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ABSTRACT
When student programs are compared for similarity as a step in
the detection of academic misconduct, certain segments of code
are always sure to be similar but are no cause for suspicion. Some
of these segments are boilerplate code (e.g. public static void
main String [] args) and some will be code that was provided
to students as part of the assessment specification. This working
group explores these and other types of code that are legitimately
common in student assessments and can therefore be excluded from
similarity checking.

From their own institutions, working group members collected
assessment submissions that together encompass a wide variety
of assessment tasks in a wide variety of programming languages.
The submissions were analysed to determine what sorts of code
segment arose frequently in each assessment task.

The group has found that common code can arise in program-
ming assessment tasks when it is required for compilation purposes;
when it reflects an intuitive way to undertake part or all of the
task in question; when it can be legitimately copied from external
sources; and when it has been suggested by people with whom
many of the students have been in contact. A further finding is
that the nature and size of the common code fragments vary with
course level and with task complexity.

∗Working group leader
†Also with Maranatha Christian University.
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An informal survey of programming educators confirms the
group’s findings and gives some reasons why various educators
include code when setting programming assignments.
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1 INTRODUCTION
Assessment is an integral aspect of education, an aspect that serves
several distinct purposes. Under the umbrella of formative assess-
ment, it is used to help students appreciate how much they have
learnt and what gaps might remain in their learning. As summative
assessment, it is used to measure the extent of a student’s knowledge
or ability by giving the student a mark or grade [59]. That measure
can then be used for internal purposes of grading and assessment
[51] or for the external purpose of certification, for example to as-
sure prospective employers that the student has attained a certain
level of knowledge or skill [57].

For the various purposes of summative assessment it is impor-
tant for the assessors to be assessing the work of the student they
are assessing, not of some other person or people. It follows that
they require some assurance that the work is the student’s, and
that where the student has incorporated the work of others, that
fact is clearly and appropriately acknowledged. This is the basis of
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academic integrity: an assurance that work submitted for assess-
ment is, except where otherwise indicated, the work of the student
being assessed.

It is well established that many university students are willing to
breach academic integrity – to cheat – if the opportunity arises and
the potential gains offset the potential losses [33, 52]. Violations
of academic integrity have been widely researched and reported
in computing courses, and particularly in programming courses
[7, 18, 48, 54, 58]. An area of focus in this work has been plagiarism
and collusion1 in take-home assignments where students work on a
programming task outside class and unsupervised by their teachers.
This type of assessment has been shown to have the highest rates of
cheating, and such cheating is considered by students to be among
the most acceptable forms of academic violation [48, 49].

Much of the research in addressing academic integrity in comput-
ing courses has explored ways to educate students and discourage
them from cheating [10, 50, 54]. The incidence of misconduct can
be mitigated by measures such as informing students about ac-
ceptable practices [53], individualising the assessment tasks [6], or
incorporating post-submission oral presentations [17]. An obvious
measure is to monitor task completion by having students work in
labs, under direct supervision. Student computers can be discon-
nected from the internet and from external drives, and monitored
using appropriate software. Another measure involves the use of
post-submission oral interviews or presentations, where students
are selected randomly to explain their solutions to or answer ques-
tions about them. This presentation contributes to the mark for the
assessment task, and the fear of being randomly chosen encourages
students to do their own work.

One prevention measure that does not rely solely on students’
final code submissions is looking at process data gathered from
students while they are completing assignments [18, 61]. Process
data can show evidence of early collusion, evidence that is not
visible in students’ final code submissions. For example, in some
courses, one member of this working group recorded students’
programming process at the keystroke level; this allowed easy
identification of copy-pasting and the possibility of comparing just
the copy-pasted content with other students’ programs. Another
member used a web-based system that stores intermediate versions
of student programs at regular intervals as they type, and marks
an intermediate version as ‘pasted’ if a large amount of code is
added in a small interval. These intermediate versions give insight
into a student’s thought process, but have also been used to detect
cases of plagiarism or collusion. A special case of process data
is keystroke data, which is sometimes collected for misconduct
detection purposes [29]. Such data can be used to uniquely identify
students based on their typing patterns [31], and can be used, for
example, to identify students in remote exams [29, 55], helping to
detect cases where a student has somebody else complete the exam
for them.

While this work is valuable in that it works on preventing the
problem rather having to deal with the consequences, these ap-
proaches will never deter all students in all circumstances, so there

1While some computing educators use the word ‘plagiarism’ for any use of code not
written by the student and not acknowledged, we use ‘plagiarism’ for code copied from
widely available external sources, and ‘collusion’ for work arising from unauthorised
collaboration between students in the same class.

is also much work on detection of cheating in its various forms
[54].

With take-home programming assignments, detection of cheat-
ing focuses largely on the use of code similarity detection tools
by programming educators to help ascertain whether different
students’ programs were written independently. Several studies
[5, 28, 42] report that the use of such tools has many positive ef-
fects. They can reduce administrative workload and neutralise the
lecturers’ and tutors’ positions regarding academic dishonesty. Fur-
thermore, they can act as a discouragement to cheating.

Code similarity detection tools typically provide the teachers
with a listing of similarity measures for pairs or groups of assign-
ments and highlight the areas of similarity. The output from these
tools helps teachers to decide whether two or more programs are
more similar than one would expect from coincidence alone. How-
ever, interpreting the output is not straightforward: when code
similarity is detected, it is not a foregone conclusion that the stu-
dents have cheated. There are many positive ways in which code
copying can be used as part of programming education. For example,
code can be provided to the students as a template, or be available
in course notes or the textbook. But common code segments that
are expected to be present contribute to the similarity measure and
confuse the interpretation of this measure for purposes of academic
integrity. Removing these elements would make it easier to find
cases of possible collusion or plagiarism, but it is not necessarily
clear how to choose these elements. Despite this difficulty, there
has been little work reported about interpreting the output of code
similarity detection tools.

The aim of our working group was to explore this area, specifi-
cally investigating what code segments could be expected to arise
commonly in students’ submissions for an assessment task, and
could be candidates for removal before a code similarity detector is
used or during the investigation of suspected programs. The results
of our work will help teachers to use these tools appropriately and
effectively. This work is particularly timely in the current climate of
covid-19, where more assessment is happening in non-invigilated
situations, giving students more opportunities to cheat. Looking
beyond the current virus, there are predictions that this shift is
long-term and possibly permanent.

Readers should note that the word ‘assessment’ is used in two
main senses in this report. Used as an uncountable noun (‘assess-
ment is an integral aspect of education’, ‘students dislike assess-
ment’) it refers to the act of assessing students’ work, or the prin-
ciple of so doing. Used as a countable noun (‘an assessment’, ‘as-
sessments’) or in an adjectival sense (‘an assessment task’, ‘an as-
sessment unit’) it refers to a task assigned to students as part of the
process of assessment. For the latter sense, this report also uses the
word ‘assignment’ somewhat interchangeably with ‘assessment’.

In the next section we summarise the literature of similarity
detection, first in the context of prose text and then in the context
of computer programs. Section 3 explains our research questions
and the methods that we used to address them. Section 4 describes
the five different reasons for code commonality that emerged from
our analysis, and section 5 describes five different categories of
assessment task, relating them where possible to the reasons for
code commonality. Section 6 presents the findings of our survey of
computing educators. Sections 7 and 8 present the results of a more



detailed analysis of a small selection of courses. Section 9 presents
some reflections on the use of code similarity detection tools, and
sections 10 and 11 summarise the report and suggest directions for
future work.

2 BACKGROUND
Code similarity detection has a long and venerable history, both in
education and in industry, but because its use is far from universal,
this section will provide a brief explanation of its purpose and
application. To provide some context, first we discuss the automatic
detection of text similarity and then we describe the specific tools
used for code similarity detection and explain their use.

2.1 Text Similarity Detectors
In recent decades, software has been developed to assist in the detec-
tion of academic misconduct. A well-known example is Turnitin2,
which compares a piece of writing submitted by a student with a
vast number of written passages collected from the internet, draw-
ing attention to any common passages. Turnitin is often described
as plagiarism detection software, but in fact it is text similarity
detection software. Once it has detected similar passages of text,
it is the responsibility of the educator to determine whether the
similarity is due to plagiarism. By the nature both of its algorithms
and of its collection of passages, Turnitin is designed to detect simi-
larity in passages of prose text, and not in, say, images or computer
programs.

As an aside, while the apparent intention of educators who use
text similarity detection tools is to ensure that they are marking
the students’ own work, it might be more accurate to say they are
ensuring that they are marking the students’ own expression of
what they wish to write. It is unlikely that educators expect under-
graduate students to produce original ideas; rather, they expect the
students to use their own words in synthesising and summarising
the ideas of others. This is an idea that many students have diffi-
culty with, as they know that they will not be able to express the
ideas as well as the authors on whose work they are drawing.

Turnitin does not work for computer programs, partly because its
database of writing does not appear to include computer programs.
This is to be expected, as computer programs differ substantially
from prose text. Unlike most prose text, some program parts, such
as comments and identifier names, do not contribute to the inherent
structure of the program. In addition, program statements have far
less variation than human sentences due to the tighter syntactic
constraints of programming languages. Furthermore, some program
tokens do not need to be delimited by white space or punctuation;
for example, “x=x+1;”.

Even if it were possible to co-opt text matching software to
deal with computer programs, it would probably not be useful. For
example, simple changes to comments and variable names could
be used to reduce the levels of similarity detected by Turnitin. Fi-
nally, programming students often collude rather than plagiarising.
Therefore the educator’s goal is typically to compare students’ pro-
grams with the programs submitted by other students for the same
assessment item, rather than with large numbers of code samples
scraped from various web pages.
2www.turnitin.com

2.2 Program Code Similarity Detectors
Software developers have been writing code similarity detection
tools for more than five decades [38]. Although they vary substan-
tially in their detection techniques [25], the tools generally work
in two consecutive phases [23]. First, student submissions are pre-
processed to an intermediate format, such as feature vector [15],
token string [45], syntax tree [24], or program dependency graph
[30]. This preprocessing typically generalises aspects of the code
that are subject to trivial modifications, thus nullifying the effect
of many simple disguises of copied code. Second, the preprocessed
submissions are compared with one another. The comparison itself
can take many forms, including string-matching algorithms [45]
and graph isomorphism checks [30].

Some tools are publicly available, and according to Novak et al.
[38], JPlag [45] is the tool most often mentioned in the literature,
followed by MOSS [47] and Sherlock [22].

JPlag [45] was designed in 2001 as a web service, but was subse-
quently redesigned as a standalone offline tool. It converts student
submissions to token strings and then pairwise compares the strings
with a greedy string-tiling algorithm [60]. It can currently handle
six programming languages: Java, Python, C, C++, C#, and Scheme.

MOSS [47] was introduced in 1997 with winnowing as the simi-
larity algorithm. The tool works as a web service: student submis-
sions are uploaded, and the similarity report is accessible online
via a unique link for up to 14 days. MOSS covers the widest array
of programming languages (25), including all of those supported
by JPlag. A complete list of the languages can be seen on its home
page3.

Sherlock [22] was introduced in 1999, and updated in 2005 [37]
to enhance its efficiency. It is a standalone GUI application, cov-
ering two programming languages: Java and C++. For detecting
similarity, it tokenises student submissions and compares them
using a modified version of the longest common subsequence algo-
rithm. This tool is from the University of Warwick, and is not to be
confused with another tool of the same name, from the University
of Sydney [4, 46].

2.3 Effectiveness of Code Similarity Tools
Several comparative studies have been performed to try to deter-
mine the ‘best’ code similarity detection tools. Qualitatively speak-
ing, there is no ‘silver bullet’ in code similarity detection [16, 36];
each tool has its own benefits and drawbacks. In terms of accuracy,
some studies found MOSS to be the most effective [2, 19], while an-
other found JPlag to have comparable accuracy [16]. The difference
is not surprising: the optimal configuration of a code similarity
detection tools is very sensitive to the data set on which it is used
[46].

Mann and Frew [32] point out that, particularly in early program-
ming courses, most programs to achieve the same task will have a
great deal in common; that program similarity is not necessarily an
indicator of program copying or unauthorised assistance. Neverthe-
less, particularly in large classes, some sort of automatic filtering of
programs is almost essential to distinguish those programs that are
clearly independent from those that merit further examination by
a human to determine whether they might have a common source.
3https://theory.stanford.edu/~aiken/moss/



Culwin and Lancaster [9] propose four stages for detecting pla-
giarism and collusion with a similarity detection tool. First, student
submissions are collected either manually or with the help of learn-
ing management systems such as Moodle [8], Google Classroom
[62], or BOSS [21]. Second, the submissions are passed to the detec-
tion tool for similarity analysis. Third, the tool’s similarity report
is confirmed by the educator, checking whether the submissions
flagged as suspicious really do have a high degree of similarity.
Fourth, the suspected submissions are manually investigated by
the educator, and all submissions whose similarity appears to in-
dicate academic misconduct are singled out. These stages were
initially formulated in the context of text-based assessments, but
Mis̆ić et al. [35] argue that they are also applicable for programming
assessments.

The last two stages (similarity confirmation and investigation)
require human intervention, and their accuracy and completion
time are heavily affected by the number of false positives generated
by the tool; that is, student submissions that are marked as suspi-
cious when they have not actually been copied. This number can
be high if the tool’s preprocessing nullifies too much program vari-
ation while the assessments are too simple, as in first-year courses
[14, 20]; when they use a restrictive programming language, such
as SQL [27] or Verilog [44]; or when they incorporate common
‘starter code’ provided for them to use [3].

Besides appreciating that surface variation is sometimes all that
can distinguish between independent programs [14, 20, 22, 56], the
number of false positives can also be reduced by excluding irrele-
vant code segments, those that should not contribute to suspicion
as they occur with good reason in most student submissions; for
example, simple code, code needed for compilation, and starter
code. Exclusion of code segments is supported by several tools
[3, 12, 26, 43], including JPlag [45] and MOSS [47]. Typically, the
tools are given the relevant code segments as starter code, and the
similarity algorithm excludes them from being marked as matched
segments.

Such code segments can also be selected automatically on the
basis of their distribution across the whole body of student assign-
ments [13]: segments whose frequency of occurrence exceeds a
specified threshold can be deemed as irrelevant. This technique
is applied in MOSS with the m option, which specifies how many
times a code segment may appear before it is ignored.

Though automated selection of irrelevant segments can be more
practical than manual selection, determination of the frequency
threshold for those segments can be somewhat arbitrary, and de-
pends heavily on the assessment design. This is exacerbated by the
fact that not all student submissions are compilable and comply
with the assessment specifications, such as the use of starter code
or specified libraries. Furthermore, not all code similarity detection
software offers automated detection of common segments.

3 RESEARCH QUESTIONS AND METHOD
In this section we first present our research questions and then
describe the four-phase method that we took to answer them.

3.1 Research Questions
In this work we investigate students’ software solutions in a range
of programming languages to identify common code segments that
are unlikely to indicate collusion or plagiarism, and to find generic
descriptors for these segments that will help others to identify
them. We also investigate the impact of eliminating these segments
from students’ solutions to determine whether that elimination can
improve the detection of suspicious code through the use of code
similarity tools.

Our research questions are as follows:
RQ1 What kinds of common code segment should be excluded

from code similarity detection?
RQ2 How does removing common code segments affect the re-

ports generated by code similarity detection tools?
Our aim for the first research question is to expedite the process

of code similarity detection for educators. If we can identify the
kinds of common code segment that can be excluded from simi-
larity detection, those segments can be more easily excluded from
code similarity detection, which will therefore return fewer false
positives. It can also reduce the risk of human error by narrowing
the educator’s focus to the relevant code segments.

With the second research question we aim to validate our find-
ings for RQ1. Specifically, we will remove innocuous common code
segments from programs and investigate how much difference that
makes to results from two of the most frequently mentioned code
similarity detection tools in the literature [38], JPlag and MOSS.

Having answered our research questions, we will outline some
factors that instructors might usefully consider when applying our
findings in their own courses.

3.2 Phase 1, Exploratory: Search for Common
Code Segments

In the first phase of the research we searched student submissions
for common code segments and attempted to classify the reasons
why we would expect these to be common. We were unable to find
any literature addressing these reasons, so we devised our own,
using the process described below.

3.2.1 Data set. Each member of the working group collected pro-
gramming assignments, labs, and tests submitted by students in
courses at their own institution and attained the appropriate insti-
tutional ethics approval to use these student submissions in this re-
search. Table 1 shows details of the courses fromwhich assignments
have been drawn in this research. The courses span all years of an
undergraduate degree and cover nine programming/specification
languages.

3.2.2 Reasons for similarity. With an eye to identifying code seg-
ments that might be naturally common (RQ1), the working group
leaders proposed ten reasons why code segments could be expected
to be common without indicating collusion or plagiarism (see table
2). This classification was based on the leaders’ experience with
setting and assessing programming assignments. The ten reasons
were considered a starting point; it was expected that the list might
be refined or extended based on findings.

In examining the students’ submissions, we found the original
ten reasons for expected commonality in student submissions to be



Table 1: Courses in the data set, with each ID incorporating both the initials of the course name and the year level of the
course; the rightmost columns give the number of assessments that were set in the course offerings being considered and
the (sometimes approximate) number of submissions received for those assessments; the courses are sorted by programming
language within year level

ID Name Year Language(s) Offerings Assessment type(s) Total
ass’ts

Total
sub’ns

IP1a Introduction to Programming 1 C 11 Lab, lab exam 36 198,000
IP1b Introduction to Programming 1 C++ 2 Lab 20 20,000
DS1 Data Structures 1 C++ 1 Lab 12 577
ACP1 Advanced Course in Programming 1 Java 2 Assignment, exam 80 24,062
FP1 Foundations of Programming 1 Java 2 Assignment 2 1,140
IP1c Introduction to Programming 1 Java 2 Assignment, exam 152 48,187
OOP12 Object-Oriented Programming 1,2 Java 2 Assignment 8 57
IP1d Introductory Programming 1 Java, Python 3 Assignment, lab 253 8,587
ADS1 Algorithms and Data Structures 1 1 Python 1 Lab 22 1,169
IP1e Introduction to Programming 1 Python 3 Assignment 5 693
IP1f Introduction to Programming 1 Python 2 Assignment 8 8,712
ICS1 Introduction to Computer Science 1 Python 2 Assignment, lab 24 13,996
SP2 Systems Programming 2 C 1 Assignment, lab 14 3,308
AP2 Application Programming 2 C# 4 Assignment, lab exam 7 402
ADS2 Algorithms and Data Structures 2 2 Java 1 Lab 25 651
OOP2 Object-Oriented Programming 2 Java 1 Lab 29 916
SD2 Software Design 2 Java 1 Assignment 2 545
TC2 Theory of Computation 2 Python 1 Assignment 5 666
N3 Networking 3 C, Python 1 Assignment 3 258

PPL3 Principles of Programming Languages 3 Haskell, Prolog,
Scheme 1 Assignment, lab 11 1,417

LSD3 Large System Design 3 Java 1 Assignment 5 438
IAI3 Introduction to Artificial Intelligence 3 Python 1 Assignment 12 140
NM3 Numerical Methods 3 Python 1 Assignment 9 448
IDB3 Introduction to Databases 3 SQL 5 Assignment 5 199
CG3 Computer Graphics 3 C++ 1 Assignment 3 1022
IR34 Information Retrieval 3,4 Java 1 Lab 6 44
GP34 Game Programming 3,4 Java 2 Lab 21 200
ML34 Machine Learning 3,4 Java 1 Lab 9 58
PL34 Programming Languages 3,4 Scheme 2 Assignment 3 35

too fine-grained and too code-specific, and despite having taught
the courses ourselves, we were often unable to choose just one of
them. Discussion led to a grouping of these ten into four broader
reasons as shown in table 2 and discussed in section 4. We also
found one further reason that was not covered by the original ten,
so we expanded the set of detailed reasons to eleven.

3.2.3 Analysis method. The working group members worked indi-
vidually to identify, classify, and record examples of code similarity
in submissions for the assessment items in their own courses. This
means that they were familiar with the specification, assessment
guidelines and rules, course content, and resources. All this knowl-
edge was necessary to properly assess the likely reasons why code
segments might be common.

Eachmember examined the code submissions, searching for code
segments that were similar across the submissions, and identified
those that appeared to fit one of the reasons for commonality as

shown in table 2. The code segments searched for were at a rela-
tively fine level of granularity, from an expression or a statement
to a method or a function. The investigation was exploratory, and
three main approaches were taken. One approach was to select code
segments that were possible candidates for similarity from knowl-
edge of the assignment task and the resources available to students.
The second approach was to search for possible candidates by exam-
ining the reports from a code similarity detector (either MOSS [47],
JPlag [45], or both) to find common segments. Some members chose
the tool that they were already accustomed to using; some chose
JPlag because they wanted a locally installed option so as to avoid
network delays; some were unable to use MOSS for legal or ethical
reasons, as that system stores personal data on servers in the United
States. The third approach was to skim through the solutions to
identify any code segments that seemed to be occurring frequently.
Once candidate code segments were selected, their approximate
frequency of occurrence was determined with a search through



a larger subset of the solutions. With these three approaches the
investigation was both targeted and serendipitous.

The results of this analysis are reported in section 4.

3.2.4 Quantifying the frequencies of occurrence of common seg-
ments. Primarily, group members identified common segments by
manually inspecting the tool-generated reports and highlighted
segments. This was a laborious and time-consuming process. Some
detection tools [13, 47] automate the removal of common segments
based on an exclusion threshold; any segments whose frequency
of occurrence is higher than the threshold will be excluded from
similarity detection. As stated in subsection 2.3, determination of
such thresholds can be somewhat arbitrary since the occurrence
frequencies of common segments depend heavily on the assignment
design.

One of the group leaders wrote a simple script to partly automate
this task by measuring the frequencies of specified code segments.
This program, called Common Code Counter (CCC), takes a piece
of code and a set of submissions, and identifies all submissions that
contain the code. CCC covers eight languages: Java, C, C++, C#,
Python, SQL, Haskell, and R.

Technically speaking, the program works in three stages. First,
the common segment and the student submissions are tokenised
with ANTLR [41], a process that includes the removal of both com-
ments and white space. Second, identifiers and string literals are
generalised to their corresponding token types, as these can be
readily changed without altering the underlying structural simi-
larity between two programs. Third, the student token strings are
searched for the common token string with a strict substring search
algorithm. A submission is considered to include the common seg-
ment if all of the segment’s tokens are found in the submission in
the same exact order. The strict matching condition aims to limit
the number of false positives.

Although it seemed promising, CCC works well only on pro-
grams that are simple, short, and restricted. This is unsurprising, as
the program’s preprocessing is overly simple. For example, it does
not generalise i++; to i=i+1; in Java, and it does not remove in-line
statement delimiters (semicolons) in Python. Applying more sophis-
ticated preprocessing would take a considerable amount of time,
given our broad coverage of programming languages; development
of CCC was therefore discontinued, as it was only ever intended to
be a helper program rather than a substantial contribution of the
report.

CCCwas tested with five courses in our data set that have simple,
short, and restricted assignments. The courses, IP1d, ADS1, ADS2,
DS1, and OOP2, are first-year and second-year courses from one
member’s university. IP1d’s assignments were generally designed
to be finished in 20 minutes each; the assignments from the other
courses were typically designed to be finished in less than a hour,
and the specifications generally included code to be copied and/or
suggestions for implementation. Section 7 details the results of the
analysis.

In its current form, CCC is not a robust tool due to its high
sensitivity to small modifications and its limited applicability. Nev-
ertheless, for readers who might be interested in expanding the

program, the code is available for download4, and users are asked
to acknowledge this report as the original source of the program.

3.2.5 Problems encountered. Identification of common code seg-
ments was carried out using the code similarity detection tools
MOSS [47] and JPlag [45]. While we were analysing student so-
lutions in May and June 2020, MOSS experienced a substantial
increase in usage from all over the world, as more universities were
going online in response to covid-19 restrictions. Consequently, we
had issues with the reliability and response time of MOSS because
its servers were being overwhelmed. This slowed down the progress
of analysis as the members were able to use MOSS only when the
server was not busy. To help overcome this problem, one author
acquired a MOSS research license to analyse student submissions
locally, and set up the software on a virtual machine which had the
capacity to run MOSS without lag or downtime.

3.3 Phase 2, Exploratory: Assignment Styles
and their Effects

In the second phase of the research we explored different styles of
assignment and examined the data set to assess the influence of
these styles on the likelihood of finding common code segments.
In this phase we used the same data set as described in phase 1.

3.3.1 Assignment styles. While searching for common code seg-
ments and classifying them according to the reasons in table 2
we found that the frequency of code similarity appeared to be in-
fluenced by certain characteristics of the assignment itself. For
example, the instructor might have provided starter code, which
would therefore be expected to appear in all student submissions.
Additionally, the complexity of the assignment can affect similarity
detection, as can any constraints specified by the instructor. For
example, variation between students’ programs will naturally be
lower for extremely short trivial assignments. Similarly, if an as-
signment requires students to read a file and output the content,
there are only a limited number of possible ways for students to
program that task. Based on these characteristics, we proposed five
different styles of assignment that might lead to different expecta-
tions of common code segments: trivial assignments, bottlenecked
assignments, assignments with starter code, broadly specified as-
signments, and open-ended assignments. These styles are described
in table 3. Given the limited time span of an ITiCSE working group,
we have not had the opportunity to validate this classification of
assignment types; in its current form, it is simply the result of
discussion and agreement within the group.

3.3.2 Analysis. Using the classification in table 3, each course in
the data set was classified according to which styles its assignments
displayed. The characteristics of each assignment style were then
generalised into a form that might be helpful for other computing
educators, and that might enable future research to better focus on
particular styles of assignment when examining the incidence and
nature of common code segments. The results of this analysis are
reported in section 5.

4https://github.com/oscarkarnalim/ccc



Table 2: General and specific reasons why code segments might be naturally similar

General reason The eleven detailed reasons

Code needed for compilation Compulsory use for compiling the program
Intuitive implementation The only likely way to accomplish the required task

The only way taught to accomplish the required task
Easier to memorise than other code alternatives
Shorter than other code alternatives
A habit from previous experience
Suggested by the nature of the task

Legitimately copiable The code can be copied from permitted external resources
Suggested implementation Explicitly taught in the course

Suggested by the teacher, tutor, or teaching assistant
[null] Other

Table 3: Styles of assessment task; a task is not necessarily restricted to one style

Style Description

Trivial assessment Assessments so simple that there is very little room for variation (e.g. a program to display ‘Hello,
world!’). This kind of task often has only one solution alternative with limited possible variation.
The common code segments are typically those for compilation and intuitive approach, perhaps
along with suggested implementation, and will often comprise the whole program.

Bottlenecked assessment Assessments so highly constrained, at least in parts, as to limit the possibility of varying
solutions (e.g. a function to compute the volume of a rectangular solid). The constraints can
result in common code segments for compilation, intuitive approach, and possibly suggested
implementation.

Assessment with starter code Assessments that require students to start from and adhere to the design of a given code base.
The starter code is clearly a case of suggested implementation, and common code segments
will also arise from code needed for compilation and possibly the intuitive approach.

Broadly specified assessment Assessments that are given a generalised design (e.g. a program that simulates the board game
snakes and ladders). Common code segments for this type of assessment will include code
needed for compilation, and possibly the intuitive approach if the specification is sufficiently
concrete, but are unlikely to include suggested implementation.

Open-ended assessment Assessments with few constraints beyond the basics of what it must involve or achieve (e.g. a
game with at least twomoving objects, or an application that takes at least one external stimulus
and has at least two functional operations). This might result in common code segments for
compilation, but the breadth of specification is such that other sources of common code are
likely to be rare – unless copying from external sources is permitted, in which case some of the
submissions might have legitimately copiable common code segments.

3.4 Phase 3, Investigatory: Effect of Code
Segment Exclusion

In phase 3 we investigated the effect that removing common code
segments had on the reports produced by code similarity tools.
The hypothesis was that excluding common code segments would
expedite the similarity confirmation and investigation process [9],
given that fewer matching segments would be identified by the
similarity detection tools.

To determine the impact of removing common segments from
students’ solutions (RQ2), we wrote scripts to measure the differ-
ences between the tool-generated similarity reports before and after
exclusion of the common segments. This was done for both JPlag
and MOSS reports. The scripts were applied to submissions from

several courses in the data set. The findings are reported in section
8.

Two evaluation metrics were introduced: reduced number of
matched lines and reduced number of retrieved program pairs.
When common code segments are excluded, the similarity report is
expected to show fewer matched segments, resulting in a reduction
of matched lines. This might also reduce the number of retrieved
program pairs since in some program pairs, the matched segments
are all common and excluded, so their removal will leave no re-
maining similarity between the programs. To deal with variation
in code length, both metrics are normalised as in equation 1.

normalised =
be f ore − af ter

be f ore
(1)



Given the large size of our data set, only a few courses were
considered in this analysis. IP1a is a first-year C introduction to
programming course with trivial assignments, bottlenecked assign-
ments, and assignments with starter code. DS1 is a first-year C++
data structures course with trivial assignments in the early weeks
and bottlenecked assignments with starter code in the remaining
weeks. OOP2 is a second-year Java object-oriented programming
course with trivial and bottlenecked assignments. GP34 is an elec-
tive Java game programming course in which the assignments
either have starter code or are bottlenecked. The course is usually
taken by students in the third or fourth year of their degrees.

While selecting common segments for this test, we introduced
two constraints. If a segment occurs in multiple assignments (e.g.
code for compilation or intuitive code), it is tested only on one
assignment because the impact of removing it would be similar in
the other assignments. This also applies if a program has several
segments in the same category, such as class constructors in Java.

For the purpose of comparison, MOSS was set to report all
matched segments per program pair except those that are excluded
with code segment removal; this was done by giving the m argu-
ment, which defines how many times a code segment may appear
before it is ignored, a value larger than the number of student sub-
missions. Further, MOSSwas set to retrieve all program pairs with at
least one matched segment by giving the n argument a value larger
than the total number of possible pair combinations, calculated as
in equation 2, where nsubs is the number of submissions.

npairs =
nsubs × (nsubs − 1)

2
(2)

JPlag was set to retrieve all program pairs with at least one
matched segment by giving the m argument (maximum number
of retrieved pairs) a value larger than the total number of possible
pair combinations. For short irrelevant segments (those that do not
change the metrics on standard settings), higher sensitivity was
used by assigning the t argument a value of 2. In addition, all Java
common segments were submitted as complete class code, as that
appears to be the only form in which segments can be flagged for
removal.

It should be noted that the configuration of both tools was based
on manual investigation of the tools’ behaviour. During that investi-
gation, we also encountered a few irregularities in the tools’ removal
mechanisms. However, the irregularities seem to be minor, and not
to warrant the in-depth examination of the tools’ implementation
that would be required to explain or eliminate them. Additionally,
many of the irregularities are similar to those reported by Ðurić and
Gašević [12], who report findings related to JPlag’s code matching
algorithm – the same algorithm that is used in the removal of com-
mon segments, which helps to explain why similar irregularities
were observed in both studies.

3.5 Phase 4, Exploratory: Reasons for
Providing Code when Setting an
Assignment

In the fourth phase we conducted an informal survey of computing
educators to collect data on how and why they provide students
with code when setting assignments. Specifically, we asked those

who did provide code with assignments to explain what sort of
code they provided, and, in particular, why they chose to provide
that code. The survey was sent to the sigcse-members mailing list,
and the response from the list administration indicated that there
were 1471 recipients. The results of this survey are discussed in
section 6.

4 DIFFERENT TYPES OF CODE SEGMENT
CONSIDERED FOR EXCLUSION

To address research question 1, we report the findings of an ex-
ploratory analysis of assignments from the courses listed in table 1.
In this analysis we sought examples of common code segments for
each of the general reasons listed in table 2, with a view to identi-
fying possible candidates for code exclusion. The code segments
we considered ranged in granularity from a single statement to a
method or function. A thorough knowledge of the assessment task
and the course in which it was used was essential for this analysis.

As explained in section 3.2.2, the eleven detailed reasons first
postulatedwere combined into four broader reasons: code necessary
for compilation, code reflecting an intuitive approach, code that
can be legitimately copied from another source, and code that is
suggested by somebody with whom the student has come into
contact. These groups are shown in table 2, and the reporting of
the findings is organised according to these groups.

4.1 Code Needed for Compilation
Some code segments are common because they are required for
compilation purposes. These code segments are often language-
dependent, so we will discuss in turn each of the nine languages
that are covered in table 1.

In C and C++, import statements, which inform the compiler that
the program uses external libraries, are common for compilation
purposes; the language’s built-in functions are stored as external
libraries, even for simple tasks such as console input and output.
The main method header is also common to all assignments that
are designed to have main programs.

Import statements and main method headers are also common
in Java and C# solutions, along with a class declaration due to the
object-oriented nature of the language: all programs, even essen-
tially procedural ones, are written in class files. These common
segments can be automatically generated by an IDE if an appro-
priate one is used, in which case they will share even their fine
details.

Some Java and C# compilation-purpose segments are common
only with particular assignment requirements. Examples are Java’s
Scanner declaration for solutions requiring console input and a
try-catch or throws statement for assignments requiring exception
handling (e.g., reading files).

Assignments in the course ADS2, a data structures course taught
in Java, require the students to use template code generated by a par-
ticular tool. In such cases, the common template code is considered
as required for compilation purposes.

Common segments can also result from the use of framework-
based libraries. The library libGDX, used in course GP34, requires
the user to implement abstract methods for game functionalities.
These methods are often implemented either in the same way, since



their main purpose is just to enable a functionality, or as empty
methods since Java requires all abstract methods to be implemented
regardless of whether they are used.

We found no common segments for compilation purposes in
the Python courses in our data set. Python requires no specific
syntax for the main program entry point, and the assignments in
the courses analysed were console-based and typically required
no additional libraries. The same applied to the courses that use
Scheme, Haskell, SQL, and Prolog.

It should be noted that segments for compilation purposes are
irrelevant for raising suspicion only if they are commonly used
segments. A very unusual set of import statements might help to
identify collusion, for example if only two student submissions
include such an import. This also applies to the listing of import
statements in an uncommon order.

4.2 Intuitive Implementation
The general reason ‘intuitive implementation’ encompasses six of
the eleven detailed reasons why code segments might be similar:
the only likely way to accomplish a task; the only way taught to
accomplish a task; easier to memorise than other code alternatives;
shorter than other code alternatives; habit from previous experi-
ence; and suggested by the nature of the task.

Some segments are common because they are the only likely
way to accomplish a task. Many of these involve simple logic, such
as determining the larger of two values, traversing an array, or
initialising a common data structure. These segments tend to be
more common in first- and second-year assignments such as those
in IP1d, IP1e, and ADS1, as students at those levels are generally
new to programming.

Common segments will sometimes be strongly linked to the
assignment design. In IR34, an information retrieval course, we
found a common segment to calculate run-time memory in an
assignment dealing with exactly that topic. Common segments can
also have different scope; in data structures and object-oriented
programming courses, such as FP1, ADS2, and OOP2, the segments
are often standalone methods rather than part of the main method.

Some common segments, while not the only likely way to accom-
plish a task, are the only way that has been taught to the students.
Examples include code for file input and output (IR34), data pars-
ing (ML34), adding game resources (GP34), and defining instance
structures for classification in machine learning (ML34).

Occasionally, a common segment might reflect the only tech-
nique taught to that point in the course. For example, in IP1d, the
while loop is introduced a week before the for loop, and it is ex-
pected that the while loop will be the only looping option used
during that week. This also applies to more advanced algorithms
such as searching and sorting.

Some code segments might be common because they are the
most obvious implementation, despite being neither the only al-
ternative for their purpose nor the only alternative taught. These
segments might be thought of as suggested by the nature of the task.
For example, in an IP1d assignment that asks students to swap two
variables, most of the solutions involve an additional variable, al-
though an alternative approach not requiring an additional variable

has also been taught. Another example, from IP1a, is an assign-
ment task to check whether three lines can form a triangle. Most
solutions check each possible combination of sides to determine
whether the sum of the lengths of two lines is greater than the
length of the third. That approach is more obvious than identifying
the maximum value of the three lengths and checking whether it is
smaller that the sum of the lengths of the other two sides.

The same phenomenon can be observed at a substantially greater
scale in larger assignment. The major take-home assignment in
course AP2 asks students to write a program to implement a partic-
ular dice game. For the display of the dice, most students extend
earlier lab exercises and draw each face of each die as one or more
filled circles appropriately located within a square. This leads to
many common code segments with a six-way selection statement
and sequences of one to six circle-drawing commands.

Obvious common segments can look more alike if the program-
ming language has a particularly repetitive syntax, such as the
use in Scheme of s-expressions, parenthesised lists with a prefix
operator followed by operands, which give rise to many common
segments in course PL34.

Some assignments are completed with the help of code gener-
ation from an application wizard, as in courses IR34 and GP34.
The generated code segments might have minimal variation across
student submissions, and can therefore be flagged as common. Ex-
amples of this phenomenon include GUI-creating code generated
by Visual Studio (AP2) and getter/setter methods.

Some code segments can be accessible from expected sources
and can therefore be common among student submissions if they
are readily adapted to the assignment task. The segments can be
copied from either the assignment specification (DS1) or the course
slides (IR34, GP34). Sometimes they might be provided as images,
requiring the students to rewrite the code and practise their typing
and debugging skills. Common segments of this sort can also be
the result of combining several shorter segments provided in the
teaching materials.

Previously-created code files can also be legitimate sources of
copying. An offering of the game programming course GP34 taught
the students to create a simple game engine, with code that could
be reused for each assignment. Likewise, some lab assignments
in courses IP1a and IP1b could be completed based on previous
assignment solutions, and the reuse of previously written code was
permitted in IP1c and ACP1.

In some offerings of IP1c and ACP1, students were permitted
at various stages to study the model solution while completing an
assignment [39]. The goal was to help students when they were
stuck on the assignment. In those versions of the course, parts of
the model solution code became common in students’ submissions.

Previous habit can also contribute to the commonness of some
code segments. For example, in some advanced and elective courses
(IR34, GP34, and ML34), students often include getter and setter
methods in their code even though these methods are not needed.
They may do this due to habits acquired in prior object-oriented
programming courses.

Some segments can be common, or at least more common, at
structural or surface level if they are either more self-explanatory
or shorter than other alternatives. For example, in IP1d, switch-case
is less preferred than if-else in cases where both are applicable; it is



simpler for students to remember the latter, as it is more broadly
applicable than the former. Another example is the selection of
identifier names in an assessment about a warehouse management
software in ACP1, with most of the student submissions having
warehouse-related class names.

4.3 Suggested Implementation
Code segments can be common if their use is explicitly instructed.
Some of the assessment specifications include details such as input
and output patterns, guiding algorithms, expected code structure,
and expected implemented algorithms.

Input and output patterns are often provided for console-based
assessments. Simple input and output patterns, such as accept-
ing four integers, result in similar code segments among student
submissions. This is especially the case when the students have
been taught few alternatives, as in many first-year courses, includ-
ing IP1a, IP1b, IP1c, and IP1d. A similar situation can arise when
the programming language is fairly simple, as is Python. On the
other hand, two-dimensional graphical input and output patterns
in game programming (GP34) are less likely to result in common
code segments as they have many possible implementations and
often involve advanced logic.

Guiding algorithms can result in similar code segments if they are
either simple, very clear, or have limited implementation variants.
In some assessments, as in courses IP1a, IP1b, IP1c, IP1d, and ACP1,
students were given algorithms in which each statement either is
very specific or has a direct translation to code.

Expected code structures are typically given in object-oriented
assessments, and can tend to lead to similar code implementations.
The structure commonly includes class hierarchies, class names, and
method definitions with specified signatures. The structures can
be delivered as detailed explanations, when the lecturer wishes to
model object-oriented design without explicitly teaching it (ADS1,
ADS2, DS1). Alternatively, it might be delivered as a class diagram in
courses, such as OOP2, that assume the students have been taught
how to read class diagrams.

Expected implemented algorithms are often given in advanced
courses such as SD2, SP2, and ADS2, and can lead to similar imple-
mentations. For example, an assessment asked students to imple-
ment the divide and conquer algorithm, and most of the solutions
display the same aspects of the algorithm, such as the number of re-
cursive calls, the basis condition, and the ‘merging’ part. The same
applies to various graph-processing algorithms such as breadth-first
search and depth-first search.

Some common code segments can result from instructions given
at the course level. In some first-year courses with Python in IP1d,
most students encapsulated their main program statements as func-
tions, as they had been told to do during the course.

Additional code files might be expected to be copied if the lec-
turers want the students to focus on some main task at hand and so
provide other parts of the solution. Two offerings of the introduc-
tory programming course IP1d gave students an additional code file
containing a function to generate a ‘static’ two-dimensional array.
Many lab assignments in courses IP1a and IP1b provide code for

accepting the input and displaying the output. In ACP1, the instruc-
tor provides starter code for some assignments, leaving students to
complete relevant methods to achieve the desired functionality.

Moving beyond explicit instructions and files, some segments
are common due to suggestions given by people who have more
knowledge than the students: lecturers, tutors or teaching assistants,
and senior colleagues. As we have no information about how our
students interacted with their seniors, no examples can be given
for this last group of people.

In our data set, many common code segments in this category
were suggested by the lecturers. For example, in elective courses
with object-oriented design (GP34 and ML34), getter and setter
methods were suggested while the students were working on the
assessments, but were not required or graded. In an offering of game
programming (GP34), a wrapper class for a music player was also
encouraged even though students could play background music
without that class.

Segments can also be suggested by tutors or teaching assistants,
and students helped by the same tutors or teaching assistants will
tend to have similar segments. In one offering of IP1d, the lecturer
noticed that some teaching assistants suggested starting the traver-
sal loop at index 0 rather than 1. Subsequent discussion showed
that the suggestion came from their experience in advanced courses
(with Java or C#) where such loops were often required.

There is necessarily some overlap between this category and
intuitive implementation. The main difference that we see is that
with suggested implementation there is at least one other way of
solving the task, while with intuitive implementation there is not –
at least at the level of programming the students are expected to
have attained. To illustrate this, a C programming task to accept
four integers can be solved by using either four scanf statements
with one %d or one scanf statement with four instances of %d. If
the lecturer teaches both ways, but focuses on one of them, the
focused one becomes a common segment by way of suggested
implementation. If the lecturer teaches only one way, that approach
becomes a common segment by way of intuitive implementation.

4.4 Legitimately Copiable
In some courses, particularly at the advanced level, students are
permitted and perhaps encouraged to find and adapt code that is
pertinent to the assessment task. In such cases, it might be expected
that several students will find and use the same external source.
Depending on the extent of adaptation required, segments of their
programs might thus be similar, but for a reason that is acceptable
according to the course rules. This does not apply to any of the
courses in our data set, but does apply to other courses that we
teach; for example, a major open-ended assignment in a mobile
app development course, where students are required to decide for
themselves what their app will do, and are encouraged to find (and
to reference) publicly accessible code on which they can model
their own.

4.5 Summary
This section has explained and summarised our qualitative obser-
vations about types of code segment that could be marked for ex-
clusion from code similarity detection, based on the programming



assignments that we have gathered and analysed. It is expected
to help lecturers in determining which common code segments
should not be used to raise suspicion of programming plagiarism
and collusion and should therefore be removed from code similarity
detection.

5 CODE SEGMENTS CONSIDERED FOR
EXCLUSION BASED ON ASSIGNMENT
CHARACTERISTICS

This section explains the five assignment styles mentioned in sec-
tion 3.3.1 and suggests what types of common code segment are
likely to be found in each. By way of illustration, table 4 shows
which styles of assignment are found in each of the courses in our
data set. While there are no clear-cut distinctions, there appears
to be a tendency for the courses in earlier years to include trivial
and bottlenecked assignments, while broadly specified and open-
ended assignments seem more likely to be found in more advanced
courses.

5.1 Trivial Assessments
Trivial assignments, which are often found in introductory courses,
can be implemented by only a severely limited number of reasonable
programs. Examples include writing a program that displays ‘Hello,
world!’, writing a function that computes the volume of a sphere,
writing a program that counts the vowels in a string – indeed, any
programs with an accumulator pattern – and so on.

Code similarity detection is seldom worthwhile for trivial assess-
ment tasks, because of the expectation that most or all submitted
programs will be close to identical. Code would be expected to
be common because it is needed for compilation, is an intuitive
implementation, and is probably a suggested implementation.

One example from the introductory programming course IP1f
asks students to write a function that calculates the distance trav-
elled by a projectile given the elevation and magnitude of its initial
velocity. The answer is a simple function that applies the relevant
formula and returns the result. In addition, the programs should all
import the relevant functions and constants from the appropriate
library. Therefore all student programs will be effectively identical.

A potential benefit of code similarity detection with trivial as-
signments is to draw the marker’s attention to submissions that
are similar to one another while being markedly different from
most other submissions. An assignment in IP1e asked students to
determine the number of days between two dates in January or
February. Of more than 150 submissions, most subtracted the day
of the first date from the day of the second, then added 31 if the
first date was in January and the second in February. A somewhat
innovative alternative was to create a list of the numbers from the
day of the first date to 31, a list of the numbers from 1 to the day of
second date, and a list of the numbers from the day of the first date
to the day of the second date. If the first date was in January and the
second in February, the program displayed the sum of the lengths
of the first two lists; otherwise it displayed the length of the third
list. This approach drew clear attention to the two submissions that
incorporated it.

5.2 Bottlenecked Assessments
Bottlenecked assessments are tasks that are so highly constrained
as to limit the possibility of varying solutions. Examples might be
to write a program to extract data from a particular file, or to write
an SQL query to select all students who have a grade-point average
higher than 3. The best that code similarity detection tools can offer
for this category of assignments is to identify segments that have
been copied and pasted directly.

For example, a second-year course in the theory of computation
(TC2) asked students to write a function that solves the Dutch flag
problem [11, 34] – given a number x, permuting a list into three
sections: the numbers less than x, the numbers equal to x, and the
numbers greater than x. As it was clear that the instructor required
students to implement a divide-and-conquer approach, the function
would be expected to include several recursive calls to itself.

Bottlenecking can also arise in specific sections of longer pro-
grams. As mentioned in section 4.2, a major take-home assignment
in course AP2 requires students to implement a particular dice game.
Most solutions involve drawing faces of dice, so it is inevitable that
many of them will include six-way selection statements in which
each branch contains between one and six instructions to draw cir-
cles. These common segments are only a small part of the complete
solution, but are clearly a prime target for code similarity detectors.
However, they represent a reasonably obvious way to implement
the display of dice faces, and so should not be taken as evidence of
inappropriate copying.

Expected similarities among bottlenecked submissions would be
code needed for compilation, intuitive implementation, and possibly
suggested implementation.

5.3 Assessments with Starter Code
Assignments that require students to build solutions from some
instructor-provided code base will clearly result in solutions with
commonalities. However, students are typically given more flexibil-
ity in how they build their solution from the base case than with
trivial or bottlenecked assignments. For example, students may be
required to follow a certain design pattern, and perhaps even to
implement specific methods whose functionality is described; but
the manner in which they solve the problem, employ cohesiveness
and/or coupling of individual modules, and use helper methods
may be entirely up to them. Assignments of this type appear to be
well suited to automatic code similarity detection. Setting a low
similarity threshold (e.g. less than 25% in MOSS) gives unhelpful
results, essentially flagging code segments that the instructor would
expect to see as being similar; but higher thresholds (e.g. above 40%
in MOSS) often prove to be useful for code similarity detection. For
assignments of this type, it is desirable for code similarity detection
tools to permit the instructor to provide a solution and to tag the
code segments to be excluded from similarity checking.

An assignment from a third-year artificial intelligence course
(IAI3) requires various search heuristics to be used in the A*-path
search algorithm. The starter code includes complete definitions
for two heuristics and documentation specifying two more that the
students are to implement. With such an assignment it would be
helpful if the similarity detection software could be set to avoid
capturing:



Table 4: Courses (table 1) and the styles of assessment task (table 3) that they use; each task can fall into several style categories

ID Name Year Trivial Bottle- Starter Broadly Open-
necked code specified ended

IP1a Introduction to Programming 1 ✓ ✓ ✓

IP1b Introduction to Programming 1 ✓ ✓ ✓

DS1 Data Structures 1 ✓ ✓

ACP1 Advanced Course in Programming 1 ✓ ✓ ✓

FP1 Foundations of Programming 1 ✓ ✓

IP1c Introduction to Programming 1 ✓ ✓ ✓

OOP12 Object-Oriented Programming 1,2 ✓ ✓

IP1d Introductory Programming 1 ✓

ADS1 Algorithms and Data Structures 1 1 ✓

IP1e Introduction to Programming 1 ✓ ✓

IP1f Introduction to Programming 1 ✓ ✓

ICS1 Introduction to Computer Science 1 ✓

SP2 Systems Programming 2 ✓ ✓

AP2 Application Programming 2 ✓ ✓

ADS2 Algorithms and Data Structures 2 2 ✓

OOP2 Object-Oriented Programming 2 ✓

SD2 Software Design 2
TC2 Theory of Computation 2 ✓ ✓

N3 Networking 3 ✓

PPL3 Principles of Programming Languages 3 ✓ ✓

LSD3 Large System Design 3 ✓

IAI3 Introduction to Artificial Intelligence 3 ✓

NM3 Numerical Methods 3 ✓

IDB3 Introduction to Databases 3 ✓

CG3 Computer Graphics 3 ✓ ✓ ✓

IR34 Information Retrieval 3,4 ✓ ✓

GP34 Game Programming 3,4 ✓ ✓ ✓

ML34 Machine Learning 3,4 ✓ ✓

PL34 Programming Languages 3,4 ✓

• the completed function definitions
• the documentation for the functions that students need to
complete

• any extra code resulting from specific instructor require-
ments that would lead to situations similar to those described
in section 5.2.

The starter code provided in such assignments is clearly a
(strongly) suggested implementation, while there remains scope for
common code needed for compilation and intuitive implementation.

5.4 Broadly Specified Assessments
A broadly specified assessment might specify a design pattern or
a specific set of requirements that focuses the assessment in a
particular direction. For example, a design course, LSD3, provides
a generalised set of technical requirements, asking students to
create an application of at least three sub-systems, which are easily
swappable on the fly, are diverse, and can handle stimuli received
while respecting the modelled domain. These are imposed design
constraints, as also found in a graphics course, CG3, whose students
are required to create a game in C++ that includes at least two
moving objects. The dice game of AP2mentioned in sections 4.2 and

5.2 is another example of a broadly specified assignment. Students
are given the rules of the game, but no guidance as to how it is to
be implemented beyond specifying that it must be playable both by
two people and by one person against the program. Assessments of
this type are highly suitable for similarity detection tools. Being so
broad in nature, they are unlikely to be independently implemented
in substantially similar ways. Nevertheless, as explained earlier,
they can be subject to common code segments of the intuitive
implementation type, as well as the ever-present code needed for
compilation.

5.5 Open-Ended Assessments
Open-ended assessments are ones with few or no restrictions, with
very little likelihood of converging to a similar solution. In CG3,
students are asked to create a game and demonstrate it at the end
of the semester, with no additional requirements. In an earlier
offering of IP1e, students were asked to ‘create a program that does
something interesting with pictures and perhaps also with sound ...
you are expected to show your programming competency as well
as your creativity’. Assignments of this type are highly suitable for
similarity detection tools to provide the instructor with possible



insights into collusion, as the developed solutions should differ
dramatically. Similarity levels above about 25% are often indicative
of possible collusion. There is still, of course, scope for common
segments of code needed for compilation; if the assignment permits,
there is also scope for legitimately copiable common code segments.

6 REASONS FOR PROVIDING CODEWHEN
SETTING AN ASSESSMENT

The working group asked a number of computing educators whet-
her they include code when setting programming tasks, and if so,
why. We received eleven responses. The many helpful explanations
provided in those responses can be condensed into five categories.

6.1 Time/Focus
The time allowed for the task is too short for students to complete
it all, or students are not yet at a level where they would be capable
of completing it all. In such cases, the instructors might provide
the bulk of the required code, leaving students to work on parts
that are specific to the lesson at hand. Some instructors provide
the easier parts of the code, not wanting the students to waste
their time on it; others provide the harder code, which is currently
beyond the students’ capability. In either case, respondents agreed
on the importance of showing students well written code in the
expectation that they will write their own code in a similar manner.

6.2 Code Already Seen
Some code provided with assignments has already been seen by the
students, either verbatim or in a similar form. This might be code
that was provided in the textbook, in the lecture material, or in class
exercises. Alternatively, it might be a standard solution to an earlier
stage of the same assigned task. When instructors show program
code to their students and then ask their students to write code,
there is often an expectation that students will model their own
code on that provided by the instructor. This will clearly vary with
the size and nature of the task. If students are asked to implement a
binary tree, they will probably have been shown code to do this, and
their own programs will generally be markedly similar to that code.
On the other hand, if students are asked to solve a new problem
that has not been discussed in class, their programs are likely to
show far more variety.

6.3 Facilitating Assessment
Code can be provided to ensure that students’ submissions can all
be assessed in a uniform manner. This is commonly the case when
students’ programs are to be automatically tested and/or graded.
The submissions will be run through one or more scripts testing
them with a variety of inputs, and they must include the methods
that the scripts seek to execute. The same situation arises, although
less frequently, with manual grading, where the person doing the
grading expects to call specified methods in a specified way. In all
of these cases, it is common for the instructors to provide students
with the skeletons of the methods in question, to try to ensure
that the method signatures will remain the same in the students’
submissions.

6.4 Modelling/Reading
Some instructors provide code as a model to guide students in good
programming practice, or to give them experience in reading and
understanding well written code. A number of respondents em-
phasised this reason for providing code as parts of assignments.
It is important for students to be able to read code, and providing
code enhances their opportunity to do that. Furthermore, the code
provided is well written and thus serves as an exemplar. One re-
spondent also observed that “When asking students to work from
a blank screen, we are asking them to do design ... [which] is an
advanced exercise.” Another pointed out that code can be provided
to teach students about language features that might not be worth
explicitly teaching in a class.

6.5 Code Maintenance
Many courses deal with issues of code maintenance. In such courses,
students will typically be given a large body of code and asked to
make relatively minor changes to the program as a whole. A similar
situation often arises in, for example, courses on operating systems
and compiler design, where students are asked to add specified
functionality to large and otherwise complete programs.

6.6 Reasons for Expecting Common Code
While they were asked to explain why they provide code to their
students when setting assessment tasks, some respondents also
explained why they would expect their students’ programs to in-
clude common code segments that had not been explicitly provided.
These explanations broadly aligned with our own deductions as
expressed in section 3.3. Examples include the use of programming
environments that create scaffold code and the use of common
libraries pertinent to the assessment task.

7 FREQUENCIES OF OCCURRENCE OF
COMMON CODE SEGMENTS

This section reports and analyses normalised frequencies of occur-
rence of common code segments, checking whether they depend
heavily on the assignment design. The analysis was conducted on
a small sample of courses with fairly varied assignments. Figure 1
shows that the frequencies vary across courses in terms of both the
average value and the range. This is expected as each course has
its own assignment design.

Assignment design seems to be a bigger factor than the com-
plexity of the covered materials in determining the frequencies of
occurrence of common segments. IP1d was expected to have the
highest average occurrence frequency because it is an introductory
programming course, the covered materials are so simple, and the
assignments tend to be trivial. However, it turns out that DS1, a
second-semester course that involves many suggested segments,
has a higher average frequency of occurrence. OOP2, whose assess-
ments also suggest specific implementations, has a higher average
frequency of occurrence than ADS1, with a broader range, even
though OOP2 is the more advanced of the two courses.

The most common segments are not always found in all student
submissions, even if they are strongly suggested code segments
such as those in ADS1 and ADS2. Because of either human error
(not paying attention to the assessment specification) or lack of



Figure 1: Distribution of normalised frequencies of occur-
rence for IP1d, ADS1, DS1, ADS2, and OOP2 as a box plot
with whiskers representing the maximum and the mini-
mum values excluding outliers

time, not all students copy the code into their solutions, especially
when the segments are designed to be used near the end of the
assessment task.

8 IMPACT OF REMOVING CODE SEGMENTS
FOR EXCLUSION

Wehave argued in this report that common code segments of certain
types should be removed from consideration by code similarity
detection software, and that such removal would make it easier
for the marker to assess program pairs for evidence of collusion or
plagiarism. To address research question 2, we test that assertion
by removing these common segments and measuring the impact
on the similarity reports generated by similarity detection tools.
Section 3.4 explains that the testing was carried out on a selection
of four courses from our data set, and also explains the method
used to determine the impact of excluding these segments from
similarity detection. A number of common segments were identified
for testing in the assignments of each course, as shown in table 5.

8.1 Reduced Number of Matched Lines
Fewer than half of the tested segments lead to a reduction in the
number of matched lines in MOSS (figure 2). Large reductions
typically occur with long common segments such as java_classes
and java_methods. This is expected as longer segments mean more
code that can be excluded from student submissions.

Nevertheless, the reduction is not proportional to the segment
length. For example, though the java_gettr_settr line count is two
thirds of java_methods’s, the former reduces less than 1% ofmatched
lines while the latter reduces about 36%. This also applies when
the length is based on source code tokens; java_gettr_settr still re-
sults in a far smaller reduction of matched lines than java_input,
although their numbers of tokens are similar (54 and 55 tokens).
The inconsistency might be caused by limitations of the removal
mechanism: typically, the common segments are selected and ex-
cluded from student submissions via a non-optimal string matching

Figure 2: MOSS, reduced number of matched lines on af-
fected code segments

algorithm without fully considering the context (e.g., whether they
are within methods).

Some tested segments do not affect the number of matched lines
as they are shorter than those that do show a reduction. However,
it is interesting that java_algo shows no reduction despite having
the same number of lines (10) as java_input. Again, this might be
caused by limitations of the removal mechanism. It is also possible
that the MOSS preprocessing removes or generalises specific parts
of the code, shortening the segment and subsequently making it
undetectable for removal.

A two-tailed paired t-test with 95% confidence rate shows that
in MOSS, the reduction of matched lines is not significant across
the tested common segments.

Using JPlag, figure 3 shows that most of the segments (26 of
29) lead to a reduction in the number of matched lines. Half of the
segments are those that show reductions in MOSS, and in most
cases the reduction seems to be more substantial with JPlag. For
example, java_classes shows a reduction of 12% more matched lines.

Three segments do not affect the number of matched lines with
JPlag. The segment c++_import is considered too short for starter
code even with the highest sensitivity, achieved by assigning the t
argument a value of 2. The segments java_class and java_package
are both recognised as valid starter code but show no impact. It
is possible that JPlag ignores the segments by default as they are
expected to be common and are not related to program flow.

JPlag’s removal mechanism seems to be more sensitive than that
of MOSS for dealing with different kinds of common segment. On
most occasions, the removal affects the resulting similarity report
and the reduction is statistically significant: the p-value is less than
0.001 when applying a two-tailed paired t-test with 95% confidence
rate.

As we did not validate whether all segments removed by JPlag
are the common ones, JPlag’s performance might be a consequence
of the way it implements the removal mechanism, identifying seg-
ments as common that we would not see as common, and subse-
quently removing them from matching. Further investigation is
required to validate this.



Table 5: Tested common segments for measuring the impact of code segment removal

ID Description Course Segment type Lines Submissions
Total Avg lines

c_algo Simple expression IP1a Intuitive, suggested 14 100 15
c_loop_1 Array traversal IP1a Intuitive 4 129 29
c_if If statement IP1a Intuitive 3 166 28
c_loop_2 Loop traversal IP1a Intuitive 11 95 29
c_template Template code for IP1a Suggested 34 85 70

linked list
c++_input Input statements DS1 Suggested 17 54 109
c++_header Header file (.h) DS1 Compilation 13 52 65
c++_func_1 List initialisation DS1 Suggested 4 54 132

function
c++_import Import statement DS1 Compilation 1 54 132
c++_algo Algorithm to append item DS1 Suggested 11 47 163

to linked list
c++_func_2 Memory allocation DS1 Intuitive 7 47 163

function
c++_func_3 Memory deallocation DS1 Intuitive 4 47 163

function
java_input Input statements OOP2 Suggested 10 28 25
java_output Output statements OOP2 Suggested 5 28 25
java_class Class declaration OOP2 Compilation 2 28 25
java_main Main method header OOP2 Compilation 2 28 25
java_method Class constructor OOP2 Intuitive 4 26 78
java_methods Simple arithmetic OOP2 Suggested 29 25 87

methods
java_algo Algorithm for counting OOP2 Intuitive 10 35 37

vowels
java_classes Trivial classes OOP2 Intuitive 78 34 118
java_constant Static constant OOP2 Intuitive 1 35 43

declaration
java_gettr_settr Getters and setters OOP2 Intuitive 19 36 337
java_try_catch Try-catch statement OOP2 Compilation 4 31 33
java_import Import statement OOP2 Compilation 1 31 33
java_package Java package statement GP34 Intuitive, compilation 1 8 435
java_imports Java import statements GP34 Compilation 3 8 435
Java_lib_main Java main method to GP34 Intuitive, compilation 18 8 660

run a game library
java_impl_mthds Java library required im- GP34 Compilation 17 8 660

plemented methods
java_base_class Java base class given by GP34 Intuitive 56 8 568

lecturer

8.2 Reduced Number of Retrieved Program
Pairs

Figure 4 shows that only six common segments reduce the number
of retrieved program pairs with MOSS, and these segments are
among those that have an impact on the number of matched lines.
The greatest reduction occurs with java_classes as the assessment
focuses mainly on implementing a class diagram with many simple
methods, and the common segment is almost the whole of the
expected solution. This is followed by c++_header, for the same
reason.

The reduction, however, is not statistically significant according
to a two-tailed paired t-test with 95% confidence rate.

When testing with JPlag, figure 5 shows that more common
segments reduce the number of retrieved program pairs. Five of
the segments (c_algo, c++_input, c++_header, java_methods, and
java_classes) also reduce the number of retrieved program pairs
in MOSS, but in each case except c++_header, JPlag leads to the
greater reduction.

JPlag’s reduction is statistically significant according to a two-
tailed paired t-test with 95% confidence rate, with a p-value of 0.04.



Figure 3: JPlag, reduced number ofmatched lines on affected
code segments

Figure 4: MOSS, reduced number of retrieved program pairs
on affected code segments

Strengthening a finding from the previous subsection, JPlag seems
to be more robust and/or to use a less strict removal mechanism.

9 REFLECTIONS ON USING CODE
SIMILARITY DETECTORS

Code similarity detection tools can provide an efficient and effective
way to check student programs for similarity, whereas manual
scanning can be labour-intensive and error-prone. However, these
tools vary in the features they offer, the way they detect similarity,
and how the results are reported to the user. Here we provide some
reflections on the tools that we used in our study.

MOSS and JPlag are two common similarity detection tools [38]
that are executable via command line instructions. MOSS covers
a broader range of programming languages (25), which might be
useful for institutions that teach programming in many languages.
It also features a number of third-party supports, some including

Figure 5: JPlag, reduced number of retrieved program pairs
on affected code segments

GUI-based client applications to simplify the scripting process. Fur-
ther, some studies [2, 16, 19] suggested that MOSS might be more
effective than JPlag.

However, MOSS has some drawbacks that might tend to make
JPlag preferable. First and foremost, in many regions and countries,
including Europe and Australia, it is not legal to use MOSS, because
this entails uploading personal data to servers in the United States,
which has less strict data protection laws than those jurisdictions.
Second, uploading student submissions and having the similarity
report online might lead to other privacy issues, even though the
similarity reports are not available to web crawlers (such as those
used by search engines) or to other people who have not been given
the link. Third, the MOSS server can be busy and respond slowly
to user requests. Some of our members were unable to get a single
response from the server over a period of nearly a week. While
this can be resolved by adding more resources, even an abundant
resource remains limited and there is no guarantee that it will be
able to accommodate all requests. Fourth,MOSS requires an internet
connection, which might not be available all the time, especially in
developing countries.

In terms of removing irrelevant segments, JPlag seems to be
more sensitive than MOSS (section 8). Further, JPlag highlights the
removed segments, which can be useful in checking whether the
exclusion works correctly.

Both MOSS and JPlag generalise all identifiers and remove com-
ments and white space. This means that irregularities in identi-
fiers, comments, and white space will not be flagged as points
of similarity although they are sometimes indicative of academic
misconduct. For example, suspicion on some student submissions
might be enhanced if they share out-of-context variable names such
asmyPersonalVariableOne ormickey_mouse . Similarity detection
tools with simpler preprocessing [14, 20, 22, 56] might be more
suitable for this.

Use of third-party libraries in assessment tasks can lead to more
false positives with both MOSS and JPlag. Such libraries often
introduce additional quasi-keywords, but these are regarded by the



tools as identifiers and are therefore replaced with more general
forms. Two examples of this in our data set are IP1e, which uses
Python with JES5, and IP1b, which uses Logo [1, 40].

10 DISCUSSION
Similarity detection tools are widely used by educators to detect
instances of plagiarism or collusion. The tools typically produce
a measure of similarity and a report highlighting sections of code
that are similar.

The similarity measure alone is a simplistic measure and should
not be used to decide whether plagiarism or collusion is likely to
have occurred.While the similar sectionsmight be due to plagiarism
or collusion, there are other reasons for code similarity. In our
investigation of the assignments of 29 programming courses we
found a number of acceptable reasons why code sections could be
similar, and many examples to illustrate these reasons.

It is therefore important that the code segments identified as sim-
ilar should be further investigated to determine how much of the
similarity is explainable and how much is suspicious. Culwin and
Lancaster [9] propose a process for detecting plagiarism and collu-
sion with a similarity detection tool, where they recommend that
educators manually perform similarity checking to check whether
the resulting similarity report is logically acceptable, and then per-
form investigation to determine whether the suspected submissions
are the result of plagiarism or collusion.

To provide a more accurate measure of suspicious similarity and
to expedite the process of detection, similar code segments that
are not cause for suspicion should be excluded prior to manual
or automated checking. The segments can be initially selected for
exclusion based on types of code segment (section 4), styles of as-
sessment (section 5), and insight gained from computing educators’
reasons for providing code when setting an assessment (section
6). A number of similarity detection tools facilitate the removal of
these segments by treating them as starter code. MOSS6 [47] and
JPlag7 [45], for example, enable the removal via b and bc options
respectively. Though the removal is not always accurate, it typically
reduces the observable content of the similarity report (section 8).

Some similarity detection tools are able to automatically re-
move segments whose frequency of occurrence exceeds a particular
threshold (e.g. the m option in MOSS). Although this might seem
more practical, we do not recommend it in general, as determining
the threshold is somewhat arbitrary, while the segments’ frequen-
cies of occurrence vary across assessments and courses (section
7).

For computing educators who manually check student programs,
identifying the expected common segments might still be beneficial
in helping them to identify which similarities should give rise to
suspicion and can subsequently be used as evidence of academic
misconduct.

11 CONCLUSION AND FUTUREWORK
Not all similar code segments should give rise to suspicion of plagia-
rism or collusion, as some such segments are expected to be found

5http://coweb.cc.gatech.edu/mediaComp-teach
6https://theory.stanford.edu/~aiken/moss/
7https://github.com/jplag/jplag

in many student submissions. As a consequence, the results of au-
tomated code similarity detection necessarily include indications
of similarity between programs that are genuinely independent. To
an educator seeking to identify academic misconduct, these simi-
larities constitute false positives. This report identifies steps that
can be taken to reduce the number of such false positives.

Our first research question asked what kinds of common code
segment should be excluded from code similarity detection. The
report summarises the types of code segment that we found to
be common but not indicative of plagiarism or collusion (section
4). We explain the reasons for their commonness and suggest in
what kinds of assignment they usually occur (section 5). Excluding
these segments will help to expedite the process of code similarity
detection, potentially increase its accuracy, and even mitigate the
risk of human error.

Our second research question asked how removing common
code segments affects the reports generated by code similarity
detection tools. Specified common segments can be excluded from
being considered as ‘matched’ in many similarity detection tools,
and according to our study their removal can result in fewer and
shorter matched code segments (section 8). This can increase the
effectiveness of code similarity detection as the removed segments
do not indicate collusion, and can increase the efficiency of the
manual checking as fewer matched segments are processed to be
displayed. This is particularly the case with large classes, where the
improvement in similarity checking should offset the initial work
required to identify the expected common segments and mark them
for exclusion.

The frequencies of occurrence of the segments vary according to
task-specific characteristics such as complexity and the presence of
starter code. We do not recommend blindly removing all segments
whose frequency of occurrence is higher than a particular threshold,
as determining an appropriate threshold is somewhat arbitrary and
prone to human error.

Due to the short time span of an ITiCSE working group (less
than six months), our study has a number of limitations that can
be addressed as part of future work. First, the impact of removing
common segments has not been evaluated from the user’s point of
view. A proper evaluation would need to consider the impact over
at least one academic semester, and further time would be required
to gain ethics approval, analyse the data, and write up the results.
Second, the report suggests the use of existing tools in removing
common segments. Further study into the limitations of those tools
for that purpose might be appropriate.

Further work could also be carried out to validate some of the
classifications that emerged from our work, such as the types of
code segment considered for exclusion (section 4) and the different
styles of assessment item (section 5).

One reviewer of this report suggested that the focus on detecting
academic misconduct might be misguided, and that it might be
possible for instructors to use code similarity detection to iden-
tify legitimate common code segments in order to improve their
instruction. This is a tantalising thought. While all that we have
read about code similarity detection tools concerns their use in
investigating possible academic misconduct, it is indeed possible
that other uses for the software can be found, and this might be an
avenue worth exploring.



ACKNOWLEDGMENTS
We thank Alex Aiken (Stanford University) for granting us a re-
search license for MOSS, speeding up our research progress and
allowing us to thoroughly test the large number of assessments col-
lected for this research study. We thank Andrew Wang (University
of Toronto Mississauga) for his technical support in building the
testing framework. We are also grateful to Lutz Prechelt, co-creator
of JPlag, for his helpful and constructive feedback on this report.

REFERENCES
[1] H Abelson and A DiSessa. 1981. Turtle Geometry: The Computer as a Medium for

Exploring Mathematics. MIT Press, Cambridge, MA.
[2] Alireza Ahadi and Luke Mathieson. 2019. A comparison of three popular source

code similarity tools for detecting student plagiarism. In 21st Australasian Comput-
ing Education Conference (ACE 2019). 112–117. https://doi.org/10.1145/3286960.
3286974

[3] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. 2006. Plaggie: GNU-
licensed source code plagiarism detection engine for Java exercises. In Sixth Baltic
Sea Conference on Computing Education Research (Koli Calling 2006). 141–142.
https://doi.org/10.1145/1315803.1315831

[4] França B Allyson, Maciel L Danilo, Soares M José, and Barroso C Giovanni.
2018. Sherlock N-Overlap: invasive normalization and overlap coefficient for
the similarity analysis between source code. IEEE Trans. Comput. (2018). https:
//doi.org/10.1109/TC.2018.2881449

[5] Kevin W Bowyer and Lawrence O Hall. 1999. Experience using “MOSS” to detect
cheating on programming assignments. In 29th Annual Frontiers in Education
Conference. https://doi.org/10.1109/FIE.1999.840376

[6] Steven Bradley. 2020. Creative assessment in programming: diversity and
divergence. In Fourth Conference on Computing Education Practice. 13:1–13:4.
https://doi.org/10.1145/3372356.3372369

[7] Daniela Chuda, Pavol Navrat, Bianka Kovacova, and Pavel Humay. 2012. The
issue of (software) plagiarism: a student view. IEEE Transactions on Education 55,
1 (2012), 22–28. https://www.learntechlib.org/p/64510

[8] Jason R Cole and Helen Foster. 2008. Using Moodle: Teaching with the Popular
Open Source Course Management System (2nd ed.). O’Reilly. 266 pages.

[9] Fintan Culwin and Thomas Lancaster. 2001. Visualising intra-corpal plagiarism.
In Fifth International Conference on Information Visualisation. 289–296. https:
//doi.org/10.1109/IV.2001.942072

[10] Martin Dick, Judy Sheard, Cathy Bareiss, Janet Carter, Donald Joyce, Trevor
Harding, and Cary Laxer. 2002. Addressing student cheating: definitions and
solutions. ACM SIGCSE Bulletin 35, 2 (2002), 172–184.

[11] Edsger Wybe Dijkstra. 1997. A Discipline of Programming. Prentice Hall, USA.
[12] Zoran Ðurić and Dragan Gašević. 2013. A source code similarity system for

plagiarism detection. Computer Journal 56, 1 (2013), 70–86. https://doi.org/10.
1093/comjnl/bxs018

[13] Christian Domin, Henning Pohl, and Markus Krause. 2016. Improving plagiarism
detection in coding assignments by dynamic removal of common ground. In
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems.
1173–1179. https://doi.org/10.1145/2851581.2892512

[14] Mohamed El Bachir Menai and Nailah Salah Al-Hassoun. 2010. Similarity detec-
tion in Java programming assignments. In Fifth International Conference on Com-
puter Science & Education. 356–361. https://doi.org/10.1109/ICCSE.2010.5593613

[15] Enrique Flores, Alberto Barrón-Cedeño, Lidia Moreno, and Paolo Rosso. 2015.
Uncovering source code reuse in large-scale academic environments. Computer
Applications in Engineering Education 23, 3 (2015), 383–390. https://doi.org/10.
1002/cae.21608

[16] Jurriaan Hage, Peter Rademaker, and Niké van Vugt. 2011. Plagiarism detection
for Java: a tool comparison. In Computer Science Education Research Conference.
33–46.

[17] Basel Halak and Mohammed El-Hajjar. 2016. Plagiarism detection and prevention
techniques in engineering education. In 11th European Workshop on Microelec-
tronics Education. 1–3. https://doi.org/10.1109/EWME.2016.7496465

[18] Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating. In 22nd Conference
on Innovation and Technology in Computer Science Education (ITiCSE 2017). 238–
243.

[19] Daniël Heres and Jurriaan Hage. 2017. A quantitative comparison of program pla-
giarism detection tools. In Sixth Computer Science Education Research Conference.
73–82. https://doi.org/10.1145/3162087.3162101

[20] Ushio Inoue and Shuhei Wada. 2012. Detecting plagiarisms in elementary pro-
gramming courses. In Ninth International Conference on Fuzzy Systems and Knowl-
edge Discovery. 2308–2312. https://doi.org/10.1109/FSKD.2012.6234186

[21] Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The Boss online submission
and assessment system. Journal on Educational Resources in Computing 5, 3,

Article 2 (2005). https://doi.org/10.1145/1163405.1163407
[22] Mike Joy and Michael Luck. 1999. Plagiarism in programming assignments. IEEE

Transactions on Education 42, 2 (1999), 129–133. https://doi.org/10.1109/13.762946
[23] Oscar Karnalim, Setia Budi, Hapnes Toba, and Mike Joy. 2019. Source code

plagiarism detection in academia with information retrieval: dataset and the
observation. Informatics in Education 18, 2 (2019), 321–344. https://doi.org/10.
15388/infedu.2019.15

[24] Oscar Karnalim and Simon. 2020. Syntax trees and information retrieval to
improve code similarity detection. In 22nd Australasian Computing Education
Conference (ACE 2020). 48–55. https://doi.org/10.1145/3373165.3373171

[25] Oscar Karnalim, Simon, and William Chivers. 2019. Similarity detection tech-
niques for academic source code plagiarism and collusion: a review. In Interna-
tional Conference on Engineering, Technology and Education. https://doi.org/10.
1109/TALE48000.2019.9225953

[26] Dragutin Kermek andMatija Novak. 2016. Process model improvement for source
code plagiarism detection in student programming assignments. Informatics in
Education 15, 1 (2016), 103–126. https://doi.org/10.15388/infedu.2016.06

[27] Anthony Kleerekoper and Andrew Schofield. 2019. The false-positive rate of auto-
mated plagiarism detection for SQL assessments. In First UK & Ireland Computing
Education Research Conference. 6:1–6:6. https://doi.org/10.1145/3351287.3351290

[28] Thanh Tri Le Nguyen, Angela Carbone, Judy Sheard, and Margot Schuhmacher.
2013. Integrating source code plagiarism into a virtual learning environment: ben-
efits for students and staff. In 15th Australasian Computing Education Conference
(ACE 2013). 155–164. https://doi.org/10.5555/2667199.2667216

[29] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing patterns and authentication in practical programming exams. In 21st
Conference on Innovation and Technology in Computer Science Education (ITiCSE
2016). 160–165.

[30] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. Gplag: detection of
software plagiarism by program dependence graph analysis. In 12th International
Conference on Knowledge Discovery and Data Mining. 872. https://doi.org/10.
1145/1150402.1150522

[31] Krista Longi, Juho Leinonen, Henrik Nygren, Joni Salmi, Arto Klami, and Arto
Vihavainen. 2015. Identification of programmers from typing patterns. In 15th
Koli Calling Conference on Computing Education Research (Koli Calling 2015).
60–67.

[32] Samuel Mann and Zelda Frew. 2006. Similarity and originality in code: plagiarism
and normal variation in student assignments. In Eighth Australasian Computing
Education Conference (ACE 2006). 143–150.

[33] Donald L McCabe, Linda Klebe Treviño, and Kenneth D Butterfield. 2001. Cheat-
ing in academic institutions: a decade of research. Ethics & Behavior 11, 3 (2001),
219–232.

[34] Colin L McMaster. 1978. An analysis of algorithms for the Dutch national flag
problem. Commun. ACM 21, 10 (1978), 842–846. https://doi.org/10.1145/359619.
359629

[35] Marko J Mis̆ić, Jelica Z̆ Protić, and Milo V Tomas̆ević. 2017. Improving source
code plagiarism detection: lessons learned. In 25th Telecommunication Forum.
1–8. https://doi.org/10.1109/TELFOR.2017.8249481

[36] Phatludi Modiba, Vreda Pieterse, and Bertram Haskins. 2016. Evaluating plagia-
rism detection software for introductory programming assignments. In Computer
Science Education Research Conference. 37–46. https://doi.org/10.1145/2998551.
2998558

[37] MaximMozgovoy, Kimmo Fredriksson, DanielWhite,Mike Joy, and Erkki Sutinen.
2005. Fast plagiarism detection system. In International Symposium on String
Processing and Information Retrieval. 267–270. https://doi.org/10.1007/11575832_
30

[38] Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-code similarity
detection and detection tools used in academia: a systematic review. ACM
Transactions on Computing Education 19, 3 (2019), 27:1–27:37. https://doi.org/10.
1145/3313290

[39] Henrik Nygren, Juho Leinonen, Nea Pirttinen, Antti Leinonen, and Arto Hellas.
2019. Experimenting with model solutions as a support mechanism. In First UK
& Ireland Computing Education Research Conference. 1–7.

[40] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., USA.

[41] Terence Parr. 2013. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf.
[42] Dieter Pawelczak. 2018. Benefits and drawbacks of source code plagiarism

detection in engineering education. In Global Engineering Education Conference
(EDUCON). 1048–1056. https://doi.org/10.1109/EDUCON.2018.8363346

[43] Jonathan YH Poon, Kazunari Sugiyama, Yee Fan Tan, and Min-Yen Kan. 2012.
Instructor-centric source code plagiarism detection and plagiarism corpus. In
17th Conference on Innovation and Technology in Computer Science Education
(ITiCSE 2012). 122–127. https://doi.org/10.1145/2325296.2325328

[44] James F Power and John Waldron. 2020. Calibration and analysis of source
code similarity measures for Verilog hardware description language projects. In
51st SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2020).
420–426. https://doi.org/10.1145/3328778.3366928

https://doi.org/10.1145/3286960.3286974
https://doi.org/10.1145/3286960.3286974
https://doi.org/10.1145/1315803.1315831
https://doi.org/10.1109/TC.2018.2881449
https://doi.org/10.1109/TC.2018.2881449
https://doi.org/10.1109/FIE.1999.840376
https://doi.org/10.1145/3372356.3372369
https://www.learntechlib.org/p/64510
https://doi.org/10.1109/IV.2001.942072
https://doi.org/10.1109/IV.2001.942072
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1093/comjnl/bxs018
https://doi.org/10.1145/2851581.2892512
https://doi.org/10.1109/ICCSE.2010.5593613
https://doi.org/10.1002/cae.21608
https://doi.org/10.1002/cae.21608
https://doi.org/10.1109/EWME.2016.7496465
https://doi.org/10.1145/3162087.3162101
https://doi.org/10.1109/FSKD.2012.6234186
https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1109/13.762946
https://doi.org/10.15388/infedu.2019.15
https://doi.org/10.15388/infedu.2019.15
https://doi.org/10.1145/3373165.3373171
https://doi.org/10.1109/TALE48000.2019.9225953
https://doi.org/10.1109/TALE48000.2019.9225953
https://doi.org/10.15388/infedu.2016.06
https://doi.org/10.1145/3351287.3351290
https://doi.org/10.5555/2667199.2667216
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/359619.359629
https://doi.org/10.1145/359619.359629
https://doi.org/10.1109/TELFOR.2017.8249481
https://doi.org/10.1145/2998551.2998558
https://doi.org/10.1145/2998551.2998558
https://doi.org/10.1007/11575832_30
https://doi.org/10.1007/11575832_30
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1109/EDUCON.2018.8363346
https://doi.org/10.1145/2325296.2325328
https://doi.org/10.1145/3328778.3366928


[45] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding plagiarisms
among a set of programs with JPlag. Journal of Universal Computer Science 8, 11
(2002), 1016–1038.

[46] Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. 2018. A comparison of
code similarity analysers. Empirical Software Engineering 23, 4 (2018), 2464–2519.
https://doi.org/10.1007/s10664-017-9564-7

[47] Saul Schleimer, Daniel SWilkerson, and Alex Aiken. 2003. Winnowing: local algo-
rithms for document fingerprinting. In International Conference on Management
of Data. 76–85. https://doi.org/10.1145/872757.872770

[48] Judy Sheard and Martin Dick. 2011. Computing student practices of cheating and
plagiarism: a decade of change. In 16th Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2011). 233–237. https://doi.org/10.1145/
1999747.1999813

[49] Judy Sheard, Selby Markham, and Martin Dick. 2003. Investigating differ-
ences in cheating behaviours of IT undergraduate and graduate students:
the maturity and motivation factors. Higher Education Research & Devel-
opment 22, 1 (2003), 91–108. https://doi.org/10.1080/0729436032000056526
arXiv:https://doi.org/10.1080/0729436032000056526

[50] Judy Sheard, Simon, Matthew Butler, Katrina Falkner, Michael Morgan, and
Amali Weerasinghe. 2017. Strategies for maintaining academic integrity in first-
year computing courses. In 22nd Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2017). 244–249. https://doi.org/10.1145/
3059009.3059064

[51] Judy Sheard, Simon, Angela Carbone, Daryl D’Souza, and Margaret Hamilton.
2013. Assessment of programming: pedagogical foundations of exams. In 18th
Conference on Innovation and Technology in Computer Science Education (ITiCSE
2013). 141–146. https://doi.org/10.1145/2462476.2465586

[52] Simon. 2005. Assessment in online courses: some questions and
a novel technique. In Higher Education in a Changing World: Re-
search and Development in Higher Education (HERDSA 2005). 500–
506. http://www.herdsa.org.au/publications/conference-proceedings/
research-and-development-higher-education-higher-education-106

[53] Simon, Trina Myers, Dianna Hardy, and Raina Mason. 2019. Variations on a
theme: academic integrity and program code. In 21st Australasian Computing
Education Conference (ACE 2019). 56–63. https://doi.org/10.1145/3286960.3286967

[54] Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Amber Settle, Jane
Sinclair, Gerry Cross, and Charles Riedesel. 2016. Negotiating the maze of
academic integrity in computing education. In 2016 ITiCSEWorking Group Reports
(ITiCSE-WGR 2016). 57–80. https://doi.org/10.1145/3024906.3024910

[55] John C Stewart, John V Monaco, Sung-Hyuk Cha, and Charles C Tappert. 2011.
An investigation of keystroke and stylometry traits for authenticating online test
takers. In International Joint Conference on Biometrics (IJCB). 1–7.

[56] Lisan Sulistiani and Oscar Karnalim. 2019. ES-Plag: efficient and sensitive source
code plagiarism detection tool for academic environment. Computer Applications
in Engineering Education 27, 1 (2019), 166–182. https://doi.org/10.1002/cae.22066

[57] Maddalena Taras. 2005. Assessment – summative and formative – some theo-
retical reflections. British Journal of Educational Studies 53, 4 (2005), 466–478.
https://doi.org/10.1111/j.1467-8527.2005.00307.x

[58] Dieter Vogts. 2009. Plagiarising of source code by novice programmers a “cry for
help”?. In Research Conference of the South African Institute of Computer Scientists
and Information Technologists (SAICSIT 2009). 141–149. https://doi.org/10.1145/
1632149.1632168

[59] DylanWiliam and Paul Black. 1996. Meanings and consequences: a basis for distin-
guishing formative and summative functions of assessment? British Educational
Research Journal 22, 5 (1996), 537–548. https://doi.org/10.1080/0141192960220502

[60] Michael J Wise. 1996. YAP3: improved detection of similarities in computer
program and other texts. In 27th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE 1996). 130–134. https://doi.org/10.1145/236452.236525

[61] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: using
intermediate assignment work to understand excessive collaboration in large
classes. In 49th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE 2018). 110–115.

[62] Michael Zhang. 2016. Teaching with Google Classroom. Packt Publishing Ltd. 256
pages.

https://doi.org/10.1007/s10664-017-9564-7
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/1999747.1999813
https://doi.org/10.1145/1999747.1999813
https://doi.org/10.1080/0729436032000056526
http://arxiv.org/abs/https://doi.org/10.1080/0729436032000056526
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/3059009.3059064
https://doi.org/10.1145/2462476.2465586
http://www.herdsa.org.au/publications/conference-proceedings/research-and-development-higher-education-higher-education-106
http://www.herdsa.org.au/publications/conference-proceedings/research-and-development-higher-education-higher-education-106
https://doi.org/10.1145/3286960.3286967
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1002/cae.22066
https://doi.org/10.1111/j.1467-8527.2005.00307.x
https://doi.org/10.1145/1632149.1632168
https://doi.org/10.1145/1632149.1632168
https://doi.org/10.1080/0141192960220502
https://doi.org/10.1145/236452.236525

	Abstract
	1 INTRODUCTION
	2 Background
	2.1 Text Similarity Detectors
	2.2 Program Code Similarity Detectors
	2.3 Effectiveness of Code Similarity Tools

	3 Research Questions and Method
	3.1 Research Questions
	3.2 Phase 1, Exploratory: Search for Common Code Segments
	3.3 Phase 2, Exploratory: Assignment Styles and their Effects
	3.4 Phase 3, Investigatory: Effect of Code Segment Exclusion
	3.5 Phase 4, Exploratory: Reasons for Providing Code when Setting an Assignment

	4 Different types of code segment considered for exclusion
	4.1 Code Needed for Compilation
	4.2 Intuitive Implementation
	4.3 Suggested Implementation
	4.4 Legitimately Copiable
	4.5 Summary

	5 Code segments considered for exclusion based on assignment characteristics
	5.1 Trivial Assessments
	5.2 Bottlenecked Assessments
	5.3 Assessments with Starter Code
	5.4 Broadly Specified Assessments
	5.5 Open-Ended Assessments

	6 Reasons for providing code when setting an assessment
	6.1 Time/Focus
	6.2 Code Already Seen
	6.3 Facilitating Assessment
	6.4 Modelling/Reading
	6.5 Code Maintenance
	6.6 Reasons for Expecting Common Code

	7 Frequencies of occurrence of common code segments
	8 Impact of removing code segments for exclusion
	8.1 Reduced Number of Matched Lines
	8.2 Reduced Number of Retrieved Program Pairs

	9 Reflections on Using Code Similarity Detectors
	10 Discussion
	11 Conclusion and future work
	Acknowledgments
	References

