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1. INTRODUCTION 

 

Subduction is a crucial part of the Wilson cycle plate tectonic model (Wilson, 1966), 

which describes the cycle of opening and closing of oceanic basins through rifting, plate 

diverging and converging, etc. At a subduction zone, two plates are converging towards 

each other (Figure 1a). One plate is forced to bend at an angle beneath another plate due 

to gravity forces, which may trigger deformation at the plate boundary and in the 

overriding plate. Research on subduction systems is crucial for the society to reduce the 

impact of geohazards such as earthquakes, tsunamis, volcanic activities, etc., that are 

usually associated with plate convergence and subduction zones. Understanding the 

structures and tectonics of subduction systems also helps locate sedimentary basins and 

magmatic activities that are a possible host or source of natural resources such as 

hydrocarbons and ore deposits.  

 

 

Friction between the down-going oceanic slab and the upper plate builds up stress when 

the movement is locked along their interface and releases the stress during an earthquake 

event (Barazangi and Isacks, 1978; Lallemand et al. 2005). Most of the earthquakes 

including the largest and deepest ones occur in subduction zones, the strongest earthquake 

Red stars: earthquakes that mark the Wadati-
Benioff zone 
Dots: sediment accumulation at the trench and in 
the fore arc basin. 
Red arrow: magma formation from the interaction 
of cold subducting slab with the hot mantle 
Red triangle: volcanic activities. 

Figure 1 a) Drawing of a typical subduction system. b) Two scenarios of strain partition at an oblique 
subduction zon.e Left: the convergence vector is completely taken at the subduction interface by 
oblique thrust. Right: the trench normal vector is consumed at the subduction interface and the trench 
parallel vector is accommodated by a strike-slip fault system located near the volcanic arc. 
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being the Mw 9.5 1960 Valdivia earthquake at the South American subduction zone. The 

majority of subduction earthquakes are shallow and usually below 100 km depth, but they 

can also occur deeper as the subducted plate gets to hundreds of kilometers of depth. This 

zone marked by seismicity is called the Wadati-Benioff zone and can be used to locate 

the subducting slab (Benioff 1949). As these subduction earthquakes are usually related 

to an oceanic plate, they could also cause tsunamis, as the 1960 Valdivia earthquake did.  

 

A volcanic arc usually forms in the upper plate 100 to 200 km away from the subduction 

trench with magma generated from interaction between the cold subducting slab and the 

mantle (Kearey et al. 2009), although they are not always present. In shallow or flat 

subduction systems, the temperature or pressure is usually not high enough to create melt 

that could rise up and form volcanos. During transport of material as subduction happens, 

the material fractionates by processes like dehydration, forming ore deposits as well as 

arc volcanism (Giggenbach 1992).  

 

The most important characteristics of a subduction system that influence the type and 

degree of deformation in the upper plate include the plate convergence obliquity angle, 

the subducting slab dip, the age and strength of the converging plates. Most subduction 

systems are oblique (Philippon and Corti 2016), which means that the angle between the 

trench normal and the convergence velocity, the obliquity angle, is usually greater than 

0. It is important to study the relationship between the geometry of the subduction zone 

and plate tectonics because strain introduced by oblique subduction could result in 

partitioning of the strain into a trench-parallel component, accommodated by strike-slip 

faults or shear zones in the over-riding plate, and a trench-normal component, consumed 

at the subduction interface by thrust faulting (Fig. 1). In an oblique convergence setting, 

strain can be fully accommodated at the plate interface by oblique thrusting or partitioned 

into a combination of its two components depending on the nature of convergence and 

physical properties of the converging plates (e.g., Fitch, 1972; McCaffrey, 1992). 

 

The obliquity angle plays the major role in controlling strain partitioning behavior in the 

overriding plate. A high obliquity angle together with strong inter-plate coupling and a 

weak upper plate favors of strain partitioning (Fitch, 1972; McCaffrey, 1992; Nocquet el 

al., 2014). Fitch (1972) presents a simple model of strain partitioning between the 
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subduction interface and a strike-slip system parallel to the trench and shows that if the 

strength of both faults is equal, partitioning can occur at an obliquity angle greater than 

45 degrees (Fig. 2). McCaffrey (1992) relates this critical angle where strain partitioning 

is possible to the arcsine of the ratio of resisting force on the plate interface and the 

potential strike slip fault in the upper plate.  

 

 

The angle between the subducting slab and the horizontal surface, the dip angle, is another 

criterion to characterize the geometry of subduction. A subduction system with a dip 

angle of smaller than 30˚ or greater than 70˚ is called flat or steep subduction respectively. 

A young and less dense subducting slab often leads to flat subduction, in which it subducts 

normally until reaching a depth where the buoyancy force bends it towards a nearly 

horizontal dip (Stern, 2002; Lallemand et al. 2005; Van Hunen & Moyen, 2012; Kumar 

et al. 2016; Bishop et al. 2017;  Manea et al. 2017). In contrast, an old and dense 

subducting slab usually results in a normal or steep dip angle due to the larger 

gravitational pull downwards. A good example is the Mariana Trench, where the oceanic 

crust is one of the oldest subducting oceanic crust on Earth. The dip angle is a secondary 

factor controlling strain partitioning in an oblique converging system. A shallow 

subduction dip is usually associated with a volcanic gap and thus a strong crust in the 

upper plate that is less favorable to accommodate strain, but the high buoyancy of this 

oceanic slab also creates a stronger coupling with the upper plate, which can promote 

strain partitioning (Dewey and Lamb, 1992). 

 

Another factor that controls strain partitioning in a subduction zone is mechanical 

properties of the subduction system, especially the strength of the overriding plate and 

the coupling force between the converging plates (Ramos, 1999; Gutscher et al. 2000; 

Stern, 2002). The presence of a crustal weakness in the upper plate, such as pre-existing 

Figure 2. Simplified diagram showing the partition of the oblique convergence vector in a) map view and 
b) cross section view, adapted from Fitch et al. (1972) 
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fault system and/or volcanic zone, reduces the shear stress needed to initiate slip in the 

upper plate and thus facilitates strain partitioning. Many modern and ancient subduction 

systems show partitioned oblique convergence as strike-slip motion localized near the 

magmatic arc (Fitch, 1972; McCaffrey, 1992; Alvarado, et al. 2016). In addition, a strong 

plate coupling promotes the transfer and accommodation of stress in the overriding plate 

(Beck 1983; Jarrard 1986), and is associated with high friction at the plate interface, 

subducting a slab with rough topography such as ridge or seamount, or subducting young 

and buoyant material with a low dip angle. However, subduction zones with a low dip 

angle are associated with a lack of volcanism (Barazangi and Isacks, 1978; Dewey and 

Lamb, 1992) which makes the crust stronger than in the presence of a volcanic arc, where 

the strength could be overcome more easily by accumulated elastic strain. This is a good 

example that shows that any of these factors alone does not control strain partitioning and 

that we are looking at the net effect or interaction of the both the geometry and mechanical 

properties of the subduction system to study the behavior of strain partitioning. 

 

The study area of this paper is the Liquiñe-Ofqui Fault Zone (LOFZ) in southern Central 

Andes. It is a strike-slip fault system located on top of the Southern Volcanic Zone (SVZ) 

in an active subduction zone where the Nazca plate and the Antarctic plate are subducting 

beneath the South America plate. There are signs of partitioned strain within the LOFZ, 

including slip on a series of margin-oblique and margin-parallel fault structures that are 

interconnected and on the master branches of faults that bound the area (Perez et al. 2016; 

Sielfeld et al. 2018), and a northward motion of the fore arc sliver (Beck et al. 1993). This 

low obliquity angle (20˚) is more unlikely to produce strain partitioning behavior of the 

two end member types (Figure 1), rather than a complex system as in the LOFZ that is 

the result of multiple factors interacting with each other. With the power of numerical 

modelling to manipulate subduction geometry and material properties, this paper studies 

strain partitioning in the LOFZ area by 1) testing the possibility to reproduce earlier 

analog modelling results with numerical modelling methods, and 2) creating simplified 

models of the LOFZ and experimenting with boundary conditions and crustal mechanical 

properties. 
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2. GEOLOGIC BACKGROUND 

 

The Andes mountain range is one of the most prominent and longest subduction plate 

boundaries around the globe. Its origin is related to the separation of the Pangaea 

supercontinent and the formation of the Mid Atlantic Oceanic Ridge during the Triassic, 

which forced the Phoenix, Farallon and Nazca plates to subduct beneath the South 

American plate (Cobbold et al. 2007; Müller et al. 2019). The modern features of the 

Andes mountain range formed by tectonic activity during the Cenozoic (Oncken et al. 

2006). Based on first-order variations in geologic features and tectonic histories, a 

division of the Andes into the Northern Andes (12˚N-3˚S), the Central Andes (3˚S-47˚S) 

and the Southern Andes (47S-56˚S) is widely used (Ramos, 1999). The Northern Andes 

records the collision and accretion of oceanic crust with the South American plate during 

the Mesozoic and early Cenozoic (Gansser, 1973; Ramos, 1999). The Central Andes is 

mainly the result of subduction and it has experienced uplift, crustal thickening, 

volcanism, migration of magmatism and seismicity related to subduction. There is almost 

no volcanic activity in the Southern Andes, and this area is characterized by a relatively 

high relief and a complex fold and thrust belt due to ridge collision (Ramos and Kay, 

1992; Gorring et al. 1997) 

 
Subduction parameters such as the obliquity angle, dip angle and physical properties of 

the plates vary along strike within all three segments of the Andes, which makes it the 

perfect place to study the relationship between subduction and upper plate deformation. 

There exist multiple sub-horizontal flat-slab segments and normal subduction segments 

from North to South in the Andes subduction zone. In the southern section of Central 

Andes, the Pampean flat-slab segment (27˚S to 33˚S) is characterized by foreland uplift, 

upper plate thickening, high intraplate seismicity and a lack of volcanism (Barazangi & 

Isacks 1976, Jordan et al. 1983). To the south of this flat subduction segment, seismic 

activity shows that the mean dip angle remains constant at 30˚ until around 42˚S and dips 

more steeply at 40˚ (Ramos et al. 1999) ~ 50˚ (between 44S and 45S, Pesicek et al. 2012) 

further south. The transition between flat and normal subduction can be gradual, 

accommodated by curvature in the slab as at the northern boundary of the Pampean flat-

slab segment or abrupt, facilitated by slab tear at around 38˚S (Pesicek et al. 2012). This 

normal subduction segment extends from 33˚S to 46˚S up to the Chile triple junction 

between the Nazca, South America, and Antarctic plates and the subduction angle at this 
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region, which is also called the Patagonian volcanic gap, remains undetermined due to 

the lack of seismic and volcanic activities. South of the Chile triple junction, the 

convergence vector is nearly perpendicular to the trench. 

 
The LOFZ is a narrow fault zone located around 100 km away from the trench ranging 

from 38˚S to 46˚S in Southern Andes (Fig. 3). It has also been characterized as an area 

bounded by margin-parallel strike-slip faults with dextral movement that creates a forearc 

sliver to the west, the Chiloe block. Other important structural elements related to the 

study area are: 1) the Nazca plate, subducting to the northeast at 66 mm/yr at an obliquity 

angle of 20˚ relative to the trench (Angermann et al. 1999); 2) the Antarctic plate, 

subducting nearly orthogonally to the plate boundary at 20 mm/yr south of 46˚S (DeMets 

et al. 1994); 3) the South 

America plate that 

overrides the two 

subducting oceanic plates; 

and 4) the Chile Triple 

Junction and the Chile Rise 

that are also subducting 

under the South American 

plate and mark the 

boundary between the 

Nazca and Antarctic plates. 

Approximately half of the 

convergence is 

accommodated as slip 

along the plate interface 

(Wang et al. 2007) and a 

major part of the plate 

convergence is released by 

earthquakes when the 

accumulated strain exceeds 

the strength of plates. 

 

Figure 3. Map of study area (LOFZ), adapted from 
Rosenau et al. (2006) 
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Flat subduction segments along the Andes margin release 3 to 5 times more seismic 

energy than normal to steep subduction segments (Gutscher et al. 2000). In the forearc 

north of 38˚S near the LOFZ, GPS velocity observations are most prominently associated 

with interplate earthquake cycles. This shows that the oblique convergence vector in this 

segment is not partitioned into its trench-normal and trench-parallel components. On the 

other hand, south of 38S, the existence of trench-parallel strike-slip system and a 

Northward moving fore-arc sliver (Chiloe block) shows that there is a significant 

partitioning of convergence vector into the trench parallel component localized at the 

LOFZ (Hoffmann-Rothe et al. 2006). The Chiloe block is thus decoupled from the intra-

arc and back-arc region and accommodates most of the strike-slip component of the 

transpression with a minimum amount of shortening (Lavenu et al. 1997; Diraison et al. 

1998). The present strain partitioning of the LOFZ is accommodated by the main LOFZ 

branch and conjugate sets of short faults with a variety of directions and scales (Perez et 

al. 2016; Sielfeld et al. 2018). 

 
Seismic data shows that the LOFZ is best characterized with 3 domains from north to 

south (Sielfeld et al. 2018): 1) a northern end where transtensional deformation 

dominates, characterized by splay faulting; 2) a central part where strike-slip dominates, 

at the trench-parallel, bounding branch of the LOFZ and at trench-oblique NE and NW 

trending faults that crosscut or connect the main branches; and 3) a southernmost part 

where transpression and strike-slip deformation dominates. The conjugate set of margin-

parallel and margin-oblique dextral faults in the central section is similar to the structure 

of SC-like kinematics described by Hippertt (1999) (Fig. 4). These sets of short conjugate 

faults enclose a sigmoid-shaped domain that is less deformed and rotated, which could 

accommodate regional simple shear (Melnick et al. 2006a; Rosenau et al. 2006; 

Hernandez-Moreno et al. 2014). Based on this characterization, the kinematic constraints, 

including the total displacement in the LOFZ, long-term shear rate and vertical axis 

rotation have been estimated using a kinematic model, without knowing the exact 

displacement on each individual strand in the area (Rosenau et al. 2006). The result shows 

a smaller shear strain rate (~13 mm/yr) north of 40˚ S in LOFZ, compared to a larger 

shear strain rate (~32 mm/yr) in the southern LOFZ. This is compatible with partitioning 

nearly half of the oblique convergence in the intra-arc area in the northern LOFZ and 

complete partitioning in the southern LOFZ. The margin-oblique faults and rhomb-

shaped domains have also been captured in analog experiments by Cembrano et al. (2005) 
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and Eisermann et al. (2018) and Eisermann et al. (2018) relates the change in GPS 

velocity at the northern end of LOFZ to a decrease in crustal strength southward possibly 

caused by the change in dip angle. 

 
 
The LOFZ is notably different from the flat-subduction segment of the Northern Andes 

where volcanic activity is absent. It is located on top of an active volcanic zone called the 

Southern Volcanic Zone (SVZ), which lies 250—300 km east of the trench and between 

latitudes 33˚S and 46˚S. Apart from the change in subduction angle and presence of 

volcanism that coincides with the location of the LOFZ, crustal thickness also decreases 

from around 50 km 33˚S southward, to around 35 km at 46˚S (Cembrano and Lara, 2009). 

The high heat flow resulting from asthenosphere convection in normal subduction 

segment (Gutscher et al. 2002), together with the presence of volcanic arc as a weak zone 

and a thinner crust could lead to a weak crust, which is in favor of strain partitioning into 

the LOFZ. 

 

2.1. Numerical Geodynamical modelling 

 

Geodynamic processes such as plate convergence and subduction can be studied by 

observing the product of a combination of geological events in place at present and 

inferring what has happened in the past. However, most geological structures are too large 

to observe, and the timescale of geologic events is usually long, which makes it 

impossible to see directly the changes while the event is occurring. Most natural systems 

are subject to a combination of processes and it is usually hard to identify the effect of a 

Figure 4. Simplified drawing of the SC-like structure adapted from Rosenau et al. (2006) and Hippertt 
et al. (1999). 
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specific process in the region. Analog and numerical models allow us to observe 

deformation in a smaller length and time scale with a relatively simplified representation 

of the natural system. Both techniques provide a controlled physical environment for us 

to model certain types of geologic processes.  

 

Deformation in an analog model can be analyzed by taking photos of the top surface or 

cross sections in a desired direction at successive time and tracing the features either by 

hand or with image processing tools (Schellart 2017). Numerical models can be observed 

in any chosen cross section view or as a 3D block at any time, but the resolution of the 

observation is limited by computational power. The reliability of both modelling method 

is largely determined by the selection of materials and setup of the experiment as a 

representation of their natural prototypes. 

 

Physical model and analog model are names assigned to experiments that use materials 

to reproduce development of geological structures in a laboratory. Analog experiments 

are usually designed with simple geometric shapes which represent some geologic 

structures of interest in nature created within the modelling apparatus (Schellart et al. 

2017). Common analogue materials include dry sand, clay and silicone (Eisenstadt et al. 

2005, Schreurs et al. 2006, Reber et al. 2020) and they are used to simulate the crust, the 

mantle or other types of rock. The physical properties of these materials each replicate 

some features of crust and mantle and can be scaled to simulate structure evolutions in 

the laboratory at a time and length scale that can be directly studied by human (Hubbert 

1937). Analogue models have been used to analyze evolution of a wide variety of 

geological structures, such as strike-slip faulting (Viola et al. 2004), shortening and 

extension (Schreurs et al. 2006). 

 

The geometry of analog model design is usually simple (Schellart et al. 2017). The layers 

of the Earth’s are represented by horizontal layers and topographic variations as wedges 

as in Schreurs et al. (2006). The degree that the simplified model can be compared to 

natural system is controlled by how well the selection of materials are scaled and how 

representative the design is with respect to the natural system. With all possible materials 

and physical modelling apparatus, it is still difficult to control certain variables and 

processes that are crucial to structure formation in nature, such as temperature and rock 
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rheology. It is also not convenient to observe the development of structures in the middle 

of a modelling apparatus and quantitatively analyze the stress and strain across the 

deforming body. Another shortcoming of analog models is that the rigid box that bounds 

the deforming material does not allow material flux through its sides as in nature. 

 

On the other hand, material properties and model geometries can be manipulated easily 

by changing parameter values and applying different physical equations in a numerical 

model (Burov et al. 2014). Numerical modelling provides a prediction of the evolution in 

a region, given an initial configuration, material properties and a set of rules that 

geodynamic processes obey. It also allows us to observe the desired variables throughout 

the experiment and at any time. In addition to the simple geometry and type of 

deformation an analog model can have, numerical models can host complex structures 

and include the effect of surface erosion, magmatism and heat advection, which cannot 

easily be incorporated into analog models. Change in physical values such as stress, strain 

rate, and pressure can be tracked in the model as well. However, the effect of boundary 

condition should also be considered when evaluating a numerical model result (Gerya, 

2010). 

 

Buiter et al. (2006) and Schreurs et al. (2006) (Fig. 5) compared results from eight 

numerical models and from ten analogue models of sandbox type both among themselves 

and between the two types of experiments. The numerical models succeed in replicating 

the overall evolution of the corresponding analogue models in both extension and 

shortening setting, while they are not able to achieve the exact end configuration of 

analogue experiments. The results are similar qualitatively, but in the quantitative sense, 

the number of structures that formed, the angle, spacing and length of such structures and 

when they started forming vary among different models. The degree of variation between 

the numerical modelling results is roughly the same as between analogue experiments. 

 

Before the development of computer of high computational power and three-dimensional 

(3D) modeling, most theoretical assumptions are tested with two-dimensional (2D) 

models either in map or cross section view. The disadvantage of 2D models is that they 

may over-simplify the system and cannot handle movement and property changes in three 

dimensions, especially considering oblique subduction. This study aims at analyzing the 
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deformation in the upper plate of a subduction zone undergoing oblique thrusting, and 

this process can be better studied with a 3D numerical model. In this work, the aims are 

(1) to construct numerical models that use the Multibox experimental setup (Eisermann 

et al. 2018) to test whether their results are similar to those from analog models, and (2) 

to explore the strain partitioning behavior for regions similar to the LOFZ using 3D 

numerical models of oblique subduction based on the geometry of this region. 

 

 

3. METHODS 

 

3.1. Modelling software 

 

The numerical modelling software used in this thesis is a thermomechanical modelling 

tool DOUAR (Braun et al. 2008; Thieulot et al. 2008). It is a 3D finite-element code 

designed to simulate viscous-plastic creeping-flow problems. DOUAR uses the Eulerian 

framework, which means that the reference frame is fixed in space, contrary to the 

Figure 5. A comparison of numerical (left) and analog (right) model results from Buiter et al. (2006). 
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reference frame moving with the material (a Lagrangian framework). It can be used to 

model flow problems of mantle to crustal scale and solve force and thermal balance 

equations to determine the velocity field and temperature evolution throughout a 3D 

body. The main concepts of the code relevant to this study are explained below and a list 

of equations used by DOUAR can be found in Appendix A. 

 

DOUAR uses the Finite Element Method (FEM) to approximate solutions to system of 

equations that describe the movement and change of physical properties in a 3D body. 

The FEM is based on dividing a 3D body into finite number of elements with a simple 

geometric shape (e.g., a cube) defined by its nodes. Values at the nodes can be calculated 

with predefined boundary conditions and the element geometry, while values inside an 

element are interpolated by using a shape function based on the geometry and values at 

the nodes. Increasing the number of elements normally increases solution accuracy, but 

also requires more computational power and time. Thus, the balance between accuracy 

and computational cost is crucial for designing numerical models using the DOUAR 

software. 

 

Each material is assigned a material number and defined with a set of properties such as 

density, viscosity, thermal diffusivity, etc. Surfaces bound the space where a certain 

material number is assigned, and define the materials on both sides of it, including the air 

which is defined by the “free surface” in DOUAR (Fig. 6). Surfaces can be either fixed 

or free to move and deform and their position is tracked by the connected particles that 

make the surface. Materials can also be defined using Lagrangian tracking particles 

(cloud particles in DOUAR) that reside within the cubic finite elements defined by a 

Eulerian mesh. The particles drift through the model space following the velocity 

solution. The density and distribution of cloud particles can be dynamically adjusted 

during the calculation. 

 

The code operates in time steps with a set of predefined materials, surfaces and boundary 

conditions. The relationship between time step and element size follows the Courant-

Friedrichs-Lewy condition (Courant et al. 1928): v * dt ≤ C * dx. With the courant 

number (C) equal to 0.5, the largest distance a particle can travel in our model during one 

timestep is less than one half of an element, which ensures the stability of the solution 
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and prevents unbounded error growth. The optimal time step size of a numerical model 

can be thus calculated using the boundary condition velocities and element sizes. At each 

time step, the velocity field and temperature change are calculated, and the surfaces and 

cloud particles are adjusted according to the solution. 

 

 

3.2. Model design 

 
3.2.1. Numerical modelling of the MultiBox experiments 

 

The overview of three sets of numerical models in this work and their relationship is 

shown in Figure 7. Three representative analog models from the Hamburg University 

analog experiment lab (Eisermann et al. 2018) with the same velocity boundary 

conditions but different crustal thicknesses as a proxy for crustal strength variations 

(Table. X) are tested in DOUAR as the “MultiBox” model set. The “NatureBox” models 

have the same geometry, but the physical parameters such as length, timescale and 

strength are scaled back to their natural equivalents (i.e., at the scale of the natural system, 

rather than the analog laboratory apparatus). The “Natural system” models are simplified 

models of the LOFZ fault zone at the same spatial scale as the NatureBox models that can 

be compared to the MultiBox and NatureBox results.  

Figure 6. DOUAR surface and material definition (shown with cloud particles). 
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The boundary conditions for MultiBox and NatureBox are shown in Figure 8 as a block 

diagram. It uses the geometry of the MultiBox apparatus (Eisermann et al. 2018), which 

is a box containing two halves each with assigned velocities in the x and y directions, 

simulating two plates colliding with each other. The analog materials fill the cubic space 

with a base of 100 cm * 69 cm and the box is driven by the piston beneath it and on its 

walls. Boundary velocities are directly applied to the right and left side together with the 

bottom surface in the numerical model as well. In the middle of the box there is initially 

a 27 cm gap between the piston where the velocities are applied. In the analog models, it 

is filled by nearly frictionless glass beads to allow dissipation of deformation at the 

velocity discontinuity, and in numerical model, no velocity is applied here to allow free 

slip. Empty space with no material and velocity is added on both left and right sides of 

the model in DOUAR to satisfy the requirement in DOUAR of creating a model with a 

square base. The location and width of piston and empty space in numerical model is 

defined by the model parameters sticky_x_min/max and pad_x_min/max respectively 

(Fig. 8).  

 

Since it is difficult to apply a change in subduction angle in analog models, Eisermann et 

al. (2018) apply a change in crustal thickness to reflect the influence of change in slab dip 

from North to South (Eisermann et al. 2018). We expect the crust to be mechanically 

weaker above a normal subduction region, due to the presence of volcanism and crustal 

heat flow (Gutscher et al. 2000). Thickness on one section of the model (the southern part 

Figure 7. Model design. 
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in the strong-to-normal model and the northern part in the normal-to-weak model) is 

scaled to the calculated average crustal strength of the LOFZ (“normal”, 0.05 cm thick) 

while the strength on the other side is either “strong” (0.09 cm) or “weak” (0.02 cm) (Fig. 

9). This feature is implemented using the surface type 10 of the DOUAR free surface 

geometries (Fig. 10). The initial topography of the 3 MultiBox models can be found in 

Figure 9 and the layer thicknesses are shown in Table 1.  

Figure 8. a) Block diagram of MultiBox and NatureBox model design. b) Map view of model design 
with velocity vectors 
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  MultiBox NatureBox Natural System 

  Material 1 Material 2 Material 1 Material 2 Material 1 Material 2 Material 3 

Density (kg/m3) 1560 1600 2500 2800 2500 2800 2500 

Viscosity (Pa s) 1.5d11 1.5d5 1d28 1d22 1d28 1d22 1d28 

Cohesion 1 Pa 1 Pa 1 Mpa 1 Mpa 1 Mpa 1 Mpa 1 Mpa 

Friction angle 30 30 30 30 15 30 15 

Approximate 

layer/rock 

crust mantle crust mantle crust mantle weak zone 

 

Figure 9. Normal, strong-to-normal and weak-to-normal model topography. 

Figure 10. Surface type 10 with a ramp. 

Table 1. Material Properties used in the model.  Table 1. Material Properties used in the model, adapted from Eisermann et al. (2018) 



20 
 
 
Similar to the MultiBox analog experiments, we use two materials to represent a brittle 

upper layer and a viscous lower layer in the numerical MultiBox models. Their material 

properties are shown in Table 2. The MultiBox models use the analog material properties 

and the NatureBox models use the properties of rock from which the analog materials are 

scaled.  

 

 

 

 

 

 

 

In the MultiBox analog experiments (Eisermann et al. 2018), 1 hour is roughly scaled to 

2.33 Ma in nature and each experiment to be reproduced is between 2.67 h to 3.17 h. The 

numerical models all run through 200 time steps and each time step can be scaled to 1 

min in an analog model and 38.89 kyr in nature for MultiBox and NatureBox models 

respectively, which correspond to 3.33 h and 7.78 Ma at the end of the model. Other 

scaling factors used in the numerical models are shown below in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

DOUAR Scaling MultiBox NatureBox Natural System 

Length scale (km) 0.001 2000 1000 

Velocity scale (km/Myr) 306600 30 66 

Density scale (kg/m3) 1.6d3 2.8d3 2.8d3 

Timestep (yr) 1.90128d-6 (≈1min) 38888.88888 38888.88888 

  brittle layer viscous layer 

MultiBox (m)   

Normal 0.005 0.03 

Normal to Strong 0.009 0.03 

Normal to Weak 0.002 0.03 

NatureBox (km)   

Normal 10 60 

Normal to Strong 18 60 

Normal to Weak 4 60 

Nature System (km)   

Oceanic plate 20 80 

Continental Plate 40 60 

Table 2. Scaling factors used in numerical modelling 

Table 3. Model thickness 
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3.2.2. Numerical Modelling of the LOFZ 

 
 The boundary conditions of a simplified of the LOFZ are shown in Figure 11, as a block 

diagram with velocity and material definitions. The box is 1000 * 1000 * 100 km3 and it 

roughly represents the tectonic setting between 38˚S and 47˚S of the LOFZ region, 

including an obliquely subducting oceanic plate as a parabola on the west side, a stable 

continental plate on the east side and a crustal weak zone representing the active volcanic 

arc. The box covers more than 200 km to the west of the trench and 200 km to the east of 

the Southern Volcanic Zone (SVZ). The applied convergence vector is 66 mm/yr, with a 

20˚ obliquity angle and the subduction dip angle is either 50˚ or 30˚ measured at the 

bottom of the model. The details of how the parabola surface is defined is shown in 

Appendix B. The material properties, scaling factors and layer thickness of the Natural 

System Models is in Table 1, 2 and 3 respectively. 

 

4. RESULTS 

 
4.1. MultiBox Model Results  

 
4.1.1. Topography 

As shown in Figure 12, in all three MultiBox models, oblique convergence creates surface 

uplift above the free slip section with two anticlines uplifted on top of the two velocity 

discontinuities, which are the boundaries between the central free-slip section and the two  

Figure 11. a) Block diagram showing the Natural System Model boundary conditions (not drawn to 
scale). Material 1 is crust, material 2 is mantle and material 3 is weak crust. Detailed material 
properties can be found in Table 3. b) 50 dip Natural System Model design. c) 30 dip Natural System 
Model design. 

a) b) 

c) 
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parts on the outer sides where a constant velocity is applied (as labeled in Figure 13). At 

the end of the model (200 time steps), roughly equivalent to 200 minutes of deformation 

in the analog MultiBox experiment, the central uplifted section is about 0.048 m above 

the original top surface and the maximum uplift at the anticline is about 0.05 m, while the 

eastis slightly higher. The strain rate taken at an E-W cross section in the middle of the 

box (Figure 14, cross section B as in Figure 13) shows two pop-up structures that are 

related to the formation of the central uplift. Two orogenic wedges have formed in the 

fore-arc and back-arc region to the outside of the central plateau. These structures 

accommodate the most shear strain apart from the shear zones in the middle of the model.  

 

4.1.2. Strain rate and total strain 

 
There are traces of structures with a trench-oblique, northwest trend that seem to crosscut 

the central deformation zone (Figure 15). Comparing the result at 150 minutes to 200 

minutes, strain is more distributed at an early stage and tends to localize more into these 

oblique faults as the model evolves. The accumulated strain is distributed evenly in the 

free slip zone and the location where there is slightly higher total strain match the trace 

of oblique faults observed with higher strain rate (Figure 16). These margin-oblique 

Figure 14. MultiBox models, strain rate with velocity vectors at time step 200 on cross section B. 
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structures could be faults that form temporarily to accommodate oblique convergence and 

get reorganized throughout time. They fail to grow into a North-South oriented master  
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fault at the boundary of high strain region in the middle of the central shear zone at the 

end of the model. 

 

Strain rate, total strain and velocity vectors in the normal model do not generally vary 

along-strike, in contrast to the models where the thickness of the crust (a proxy for 

strength) varies from north to south. In the model where there is a strong northern section 

transitioning into a normal strength section in the south (strong-to-normal model), the 

displacement pattern appears different (Figure 15). More strain is accommodated in the 

stronger part (Figure 16). At the same time, strain is more distributed across the central 

deformation zone and accommodated in the bounding faults in the stronger section, while 

it is more localized into distinct oblique faults that crosscut the central deformation zone 

in the weaker section (Figure 16). Similarly, in the model where the strength increases 

from weak in the north to normal in the south (weak-to-normal model), more strain is 

accommodated by the normal strength section, but the margin-oblique fault system is not 

as clearly-defined as in the strong-to-normal model. The margin-oblique faults are present 

but are fragmented by short margin-parallel faults, forming rhomb-shaped domains 

together. The rhomb-shaped domains in the normal section appear to be larger and 

accommodates more strain than those in the weak section (Figure 15). The stronger 

section in both models accommodates more strain than the weaker part. 

 

4.1.3. Orientation of velocity vectors 

 
The orientation of velocity vectors is fairly uniform along North-South direction in the 

normal model without the strength gradient (Figure 15). To the west of the free slip 

section (fore-arc), the velocity is generally NE-oriented aligned with the applied velocity 

boundary condition, while the velocity vectors rotate counter-clockwise towards a 

northward motion closer to the central deformation zone, indicating the northward 

transport of material is greatest in the center, and is at its maximum near the east side of 

this zone. The northward velocity component also increases as the model develops. In the 

back-arc area to the east of the free slip section, the velocity points westward as is defined 

by the boundary condition, and it rotates towards a NW orientation approaching the 

eastern boundary of the central deformation zone. 
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As above, the orientation of the velocity vectors in the strong-to-normal and weak-to-

normal models also differ along the y-axis. In the fore arc and the central deformation 

zone, the northward component is the smallest in the strong-to-normal model and is the 

largest in the weak-to-normal model (Figure 15). In the back arc, the velocity vectors 

point in a WSW direction with a small southward component in the region of thickness 

transition of the strong-to-normal model. This differs from the NW transport of material 

in the same region in the two other models. 

From the velocity vectors in 3 E-W cross sections taken at different locations (cross 

sections A, B and C in Figure 13), we can see that generally the velocity pattern is similar 

along strike (Figures 17-19). The upward velocity (uplift rate) decreases from north to 

south as the velocity vectors rotate counterclockwise in the central deformation zone near 

the east velocity discontinuity in the strong-to-normal and weak-to-normal models 

(Figures 18 and 19). Across the velocity discontinuity in the back-arc region, the uplift 

rate increases from north to south and rotates clockwise, pointing almost directly upward 

in the weaker part. This along-strike variation of vertical velocity is absent in the normal 

model (Figure 17).  

 

Figure 17. MultiBox models, cross sections A, B and C from the normal model with velocity vectors 
overlaying the strain at time step 200. 
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4.2. NatureBox Model Results 

The development of topography in the NatureBox models is similar to that observed in 

the MultiBox models, where the central deformation zone is uplifted, and the elevation 

Figure 18. MultiBox models, cross sections A, B and C from the strong-to-normal model with velocity 
vectors overlaying the strain at time step 200. 

Figure 19. MultiBox models, cross sections A, B and C from the weak-to-normal model with velocity 
vectors overlaying the strain at time step 200. 
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decreases on both sides of it until reaching the material boundary (Figure 20, regions as 

labelled in Figure 13). The central uplifted region reaches 110 km above the model base 

(40 km above the surface of the normal thickness section), after 200 steps of convergence, 

approximately 7.7 Myr, and the two anticlines on both sides of it are about 5-10 km higher 

(Figure 20). As in the MultiBox experiments, similar sets of thrust faults form a pop-up 

structure that is visible in the cross section at the middle of the model, only the strain is 

more localized on the thrust faults rather than being distributed towards the more distal 

fore arc and back arc regions (Figure 21). The orientation of velocity vectors on the map 

view (Figure 22) and in cross sections (Figure 21) is also similar to what we observed in 

the MultiBox models.  

Also, as in the MultiBox models, the stronger section in NatureBox model accommodates 

more strain (Figure 23). However, a notable difference between these two sets of models 

is that the strain rate map shows a more complex series of margin-parallel and margin-

oblique faults in the central deformation zone than in the MultiBox models. In the normal 

model, the margin-oblique faults could not grow to lengths that crosscut the deformation 

zone but are always cut by margin-parallel faults and enclose a rhomb-shaped area (Figure 

22). In the strong-to-normal model, strain tends to be accommodated primarily by a 

margin-parallel fault on the left side of the central deformation zone in the strong section 

(Figure 22), while being more distributed in the normal section across several faults that 

also form the rhomb-shaped domains. Similarly, the stronger section (normal thickness) 

in the weak-to-normal model hosts fewer number of structures that accommodate more 

strain than the weaker section to the north of it (Figure 22).  

4.3. Natural System Model Results 

 
4.3.1. Strain rate 

 
The Natural System models do not reproduce the margin-oblique fault systems as 

observed in numerical versions of the analog experiments. We observe that the strain rate 

is primarily accommodated at the subduction interface and is also taken by a nearly 

vertical fault that is spatially related with the weak zone in the continental crust or by a 

thrust fault that connects the subduction interface with the weak zone (Figure 24). Strain 

is distributed uniformly across the region between the trench and the weak zone and the 
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 strain rate is generally low (Figure 25). The model with a dip angle of 30˚ appears to 

accommodate less strain at the subduction interface and has a larger partitioned 

component at the thrust fault than the model with a 50˚ dip. There is some along-strike 

variation in the strain rate at the weak zone in the steeply dipping model but there is no 

sign of the set of margin-oblique and margin-parallel faults that bound a rhomb-shaped 

domain as observed in the MultiBox and NatureBox models. 

 

 

Figure 24. Natural System models with a dip angle of 50 and 30 degrees respectively: strain rate with 
velocity vectors at time step 200 is shown in a cross section taken at the middle of the model. 

 

Figure 24. Natural System models with a dip angle of 50 and 30 degrees respectively: strain rate with 
velocity vectors at time step 200 is shown in map view. 
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4.3.2. Velocity vectors 

In the fore-arc region, the velocity is NE-oriented as applied (as in Figure 3) and there is 

a small trench-ward motion in the back-arc region (Figure 26 and 27). Northward and 

eastward velocities both distribute uniformly across the width of the area bounded by the 

subduction interface and the weak zone and shows no along-strike variation as well 

(Figure 26 and 27). There is also northward transport of material in the fore-arc region in 

both models directly to the east of the trench, and the northward velocity decreases farther 

eastward towards the location of the weak zone and  farther into the back-arc region, 

which shows weak partitioning of strain in the area. The existence of southward velocity 

component is likely to be related to the velocity vectors rotating to be perpendicular to 

the boundary between the weak zone and the interior of the continent.  

 

Figure 26. Natural System models with a dip angle of 50 and 30 degrees respectively: northward and 
east ward velocity at time step 200 is shown in a map view. 
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5. DISCUSSION 

 
The results from the numerical MultiBox and NatureBox models are generally 

comparable to each other and to the analog models of Eisermann et al. (2018). Apart from 

this similarity, the Natural System models do not show the same displacement patterns 

and structures, especially the margin-oblique faults that were expected (Figure 25).  

5.1. Comparison of the Analog Models to Their Numerical Equivalents 

A lot of the qualitative findings of the analog models are successively reproduced in our 

numerical models. For example, the vertical uplift is greatest in the two anticlines that 

form at the velocity discontinuities on both sides of the central deformation zone (Figure 

12 and 20) as described by Eisermann et al. (2018). The anticlines also sit on top of a set 

of thrust faults which extend downward and converge to form a pop-up structure. Strain 

rate is accommodated within a wide central deformation zone and on NW-oriented 

margin-oblique faults (Figure 14-15 and 21-22). The set of margin-oblique and margin-

parallel faults enclose rhomb-shaped domains inside the deformation zone. With the 

similarities mentioned above, we can also say that the model results are similar to what 

is observed in the LOFZ area, where the stress is accommodated by both the margin-

parallel main branch of LOFZ and conjugate sets of faults with different orientation 

including the NW-oriented margin-oblique faults (Perez et al. 2016; Sielfeld et al. 2018). 

Figure 27. Natural System models with a dip angle of 50 and 30 degrees respectively: northward and 
east ward velocity with velocity vectors at time step 200 is shown in a cross section taken at the middle 
of the model. 
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This displacement field of these numerical models matches the observation in Eisermann 

et al. (2018) as well. There is clockwise rotation on the velocity vectors on the east section 

of the central deformation zone, compared to a small counter-clockwise rotation on the 

western section of the central deformation zone (Figure 14-15 and 21-22). This rotation 

is present in all sections of the models. There is also a northward transport of material in 

all models with and without a thickness gradient, except that the material movement is 

southward in the transition zone in the strong-to-normal model. As concluded by 

Eisermann et al. (2018), the change in crustal thickness is important in that the southward 

transport of material initiates at the boundary of transition zone. The change in direction 

of velocity vectors at the northern boundary of the LOFZ from NE-oriented to SE-

oriented (Moreno et al. 2011) also spatially coincides with the change in crustal thickness 

and slab dip (Ramos et al. 1999; Cembrano and Lara, 2009; Pesicek et al. 2012).  

Rhomb-shaped domains inside the central deformation zone are present in the MultiBox 

and NatureBox models even when there is no along-strike variation in crustal thickness 

(Figure 15 and 22), which is also the same in the MultiBox analog models (Eisermann et 

al. 2018). They are bounded by margin-oblique faults that cross-cut the central 

deformation zone, together with margin-parallel bounding faults or shorter ones that 

fragmented the oblique faults. This complex fault system is captured in all MultiBox and 

NatureBox models, only with different size or resolution. The two weak-to-normal 

models use a different surface type due to the limit of the current definition of the surface 

used by the strong-to-normal models. It will be best if these two sets of models are 

implemented with the same boundary condition. 

5.2. Comparison of the NatureBox and MultiBox Models: Any scaling effects? 

Comparing the result from NatureBox and MultiBox models, the deformation and 

displacement pattern is generally similar, while the exact pattern is not the same. In both 

sets of models, two thrust fronts form in the fore-arc and back-arc region, while multiple 

shear zones in the central deformation zone accommodates most convergence strain. The 

rhomb-shaped domains are present in both sets of models, but the margin-oblique faults 

bounding the domains are not as well-developed in the NatureBox models as in the 

MultiBox models (Figure 15 and 22). They are more often fragmented into shorter 

segments by the margin-parallel faults (Figure 22) rather than crosscutting the full width 
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of the central deformation area (Figure 15). We have known that in geodynamical 

modelling, scaling the density to resemble the natural system could be problematic and 

might be the cause of this difference between the NatureBox and MultiBox result (Allen 

and Beaumont, 2012). 

5.3. Comparison of the Natural System Models to the NatureBox Models 

Despite the similarity between the analog MultiBox results and the numerical versions of 

them, the Natural System models do not show the same set of margin-parallel and margin-

oblique faults cross-cutting the central deformation zone (Figure 25). There is slightly 

more interaction between the weak zone and subduction interface in the 50˚ dip model 

than the 30˚ dip model, but this could be associated with the closer distance between the 

trench and the weak zone. Considering the narrow width of the deformation zone, it is 

possible that insufficient model resolution limits the visible details in the area and 

structures similar to those observed in the MultiBox and NatureBox numerical models 

may thus not be observed. 

If a stronger material is present in the continental crust of northern section of the model, 

the distribution of strain and velocity is generally similar to the models with uniform 

crustal strength (Figures 24-27 and 28-31). A slightly wider zone between the subduction 

interface and the weak zone related shear zone in models with both a steep (50˚) and a 

moderate (30˚) dip (Figures 28 and 29) compared to models without a thickness gradient 

(Figures 24 and 25). However, there is still no sign of the rhomb-shaped domains even 

with a greater distance between the shear zones. In the stronger section in both of these 

models, the region of northward transport of material is narrower than south of it, which 

indicates a narrower region of strain partitioning (Figure 30).  

It is possible that the rhomb-shaped domains are only a product under the specific setting 

within the analog models and the numerical versions of them with a free-slip central 

region, considering that this difference between the Natural System models and the 

NatureBox models. There is also no evidence that suggest a freely-deforming layer 

underlying the Southern Andes, so the origin of this tectonic behavior remains a mystery. 
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Figure 28. Natural System models with a stronger northern section: strain rate with velocity vectors at 
time step 200 is shown in a cross section taken at the middle of the model. 

Figure 29. Natural System models with a stronger northern section: strain rate with velocity vectors at 
time step 200 is shown in map view. 
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Figure 30. Natural System models with a stronger northern section: northward and east ward velocity 
with velocity vectors at time step 200 is shown in a map view. 

Figure 31. Natural System models with a stronger northern section: northward and east ward velocity 
with velocity vectors at time step 200 is shown in a cross section taken at the middle of the model. 
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5.4. Natural System Models and their relationship to the LOFZ 

There is still some similarity between our Natural System model and the deformation 

pattern in the LOFZ. We observe a northward transport of material in the fore-arc region 

and a weak partitioning of strain in the area. The velocity fields match the GPS velocity 

of the LOFZ region, with the fore-arc accommodating the NE-oriented oblique 

convergence vector and a small back-arc trench-ward motion (Moreno et al. 2011). 

However, the complex margin-oblique and margin-parallel fault system and the change 

in displacement field as shown in Figure 3 is not present in any of the Natural System 

models. 

5.5. Future Work 

The study question is not fully explored by this thesis and there is still a lot of possible 

improvements that can be implemented and many other hypotheses to be tested. The 

change in crustal thickness of the strong-to-normal and weak-to-normal models in both 

the MultiBox and NatureBox series are implemented with different DOUAR surface 

types due to limitation of the original surface definition in the program. It will be most 

desirable if they are implemented with the same surface type in the future. While our 

simple Natural System models do not develop the rhomb-shaped domains bounded by 

conjugate sets of faults as observed in the LOFZ either with and without a stronger 

northern section and both with a 50 and 30 dip, we should consider other possibilities that 

might be related to this complex feature of the LOFZ. If sufficient computational 

resources were available, it would be interesting to run all models at a higher resolution 

to explore the small and complex fault systems. 

 

6. CONCLUSIONS 

 
In general, the numerical modelling results of this project are comparable to the analog 

MultiBox experiments (Eisermann et al. 2018). The results from analog models are 

reproducible using numerical models with similar boundary conditions and material 

properties. Numerical modelling is thus a suitable way to study the reproducibility of 
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analog models and to study the change in strain rate and stress throughout a 3D body. We 

confirmed that the set of margin-oblique and margin-parallel faults enclosing a rhomb 

shaped domain is present in the central deformation zone of all numerical versions of 

analog model experiments, and we also confirmed that a change in velocity vector 

orientation that is similar to the GPS velocity at the northern terminus of the LOFZ is 

observed in the strong-to-normal models. 

However, the Natural System models do not show the same complex features inside the 

deformation zone related to the weak zone as observed in numerical versions of the analog 

model. We have tested different material properties and boundary conditions and find that 

the model with a 30° subduction dip and stronger northern section has the velocity vectors 

rotated from NE to SE starting at the transition in material strength. In the future, models 

with a higher resolution and other boundary conditions could be implemented to study 

the stress partitioning in the LOFZ. 

7. APPENDIX A: Numerical modelling with DOUAR 

 

Numerical modelling of oblique subduction system is studied using DOUAR (Braun et 

al. 2008; Thieulot et al. 2008), which involves solving the equation of conservation of 

momentum from the 3-D Stokes equations:  

∇ ∙ η(∇V + ∇VT) − 𝛻𝑃 = 𝜌𝑔 , 

where η is the fluid shear viscosity, V is fluid velocity, VT is transpose matrix of fluid 

velocity, P is pressure (mean stress), ρ is the fluid density, and g is the gravitational 

acceleration. Since an incompressibility assumption is made for the fluid material, we 

also have: 

∇ ∙ V = 0 , 

where ∇ ∙ V is the divergence of the velocity. Pressure is thus calculated with a penalty 

factor λ (Bathe, 1982, and references therein): 

P = −λ∇ ∙ V , 
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which treats the fluid as nearly incompressible with a λ  that is usually 8 orders of 

magnitude larger than η. Rock rheology in DOUAR is either linear viscous (Newtonian) 

or viscous-plastic. Plastic material is implemented with a Mohr-coulomb failure criterion 

calculated with stress tensor invariants: 

J1 = σii 

J2
′ =

1

2
σij

′ σij
′  

J3
′ =

1

3
σij

′ σjk
′ σki

′  , 

where i, j, and k are symbolic coordinate indices. J1 is the first invariant of the Cauchy 

stress tensor σ, and J2
′  and J3

′  are the second and third invariants of the deviatoric stress 

tensor σ′ : 

σ′ = σ − J1
′ δij , 

where δij is the Kronecker delta. The Mohr-Coulomb criterion can now be defined with 

the stress invariants: 

F =
1

3
J1 sin(ϕ) + √J2

′ (cos(θL) −
1

√3
sin(ϕ) cos(θL)) − c cos(ϕ) = 0 , 

where ϕ is the angle of internal friction and θL is the Lode angle defined as: 

θL =
1

3
sin−1(

−3√3

2

J3
′

J2
′ 3

2

) . 

DOUAR calculates stresses from the strain rate tensor invariants: 

I1 = έii 

I2
′ =

1

2
έij

′ έij
′  
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I3
′ =

1

3
έij

′ έjk
′ έki

′  . 

I1 is the first invariant of the strain rate tensor έ, and I2
′  and I3

′  are the second and third 

invariants of the deviatoric strain rate tensor έ′ defined as: 

έ
′ = έ −

1

3
I1δij . 

The strain rate and deviatoric strain rate tensor will be the same if the material is 

incompressible (I1 = 0). During each model iteration, the elemental effective viscosity 

√J2
′  is calculated with: 

√J2
′ = 2η√I2

′  . 

When the elemental effective stress exceeds the Mohr-Coulomb yield strength σy , the 

element is on yield and the effective shear viscosity ηeff is recalculated as: 

ηeff =
σy

2√I2
′
 . 

When the elemental effective stress is below yield strength, the initial viscosity is used.  

 

8. APPENDIX B 

 

Following the work of Schütt and Whipp (2020), the parabola definition of the subduction 

interface uses the following equation as in Figure B1: 

z = a(x − d)2 + c 
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where x is the distance along the x-axis, z is the distance along the z-axis, a = (zmin −

zmax)/(xend − xstart), c = zmax, and d = xstart. zmin and zmax define the vertical location 

where subduction of material is happening and in the Natural System models described 

above, zmin = 0 and zmax = 100 km, which cover all of the incoming oceanic plate. xstart = 

0 and the value of xend is the distance along the x-axis between the start and end of the 

parabola, which controls the dip angle. In the Natural System model, the subduction dip 

angle is approximated as the angle of the triangle inside the parabola (Figure B1). 
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