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A B S T R A C T   

The discrete-sectional method to solve the general dynamic equations is a useful tool for the 
simulation of an evolving aerosol population. This tutorial is intended to equip the reader with 
the necessary knowledge to implement this method for a single component system. To this end, 
we provide step-by-step instructions on the construction of a discrete-sectional model, including 
details on simulation bin configurations and all the necessary equations to describe relevant 
physical processes in an aerosol, i.e. condensation/evaporation, coagulation, and external particle 
losses. Supplementary to the text is a functional, open source MATLAB code that implements the 
framework introduced in this tutorial. The interested readers can use the code either for learning 
purposes or to meet research demands. Lastly, we designed six test cases not only to verify the 
validity of our discrete-sectional model, but also to help the reader gain insight into the evolution 
of aerosol systems.   

1. Introduction 

The particle size distribution (PSD) is a basic property of an aerosol population (Seinfeld & Pandis, 2016). Recognizing its 
importance, a number of aerosol instruments, e.g. scanning mobility particle spectrometer, aerodynamic particle sizer, are dedicated 
to the measurement of PSD. For a complex aerosol system, the evolution of PSD is often governed by unknown physics/chemistry; 
therefore, PSDs are routinely simulated parallel to experimental or field observations, with assumptions on aerosol formation, growth, 
and loss processes. Comparison between the observed and simulated PSDs supports/disapproves the validity of the assumptions, 
providing insight into the mechanisms behind the observed aerosol evolution (e.g., Kürten et al., 2014). Besides, the simulated PSDs 
are also used to test the algorithms to characterize aerosol formation, growth, and losses (Li & McMurry, 2018; Vuollekoski, Sihto, 
Kerminen, Kulmala, & Lehtinen, 2012). 

In principle, PSDs can be simulated on the molecular level, assigning one differential equation to describe the evolution of particles 
with a specific molecular composition. Such a detailed account gets cumbersome very quickly as particle size increases since a particle 
with a diameter of 1 μm contains ~1010 molecules and hence at least ~1010 equations are required for the simulation. Solving such a 
large number of interrelated differential equations is apparently inefficient; as a result, the sectional method was developed to reduce 
the number of equations to a manageable level (Gelbard, Tambour, & Seinfeld, 1980), with the central idea that particles within a 
certain size range (sections) can be approximated by a continuous distribution and described by a single equation. Modifications of the 
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original sectional methods have been proposed to simulate multicomponent systems (Gelbard & Seinfeld, 1980), to better account for 
condensation/evaporation (Warren & Seinfeld, 1985), or to couple with discrete descriptions for molecular clusters (J. J. Wu & Flagan, 
1988). Among these improvements, the coupling of sectional method with discrete equations, referred to as the discrete-sectional 
method, offers great flexibility in accounting for detailed chemistry/physical processes on the molecular level, while maintaining 
low computational cost. In modern aerosol research in which the nucleation processes are resolved molecule by molecule (Chen et al., 
2012; Lehtipalo et al., 2016), the discrete-sectional approach is particularly useful as researchers try to unravel the detailed mecha
nisms of the new particle formation processes (Kürten et al., 2018). 

In this tutorial, we aim to familiarize readers new to the discrete-sectional method with its basic building blocks. To achieve this 
goal, we walk the reader through the construction of a discrete-sectional model for a single-component system with detailed speci
fications on how different physical processes are quantified. Supplied along with this tutorial is a functional, easy-to-implement 
MATLAB code and several test cases. By working on the test cases the reader can not only become familiar with the model, but 
also gain insight into the physics of an evolving aerosol. Compared to previous works on the discrete-sectional method, the equations 
presented in this tutorial is less general in that they are strictly coupled with the bin configurations introduced in section 2.2 and the 
data structure used in the MATLAB code. We deliberately elected to do so because we are of the opinion that once the reader is familiar 
with all the details of code writing in one way, it is a relatively simple step to modify the code or build new ones to meet research 
requirements. Lastly, the model discussed in this tutorial is a ‘box model’ or ‘0-dimensional model’ because spatial transport terms of 
mass, momentum and energy are not included. These terms are particularly important in large scale atmospheric simulations (3D 
models) and simulation of flow reactors (Kommu, Khomami, & Biswas, 2004a; 2004b) but are beyond the scope of this tutorial. 

2. Methods 

2.1. The general dynamic equations 

The evolution of an aerosol can be described by the general dynamic equations (GDE) (Gelbard & Seinfeld, 1979). The GDE is a set 
of first order differential equations that incorporates physical processes such as condensation, evaporation, coagulation, external 
particle losses and sources. In this tutorial we consider a spatially homogeneous aerosol, with all the particles composed of molecules 
(monomers) of the same kind. For simplicity we refer to a particle containing k monomers as k-mer. The rate of change for the number 
concentrations of monomers is given by 

dn1

dt
¼ � n1

X∞

j¼1
β1;jnj þ 2E2n2 þ

X∞

j¼3
Ejnj � EL1n1 þ R1 (1) 

Nomenclature 

nk number concentration of k-mers, in cm� 3 

qk mass concentration of k-mers, in # of molecules cm� 3. The true mass concentration in g cm� 3 can be calculated by 
multiplying qk with molecular mass in g molecule� 1 

Nl number concentration of particles in bin l, in cm� 3 

Ql mass concentration of particles in bin l, in # of molecules cm� 3 

Sl the upper limit of particle mass for section l 
Ll the width of section l, Ll ¼ Sl � Sl� 1 

κ the geometric factor of sections, κ ¼ Sl
Sl� 1 

. κ is set to a constant in this tutorial 

ml average mass of particles in section l, ml ¼
Ll
lnκ, in # of molecules 

ND number of discrete bins 
NS number of sectional bins 
NT total number of bins, NT ¼ NSþ ND 
βði; jÞ the collision frequency function between i-mers and j-mers, in cm3 s� 1 

Rk the emission/external production rate of k-mers, in cm� 3 s� 1 

_Yij the mass of particles in bin i that coagulate with particles in bin j per unit time, in # of molecules cm� 3 s� 1 

_Zij→u the mass of the coagulation products between bin i and bin j that goes into bin u per unit time, in # of molecules cm� 3 

s� 1 

Cl average condensation rate coefficient for bin l, in s� 1 

El : average evaporation rate coefficient for bin l, in s� 1 

Iþl intersectional mass flux from section l to section lþ1 due to condensation, in # of molecules cm� 3 s� 1 

I�l intersectional mass flux from section l to section l-1 due to evaporation, in # of molecules cm� 3 s� 1 

M dilution rate constant, same for all cluster sizes, in s� 1 

Wk wall loss rate constant of k-mers, in s� 1 

CoagSk loss rate constant of k-mers to preexisting particles, in s� 1  
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and for k-mers, 

dnk

dt
¼

1
2
X

iþj¼k
βi;jninj ​ � nk

X∞

j¼1
βk;jnj � Eknk þEkþ1nkþ1 � ELknk þ Rk ðk� 2Þ (2)  

where nk is number concentration (cm� 3) of k-mers, βi;j is the association rate constant (cm3 s� 1) between i-mer and j-mer, Ek is the rate 
constants (s� 1) for evaporation, ELk is the external loss rate constant (s� 1) and Rk is the external production rate of k-mers (cm� 3 s� 1). 
We emphasize that throughout this tutorial as well as in the supplementary code βi;j is calculated without the multiplication of 0.5 for 
i¼j (Kruger & Vincenti, 1965). In this way, Eqs. (1) and (2) and subsequent equations automatically take care of bookkeeping of 
particle numbers as two identical entities collide. Here we also need to clarify some terminology used in this tutorial: we refer to all 
entities larger than monomer as ‘particles’, monomer association with monomers and particles as ‘condensation’, monomer dissoci
ation from particles as ‘evaporation’, particle-particle association as ‘coagulation’. It should be noted that ‘condensation’ or ‘evapo
ration’ is sometimes used to refer to the net rate of monomer association and dissociation (Seinfeld & Pandis, 2016) and the reader 
should keep the difference in mind. 

During coagulation, particle number is not a conserved quantity, i.e. two particles merge into one, but particle mass is. Therefore, it 
is often convenient to track the particle mass concentration in constructing numerical models. The rate of change for mass concen
tration of k-mers (qk , in molecules⋅cm� 3) is given by 

dqk

dt
¼

dðk � nkÞ

dt
¼ k �

dnk

dt
(3) 

Note in Eq. (3) and throughout this tutorial, particle mass is given as multiples of monomer mass for convenience. We do so because we 
want to use the physically intuitive word ‘mass’, but at the same time want to keep the equations as simple as possible. As a result, to 
obtain the true mass concentration of k-mers, qk needs to be multiplied by the monomer mass. 

2.2. Configuration of simulation bins 

To numerically solve the GDE, we track the mass concentration variation from monomer up to ND-mer with ‘discrete bins’, while 
dividing larger particles into NS ‘sectional bins’ or ‘sections’. Each bin corresponds to an equation hence in total we will solve NT ¼
NDþ NS equations. The configuration of simulation bins is graphically illustrated in Fig. 1 for an artificial distribution, with the 
vertical axis being the particle mass distribution function and the horizontal axis being particle mass expressed in number of molecules 
contained in the particles. For discrete bins, particle mass is concentrated on discrete points along the mass axis; for sections, particle 
mass is uniformly distributed within each section, with qmdm giving the total particulate mass within the mass range between m and 
mþ dm (in sections, both m and qm are treated as continuous variables). Note that the uniformity of qm within sections is an assumption 
we adopt in this tutorial. For a discrete-sectional model, certain assumptions have to be made as to how particles are distributed in 
sectional bins: it is equally valid (or arbitrary) to assume that particles have uniform number/surface area/mass concentrations within 
a section and none of these assumptions is perfect. For instance, uniform qm, when converted to number distribution function by nm ¼
qm
m , will lead to the inset plot in Fig. 1 with an apparently unphysical number distribution shape. However, the assumption regarding 

how particles are distributed within sections does not make much difference to the simulation results, as long as the sections are 

Fig. 1. A graphical illustration of simulation bin configurations in the discrete-sectional model.  
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sufficiently “narrow” (C. Y. Wu & Biswas, 1998). We will discuss the effect of section width in 3.2. 
We use Ql and Nl to denote the mass and number concentrations of all particles in bin l, be it discrete or sectional. We need to 

establish a relationship between Q, N, q and n that can be used conveniently in simulations. For discrete bins, their relationship is 
straightforward, 

nl ¼Nl¼
ql

l
¼

Ql

l
; ð1� l�NDÞ (4) 

For sectional bins, Ql can be calculated by integration, 

Ql ¼

Z Sl

Sl� 1

qkdk¼ qk

Z Sl

Sl� 1

dk¼ qk � Ll; k 2 ðSl� 1; Sl� (5)  

where Sl-1 and Sl are lower and upper limits of section l, Ll is the section width (equal to Sl � Sl� 1). qk can be taken out of the integral 
because of its uniformity in section l. The limits of sections, Sl ‘s, are often chosen to increase geometrically to facilitate computation. 
We shall do so in this tutorial, with 

SND¼NDþ 0:5;
Sl

Sl� 1
¼ κ (6)  

where SND is the lower limit for section NDþ1, and κ is the ratio between the upper and lower limit for any section, called the geometric 
factor. We can then relate Nl to Ql by 

Nl ¼

Z Sl

Sl� 1

nkdk ¼
Z Sl

Sl� 1

qk

k
dk ¼

Z Sl

Sl� 1

Ql
Ll

k
dk ¼

Ql

Ll
lnκ ¼

Ql
Ll
lnκ

¼
Ql

ml
(7) 

In Eq. (7), we define the average particle mass in section l as ml ¼
Ll
lnκ so that particle number and mass concentrations in a section are 

related by a single conversion factor. 
Although the sections are usually configured to be log-uniform with a constant κ, non-uniform sections are sometimes used to 

reduce the simulation errors at the junction between discrete bins and sections. These errors originate from the differences between the 
discrete and continuous assumptions of the aerosol size distribution. For instance, with ND ¼ 200 and κ ¼ 1.0718, the average particle 
masses of the last discrete bin and section are 200 and 207.6, respectively. With such a bin configuration, a particle with mass 200 
associating with a monomer generates a particle with mass 207.6 in a number-conserving model. Simply reducing κ cannot completely 
overcome this problem and it may even raise another problem. An extreme example is that when ND ¼ 200 and κ ¼ 1.0002, there will 
always be no particles in the first section since its mass range is 200.5–200.9. A non-uniform configuration for the first several sections, 
e.g., using the Fibonacci sequence, may help to reduce these errors, yet we keep the uniform section configuration in this tutorial for its 
simplicity. 

2.3. Solving the GDE 

To numerically solve the GDE, we can either calculate dQl
dt or dNl

dt , which are related to each other by Eqs. (4) and (7). In this tutorial 
we choose to compute dQl

dt by quantifying different physical processes separately. The temporal change of Ql comes from particle 
coagulation, condensation and evaporation, external particle losses and sources, mathematically expressed as 

dQl

dt
¼

dQl

dt

�
�
�
�
coag
þ

dQl

dt

�
�
�
�
cond� evap

þ
dQl

dt

�
�
�
�
exter loss

þ
dQl

dt

�
�
�
�
exter source

(8) 

Fig. 2. A graphical illustration of particle coagulation. Particles from bin i and bin j coagulate and the coagulation products go into bin u and bin v.  
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In the following we will discuss the calculation details for dQl
dt

�
�
�
�
coag

, dQl
dt

�
�
�
�
cond� evap

, dQl
dt

�
�
�
�
exter loss 

but not dQl
dt

�
�
�
�
exter source

, since external particle 

sources are very specific to individual aerosol systems and are difficult to generalize. 

2.3.1. Coagulation 
The physical picture of coagulation is simple - when two particles collide, they irreversibly merge into a new particle. Particles from any 

two bins (or from the same bin) can coagulate; here we consider coagulation between particles from bin i and particles from bin j (2 � i � j) 
without losing generality. We do not consider monomers in this section as they will be discussed in 2.3.2. The coagulation process is 
graphically illustrated in Fig. 2. We divide the calculation into two steps: in step 1, we shall calculate the yellow areas ① and ②, which 
indicate the mass of the particles that participate in coagulation between bin i and bin j per unit time; in step 2, we will decide which bins 
the coagulation products goes into and how to redistribute the particle mass among these bins, i.e. we calculate yellow areas ③ and ④. 

2.3.1.1. Step 1. We denote the particulate mass in bin i that coagulate with particles from bin j per unit time by _Yij (i.e. area ① in Fig. 2). 
Utilizing Eq. (5), _Yij is given by 

_Yij¼

Z Sj

Sj� 1

Z Si

Si� 1

βðx;yÞnxny �xdxdy¼
Z Si

Si� 1

Z Sj

Sj� 1

βðx;yÞ
Qi

xLi
�

Qj

yLj
�xdxdy¼QiQj

Z Si

Si� 1

Z Sj

Sj� 1

βðx;yÞ
1

yLiLj
dxdy if ​ bin i and bin j are both sections;

(9a)  

_Yij¼

Z Sj

Sj� 1

βði; yÞNiny � idy¼QiQj

Z Si

Si� 1

Z Sj

Sj� 1

βði; yÞ
1

yLj
dy; if ​ bin i is discrete; ​ and bin j is a section; (9b)  

_Yij¼ βði; jÞNiNj � i¼QiQj �
βði; jÞ

j
; if bin i and bin j are both discrete; (9c)  

where βðx; yÞ is the collision rate frequency function (cm3 s� 1) for x-mer and y-mer. In Eq. (9a), βðx; yÞnxny is the collision rate (cm� 3 

s� 1) between x-mer and y-mer and � x means each of these collisions will cause bin i to lose a mass of x. _Yji (area ②) can be calculated in 
a similar fashion, but one should note in general _Yij 6¼ _Yji. Eqs. (9a-c) can all be written in the form _Mij ¼ QiQjaij, with the expressions 
for aij printed in bold. We can assemble all the coefficients aij into a single matrix to facilitate calculation, as is done in the supple
mentary MATLAB code. 

2.3.1.2. Step 2. We now consider how to assign the coagulation products into the correct bins, i.e. to determine areas ③ and ④. 
Depending on the discreteness of bin i and bin j, there are three possibilities. Firstly, if bin i and bin j are both discrete, their coagulation 
products have a single mass - we can put the coagulation products in the correct bin by simply comparing their mass to bin boundaries. 
Secondly, if bin i is discrete and bin j is sectional, coagulation basically move the particles in bin j by a fixed distance along the mass 
axis. Since sections grow wider to the right on the mass axis, the coagulation product will end up in less than two bins. Thirdly, if both 
bin i or bin j are sectional, since an x-mer from bin i and a y-mer from bin j satisfy Si� 1 < x � Si and Sj� 1 < y � Sj, the mass of 
coagulation products satisfy Si� 1 þ Sj� 1 < xþ y � Si þ Sj. It is easy to see that 

Si þ Sj

Si� 1 þ Sj� 1
¼

κ
�
Si� 1 þ Sj� 1

�

Si� 1 þ Sj� 1
¼ κ: (10) 

Eq. (10) shows the ratio of the upper and lower mass limit of the coagulation products is equal to the section geometric factor. 
Summarizing our analysis of the three possibilities, we can conclude that with a constant geometric factor, the coagulation products 
between any two bins cannot end up in more than two consecutive bins. 

With the above conclusion we assume that the coagulation product of bin i and bin j end up in bin u and bin v. The value of u must 
satisfy Su� 1 � Si� 1 þ Sj� 1 < Su and v is equal to uþ 1. The mass of the coagulation products that falls into bin u, _Zij→u (area ③), is given 
by the following integrals 

_Zij→u¼

Z Sj

Sj� 1

Z Si

Si� 1

βðx;yÞnxny �ðxþyÞ�θðxþy<SuÞdxdy¼QiQj

Z Si

Si� 1

Z Sj

Sj� 1

βðx;yÞ
ðxþyÞ
xyLiLj

�θðxþy<SuÞdxdy; if ​ bin ​ i ​ and ​ bin ​ j ​ are ​ both ​ sections;

(11a)  

_Zij→u¼

Z Sj

Sj� 1

βði; yÞNiny � θðiþ y< SuÞdy¼QiQj

Z Sj

Sj� 1

βði; yÞ
ðiþ yÞ

iyLj
� θðiþ y<SuÞdy; if bin i is discrete; and bin j is a section; (11b)  

_Zij→u¼ βði; jÞNiNj � ðiþ jÞ¼QiQj �
βði; jÞðiþ jÞ

ij
; if bin i and bin j are both discrete; (11c) 

Because coagulation is mass-conserving, we have _Zij→v ¼ _Yij þ _Yij � _Zij→u (area ④). Similar to Eq. (9), Eq. (11) can also be written in 
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the form _Zij→u ¼ QiQjbij→l, with the expression for bij→l printed in bold characters. Finally, dQl
dt

�
�
�
�
coag 

is given by 

dQl

dt

�
�
�
�
coag
¼ �

XNT

j¼2

_Yljþ
1
2
Xl

i¼2

Xl

j¼2

_Zij→l¼ �
XNT

j¼2
QlQj _alj þ

1
2
Xl

i¼2

Xl

j¼2
QiQjbij→l:ðl� 2Þ (12)  

2.3.2. Condensation and evaporation 
We now deal with condensation and evaporation which have been excluded from the previous discussion. In a discrete-sectional 

framework, condensation/evaporation not only increases/decreases the total particle mass but also causes particle to migrate between 
neighboring bins. In principle, in an infinitely short duration of time, only particles with masses close to the boundary of two bins need 
to be considered to calculate inter-sectional mass fluxes induced by condensation/evaporation. However, the boundary discontinuity 
inherent in the sectional configuration (recall the inset plot in Fig. 1) may cause errors if only the particle concentration at sectional 
boundaries are used to calculate the mass flux. For a more detailed discussion on such errors, we refer the reader to the work by Warren 
and Seinfeld (1985). In the following, we apply a method similar to theirs to incorporate condensation/evaporation into our model 
with 3 steps. 

2.3.2.1. Step 1. We first consider condensation and evaporation for particles in a discrete bin l (excluding bin 1 and bin ND). 
dQl
dt

�
�
�
�
cond� evap 

is simply given by 

dQl

dt

�
�
�
�
cond� evap

¼
l � dNl

dt

�
�
�
�
cond� evap 

¼ l � ½βð1; l � 1ÞN1Nl� 1 � βð1; lÞN1Nl � ElNl þElþ1Nlþ1�

¼ l �
�

βð1; l � 1ÞQ1Ql� 1

l � 1
�

βð1; lÞQ1Ql

l
�

ElQl

l
þ

Elþ1Qlþ1

lþ 1

�

; ð2� l�ND � 1Þ (13)  

2.3.2.2. Step 2. We next consider monomer association with particles in a sectional bin l (other than bin NDþ1). Assuming a mass 
accommodation factor of 1 (i.e. all collisions lead to association), the total condensation rate for particles in bin l is given by 

Z Sl

Sl� 1

βð1; xÞN1nxdx¼
Z Sl

Sl� 1

βð1; xÞN1
Ql

Llx
dx¼Q1

Z Sl

Sl� 1

βð1; xÞ
Llx

dx �Ql¼ClQl (14)  

where Cl is the average coefficient of condensation for section l. Condensation leads to migration of particles from section l to section 
lþ1 and we denote the corresponding mass flux by Iþl . Since Cl is easily calculable (its formula is printed in bold in Eq. (14)), we need to 
relate Iþl to ClQl:We note that the number of particles that moves out of section l equals the number of particles that moves into section 
lþ1, which leads to 

�
ClQl � Iþl

ml
¼

​ Iþl
mlþ1

(15) 

The left- and right-hand sides of Eq. (15) are the loss and gain of particle number concentrations of section l and lþ1 due to inter- 
sectional mass flux (recall that ml is the average mass of sectional bin l defined in Eq. (7)). Rearranging Eq. (15), the value of Iþl is given 
by 

Iþl ¼
ClQlmlþ1

mlþ1 � ml
¼

ClQl

1 � 1
κ

(16) 

Similarly, the total evaporation rate from all particles in bin l in a unit time is given by, 
Z Sl

Sl� 1

Exnxdx¼
Z Sl

Sl� 1

Ex
Ql

Llx
dx¼

Z Sl

Sl� 1

Ex

Llx
dx �Ql ¼ElQl (17)  

where El is the average coefficient of evaporation for section l. Evaporation leads to migration of particles from section l to section l-1 
and we denote the corresponding mass flux by I�l . Again, the number of particles that moves out of section l and the number of particles 
that moves into section l-1 should be equal, thus we have 

ElQl þ I �l
ml

¼
​ I �l

ml� 1
(18) 

The left- and right-hand sides of Eq. (18) are the loss and gain of particle number concentrations of section l and l-1, respectively. 
Hence, the value of I�l is 
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I �l ¼
ElQlml� 1

ml � ml� 1
¼

ElQl

κ � 1
(19) 

Putting together equations 14–19, we have 

dQl

dt

�
�
�
�
cond� evap

¼ClQl � Iþl þ Iþl� 1 � ElQl � ​ I �l þ I �lþ1: ðNDþ 2� l�NTÞ (20)  

2.3.2.3. Step 3. Lastly, we deal with bin 1, bin ND and bin NDþ1. Bin 1 is special in that it exchanges mass with every other bin in the 

simulation domain. dQ1
dt

�
�
�
�
cond� evap 

is given by 

dQ1

dt

�
�
�
�
cond� evap

¼E2Q2þ
XND

l¼3

ElQl

l
þ

XNT

l¼NDþ1
ElQl �

XND

l¼1

βð1; lÞQlQl

l
�
XNT

l¼ND
ClQl (21) 

Bin ND and bin NDþ1 are special because they are at the intersection between discrete and sectional bins. For these two bins we 
have 

dQND

dt

�
�
�
�
cond� evap

¼ND �
�

βð1;ND � 1ÞQ1QND� 1

ND � 1
�

βð1;NDÞQ1QND

ND
�

ENDQND

ND

�

þ I �NDþ1 (22)  

and 

dQNDþ1

dt

�
�
�
�
cond� evap

¼CNDþ1QNDþ1 � IþNDþ1þ
βð1;NDÞQ1QlðNDþ 1Þ

ND
� ENDþ1QNDþ1 � ​ I �NDþ1 þ I �NDþ2 (23) 

We encourage the reader to try to explain each term in Eqs. 21–23 as a check for understanding. 

2.3.3. Particle external losses 
The most common external loss mechanisms encountered in box-model simulations are system dilution, particle wall loss and 

coagulation with pre-existing particles. We will not consider the physics of these processes in detail but refer the reader to McMurry 
and Li (2017). Each of these processes can be accounted for by a (size-dependent) rate constant, with M for dilution, Wl for wall loss 
and CoagSl for coagulation with pre-existing particles. We then have 

dQl

dt

�
�
�
�
exter loss

¼ � ELlQl ¼ � ðMþWl þCoagSlÞ Ql (24) 

M, Wl and CoagSl are usually determined by the experimental or field measurement conditions. CoagS (or CS) is short for coag
ulation (condensation) sink (Kulmala et al., 2001). Their exact form used in the supplementary MATLAB code is summarized in ap
pendix A. 

Through the discussion in 2.3.1–2.3.3., we have completed all the essential building blocks necessary for a functional discrete- 
sectional code. In the next step we will provide a few test cases to check the validity of our model. 

3. Results and discussion 

We now use the supplementary MATLAB code to perform a few test cases, with the purposes of these tests summarized in Table 1. 
All the simulations are done for a species with a molecular mass of m1 ¼ 2:4� 10� 25 kg (143 amu), a density ρ ¼ 1:47� 103 kg/m3 at 
an ambient temperature of 293.15 K and pressure of 1:01� 105 Pa. In the processing of the simulation results, we assume all the 
particles are spherical, hence particle mass can be converted directly to particle diameters. In visualizing particle size distributions, it is 
common practice to plot dN/dlog10dp as a function of particle diameter dp. dN/dlog10dp can be calculated for bin l with 

Table 1 
Summary of test cases.  

Test case Purpose 

1. Mass balance To do a preliminary check if the encoded equations are balanced 
2. The effect of geometric factor To understand how section width affects simulation accuracy 
3. Asymptotic solutions To test the simulation results against analytical solutions of the GDE under simplifying conditions 
4. Molecular cluster growth To observe how a cluster population starting from a single size evolve over time 
5. Self-preserving distribution To retrieve a solution of the GDE for a coagulating aerosol in the free molecular regime 
6. Wall loss and evaporation To understand the effect of wall loss and evaporation on particle formation  
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dN
dlog10dp

�
�
�
�
bin l
¼

Nl

log10

�
6m1ðlþ0:5Þ

πρ

�1
3

� log10

�
6m1ðl� 0:5Þ

πρ

�1
3
¼

Nl

1
3 log10

�
lþ0:5
l� 0:5

�; if bin l is discrete (25a)  

Fig. 3. Simulation results for six test cases: (a) mass balance, (b) the effect of geometric factor, (c) comparison of simulation with asymptotic 
solutions of the GDE, (d) trimer growth by association with monomers, (e) self-preserving distribution in the free molecular regime, (f) the effect of 
wall loss and evaporation on particle size distribution. Refer to the text for more details of each test. 
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dN
dlog10dp

�
�
�
�
bin l
¼

Nl

log10

�
6m1Sl

πρ

�1
3

� log10

�
6m1Sl� 1

πρ

�1
3
¼

Nl
1
3 log10κ

; if bin l is sectional (25b) 

In Eq. (25a), we assume that discrete bins have a bin width of 1. For comprehensive parameter settings of each test the reader can 
refer to the MATLAB input scripts in the supplementary material. Additionally, by going through these test cases, we hope that the 
reader can gain a deeper insight into discrete-sectional simulations of an evolving aerosol. We also encourage the reader to change the 
simulation parameters for practice and even reconstruct the code for specialized research goals. 

3.1. Mass balance 

The very first test of a discrete-sectional code should be to examine if the encoded equations are correctly balanced. One way to do 

so is to check system mass balance without external particle losses. Total system mass 
�
P

l
ql; l� 1

�

as a function of time are shown in 

Fig. 3a for two such simulations, with the monomer production rate R1 set to 0 and a constant value 5� 105 cm� 3 s� 1 (20 ppqv s� 1), 
respectively (external production rate other than the monomers are zero). Fig. 3a shows that the 

P

l
ql is a either a constant or increases 

linearly with a slope of 5� 105 cm� 3 s� 1, indicating that mass is well balanced in these simulations. 

3.2. The effect of geometric factor 

A known problem of discrete-sectional models is numerical diffusion (Charan, Huang, & Seinfeld, 2019), which is often mitigated 
by increasing the number of sections utilized for a given simulation domain, i.e. decreasing the section width. In our model, the section 
width is controlled by the geometric factor, κ. Fig. 3b shows how simulation results vary with κ for a particle formation event pro
ceeding at the collision-controlled limit (McMurry & Li, 2017), i.e. evaporation, particle external loss rates are zero and the sticking 
probability between colliding entities is 1. The monomer production rate is R1 ¼ 2� 106 cm� 3 s� 1 (80 ppqv s� 1). The value of κ is 
chosen to be 2, 1.148, 1.0718, 1.0353 and 1.0175 such that it takes 1, 5, 10, 20, and 40 bins for the section width to double. Fig. 3b 
shows that κ ¼ 2 gives vastly different results from the others, indicating low accuracy of using a large geometric factor. For other κ 
values, as κ decreases, the simulation results gradually converge. Using a large number of sections can be very costly in some cir
cumstances, e.g. in global scale simulations. However, in this tutorial we are not quite concerned with simulation time, so we adopt κ ¼
1:0353 for all the following test cases. 

3.3. Asymptotic solutions 

Under simplifying conditions, the GDE can be solved to obtain analytical solutions with which we can compare the simulation 
results. Specifically, with the following assumptions, i.e. a) the monomer is produced at a constant rate R1, b) all the collision frequency 
functions have the same value β0, and c) evaporation and particle loss processes are absent, the monomer concentration n1 and the 
total particle number concentration ntot (ntot ¼

P∞
i¼1ni) can be shown to asymptotically converge to the following expression 

(McMurry, 1980), 

n1¼
ntot

2
þ

R1t

2cosh2
�

tðR1β0Þ
1
2

2
1
2

� (26)  

ntot ¼ 21
2

�
R1

β0

�1
2

tanh
�

tðR1β0Þ
1
2

21
2

�

(27) 

A simplified proof of Eqs. (26) and (27) are given in appendix B. As shown Fig. 3c, the simulated n1 and ntot do converge the 
analytical solutions with R1 ¼ 2� 106 cm� 3 s� 1 (80 ppqv s� 1) and β0 ¼ 1� 10� 9 cm3 s� 1. 

3.4. Molecular cluster growth 

We now consider the growth of molecular clusters by association with monomers. Suppose initially there are clusters of a single size 
(i.e. all the clusters have the same number of molecules) in a system with a constant monomer concentration. By constraining the 
parameters in our model, we only allow these clusters to grow by colliding with monomers at a size-independent rate, while excluding 
cluster-cluster coagulation, evaporation, and external particle losses. After a certain duration of time, what should be the clusters size 
distribution? It is tempting to think that the clusters will be of the same size as they collide with monomers at the same frequency. 
However, because of the stochastic nature of particle collisions, the growing clusters will diffuse in the particle size space (Olenius 
et al., 2018), i.e. the cluster size distribution will not look like a Dirac delta function but will instead resemble a Poisson distribution. 
The result of such a test is shown in Fig. 3d for an initial population of trimers at a concentration of n3;t¼0 ¼ 1� 104 cm� 3 (0.4 ppqv 
s� 1), with a monomer association rate of 1� 10� 2 s� 1 for clusters of any size. Fig. 3d shows that the simulation results agree perfectly 
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with the following modified Poisson distribution 

nk ¼ n3;t¼0 �
λk� 3e� λ

ðk � 3Þ!
ðk� 3Þ (28)  

where λ is the expected number of monomer associations for a cluster within the simulation time (calculated by the simulation time t 
multiplied by 1� 10� 2 s� 1), and ‘k � 3’ accounts for the fact that all clusters starts as trimers. Simulation results at t ¼ 1000s, 2000s, 
3000s correspond to λ ¼ 10; 20; 30, respectively. 

3.5. Self-preserving distribution 

In addition to Eqs. (26) and (27), there is another special solution for the GDE under more realistic conditions, referred to as the self- 
preserving particle size distribution. Self-preserving means for certain classes of collision frequency functions, a dimensionless form of 
the particle size distribution function will be reached after sufficiently long times for a coagulating aerosol, regardless of the initial 
shape of the distribution (Friedlander & Wang, 1966; Lai, Friedlander, Pich, & Hidy, 1972). Here we look at the self-preserving 
distribution if the collision frequency function is free molecular. With the total particle number concentration ntot ¼

P∞
i¼1ni and 

total particle mass concentration qtot ¼
P∞

i¼1qi, we define two dimensionless parameters 

ηðkÞ¼ k � ntot

qtot
(29)  

ΨðkÞ ¼
nkqtot

n2
tot

(30) 

The distribution ΨðkÞ as a function of ηðkÞ at simulation times t ¼ 20s, 100s, and 1000s are shown in Fig. 3e for a system starting 
with a population of monomers at 1� 109 cm� 3. Evaporation, external particle loss and production are all set to zero in this simulation. 
Fig. 3e shows that the simulation results approaches the self-preserving distribution given by Graham and Robinson (1976), i.e. the 
grey curve, as time proceeds. The method used by Graham and Robinson to obtain their solution is somewhat complicated and we refer 
the reader to their paper for more information. 

3.6. Cluster evaporation and wall loss 

In the last test case, we will conduct simulations of more practical importance, i.e. we will look at the effect of wall loss and cluster 
evaporation on particle size distributions. Fig. 3f shows simulation results for four scenarios with the same monomer production rate 
R1 ¼ 2� 106 cm� 3s� 1 (80 ppqv s� 1) at t ¼ 3000s:  

(1) The collision-controlled limit. .  
(2) Same condition as in (1) but with a wall loss constant of 0.01 for the monomer. For k-mers the wall loss rate scales with k� 1

3.  
(3) Same condition as in (1) but with a dimer evaporation rate of 2.98 s� 1. This evaporation rate corresponds to a saturation vapor 

concentration of 2� 104 cm� 3 and a surface tension of 67.5 mN/m at 293 K. Refer to Appendix A for how the evaporation rate 
varies with cluster size.  

(4) Particle wall loss and evaporation coexist, with the same rate constant as in (2) and (3), respectively. 

Fig. 3f shows that wall loss reduces the number of large particles and diminishes the local peak compared to the collision-controlled 
limit. Evaporation, on the other hand, does not diminish the local peak but creates a deep valley in the cluster size distribution due to 
the high evaporation rate of the small particles. When coupled together, wall loss and evaporation significantly reduce the number 
concentration of particles. We leave it to the reader to think about why wall loss-evaporation coupling has such a dramatic effect on the 
particle size distribution (Li & McMurry, 2018). 

4. Summary 

In this tutorial we present a detailed guide to build up a discrete-sectional code to simulate an evolving aerosol for a unary, ho
mogeneous system. A MATLAB code together with six test cases are provided so that the reader can quickly master the materials and 
apply them in research. There are many upgrades that can be made to the presented methods for more sophisticated simulations, e.g. 
incorporating multiple nucleating species(Gelbard & Seinfeld, 1980; Yu et al., 2018), calculating evaporation rates with 
quantum-mechanical based free energies (McGrath et al., 2012) and coupling GDE with fluid dynamics models (Kommu et al., 2004a; 
2004b). We believe this tutorial can serve as a good starting point towards such simulations. 

Supplemental information 

The MATLAB source code and the simulation results presented in Fig. 3 are available online at https://github.com/chenxi20JT/ 
discrete-sectional-code. 
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Appendix A. Rate coefficients in the supplementary code 

The rate constants for loss to preexisting particle, wall loss, dilution and evaporation are constructed as the product of a constant 
and a size-dependent scaling factor, which are shown in Table A1.  

Table A1 
Rate constants for particle external loss and evaporation.  

Rate  
coefficients 

Constant Scaling factor Explanation 

Loss to pre- 
existing  
particles, CoagSk  

1
4

�
8kbT
πρv1

�1
2AF  

k
�
1
2  

�
8kbT
πρv1

�1
2 is the mean thermal  

speed of the monomer, AF is the  
Fuchs surface area, the scaling accounts  
for change of mean thermal speed as a function of particle size. Note kb is  
the Boltzmann constant, k is number of  
molecules in the particle.  

Wall loss, Wk  

CwðD1Þ

1
2  k

�
1
3  

Cw is an experimentally  
determined wall loss constant  
(Crump & Seinfeld, 1981).  
D1 is diffusion coefficient for the  
monomer, the scaling accounts for the  
change of diffusion coefficients as a function of particle size.  

Dilution, M  Qdil

Vchamber  

1 Dilution rate is independent of particle  
size. In a chamber experiment, Vchamber  
is the volume of a chamber, Qdil  
is the dilution flow rate.  

Evaporation  
rate, Ek ðk� 2Þ

nsat  

βð1;k � 1Þexp

0

@3
2

A

0

@k
2
3 � ðk � 1Þ

2
3

1

A

1

A

See text below for the derivation  

A simple explanation of the evaporation rate in Table A1 is as follows. In a saturated vapor at equilibrium, the forward and 
backward rate of the following reaction is the same 

ðk � 1Þ � merþmonomer ⇔ k � mer ðk� 2Þ: (R1)   

If we assume unit sticking probability of monomer as monomers and k-mers collide, we have 

βð1; k � 1Þnk� 1;snsat ¼Eknk;s; (A1)  

where nsat is the saturated vapor concentration. At equilibrium, law of mass action leads to 
nk;s
nsat

nk� 1;s
nsat
� nsat

nsat

¼ exp
�

�
ΔG*

k� 1→k

kT

�

; (A2)  

where ΔG*
k� 1→k is the free energy change of the reaction (R1), nk;s is the equilibrium number concentration of k-mers. Combining Eq. 

(A1) and (A2), we have 

Ek ¼ βð1; k � 1Þnsat exp
�

ΔG*
k� 1→k

kT

�

¼ βð1; k � 1Þnsat exp

0

@3
2

A

0

@k
2
3 � ðk � 1Þ

2
3

1

A

1

A; (A3) 
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where ΔG*
k� 1→k is calculated by the surface energy change from (k-1)-mer to k-mer with bulk properties of the nucleating species. A is 

the dimensionless surface tension, given by 

A¼ 4
�π

6

�1
3
ðv1Þ

2
3

σ
kbT

; (A4)  

where σ is the bulk surface tension. ΔG*
k� 1→k in Eq. (A2) can be calculated for small clusters by more advanced methods, e.g. quantum 

mechanical calculations. 

Appendix B. A brief proof of Eqs. (26) and (27) 

Here we give a brief outline of how Eqs. (26) and (27) are derived. Under the assumptions given in section 3.3, we have 

dn1

dt
¼R ​ � β0n1

X∞

j¼1
nj ¼ R � β0n1ntot; (B1)  

dnk

dt
¼

1
2
X

iþj¼k
β0ninj ​ � β0nk

X∞

j¼1
nj ¼

1
2
X

iþj¼k
β0ninj � β0nkntot: (B2) 

Summing up the equations for the monomer and all the clusters leads to 

dntot

dt
¼Rþ

1
2
β0

X∞

k¼2

X

iþj¼k
ninj � β0n2

tot: (B3) 

Recognizing that 
P∞

k¼2
P

iþj¼k
ninj ¼ n2

tot, we have 

dntot

dt
¼R �

1
2
β0n2

tot (B4) 

Solving Eq. (B4) gives Eq. (27). Substituting Eq. (27) into Eq. (B1) leads to Eq. (26). 
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