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Exactly solvable model of calorimetric measurements
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Calorimetric measurements are experimentally realizable methods to assess thermodynamics relations in
quantum devices. With this motivation in mind, we consider a resonant level coupled to a Fermion reservoir.
We consider a transient process in which the interaction between the level and the reservoir is initially switched
on and then switched off again. We find the time dependence of the energy of the reservoir, of the energy of the
level, and of the interaction energy between them at weak, intermediate, strong, and ultrastrong coupling. We
also determine the statistical distributions of these energies.
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I. INTRODUCTION

Large, yet finite, reservoirs can simultaneously serve as an
environment and a measuring device of the system they are in
contact with. Indeed, the energy of the reservoir is influenced
by interacting with the system, and by measuring it, one can
probe the system [1]. This idea has motivated a series of recent
theory papers [2–6], investigating temperature variations in
a small metallic particle, caused by photon exchange with
a qubit. Here we extend these ideas to an exactly solvable
model of a resonant level coupled to a finite-size metallic
reservoir, which is the simplest of the well-studied quantum
impurity models [7]. In this model, the variations of the reser-
voir energy occur due to electron jumps between it and the
resonant level.

The problem of energy exchange between a microscopic
system and the environment has been studied for a long time
with the main emphasis being on the heat to work conversion
[8–10] and the fluctuation relations [11–16]. Here we take
a different perspective, mainly focusing on the variations of
the reservoir energy. In fact, we obtain the time-dependent
distributions of the reservoir energy, of the energy of the
resonant level, and of the interaction energy. We encompass in
our analysis the strong-coupling limit, which favors stronger
response of the reservoir energy to the changes in the state
of the microscopic system. We consider transient behavior of
the system assuming that the resonant level and the reservoir
become coupled at time t = 0 and, afterwards, the system
relaxes to the steady state in the limit t → ∞. Some of our
predictions may be tested in experiments with quantum dots,
which are well described by the resonant level model.

In related works, the weak-coupling regime is typically
considered, in which the quantum system is described by a
Markovian Lindblad equation [17]. For example, the distri-
bution of energy emitted into the environment by a driven
two-level system was previously determined in this regime

[18,19]. More recently, the strong-coupling non-Markovian
regime has drawn considerable attention. An efficient approx-
imate method of studying strong system-reservoir coupling
is the reaction coordinate formalism [20–25], in which the
reservoir is replaced by a single degree of freedom weakly
coupled to the residual environment. This method ensures
quick convergence to the exact result if one increases the
number of reaction coordinates [26,27]. The exact strong-
coupling dynamics of the energy exchange between a driven
two-level system and its environment has been studied within
the spin-boson model [28,29]. It was found that the strong
coupling manifests itself in the significant role of the inter-
action energy in the overall energy balance [28,30] and in the
nonexponential time relaxation of the energies.

The advantage of the resonant level model, which we dis-
cuss here, is that it allows one to study the strong-coupling
effects in the energy exchange between the system and the
environment exactly and, in the wide-band limit, analytically
even in the nonstationary case (see, e.g., Ref. [31]). This
simple model has been studied for a long time, and its ex-
act solution is presented, for example, in Refs. [32–34]. It
has also proven to be very useful in the context of quantum
thermodynamics. It has been used, for example, to properly
define the thermodynamic quantities of a slowly driven system
in the strong-coupling limit [35–38], where the interaction
energy cannot be neglected and, therefore, it becomes difficult
to separate the heat from the work done on the system. These
definitions were verified numerically in Ref. [39], where the
fast-driving regime was also studied. Equilibrium fluctuations
of the energy of the resonant level were analyzed in Ref. [40].
In addition, the resonant level model becomes equivalent
to the so-called Toulouse limit of the spin-boson model if
the level is aligned with the Fermi energy of the reservoir
[41]. Finally, a comprehensive introduction to fluctuations
of thermodynamic quantities in similar models can be found
in Ref. [42].
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This paper is organized as follows: in Sec. II we introduce
the model and provide its formal solution in a general form. In
Sec. III we apply these results to the specific case of a metal-
lic reservoir with energy-independent spectral density of the
environment. In Sec. IV we discuss a possible experimental
setup in which our predictions could be tested and summarize
our findings.

II. MODEL

We consider a spin-polarized resonant energy level coupled
to a finite-size reservoir. The total system is described by the
Hamiltonian

Ĥ = Ĥ0 + ĤR + ĤI . (1)

Here

Ĥ0 = ε0 ĉ†
0ĉ0

is the Hamiltonian of the resonant level,

ĤR =
∞∑

k=1

εk ĉ†
k ĉk

is the reservoir Hamiltonian, and

ĤI =
∞∑

k=1

gk (ĉ†
0ĉk + ĉ†

k ĉ0)

is the interaction between them. In addition to the second
quantized Hamiltonian (1), we also define the single-particle
Hamiltonian of the system

H = H0 + HR + HI , (2)

where the Hamiltonians H0, HR, and HI are infinite-size self-
adjoint matrices of the form

H0 =
(

ε0 0�

0 0̃

)
, HR =

(
0 0�

0 ε̃R

)
, HI =

(
0 g�

g 0̃

)
. (3)

Here � stands for transposition, and g� = (g1, g2, . . . , gN ) is
the row vector containing the coupling constants. All matrix
elements of the matrix 0̃ and of the vector 0 are equal to zero,
and ε̃R is the diagonal matrix containing the energies of the
reservoir levels, (ε̃R)i j = εiδi j . The Hamiltonian Ĥ (1) can be
expressed as

Ĥ = ĉ†H ĉ,

where ĉ† = (ĉ†
0, ĉ†

1, ĉ†
2, . . . ).

Since the Hamiltonian (1) is quadratic, the Fermions do not
interact, and one can infer full information about the energies
from the single-particle density matrix of the system ρ, which
has the matrix elements

ρmn(t ) = tr[ĉ†
nĉmρ̂(t )].

Here ρ̂(t ) is the full density matrix of the system in Fock
space. The density matrix ρ satisfies the usual Liouville–von
Neumann equation

ı ∂ρ/∂t = [H, ρ],

with the solution

ρ(t ) = e−ı H tρ(0)eı H t .

Here ρ(0) is an arbitrary initial density matrix. We restrict our
attention to the physically relevant case of a diagonal initial
density matrix

ρn k (0) = nkδn k,

with populations specified by a Fermi-Dirac thermal equilib-
rium distribution

nk ≡ n(εk ) = 1

1 + e(εk−μ)/T
. (4)

Here μ is the chemical potential of the metallic reservoir, and
T is its initial temperature (Boltzmann constant kB = 1).

Due to the simplicity of the model, we can derive an
explicit expression for the single-particle evolution operator
using the Laplace transform,

e−ı H t =
(

ϕ f �

f F̃

)
. (5)

Here ϕ is the occupation amplitude of the resonant level,
which is specified by the anti-Laplace transform

ϕ(t ) =
∫
B

dz

2π

ie−ı z t

z − ε0 − �(z)
(6)

on the (rotated) Bromwich contour

B = {z | 0 < Im z = const}.
�(z) is the self-energy defined for any Im z �= 0 by the
integral

�(z) =
∫
R

dε

2π

J (ε)

z − ε
, (7)

and

J (ε) = 2π

∞∑
k=1

g2
k δ(ε − εk )

is the environment spectral density. Besides that, we have also
introduced the vector f with the elements

fk (t ) = −ı gk

∫ t

0
dt ′e−ı εk (t−t ′ )ϕ(t ′),

and the square subblock F̃ with the matrix elements

F̃nk (t ) = δnke−ı εk t + fn(t )gk − gn fk (t )

εn − εk
. (8)

The diagonal matrix elements F̃kk should be obtained from (8)
by taking the limit εn → εk .

Having found the single-particle evolution operator (5), we
can find the average energy of the resonant level,

〈E0(t )〉 = tr[H0 e−ıHtρ(0)eıHt ] = ε0ρ00(t ), (9)

where the average occupation probability of the level is

ρ00(t ) = |ϕ(t )|2n0 +
∞∑

k=1

| fk (t )|2nk . (10)

In the same way, the average change in
the reservoir energy can be expressed in the
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form

〈	ER(t )〉 = tr{HR[e−ı H t ρ(0) eı H t − ρ(0)]}

=
∞∑

k=1

εk[ρkk (t ) − nk]. (11)

The matrix elements ρkk (t ) can be found from Eq. (5),

ρkk (t ) = | fk (t )|2n0 +
∞∑

p=1

|Fkp(t )|2np. (12)

Invoking the unitarity of the evolution operator (5), we trans-
form Eq. (11) to an alternative form,

〈	ER〉 =
∞∑

k=1

εk | fk|2 (n0 − nk ) +
∞∑

n,k=1

|Fn k|2(εn − εk ) nk,

(13)

which is preferable for a macroscopic reservoir with a dense
spectrum because it is insensitive to the singular behavior of
the matrix elements (8) at n = k.

The average interaction energy can be inferred from energy
conservation,

〈E0(t )〉 + 〈ER(t )〉 + 〈EI (t )〉 = ε0n0 +
∞∑

k=1

εknk, (14)

and Eqs. (9) and (13).
Employing the standard methods of full counting statistics

for fermions [43,44], one can derive the statistical distribu-
tions of the energies ER, E0, and EI ,

Pα (E , t ) =
∫

dν

2π
eı E ν det

[
1 − ρ(0) + eiHt e−iHανe−ı H tρ(0)

]
.

(15)

Here the index α can take the values α = 0, R, I , and the
single-particle Hamiltonians Hα are defined in Eq. (3).

The simple form of the Hamiltonian H0 allows one to find
the distribution of the energy of the resonant level exactly,

P0(E , t ) = [1 − ρ00(t )]δ(E ) + ρ00(t )δ(E − ε0). (16)

The result (16) implies that the energy of the resonant level
randomly jumps between two fixed values: ε0, corresponding
to the occupied level, and 0, corresponding to the empty level.

One can also derive an explicit expression for the prob-
ability distribution of the interaction energy. The interaction
Hamiltonian HI has three eigenvalues: a multiply degenerate
eigenvalue 0 and two nondegenerate eigenvalues with oppo-
site signs ±	EI , where

	EI =
√√√√ ∞∑

k=1

g2
k (17)

is the “quantum” of the interaction energy. The corresponding
eigenvectors have the components

|ψ±〉� = (1/
√

2)(1,±g�/	EI ).

Rewriting the determinant in Eq. (15) in the basis of the
eigenvectors of the matrix HI , one observes that it reduces to

the determinant of a simple 2 × 2 matrix. The latter can be
evaluated, which results in the following energy distribution:

PI (E , t ) = [1 − W+(t ) − W−(t )]δ(E ) + W+(t )δ(E − 	EI )

+W−(t )δ(E + 	EI ). (18)

Here the probabilities W±(t ) have the form

W+(t ) = ρ++(1 − ρ−−) + |ρ+−|2,
W−(t ) = ρ−−(1 − ρ++) + |ρ+−|2,

and the matrix elements of the density matrix are defined as

ρss′ (t ) = 〈ψs|e−ı H tρ(0)eı H t |ψs′ 〉
and s, s′ = ±.

The distribution of the reservoir energy cannot be found
exactly. However, its general form in the weak-coupling limit
can be easily figured out. Indeed, in this case one can ignore
the interaction energy EI and apply the energy conservation
condition (14) for instantaneous, fluctuating values of the
energies E0 and 	ER. This approximation corresponds to the
quantum jump approach often used in quantum optics. From
Eq. (14) one then obtains 	ER(t ) = ε0n0 − E0(t ), and the
distribution of the reservoir energy follows from Eq. (16),

PR(	E , t ) = [1 − ρ00(t )]δ(	E − ε0n0)

+ ρ00(t )δ[	E − ε0(n0 − 1)]. (19)

If the energy level is initially occupied, n0 = 1, the distri-
bution (19) has one peak at 	ER = 0 and a second peak at
positive energy 	ER = ε0. In this case, the reservoir energy
can either stay unchanged or increase by ε0 if an electron
leaves the level ε0 and enters the reservoir. If the energy level
is initially empty, n0 = 0, the peaks of the distribution (19)
occur at 	ER = 0 and 	ER = −ε0. The latter peak describes
the reduction in the reservoir energy, which occurs if an elec-
tron leaves the reservoir and populates the level ε0. If one goes
beyond the weak-coupling limit, the δ peaks in the distribution
(19) acquire finite width ∼|Im[�(ε0)]|.

III. METALLIC RESERVOIR

We now apply the general results presented in the previous
section to an important example: a metallic reservoir. We thus
consider a nonvanishing and constant spectral density

J (ε) = 0 θ (εc − ε) θ (ε)

in a region delimited by sharp cutoffs at ε = 0 and at ε =
εc > 0. The precise value of the cutoff energy εc is not im-
portant because most of the measurable parameters depend on
it logarithmically.

A. Long-time asymptotics and general analysis

The self-energy (7) of the metallic reservoir model
becomes

�(z) = − 0

2 π
[ln(z − εc) − ln(z)]

for any complex z outside a branch cut in z ∈ [0, εc]. When
crossing the branch cut from positive to negative values of
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FIG. 1. The contour C incorporating the Bromwich contour B of
the Laplace antitransform (6) for positive t . B, V (0)

I , and V (εc )
I (red)

are the contour components lying on the first Riemann sheet. V (0)
II and

V (εc )
II (blue) are on the second Riemann sheets. The remaining parts

of the contour are at infinity and give vanishing contributions to the
occupation amplitude. Circled crosses stand for poles encompassed
by the contour.

Im z, the self-energy develops a discontinuity proportional to
the intensity of the spectral density

lim
ε↓0

[�(x + ıε) − �(x − ıε)] = −ı 0.

Accordingly, we may analytically extend the self-energy to a
second Riemann sheet by requiring continuity across the cut

�II(z) = �(z) − ı 0.

In doing so, we also adopt the convention that the princi-
pal value Arg(z) of any complex number z is in the range
(−π , π ]. These considerations are useful in light of the fact
that for any t > 0 we can most conveniently analyze [33] the
integral specifying ϕ by embedding the Bromwich path in the
closed contour C shown in Fig. 1. The contour treads the first
and second Riemann sheets. We can then apply Cauchy’s
theorem to write the occupation probability as

ϕ(t ) =
∑
℘∈P

R℘(t ) + IV (0)
I ∪V (0)

II
(t ) + IV (εc )

I ∪V (εc )
II

(t ). (20)

The sum ranges over the residues of the poles ℘ enclosed by
the contour C, whereas

IV (0)
I ∪V (0)

II
(t ) =

∫ 0

−∞

dy

2 π

−ı 0 ey t

D(ıy) DII(ıy)
,

IV (εc )
I ∪V (εc )

II
(t ) =

∫ 0

−∞

dy

2π

ı 0 e−ı εc t+y t

D(εc + ıy) DII(εc + ıy)
, (21)

and

D(z) = z − ε0 − �(z) , DII(z) = z − ε0 − �II(z).

A detailed study of the analytic properties of the occupation
probability integrand [45] shows that poles on the first Rie-
mann sheet can occur only on the real line outside the branch
cut. Poles on the first Riemann sheet are thus solutions of

x − ε0 + 0

4 π
ln

(x − εc)2

x2
= 0 (22)

and physically bring about Rabi-like oscillations in the oc-
cupation amplitude of the resonant level. Conversely, in the
region of the second Riemann sheet enclosed by contour C in
Fig. 1 poles are solutions of the system,

x − ε0 + 0

4 π
ln

(x − εc)2 + y2

x2 + y2
= 0,

y + 0

2 π

(
arctan

y

x − εc
− arctan

y

x

)
+ 0

2
= 0 (23)

for

z = x + ı y.

In general, residues of poles with a finite imaginary part
lead to exponentially decaying contributions to a probability
amplitude.

Finally, the contributions of the vertical contours (21) are
proportional to 0 at small coupling and to −1

0 at very large
coupling. Furthermore, we observe that for finite t the inte-
grands in (21) differ significantly from zero for energies of
the order of 1/t . Upon expanding the denominators around
1/t we obtain, at leading order, the estimate

IV (0)
I ∪V (0)

II
(t ) + IV (εc )

I ∪V (εc )
II

(t )

≈ ı 0 e−ı εc t

t D(εc + ı/t ) DII (εc + ı/t )
− ı 0

t D(ı/t ) DII(ı/t )
. (24)

The accuracy of the estimate improves as time elapses (see
Fig. 4 below). For

t � 1

εc
e

3 π
2 ,

1

εc
e

2 π |εc−ε0 |
0 ,

the estimate (24) reduces to the simpler expression

IV (0)
I ∪V (0)

II
(t ) + IV (εc )

I ∪V (εc )
II

(t )

t↑∞→ 4 π e−ı εc t
2

0 t ln2(εc t )
sin

(εc t

2

)
. (25)

The derivation of further analytic asymptotic expressions
hinges upon the introduction of explicit assumptions on the
strength of the coupling.

B. Numerical analysis

We numerically compute the evolution operator (5) by
direct exponentiation of the single-particle Hamiltonian (2)
for a finite amount of energy levels N in the reservoir. We
keep the level spacing in the reservoir constant 	ω = εc/N
and take coupling constants to be

gk =
√

0	ω

2π
.

Note that we scale the coupling with the level spacing 	ω

such that the total coupling does increase with increasing
reservoir size [46]. Having computed (5), we are able to eval-
uate Eqs. (9) and (13) for the energy of the resonant level and
the change in reservoir energy.

To obtain the full probability distributions, we take a
slightly different route and directly evaluate Eq. (15). We
compute the determinant by numerically exponentiating the
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matrices. Finally, we perform the Fourier transform using the
fast Fourier transform algorithm.

C. Weak- and intermediate-coupling asymptotic analysis

We assume the following relation between the parameters:

0, T � μ, ε0 � εc. (26)

The relation between 0, the temperature T , and the detuning
between the level and the Fermi energy, |ε0 − μ|, can be
arbitrary. The condition (26) covers most physically relevant
situations, in which a metallic reservoir with big Fermi energy
is involved. It also includes the regime of intermediate cou-
pling, where the deviations from Markovian dynamics already
become significant.

In this regime, residues of the poles on the first Riemann
sheet do not give any sizable contribution. Although (22)
admits two roots outside the branch cut for any positive 0,
such roots emerge from the branch cut end points with a
nonanalytic dependence upon 0:

x− ∼ −εc e−2π
ε0
0 , x+ ∼ εc + εce−2π

εc−ε0
0 ,

and the corresponding residues are exponentially suppressed.
On the second Riemann sheet (23) admits, within leading-

order accuracy in the coupling, the solution

z∗ = ε̃0 + ı
0

2
. (27)

The quantity

ε̃0 = ε0 − 0

2π
ln

∣∣∣εc − ε0

ε0

∣∣∣
physically describes the energy of the resonant level shifted
due to its coupling to the reservoir. Upon evaluating the
residue of (27) and recalling that the contributions (21)
are proportional to 0 at small coupling, within leading
accuracy we get

ϕ(t ) = e−iε̃0t e−0 t/2,

fk (t ) = gk
e−iεkt − e−iε̃0t e−0t/2

εk − ε̃0 + i 0
2

. (28)

The self-consistency condition for (28) is

t � tK ,

where tK is the timescale predicted by Khalfin’s theorem after
which unitary dynamics forbids exponential decay [47]. We
estimate tK by matching exponential decay with the involution
of the longtime asymptotics (25)

e−0 tK /2 ∼ 4 π

0 tK ln2(εc tK )
.

In particular, if model parameters are as in Fig. 2, we find
that for 0 = 0.001 μ Khalfin’s time is 0tK ≈ 9.1, whereas
for 0 = 0.02 μ we get 0tK ≈ 7.4. In both cases e−0tK �
1, which indicates that one can use the approximation (28)
during the whole relaxation process. For small long-time tails
one should use a better approximation, which was outlined
in Sec. III A.

FIG. 2. Time dependence of the energies E0(t ) and 	ER(t ) at
(a) and (b) weak, (c) and (d) intermediate, (e) strong, and (f) ultra-
strong coupling. The dots are obtained by numerical evaluation of the
exact time evolution (5). The solid lines show the analytical weak-
coupling predictions (31), and the dashed lines show the ultrastrong
coupling predictions (40) and (41). We have assumed T = 0, n0 = 1,
ε0 = 1.1μ, and εc = 10μ. For (a) the number of modes in the reser-
voir is N = 7000, and the level spacing 	ω = εc/N = 1/700μ; for
(b), N = 500, 	ω = 1/50μ; and for (c)–(f) N = 200, 	ω = 1/20μ.

The occupation probability of the level (10) becomes

ρ00 = e−0t n0

+0

∫ εc

0

dε

2π

1 + e−0t − 2e− 0t
2 cos[(ε − ε̃0)t]

(ε − ε̃0)2 + 2
0

4

nF (ε),

(29)

where nF (ε) is the Fermi function (4), now evaluated over
the continuous variable ε. The occupation probabilities of the
levels in the reservoir (12) become

ρkk = nk + 1 + e−0t − 2e− 0t
2 cos[(εk − ε̃0)t]

(εk − ε̃0)2 + 2
0

4

[n0 − nk]

+ g2
k

∫ εc

0

dε

2π

0[nF (ε) − nk]

(ε − εk )2

×
∣∣∣∣∣e−iεt − e−iε̃0t e− 0t

2

ε − ε̃0 + i 0
2

− e−iεkt − e−iε̃0t e− 0t
2

εk − ε̃0 + i 0
2

∣∣∣∣∣
2

. (30)

The average value of the energy of the resonant level
〈E0(t )〉 is given by Eq. (9) in which ρ00(t ) has the form (29).
Substituting expression (30) in Eq. (13) and replacing the
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summation over k by the integral over the energy εk , we obtain
the average change in the reservoir energy in the form

〈	ER(t )〉
0

=
∫ εc

0

dε

2π

[
ε[n0 − nF (ε)] + 0

2π
ln εc−ε0

ε0
nF (ε)

(ε − ε̃0)2 + 2
0

4

×{1 + e−0t − 2e−0t/2 cos[(ε − ε̃0)t]}

− (1−e−0t )(ε − ε̃0) − 0e−0t/2 sin[(ε − ε̃0)t]

(ε − ε̃0)2 + 2
0

4

nF (ε)

]
.

(31)

The average value of the interaction energy 〈EI (t )〉 can be
inferred from the energy conservation (14).

In the weak-coupling regime

0 � (ε̃0 − μ) coth
ε̃0 − μ

2T
,

the integrals (29) and (31) can be straightforwardly evalu-
ated. We obtain simple exponential relaxation of the energies,
which is a typical feature of the Markovian Lindblad approx-
imation,

〈E0(t )〉 = e−0tε0n0 + (1 − e−0t )ε0nF (ε0),

〈	ER(t )〉 = (1 − e−0t )ε0[n0 − nF (ε0)]. (32)

The interaction energy in this regime is negligible.
In the long-time limit tK � t � (πT )−1 the occupation

probabilities of the levels (29) and (30) approach their asymp-
totic values

ρas
00 = 1

2
− 1

π
Im

[
�

(
1

2
+ 0

4πT
+ ı

ε̃0 − μ

2 πT

)]
,

ρas
kk = nk + g2

k

(εk − ε̃0)2 + 2
0

4

{
n0 + ρas

00 − 2nk

+ 0

π
Re

[
�

(
1
2 + 0

4 πT + ı
ε̃0−μ

2 πT

) − �
(

1
2 + ı

εk−μ

2 πT

)
εk − ε̃0 + i 0

2

]

− 0

2π2T
Im

[
� ′

(
1

2
+ ı

εk − μ

2 πT

)]}
, (33)

where �(x) is the digamma function. Accordingly, the ener-
gies in the long-time limit take the form〈

E as
0

〉 = ε0ρ
as
00, (34)〈

	E as
R

〉 = ε0
[
n0 − ρas

00

] − 〈
E as

I

〉
, (35)

〈
E as

I

〉 = −0

π

{
ln

εc − ε0

ε0
ρas

00 + ln
ε0

2πT

− Re

[
�

(
1

2
+ 0

4πT
+ ı

ε̃0 − μ

2 πT

)]}
. (36)

The asymptotic distribution function in the metallic reservoir
(33) has a Lorentzian peak or dip close to ε̃0. Clearly, such
a strong nonequilibrium distribution will relax to the thermal
one during the electron-electron relaxation time τe−e. Thus,
the distribution (33) survives only during the time interval

(πT )−1 < t < τe−e. This condition provides the range of
validity of our model.

D. Ultrastrong-coupling asymptotic analysis

We now assume that 0 sets the largest energy scale in
the model:

ε0, εc � 0.

In this case, the residues of poles in the first and second
Riemann sheets exchange roles in relation to their significance
for the dynamics. Namely, (22) admits two solutions,

x± = ±�1 + �2 + O
(
−1

0

)
, (37)

with

�1 =
√

0 εc

2 π
+

√
2 π

0

7 ε2
c + 12 ε0(ε0 − εc)

96
√

εc
,

�2 = 2ε0 + εc

4

appearing to the right (x+) and to the left (x−) of the branch
cut. These solutions correspond to two simple poles with
residues R± now giving an O(1) contribution to (20):

R+ + R− = e−ı�2 t
(

1 − π εc

6 0

)
cos(�1t )

+ ı e−ı�2 t√π
εc − 2 ε0√

8 εc 0
sin(�1t ) + O

(


−3/2
0

)
.

Note that the energy �1 approaches the interaction energy
quantum (17) in the limit of infinitely strong coupling, �1 =
	EI for 0 → ∞. On the second Riemann sheet, (23) admits
the solution

z� = ε0 + ı
0

2
+ O

(
−1

0

)
.

The imaginary part of the root entails an exponential suppres-
sion of the residue with a very large rate. As a consequence,
the contribution to (20) is negligible after an elapse of any
nonvanishing time interval t . Finally, (24) estimates the con-
tribution of the vertical tracts of the complex plane contour C
as being of the order of (0 t )−1 for finite t . The upshot is that
energy statistics within leading-order accuracy are dominated
by stable oscillations determined by the residues of the first
Riemann sheet poles (37). Indeed,

ϕ(t ) = e−ı�2 t cos(�1t ) + O
(


−1/2
0

)
, (38)

fk (t ) = −ıgk
e−ı �2 t

�1
sin(�1t )

[
1 + O

(


−1/2
0

)]
(39)

yield [up to corrections O(−1/2
0 )]

〈E0(t )〉 = ε0n0 cos2(	EIt )

+ ε0 sin2(	EIt )
∫ εc

0

dε

εc
nF (ε) (40)

and

〈	ER(t )〉 = sin2(	EIt )
∫ εc

0

dε

εc
ε [n(0) − n(ε)]. (41)

245401-6



EXACTLY SOLVABLE MODEL OF CALORIMETRIC … PHYSICAL REVIEW B 102, 245401 (2020)

In this case, the reservoir can effectively be replaced by a
single energy level in accordance with the theory of fermionic
reaction coordinates [25] and results from the spectral analysis
of the Hamiltonian operator where, at strong coupling, one
finds that the one-particle Hamiltonian gains a pure point
spectrum (see, e.g., [34,48]).

IV. DISCUSSION

In Fig. 2(a) we illustrate the exponential time dependence
of the energies 〈E0(t )〉 and 〈	ER(t )〉 at zero temperature and
at weak coupling. We assumed that the resonant level was ini-
tially populated, n0 = 1. For the chosen parameters, namely,
0 = 0.001μ, ε0 = 1.1μ, and εc = 10μ, the full solution (29)
and (31) and the weak-coupling approximation (32) produce
overlapping curves. The dots in Fig. 2(a) are the result of
numerical evaluation of the exact dynamics (5) as described
in Sec. III B. We find that the numerics quantitatively validate
the asymptotic analysis, as expected in this parametric range.

In Figs. 2(b)–2(f) we show the time dependence of the
reservoir energy (31), the energy of the resonant level 〈E0(t )〉,
and the interaction energy at T = 0, with the same values
of ε0 and εc, but at stronger coupling. Strong coupling man-
ifests itself in two ways: (i) the interaction energy 〈EI (t )〉
becomes comparable to 〈	ER(t )〉 and 〈E0(t )〉, and (ii) oscilla-
tory contributions to the average energies ∝ e−0t/2 cos[(ε̃0 −
μ)t] become visible. We consider four regimes of system-
reservoir coupling as discussed in [45]: weak (0 = 0.02μ),
intermediate (0 = 0.1μ and 0.405μ), strong (0 = 18μ),
and ultrastrong (0 = 1800μ) coupling. For 0 = 0.02μ the
energies still display almost exponential decay, and the nu-
merics (dots) and analytical predictions (29) and (31) (solid
lines) agree quite well. In the intermediate regime, 0 =
0.1μ and 0.405μ, deviations from the exponential decay and
the oscillations become visible. In addition, at short times
the analytic results do not agree with the numerics because
the condition (26) is no longer valid. At strong coupling we
observe strong oscillations, which do not decay in time, in
qualitative agreement with our asymptotic analysis (40) and
(41) and results from spectral analysis (see, e.g., [34,48]).
Finally, at ultrastrong coupling we again observe strong
oscillations with the frequency 	EI , in agreement with
Eqs. (40) and (41).

Next, we plot the long-time asymptotic energies (34)–(36)
in Fig. 3. The asymptotic energy of the resonant level (34)
is independent of its initial population n0, 〈E as

0 〉 ≈ ε̃0 for
ε̃0 < μ and 〈E as

0 〉 ≈ 0 for ε̃0 > μ. In contrast, the asymptotic
energy of the reservoir is very sensitive to n0. For n0 = 1 this
energy grows as 〈	E as

R 〉 ≈ ε0 for ε̃0 > μ since in this case
the electron escapes from the level to one of the unoccupied
states in the reservoir. For ε̃0 < μ the electron stays on the
atom since the Pauli principle prevents it from jumping to
the occupied states in the reservoir; hence, 〈	E as

R 〉 is small.
With similar arguments, one can easily understand that for
n0 = 0 the reservoir energy should behave as 〈	E as

R 〉 ≈ −ε̃0

for ε̃0 < μ and 〈	E as
R 〉 ≈ 0 for ε̃0 > 0. In the vicinity of the

Fermi level the switching from one regime to another occurs
within the interval |ε̃0 − μ| � 0. The average interaction en-
ergy (36) is always negative, 〈E as

I 〉 ∼ −0. In Fig. 3 we have
chosen rather weak coupling, 0 = 0.05μ; therefore, the an-

FIG. 3. Average values of the long-time asymptotic energies of
the resonant level 〈E as

0 〉 (34), of the reservoir 〈	E as
R 〉 (35), and of the

interaction energy 〈E as
I 〉 (36) plotted versus the energy of the level ε0.

The dots are obtained by numerical evaluation of the exact dynamics
(5). The temperature is zero, T = 0. In the left panel we assume n0 =
1; that is, the energy level is initially populated. In the right panel we
put n0 = 0. The coupling rate between the level and the reservoir is
0 = 0.05μ, εc = 10μ, N = 200, and 	ω = 1/20μ.

alytical expressions (34)–(36) agree with the exact numerics
quite well.

In Fig. 4 we show the long-time behavior of the resonant
level occupation |ϕ(t )|2 for t longer then the Khalfin time tK .
After a long period of exponential decay, the level enters a
regime of power law decay with oscillations.

Finally, Fig. 5 shows the probability distribution of the
resonant level, the reservoir, and the interaction energies
evaluated numerically. As expected, the distribution of the
level energy (16) has two δ peaks at E0 = 0 and E0 = ε0.
Since we have chosen the initial condition n0 = 1, in the
weak-coupling regime the distribution of the reservoir energy
also has two peaks centered around 	ER = 0 and 	ER =
ε0. The peak at 	ER = 0 always remains sharp, while the

FIG. 4. Long-time nonexponential behavior of |ϕ(t )|2 for 0 =
0.0623 μ, εc = 10μ, and ε0 = 1.1μ: there are three curves, with two
overlapping. The dark red curve shows the numerical evaluation of
the integral (6). The orange solid line and yellow dashed respectively
show the numerical evaluation of the vertical contour contribution
plus the residue of (27) and asymptotic evaluation (24) of the vertical
contour integral plus the residue contribution. The small discrepancy
between the three curves originates from the residues’ contributions.
The timescales in the plot require retaining all terms in the analytic
asymptotic, as reported in the second line of (24).
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FIG. 5. Probability distributions of the reservoir, interaction, and
resonant level energies. The left column corresponds to the weak-
coupling regime with 0 = 0.02μ, and the right one corresponds to
the strong-coupling limit 0 = 18. Other parameters have the values
T = 0, n0 = 1, ε = 1.1μ, εc = 10μ, N = 200, and 	ω = 1/20μ.
The inset in the bottom left panel shows a Lorentzian fit of the peak
in the reservoir energy distribution, PR(	E , t ) = a/[(	E − ε̃0 )2 +
2

0/4]. We find from the fit 0 = 0.0193μ, which is close to the
expected value 0.02μ.

second peak at 	ER = ε0 acquires finite length ∼0 with
growing time. In fact, one can show that at long times in
the weak-coupling regime this peak should approach the
Lorentzian shape PR(E , t ) ∝ 0/[(	ER − ε̃0)2 + 2

0/4]. Note
that in the strong-coupling regime the energy distribution
of the reservoir does not show a second peak. Finally, in
agreement with Eq. (18), the distribution of the interaction
energy has three sharp peaks separated by the intervals (17)
	EI = √

0εc/2π .

Possible experiment

In the previous section we demonstrated that the strong-
coupling between a resonant energy level and a metallic
reservoir can lead to the nonexponential relaxation of the
energy and to a significant part of the energy being stored
in the interaction part of the Hamiltonian. In this section
we will briefly discuss a possible experiment in which these
predictions may be tested. We do not aim at a detailed ex-
perimental proposal with realistic parameters; rather, we limit

FIG. 6. Sketch of a possible experimental setup. The control
potential Vb allows one to tune the height of the barrier between
the quantum dot hosting a spin-polarized energy level and the 2DEG
reservoir, the gate potential Vg tunes the position of the level relative
to the Fermi energy of the reservoir, the electrometer allows one to
monitor the number of electrons in the dot, and the thermometer in
the bottom left corner measures the temperature of the reservoir.

ourselves to a qualitative level discussion of a possible ex-
perimental protocol and relevant timescales in nanoelectronic
devices.

A possible setup for such an experiment would be a system
with a finite-size area containing a two-dimensional electron
gas (2DEG) playing the role of the metallic reservoir and a
quantum dot with an energy level spin polarized by the strong
in-plane magnetic field. This setup is depicted in Fig. 6. The
charging energy of the dot should be small, EC � 0. The bar-
rier between the quantum dot and the reservoir may be tuned
by applying the potential Vb to the control gate electrode; the
position of the level relative to the Fermi energy can be tuned
by the gate voltage Vg, and the number of electrons in the dot
can be detected by an electrometer. Finally, the temperature
of the 2DEG can be monitored, for example, by a thermome-
ter based on a superconductor–normal metal–superconductor
Josephson junction [49]. The experiment should be run as
follows: (i) At time t = 0 the barrier between the dot and
the reservoir is reduced, and they become coupled at a rate
0. (ii) At the final time t this coupling is switched off again,
and the reservoir is left to relax. (iii) The number of electrons
in the dot is measured, and (iv) after the delay time, which
should be longer than the electron-electron relaxation time
τe−e but shorter than the electron-phonon time τe−ph, the tem-
perature of the 2DEG reservoir is measured. The measured
temperature can be converted to the energy of the reservoir as
	ER = CV 	TR, where CV is the heat capacity of the reservoir,
and the number of electrons in the dot can be converted into
the energy of the resonant level. Corresponding energy distri-
butions can be obtained by repeating this experiment many
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times. The interaction energy cannot be directly measured,
but it should be possible to infer its average value from the
energy conservation condition (14). As for the original mo-
tivation of our study, one should be able to easily determine
the initial population of the quantum dot level by measuring
the temperature of the reservoir if the energy of the level ε0

is sufficiently high. Easily achievable values ε0 > 100 μeV
should be sufficient for that.

This type of experiment is certainly challenging because
of the low values of the electron-electron relaxation time
τe−e. Indeed, τe−e lies in the nanosecond range at the lowest
accessible temperatures [50,51]. This leaves little room for
observation of nonexponential time relaxation and long-time
asymptotics (24). We believe, however, that one should be
able to measure the asymptotic values of the average level
and reservoir energies (34) and (35) and subsequently estimate
the interaction energy (36) from the conservation condition

(14). The interaction energy should be observable because the
coupling rate can be easily made rather large, 0 � 100 μeV.

In conclusion, we have considered an exactly solvable
model of a resonance level coupled to a metallic reservoir.
We have considered the transient process in which the level
and the reservoir are coupled at time t = 0 and determined the
time dependence of the average values of the reservoir energy,
of the resonant level energy, and of the interaction energy in
the strong-coupling regime. We have also found the statistical
distributions of these energies.
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