – originally introduced in Windows 95 – is a good ex-
ample of a substantially more comprehensive API. Nowadays the Canvas API is
supported by all the main web browsers; in spite of its technical limitations, the
Canvas API has a thriving library ecosystem as well.

3.3 WebGL

WebGL (http://www.khronos.org/webgl/) is a cross-platform web standard
for hardware accelerated 3D graphics API developed by Khronos Group, Mozilla,
and a consortium of other companies including Apple, Google and Opera. The
main feature that WebGL brings to the Web is the ability to display 3D graphics
natively in the web browser without any plug-in components. WebGL is based
on OpenGL ES 2.0 (http://www.khronos.org/opengles), and it leverages the
OpenGL shading language GLSL. A comprehensive JavaScript API is provided
to open up OpenGL programming capabilities to JavaScript programmers.

In a nutshell, WebGL provides a JavaScript API for rendering interactive,
immediate-mode 3D (and 2D) graphics within any compatible web browser with-
out the use of plug-in components. WebGL is integrated into major web browsers,
enabling Graphics Processing Unit (GPU) accelerated usage of physics and im-
age processing and effects in web applications. WebGL applications consist of
control code written in JavaScript and shader code that is typically executed on
a GPU.

WebGL is widely supported in modern desktop browsers. Today, even all
the major mobile browsers (excluding Opera Mini) support WebGL by default.
However, actual usability of WebGL functions is dependent on various factors
such as the GPU supporting it. Even in many desktop computers WebGL appli-
cations may run poorly unless the computer has a graphics card that provides
sufficient capabilities to process OpenGL functions efficiently.

Just like the Canvas API discussed above, the WebGL API is a rather low-
level API that does not automatically manage rendering or support high-level
events. From the application developer’s viewpoint, the WebGL API is in fact
too cumbersome to use directly without utility libraries. For instance, setting
up typical view transformation shaders (e.g., for view frustum), loading scene
graphs and 3D objects in the popular industry formats can be very tedious and
requires writing a lot of source code.

Given the verbosity of shader definitions, we do not provide any code sam-
ples here. However, there are excellent WebGL examples on the Web. For in-
stance, the following link contains a great example of an animated, rotating, tex-
tured cube with lighting effects: http://www.sw-engineering-candies.com/
snippets/webgl/hello-world/.

Because of the complexity and the low level nature of the raw WebGL APIs,
many JavaScript convenience libraries have been built or ported onto WebGL
in order to facilitate development. Examples of such libraries include A-Frame,
BabylonJS, three.js, O3D, OSG.JS, CopperLicht and GLGE.
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3.4 SVG

Scalable Vector Graphics (SVG) is an XML-based vector image format for two-
dimensional graphics with support for interactivity, affine transformations and
animation. The SVG Specification [30] is an open standard published by the
World Wide Web Consortium (W3C) originally in 2001. Although bitmap images
were supported since the early days of the Web (the <IMG> tag was introduced
in the Mosaic browser in 1992), vector graphics support came much later via
SVG.

The code snippet below provides a simple example of an SVG object defini-
tion that renders an automatically scaling W3C logo to the screen2.

1 <div id=” w3clogo ”>
2 <svg xmlns=’http ://www. w3 . org /2000/ svg ’ viewBox=”0 0 131 76”>
3 <path d=”M36, 5 l12 ,41 l12−41h33v4l −13 ,21 c30 ,10 ,2 ,69−21 ,28 l7−2

c15 ,27 ,33 ,−22 ,3 ,−19v−4l12−20h−15l −17 ,59h−1l−13−42l −12 ,42h
−1l−20−67h9l12 ,41 l8−28l−4−13h9” f i l l =’#005A9C’ />

4 <path d=”M94,53 c15 ,32 , 30 , 14 , 35 , 7 l−1−7c−16 ,26−32 ,3−34 ,0M122
,16 c−10−21−34,0−21,30c−5−30 16 ,−38 23 ,−21 l5−10l−2−9”/>

5 </ svg>
6 </ div>

While SVG was originally just a vector image format, SVG support has been
integrated closely with the web browser to provide comprehensive means for
creating interactive, resolution-independent content for the Web. Just like with
the HTML DOM, SVG images can be manipulated using DOM APIs via HTML,
CSS and JavaScript code. This makes it possible to create shapes such as lines,
Bezier/elliptical curves, polygons, paths and text and images that be resized,
rescaled and rotated programmatically using a set of built-in affine transforma-
tion and matrix functions.

The code sample below serves as an example of interactive SVG that defines
a circle object that is capable of changing its size in response to mouse input.

1 < !DOCTYPE svg PUBLIC ”−//W3C//DTD SVG 1.1//EN”
2 ” h t tp : //www. w3 . org / Graphics /SVG/1.1/DTD/ svg11 . dtd”>
3

4 <svg width=”6cm” he ight=”5cm” viewBox=”0 0 600 500” xmlns=”
h t t p : //www. w3 . org /2000/ svg ” ve r s i on=” 1 .1 ”>

5

6 < !−− Change the rad iu s with each c l i c k −−>
7 <s c r i p t type=” a p p l i c a t i o n / ecmascr ipt ”>
8 f unc t i on c i r c l e c l i c k ( evt ) {
9 var c i r c l e = evt . t a r g e t ;

10 var currentRadius = c i r c l e . g e tAt t r ibute ( ” r ” ) ;
11 i f ( currentRadius == 100) {
12 c i r c l e . s e t A t t r i b u t e ( ” r ” , currentRadius ∗2) ;
13 } e l s e {
14 c i r c l e . s e t A t t r i b u t e ( ” r ” , currentRadius ∗0 . 5 ) ;

2 https://dev.w3.org/SVG/tools/svgweb/samples/svg-files/w3c.svg
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15 }
16 }
17 </ s c r i p t>
18

19 < !−− Def ine c i r c l e with o n c l i c k event handler −−>
20 <c i r c l e o n c l i c k=” c i r c l e c l i c k ( evt ) ” cx=”300” cy=”225” r=”100

” f i l l =” blue ”/>
21 </ svg>

As illustrated in the example, the SVG scene graph enables event handlers to
be associated with objects, so a circle object may respond to an onClick event
or other events. To get the same functionality with Canvas, one would have to
implement the code to manually match the coordinates of the mouse click with
the coordinates of the drawn circle in order to determine whether it was clicked.

Just like with the HTML DOM, SVG support in the web browser is based
on a retained (managed) graphics architecture. Inside the browser, each SVG
shape is represented as an object in a scene graph that is rendered to the display
automatically by the web browser. When the attributes of an SVG object are
changed, the browser will calculate the most optimal way to re-render the scene,
including the other objects that may have been impacted by the change.

In the earlier days of the Web, SVG was the only mechanism to imple-
ment a scalable, “morphic” graphics system, which is why the SVG DOM API
was used as the foundation for graphics implementation, e.g., in the original
Lively Kernel web programming system that provided a self-supporting devel-
opment environment inside the browser [26,11]. The following link provides a
reference to a more comprehensive, “Lively-like” example of an SVG-based appli-
cation that includes interactive capabilities (image rescaling and rotation based
on mouse events) as well: https://dev.w3.org/SVG/tools/svgweb/samples/
svg-files/photos.svg/.

In general, it is important to summarize that in the context of the Web, SVG
is much more than just an image format. Together with event handling capabili-
ties, affine transformations, gradient support, clipping, masking and composition
features, SVG can be used as the basis for a full-fledged, standalone graphical
application architecture or windowing system.

3.5 Web Components

Web Components (https://www.w3.org/TR/#tr_Web_Components) are a set of
features added to the HTML and DOM specifications to enable the creation of
reusable widgets or components in web documents and applications. The inten-
tion behind web components is to bring component-based software engineering
principles to the World Wide Web, including the interoperability of higher-level
HTML elements, encapsulation, information hiding and the general ability to
create reusable, higher-level UI components that can be added flexibly to web
applications.

An important motivation for web components is the fundamentally brittle
nature of the Document Object Model. The brittleness comes from the global
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nature of elements in the DOM created by HTML, CSS and JavaScript code.
For example, when you use a new HTML id or class in your web application or
page, there is no easy way to find out if it will conflict with an existing name used
by the page already earlier. Subtle bugs creep up, style selectors can suddenly
go out of control, and performance can suffer, especially when attempting to
combine code written by multiple authors [16]. Over the years various tools
and libraries have been invented circumvent the issues, but the fundamental
brittleness issues remain. The other important motivation is the fixed nature of
the standard set of HTML elements. Web components make it possible to extend
the basic set of components and support dynamically downloadable components
across different web pages or applications.

Web components are built on top of a concept known as the Shadow DOM. In
technical terms, the Shadow DOM introduces the concept of parallel “shadow”
subtrees in the Document Object Model. These subtrees can be viewed concep-
tually as “icebergs” that expose only their tip while the implementation details
remain invisible (and inaccessible) under the surface. Unlike regular branches
in the DOM tree, shadow trees provide support for scoped styles and DOM en-
capsulation, thus obeying the well-known separation of concerns and modularity
principles that encourage strong decoupling between public interfaces and imple-
mentation details [19]. Utilizing the Shadow DOM, the programmer can bundle
CSS with HTML markup, hide implementation details, and create self-contained
reusable components in vanilla JavaScript without exposing the implementation
details or having to follow awkward naming conventions to ensure unique nam-
ing.

At the technical level, a shadow DOM tree is just normal DOM tree with
two differences: 1) how it is created and used, and 2) how it behaves in relation
to the rest of the web page. Normally, the programmer creates DOM nodes and
appends those nodes as children of another element. With shadow DOM, the
programmer creates a scoped DOM tree that is attached to the element but that
is separate from its actual children. The element it is attached to is its shadow
host. Anything that the programmer adds to the shadow tree becomes local to
the hosting element, including <style>. This is how shadow DOM achieves CSS
style scoping.

The following listing presents a minimal web component example that creates
a text editor that automatically resizes itself as text is entered in the text area:

1 < !DOCTYPE html>
2 <html><head>
3 < l i n k r e l=” import ” h r e f=” bas ic−autos i z e−t ex ta r ea . html” >
4 </head><body>
5 <p>Automatica l ly r e s i z i n g text input component:</p>
6 <bas ic−autos i z e−t ex ta r ea>Edit me !
7 </ bas ic−autos i z e−t ex ta r ea>
8 </body></html>

Note that up until recently, many browsers did not support web components
yet. Therefore, they had to be emulated in the form of polyfill libraries that im-
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plement the missing functionality (http://webcomponents.org/polyfills/).
As of this writing, native support for the Shadow DOM is available all major
web browsers except Microsoft Explorer and Microsoft Edge. For latest status,
refer to http://caniuse.com/#feat=shadowdom/.

4 Comparison and Primary Use Cases

The technologies described in the previous section are rather different, with di-
vergent design goals and varying and partially overlapping functionality. As a re-
sult, it is not easy to perform an objective comparison, or provide measurements
on, e.g., development efficiency or ease of use. In general, ease of development
or use in the context of the Web is highly subjective and dependent on one’s
background, e.g., whether the developer is a classically trained software engineer
or a web developer who has never written software for target platforms other
than the Web.

In this section we first provide a comparison that begins with an overview
table that gives a summary of the basic differences between the presented tech-
nologies. Second, we discuss the primary use cases for the different technologies.
Broader technical and architectural implications will be discussed separately in
Section 5.

4.1 Technology Comparison: An Overview

An overview and a summary of the different approaches is presented in Table 1.
The table covers topics such as the overall development paradigm (imperative
vs. declarative), rendering architecture (retained/managed vs. immediate), infor-
mation hiding support, primary intended usage domain and current popularity.
We also provide impressions on more subjective factors such as technology ma-
turity, abstraction level and ease of code reuse. Finally, the table summarizes
whether each technology provides support for defining animations in a declar-
ative fashion (as opposed to having to write lengthy JavaScript timer scripts
to drive animations), as well as whether the technology is supported by mobile
browsers.

4.2 Primary Use Cases

While the presented five technologies are all fully functional and Turing com-
plete in the sense that they can be used for writing any imaginable application
within the context of the sandbox offered by the web browser, these technolo-
gies are originally intended for different purposes and use cases. To begin with,
each of the technologies introduces their own distinct programming style(s).
This is especially true of the Canvas and WebGL technologies that are much
lower level, imperative APIs that require significantly more manual labor, e.g.,
in the placement of graphics and in driving the rendering process. In contrast,
DOM/DHTML, SVG and Web Component programming is performed at a
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Table 1. Comparison of Built-In Client-Side Rendering Technologies [29]

DOM /
DHTML

Canvas WebGL SVG Web Com-
ponents

Development
Paradigm

Declarative
and
imperative

Imperative Imperative Declarative
and
imperative

Declarative
and
imperative

Rendering
Architecture

Retained Immediate
(explicit
repainting
required)

Immediate
(explicit
repainting
required)

Retained Retained

Information
Hiding

No Not
applicable
(no name-
space sup-
port)

Not
applicable

No (ex-
cept when
creating mul-
tiple SVG
images)

Yes (Shadow
DOM en-
capsulation
and scoped
styles)

Primary Us-
age Domain

Documents
and forms

2D graphics
(e.g., in
games)

3D/2D
graphics
especially in
games and
VR/AR

2D image
rendering

Web appli-
cations and
graphical
user inter-
faces

Popularity Ubiquitous Popular in
specific use
cases

Limited Popular in
specific use
cases

Growing

Technology
Maturity

Mature Mature Mature Mature Emerging
(standard-
ization
underway)

Abstraction
Level

Medium Very low Low Medium High

Ease of Code
Reuse

Low to
medium

Low Medium
(shaders)

Low to high
(high as
an image
format)

High

Declarative
Animation
Support

Yes No No Yes Yes

Mobile
Browser
Support

Yes Yes Yes Yes Not in
Microsoft
browsers
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higher level and require much less imperative control and attention over ren-
dering. That said, DOM/DHTML and SVG programming can be performed in
a number of very different ways depending on whether the developer prefers a
declarative development style (relying only on HTML and CSS) or imperative
development style (developing primarily in JavaScript).

The following bullets provide a basic characterization on the primary baseline
use cases for each technology.

– DOM/DHTML. HTML was originally developed as a declarative markup
language for creating static documents and forms. Over the years, the use of
DOM/DHTML has expanded to almost every imaginable use case. Today,
DOM-based development approach dominates the web development land-
scape. This approach is declarative in nature, so the browser largely decides
about rendering; this simplifies the development of web sites that look like
documents, but can complicate the creation of sites that should behave like
desktop applications or require control of the display at pixel level.

– Canvas. The Canvas API was introduced at a time when there was no other
way to render lines, circles, rectangles or other low-level graphics impera-
tively inside the browser. For a number of reasons that were highlighted
earlier, the Canvas API is significantly less capable that it ideally should be.
Currently, the Canvas API is utilized primarily by game developers. It is also
used occasionally inside regular web pages to include custom graphical con-
tent, although the majority of such use cases can often be completed more
conveniently in SVG.

– WebGL. From technical viewpoint, WebGL is basically a thin JavaScript
wrapper over native OpenGL interfaces for providing a programmatic API
inside the web browser to achieve hardware-accelerated (GPU) rendering.
As a result, the use cases of WebGL are a direct derivative of the OpenGL
use cases, including (especially) game development, computer-aided design
(CAD), scientific visualization, flight simulation, virtual reality, or any other
case in which advanced 3D (or 2D) graphics rendering capabilities are needed.
WebGL is an imperative, low-level API that places a lot of requirements on
developer skills. Until recent years, the use of WebGL was still marginal, but
it has steadily gained importance as the need to render VR/AR content in
the web browser increases.

– SVG. In the context of the web browser, SVG has a dual role. First and fore-
most, SVG is a vector image format for rendering scalable graphics content
on web pages. However, SVG can also be used as a rich, generic graphics
context to drive scene graph based applications with support for complex
event handling, affine transformations (rotation, zooming, scaling, shearing),
gradients, clipping, masking and object composition. Given that the basic
DOM has evolved over the years to support these capabilities, in practice
SVG is used mainly as an image format. Thus, the importance of the broader
application development use cases for SVG is nowadays small.

– Web Components. Web components are the “dark horse” in web develop-
ment – they are still little known to most developers, and it is difficult to
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place betting odds on their eventual success. Web components reintroduce
well-known (but hitherto missing) software engineering principles and prac-
tices into the web browser, including modularity and the ability to create
higher-level, general-purpose UI components that can be flexibly added to
web applications. Web components cater to nearly any imaginable use case
but they are especially well-suited to the development of full-fledged web
applications that require an extensible set of GUI widgets.

5 Broader Considerations

According to MacLennan’s classic software engineering principles [13], some of
the most fundamental principles in software development are simplicity and con-
sistency : There should be a minimum number of concepts with simple rules for
their combination; things that are similar should also look similar, and different
things should look different. Unfortunately, the web browser violates these and
several other key principles in a number of ways, as evidenced by the above
observations.

Overlapping capabilities. Ideally, in a software development environment
there should be only one, clearly the best and most obvious way to accom-
plish each task. However, in web development – even in a generic web browser
without add-on components or libraries – there are several overlapping ways to
accomplish even the most basic rendering tasks. It is not easy to provide rec-
ommendations on specific technologies to use, except for those tasks in which
immediate-mode graphics is required (in which case either the Canvas or WebGL
API will have to be utilized). In most cases, developers will end up using the
basic DOM/DHTML approach, complemented with various libraries.

Mismatching development styles. When composing web applications
even using the basic DOM/DHTML approach, the developers commonly face a
mixture of declarative and imperative programming styles. They may also have
to use a combination of retained and immediate-mode graphics especially when
aiming at applications that are usable across different screen sizes – following
responsive web design [14]. In general, imperative versus declarative and unman-
aged versus managed graphics rendering provide different facilities and require
different considerations, and the implementation mechanisms can be completely
different. In fact, such adaptation could have been yet another dimension to
compare.

Incompatible and incoherent abstractions. The abstractions and pro-
gramming patterns supported by Canvas and WebGL APIs are very different
from DOM/DHTML and SVG programming. Web components introduce yet
another abstraction layer that has been patched on top of the DOM/DHTML.
In general, the features supported by the browser reflect organic evolution of fea-
tures over the years rather than any carefully master-planned architectural de-
sign. For instance, patterns and styles required for Canvas and WebGL program-
ming are very different from DOM or SVG; Web Component (Shadow DOM)
programming requires yet another programming style. When these programming
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patterns are combined – as often happens when using code from other parties –
confusing situations may emerge.

Given the organic evolution of the web ecosystem, it is nevertheless fairly
safe to predict that we will not go back to a less diverse web ecosystem or have a
chance to radically simplify the feature set of the web browser. It is impossible to
put the genie back to the bottle. For example, recent versions of the JavaScript
language – from ECMAScript6 to ECMAScript9 – have introduced a lot of new
language functionality (promises, generators and decorators, to list a few), thus
ensuring that library rewriting and evolution will be swift in the coming years,
creating further diversity and potential confusion for application developers.

Fashion-driven development. Over the past years there has been a no-
table trend in the library area towards fashion-driven development. By this we
refer to the developers’ tendency to surf on the wave of newest and most dom-
inant “alpha” development frameworks. For instance, the once hugely popular
Prototype.js and JQuery.js libraries were largely replaced by Knockout.js and
Backbone.js in 2012. Back in 2014, Angular.js was by far the most dominant
alpha framework, while in 2016-2017 it was the React.js + Redux.js ecosystem
that seemed to be capturing the majority of developer attention, with Vue.js
then foreseen as the most likely next dominant framework. As witnessed by the
somewhat unfortunate evolution of the Angular ecosystem over the years, the
alpha frameworks have a tendency to evolve very quickly once they get devel-
opers’ attention, leading into compatibility issues. To make the matters worse,
once the next fashionable alpha framework emerges and hordes of developers
start jumping ship onto the new one, it becomes questionable to what extent
one can build long-lasting business-critical applications and services, e.g., for the
medical industry in which products must commonly have a minimum lifetime of
twenty years. With the present pace of upgrades, the browser and the web server
as the runtime environment would be almost completely replaced by patches, up-
grades, and updates; similarly, most of the libraries would be replaced several
times by newer, more fashionable ones.

Opportunistic design and “cargo cult” programming. In web devel-
opment there has historically been a strong tradition of mashup-based develop-
ment : searching, selecting, pickling, mashing up and glueing together disparate
libraries and pieces of software [9]. Often such development has the characteris-
tics of cargo cult programming : ritually including code and program structures
that serve no real purpose or that the programmer has chosen to include because
hundreds of other developers have done so – without really understanding why.
The popularity of opportunistic design has exploded because of the success of
Node.js (https://nodejs.org/) and its Node Package Manager (NPM) ecosys-
tem (https://www.npmjs.com/) – nowadays, there are over 800,000 reusable
NPM modules available for nearly all imaginable tasks. While this approach can
save a lot of work and open up interesting opportunities for large-scale code
reuse [21], this approach does not foster development of reliable, long-lasting
applications, because even the smallest changes in the constituent components
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– each of which evolves separately and independently – can break applications
[22].

Violation of established software engineering principles. Although
many web developers may not realize this, the web browser violates many estab-
lished software engineering principles, including the lack of information hiding,
lack of manifest interfaces, lack of orthogonality, and lack of (aforementioned)
simplicity and consistency [13]. These observations were reported already over
ten years ago [16], but little has happened to fix the issues, apart from libraries
that aim at introducing their own way of engineering web applications. The
absence of solid engineering principles is easy to understand given that the
web browser was originally designed to be a document distribution environment
rather than a ”real” application execution environment. However, the current
popularity of the Web as the software platform makes it very unfortunate that
these important principles have been ignored. Currently the web components
are the best – and perhaps also the only – chance to reintroduce some of these
important principles to the heart of the Web.

In the broader picture, the deficiencies of the web browser as a software plat-
form are being tackled with an abundance of libraries. As of this writing, there
are more than 1,400 officially listed JavaScript libraries in javascripting.com,
with new ones being introduced on a weekly if not daily basis. Although many
of the libraries are domain-specific, a lot of them are aimed squarely at solv-
ing the architectural limitations of the web browser, e.g., to provide a consis-
tent set of manifest interfaces to perform various programming tasks. Over the
years, JavaScript libraries have evolved from mere convenience function libraries
to full-fledged Model-View-Controller (MVC) frameworks providing extensive
UI component sets, application state management, network communication and
database interfaces, and so on. In general, these will not necessarily help in tack-
ling the above characteristics but may rather add a new layer of complexity on
top of them.

6 Revisiting Our Earlier Predictions and Considerations

As mentioned in the beginning, this paper is an expanded, revisited version of
papers that were published earlier [29,27]. In this section, we will revisit our
earlier predictions and considerations in the light of more recent technologies
and approaches to web applications.

The emergence of Virtual DOM technologies. Out of the technolo-
gies discussed in [29,27], DOM/DHTML has maintained its dominant role as
the baseline technology as we predicted. The majority of libraries and applica-
tions that have been developed over the years are built on top of the standard
DOM/DHTML approach. What we did not foresee, however, was the intro-
duction of techniques that effectively replicate and virtualize the behavior of
the Document Object Model in order to gain additional programmatic con-
trol over rendering. These new approaches can be viewed as a derivative of
the Shadow DOM model introduced by Web Components, except that in these
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approaches the DOM is externalized and replicated outside the built-in Docu-
ment Object Model, thus allowing libraries and applications to work around
some of the limitations and built-in assumptions that the web browser im-
poses on application development. Simply put, Virtual DOM trees (see https:

//bitsofco.de/understanding-the-virtual-dom/) are copies of the origi-
nal DOM; these copies can be manipulated and updated independently of the
browser-level DOM APIs, thus bypassing any immediate impact on the browser’s
rendering process. Once all the updates have been made in the virtual DOM, the
changes need to pushed back (copied) to the original DOM in an optimized way.
The Virtual DOM approach can considerably improve rendering performance as
well as enhance the overall smoothness of web user interfaces in comparison to
traditional DOM manipulation in which applications have very limited control
over rendering.

Emerging support for Virtual and Augmented Reality. In our pre-
vious work, we foresaw increased popularity of WebGL that enables browser-
based, installation-free, high-performance applications for viewing VR/AR con-
tent. These features will inevitably gain more popularity, as the world moves
towards richer media experiences, and the standard DOM/DHTML model is
unable to support the necessary features. To this end, further rendering and vi-
sualization techniques that build on WebGL have been proposed. These include
WebVR (https://webvr.info/) and WebXR Device API (https://immersive-web.
github.io/webxr/), which take the Web towards virtual and augmented reality
rendering with new APIs. In addition, we predicted that WebGL would also be
increasingly important for game developers; however, the elimination of the “last
safe bastion” of traditional binary applications (as indicated in our earlier paper)
– allowing the creation of portable high-performance applications in the context
of the web browser – has not yet taken place. Similarly, we pointed out that
the Web would benefit from a high-performance, low-level 2D graphics API that
would provide a more comprehensive feature set and direct drawing capabilities
without any historical development baggage of the Canvas API. However, at the
time of this writing, there is no such standardization effort in sight.

Web Components. Regarding web components, it is still too early to de-
clare victory or failure. Since web components offer a more disciplined approach
to DOM/DHTML programming, reintroduce established software engineering
principles, and generally alleviate the ”spaghetti code” issues that have resur-
faced with the Web [25], we would certainly like to see them succeed. In reality,
the main obstacle to the wider adoption of web components are the predominant
JavaScript libraries that also provide additional abstraction layers on top of the
underlying DOM and basic browser features. Hence, the future of web compo-
nents is fundamentally affected by the evolution of JavaScript library landscape
and associated features.

JavaScript library landscape. Earlier in this paper, we noted that JavaScript
library evolution has followed a fashion-driven approach in which a few frame-
works have dominated the landscape for a few years, only to be superseded by
new dominant frameworks some years later. Interestingly, this trend seems to
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have waned in the past two years. While the flood of new, lesser known front-
end and backend frameworks has continued as strongly as ever (as witnessed
in http://www.javascripting.com/ or in the constantly increasing number of
NPM packages), the popularity of top three dominant front-end libraries has not
changed much in the past two years.

When writing the first manuscripts of our earlier papers in late 2016/early
2017 [29,27], the top five frontend frameworks were Vue.js, React, Angular, An-
gular 1, and Inferno (https://risingstars.js.org/2016/en/). As of this writ-
ing (January 2019), Vue.js, React, and Angular are still the top three, followed by
Hyperapp and Omi (https://risingstars.js.org/2018/en/#section-framework).
At the same time, jQuery is still used rather extensively (https://w3techs.com/
technologies/details/js-jquery/all/all), implying that some web frame-
works can also have an extended lifespan. However, the introduction and en-
amoration with new, fashionable frameworks is by no means over. For instance,
Weex (https://weex.incubator.apache.org/) has recently gained popularity
rapidly in the mobile domain.

7 Future Work

In this paper we have scratched only the surface of architectural issues related
to web applications, as we intentionally narrowed down our analysis into one
specific area: the built-in application rendering technologies in a modern web
browser. The web ecosystem provides a cornucopia of choices in many other
areas. Consequently, there are several avenues for future research and directions
to expand this work towards different dimensions of the Web as an application
platform.

We are currently encouraging ourselves and our students to perform similar
studies, e.g., on the cornucopia of communication mechanisms and methods used
in web applications, including Ajax [8], Comet [5], Server-Sent Events [10], Web-
Sockets [20], WebRTC [2]), and to some extent also Web/Shared Workers [31].
In addition, persistent storage in the context of the web browser is an interesting
topic, although the design space in that context is far more limited.

Cornucopia associated with front-end Web frameworks is an even more di-
verse area to study than the technologies inside the browser itself. So far, we
have briefly studied only the most popular mainstream frameworks, but a more
in-depth look would definitely be an interesting direction for future work, in
particular since the many libraries provide facilities that are similar to those of
the technologies inside the browser.

Finally, server-side web development is yet another rich area for future work.
As already mentioned, over the past few years, an extremely prolific ecosys-
tem has emerged around Node.js, and there are a lot of additional open source
technologies for nearly every imaginable aspect of server-side development. For
instance, data acquisition and analytics solutions such as Apache Kafka, Storm
and Spark have become very popular. From architectural standpoint, the recent
trend towards isomorphic JavaScript is also extremely relevant. In web devel-

21



opment, an isomorphic application is one whose code can run unmodified both
in the server and the client [23]. Such capabilities are relevant, e.g., in realizing
liquid software that allows applications to seamlessly migrate across multiple
devices [28,7].

8 Conclusions

Over the past twenty-five years or so, the World Wide Web has evolved from
a document sharing system to a full-fledged programming environment. This
evolution has taken place organically, and new technologies have been constantly
introduced to help developers create compelling web systems.

As a consequence, web development today presents a cornucopia of choices
on all fronts. Both on the client side and the server side, there exist a large
number of competing, overlapping technologies, and new libraries and tools be-
come available almost on a daily basis. The rapid pace of innovation has put the
developers in a complex position in which there are numerous ways to build ap-
plications on the Web – many more than most people realize, and also arguably
more than are really needed.

In this paper, we have investigated one of the perhaps most overlooked areas
in web development: the client-side web rendering architectures that have been
built into the generic web browser. We compared five built-in rendering and
application development models, followed by some predictions, discussion and
avenues for future research.

As Alan Kay once aptly put it, “simple things should be simple, and complex
things should be possible”. In web development today, pretty much everything
is possible, but really not at all in the simplest possible way. While the World
Wide Web is one of the most important innovations for humankind, for web
application developers things are still likely to get even more complicated until
they get any simpler.
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