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1 INTRODUCTION

ST1 Deep Heat is an enhanced geothermal system being developed in Espoo, Southern Finland. The 

project is located in a densely populated area with heavy infrastructure quite near Finland’s capital 

city Helsinki. The goal of the project is to provide geothermal heat for local district heating. Complete 

project will consist of a geothermal doublet which involves two wells expanding up to 6,1 km depth. 

The stimulation for the first well drilled (OTN-3) was conducted in summer of 2018 as a 7-week 

period during which the fluid permeability of the crystalline rock at the base of the well was 

increased by pumping water with high pressured into the well. Such actions interact with the 

ambient stress field of the subsurface and have been associated with induced seismicity when the 

stress changes lead into induced earthquakes as pre-existing faults and cracks are activated and new 

ones are created. 

For the registering and surveillance of the seismic activity associated with the project a seismic 

network was installed in the Espoo and Helsinki area. The network consisted of 12 borehole installed 

3-component seismometers provided by ST1 Deep Heat Company and from 7 semi-permanent 

surface 3-component broadband seismometers and in total 100 geophones installed by the Institute 

of Seismology of University of Helsinki (later ISUH). The instruments listed are located within 10km 

radius of the stimulation well. In addition to the mentioned seismic network, suitable stations from 

the Finnish National Seismic Network were also used in the study.   

The aim of the study was to assess the reliability of the magnitude determinations with the current 

methods available in the routine analysis at the ISUH and to map possible differences and trends in 

the determined magnitudes between different types of seismic stations and arrays of the used 

seismic network. The suitableness of the currently in use magnitude formula of the Finnish local 

magnitude scale is also assessed for this kind of near source events. The reliability of the magnitude 

measurements is of great importance for an earthquake inducing project located near residential 

areas or delicate infrastructure in order to reduce the possible dangers and nuisances associated 

with the project, therefore affecting the viability of such a project.  

This study was done by selecting in total 21 events based on the automatically determined 

magnitudes, favouring events with as large as possible magnitudes. Largest magnitude event was ML 

1,8 whereas the smallest events corresponded roughly to ML 1,0. The events were manually picked 

for P- and S-wave arrivals and for amplitude records. The locations and magnitudes of the events 

were determined using the currently in use practices of the ISUH. Main tools used in the study 

alongside the instruments used to gather the data are Geotool software used in waveform analysis, a 

ISUH program used for locating seismic events in routine seismic analysis and GNU Octave programs 

written by the author used in procession of the data and illustration of the results. 
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2 SEISMIC WAVES 

2.1 BODY AND SURFACE WAVES 

Scientific study of earthquakes is largely based on understanding the propagation of the seismic 

waves through the subsurface. The propagation is controlled by the elastic properties of the medium. 

The theory behind the seismic waves is described more precisely in Shearer (1999), Lay (1995) and 

Bormann (2012). The background theory provided below will help to understand the behavior of the 

seismic waves and their most important properties. 

The two most essential types of the seismic waves are the P- and S-waves. These two wavetypes are 

the fundamental mechanical waves that propagate through the interior of a solid medium. The 

existence of these waves can be related to the equations of motion and the elastic constitutive laws. 

P-waves are compressional mechanical waves that involve changes in both the volume and the shape 

of the medium. The S-waves involve only shearing deformation and involve no disturbance in the 

volume. As a result S-waves can’t propagate in fluids since fluids can’t sustain shear stresses. Often 

these two types of seismic waves are together referred to as body waves. The commonly used 

notations P and S come from the words primary and secondary waves. The primary waves have 

higher propagation velocity than the secondary waves and therefore arrive first from any source 

when considering an elastic solid material. The particle motions for the P- and S-waves are shown in 

figure 2.1. 

 

Figure 2.1 Particle motions involved in passage of the two fundamental seismic waves: the P-wave and the S-wave. The 
waves are propagating from the left to the right. As can be observed from the figure the P-wave involves both a volume 
change and a change in shape whereas the S-wave includes only a change in shape and involves no volume change. The 
relative changes caused by the propagating wave have been exaggerated greatly in the figure. This figure is modified after 
Lay (1995). 
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In addition to the P- and S-waves there also exists other wave types for solid elastic material 

involving free surfaces. There are two distinct types of these surface waves which are the 

Rayleigh and the Love waves. These wave types result from the interaction of the body 

waves with a free surface. The surface waves tend to have slower propagation velocities 

than the body waves. For Love waves to be formed it is also required to have a wave velocity 

increase with depth, which tends often to be true for the real Earth. For Rayleigh waves this 

is not required since they can exist in homogenous half-space. Since the surface waves are 

not used in the study they will not be discussed in a greater extent. The particle motions for 

the surface waves are shown in figure 2.2. 

The propagation of the seismic waves mentioned is affected by the elastic parameters and 

changes in material properties in the medium they are traveling in. The behaviour of the 

seismic waves and their particle motions will be next discussed further. 

 

Figure 2.2 Particle motions involved in passage of the surface waves: the Love wave and the Rayleigh wave. The waves are 
propagating from the left to the right. As can be observed from the figure the Disturbance tends to be at it’s maximum at 
the surface and diminish downwards. The relative changes caused by the propagating wave have been exaggerated in the 
figure. This figure is modified after Lay (1995). 

The propagation velocities of the P- and S-waves can be expressed as: 

  

 

𝑉𝑃 = √
𝜆 + 2𝜇

𝜌
 

(1) 
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for P-wave and: 

 
𝑉𝑆 = √

𝜇

𝜌
 

(2) 

 

for the S-wave, where λ is the first Lame parameter, µ is the shear modulus and ρ is the 

medium density. 

The relationship may differ to some extent in the real world when the medium is not an 

ideal Poisson solid, though this relationship almost holds for igneous and consolidated 

sediment rocks in the Earth’s crust. As can be observed from the formulas (1) and (2) the 

elastic parameters of the medium determine the travel velocity of the seismic body waves.  

The differences in the velocities of the body waves can be used when estimating the 

distance from the seismic source at a receiver. As a general rule one could say that the 

velocities of the seismic waves increase when going deeper down the crust from the surface. 

As harmonic waves the body and surface waves also involve several other parameters 

related to the wave motion. A mechanical wave can be characterized based on its period, 

frequency, angular frequency, wavelength and wavenumber in addition to the propagation 

velocity. The parameters can quite easily be calculated from each other if others of them are 

known. One important and often used parameter considering the seismic waves is the 

amplitude, which expresses the maximum displacement of a particle in the medium from its 

rest position.  

In seismology the amplitude is an important quantity of a seismic wave since many methods 

used for quantifying earthquake sizes require knowing the amount of the medium 

displacement at a certain location. This is because seismic events with more energy release 

tend to cause seismic waves causing higher displacements in the medium, therefore having 

higher amplitude. However there are several phenomena affecting the amplitude records 

which will be discussed later in this section.  

2.2 SEISMIC RAYS 

For understanding how the seismic waves travel in the Earth the concept of seismic rays is often used 

in seismology. When a seismic wavefield is represented as rays it brings new useful concepts such as 
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wave arrivals and seismic phases. The idea of a seismic ray is that the arrival corresponds to a 

transient disturbance that has propagated along a path that can be defined between the receiver and 

the seismic source. This so called arrival consists of two parameters: amplitude and travel time. 

These mentioned parameters can be quantified by using the Eikonal equation.  

The path of the seismic ray in the elastic medium is affected by the changes in the wave’s velocity in 

different parts of the medium. Now also a parameter called angle of incidence is required. It 

corresponds to the angle between the ray and the interface of the zones with different wave 

velocities.  

By using fairly simple ray geometry and Fermat’s principle one can derive Snell’s law: 

 𝑠𝑖𝑛 𝑖1

𝑠𝑖𝑛 𝑖2
=

𝑣2

𝑣1
 

 

(3) 

 

 

Where i1 is the angle measured from the normal of the boundary in material one, i2 is the 

corresponding angle for the material two and v1 and v2 are the corresponding wave velocities in the 

materials. The law can be used to understand how the ray behaves when facing a velocity boundary. 

Snell’s law is familiar from optics but it also applies to seismic rays. Snell’s law can be generalized as  

𝑠𝑖𝑛 𝑖

𝑣
= 𝑝 

(4) 

 

 

Where i is the inclination angle, v is the changed velocity and p is called ray parameter. When a ray 

enters material with higher wave velocity the ray is deflected towards the horizontal. In opposite 

situation it is deflected towards the vertical. If p = 0, the wave is travelling vertically and no 

deflection will be experienced.   

Figure 2.3 shows the behaviour of seismic rays with changes of velocity with depth. The behaviour of 

the seismic ray leads to curvature of the ray’s path in a medium having a velocity gradient. 

 

Figure 2.3 The seismic rays experience curvature when encountering a medium with a velocity gradient. The direction of the 
curvature is related to the gradient. This figure is Adapted from Lay (1995). 
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2.3 AMPLITUDE AND GEOMETRICAL SPREADING 

The amplitude of the seismic arrival at a receiver is greatly affected by how the seismic wave 

propagates in the medium. The wave can be considered to be spherical and therefore when traveling 

through the medium the wave expands and therefore the wave’s energy is divided into an expanding 

area. Considering the wave traveling a small distance from the source and the changes in velocity to 

be negligible, the energy of the mechanical disturbance is now distributed on a spherical wavefront 

for a point source (the most simple case).  

When the spherical wavefront expands as it travels further in the medium as the time passes, the 

same total energy will be distributed into a larger area. Since the total energy is constant, the energy 

per unit of area decreases as the wavefront expands further. If we define the total energy of the 

wavefront as Etotal then the energy per unit area becomes Etotal/2πr2 where 2πr2 is the area of the 

spherical wavefront with radius of r.  The effect mentioned can be addressed as geometrical 

spreading. As a simple rule the energy density and the amplitude of the seismic wave can be related 

to the traveled distance as follows: 

 
𝐸 ≈

1

𝑟2
 

(5) 

   

 
𝐴 ≈

1

𝑟
 

(6) 

 

However when considering the chance of the velocity with depth in the medium, the situation 

becomes a bit more complicated since the seismic waves tend to refract when traveling through a 

medium with a velocity gradient. Other effects causing decay in the arrival’s amplitude are the 

partitioning of the seismic energy at boundaries, seismic diffraction, attenuation and scattering.  

2.4 PARTITIONING OF SEISMIC ENERGY AT A BOUNDARY 

When encountering an interface between two mediums with different wave propagation velocities a 

wave refracts or reflects. As a notice α is often used as the velocity of the P-wave in the medium and 

β is used as the velocity of the S-wave. When considering the process more precisely in fact when P- 

or SV-wave meets the boundary in total four derivative waves are excited. First is the refracted or 

transmitted P-wave. Second is refracted SV (which is generated if β2 > α1). Third is the reflected P-

wave and fourth is the reflected SV-wave. The overall ray geometry these waves exhibit is governed 

by Snell’s law. The ray parameter p is constant for all the waves. In case of the SH-wave only two 

waves are generated in similar situation with the boundary: reflected and refracted SH waves. The 

existence of these waves means that the energy must be partitioned along the rays.  
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The behaviour of the P-wave wave encountering a velocity discontinuity is illustrated in figure 2.4. 

 

Figure 2.4 The P-wave encounters a solid-solid surface and generates additional waves. The angles are determined by the 
medium properties. This figure is adapted from Lay (1995). 

The angles of the rays after meeting a velocity discontinuity can be determined from Snell’s law 

according to: 

 𝑠𝑖𝑛 𝑖

𝛼1
=

𝑠𝑖𝑛 𝛾

𝛽1
=  

𝑠𝑖𝑛 𝑖´

𝛼2
=

𝑠𝑖𝑛 𝛾´

𝛽2
 

  

 

(7) 

where α and β correspond to the velocities of the P- and S-waves in the mediums 1 and 2 and i and γ 

correspond to the angles of incidence associated with the interface of the mediums. 

Next the partitioning of the amplitudes will be discussed in the case of the previous situation. The 

amplitude partitioning can be understood using reflections and transmission coefficient, which are 

related to the acoustic impedances across the interface. The acoustic impedance is related to the 

elastic properties of the material such as density and the body wave velocities. The transmission and 

reflection coefficient for different wave partitioning will not be listed here but they can be found in 

Lay (1995) in table 3.1. 

 

2.5 ATTENUATION AND SCATTERING 

In a case of an ideal, perfectly elastic Earth the geometrical spreading, reflection and refraction of the 

seismic wave would control the amplitude decay. This however is not completely the case with the 

real Earth. In the real Earth the waves attenuate with time because of several mechanisms which 

cause them to lose energy in addition to the geometrical spreading. As the wave propagates it 

converses potential energy (particle position) to kinetic energy (particle velocity). This conversion is 

not completely reversible. In the process other work is done involving movement along mineral 
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dislocations and heating of grain boundaries caused by shear. These processes consume some of the 

seismic wave’s energy. These types of processes can be called collectively as internal friction. The 

formulas modeling these effects however must be greatly simplified since the individual effects are 

very complex. These effects can be considered to some extent by thinking about an oscillating mass 

on a spring, which loses some of its energy per cycle.  

This leads into exponential decay of oscillation. A quality factor, marked often with Q, can be used to 

describe fractional loss of energy per cycle of oscillation.  

As a formula the effect can be expressed as:  

 

 1

𝑄
=

−𝛥𝐸

2𝜋𝐸
 

  

 

(8) 

where Q is a value describing the energy loss per cycle, E is the total energy and ΔE is the energy loss 

per cycle. 

Since the energy loss is tied to the frequency of the cycles it leads to the observation that the higher 

frequency seismic waves attenuate faster. This leads in removal of higher frequency content from 

seismic arrivals at greater distances since the higher frequencies are more effectively dampened by 

the attenuation. It also appears that the Q-values differ for P- and S-waves in real Earth. The S waves 

appear to attenuate faster, this could be caused by shear motion. On average competent rocks with 

higher seismic wave velocities and densities have higher Q-values, in other words they attenuate 

waves less.    

As a notice most of the receivers used in this study are quite near the source of the seismic waves so 

the high frequency content most likely has not attenuated as much as it usually would when using 

permanent seismic station network with often much greater source-receiver distances. 

 

2.6 SITE AMPLIFICATION OF AMPLITUDE 

When considering the arrival amplitude at the receiver it also should be noted that the medium 

properties affect the measured amplitude. Such effect is known as the site amplification and it can 

increase the amplitude of the seismic wave when it comes from more rigid and dense medium into 

less rigid and less dense material near the receiver. If the receiver is located in an area experiencing 

high site amplification the measured amplitudes are amplified. Of course the increased amplitude in 
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this case does not mean that the energy of the seismic wave has somehow increased, instead the 

increase in amplitude is experienced since the medium of the high site amplification area requires 

less energy to be “moved”. Therefore in this case the increase in the amplitude is related to the 

material properties. 

2.7 TRAVEL TIMES IN A LAYERED EARTH MODEL 

Quite often in seismic models the standard method is to create the velocity structure of the Earth by 

using layers with different seismic wave velocities instead of having a continuous velocity gradient. 

The travel times of the seismic phases can be fit as function of distance with the laterally 

homogenous layered model. When the ray arrives at a boundary between two layers with different 

velocities it is partitioned between refracted and reflected rays. These new rays have the same ray 

parameter as the ray from which they originated. The angles of these two rays are calculated using 

Snell’s law equation (3) mentioned in section 2.2 in this chapter. In some cases Snell’s law predicts a 

critical reflection which is experienced when the wave travels horizontally between the layers 

immediately below the second layer. This kind of wave is often called as a head wave and it transmits 

energy back into the upper layer as it travels through the interface. The energy leaves the boundary 

at the incidence angle (critical angle in this case) which can be expressed as ic = sin-1(v1/v2). The 

indexes 1 and 2 are related to the upper and lower layer. If the incidence angle is greater than the 

critical angle (i < ic), then all of the energy is reflected back into the upper layer at the interface. 

Though if v2 < v1 then the critical angle does not exist. In that case the refracted wave deflects 

towards the vertical. The different paths the waves can take and the reflections and refractions are 

illustrated in figure 2.5. 

 

Figure 2.5 The behaviour of the seismic rays in a model with layers having different wave velocities. The three most principal 
types of the rays are named in the figure. This figure is adapted from Lay (1995). 

The theoretical travel times for this case can be quite easily calculated for both the sources on 

surface and for the sources inside the layers when knowing the angles and the wave velocities based 

on simple algebra and trigonometry. As a note at close distances only direct and reflected wave 

arrivals exist. If the receiver is too close to the seismic source the refracted wave does not arrive at it 

as can be observed from the figure 2.5. 
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The first arrival from the source to the receiver changes based on the distance from the source. At 

closest distances the direct arrival from the source to the receiver arrives in the shortest time. At 

critical distance Xc the refracted wave reaches the direct wave and from that point it will be the first 

arrival. Since the reflected wave travels greater distance but does not benefit from the greater 

velocity of the layer below it won’t be the fastest arrival at any distance.  

It should be mentioned that dipping velocity layers complicate the calculations further and affect the 

travel time curves. The behaviour of the arrival times as function of distance can be seen in figure 

2.6. 

 

Figure 2.6 Travel times of the seismic rays corresponding to the model of figure 2.5. As can be observed from the figure the 
first arrival changes related to the distance from source. This figure is adapted from Lay (1995). 

Since in the study the area is reasonably small compared to the scale of the Earth the travel times in 

spherical Earth will not be discussed because it is much simpler to make the calculation considering a 

flat layer while the approximation is still viable. Most of the arrivals of the seismic phases used in the 

study are caused by direct arrivals because of the relatively small source-receiver distances. Layered 

model with many layers is mostly required only for some further away permanent station records in 

the scope of this study.  

2.7.1 Explosion, the least complicated type of a seismic event 

Since an ideal explosion is theoretically the least complicated type of a seismic event, it will be used 

as an example before continuing deeper into earthquakes. In theory an explosion is expected to 

create outwards directed compressional first motion in any direction it is observed from. Compared 

to earthquake for which the whether the first motion is compressional or dilational is related to the 

focal mechanism and from which direction the earthquake is observed. The concept of focal 

mechanism will be discussed further in the section 2.8. When comparing an explosion with an 

earthquake the duration of the source and rise time to the maximum amplitude tend to be shorter 

than with real earthquakes. The energy spectrum of an explosion is more shifted to higher 
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frequencies when comparing with earthquakes. As a conclusion an explosion should in theory radiate 

energy uniformly in all directions, however the medium anisotropy may still result in differences 

when observing at receivers at different locations. Figure 2.7 shows energy radiation pattern of a 

theoretical explosion. 

 

Figure 2.7 Theoretical energy radiation pattern of an explosion. It should be noted that the first particle motion is positive in 
all directions from the source. This figure is adapted from Bormann (2012). 

2.8 EARTHQUAKES 

Tectonic earthquakes are a result of the brittle part of the Earth’s crust being affected by stress 

which exceeds its breaking strength. In this kind of situation, a sudden rupture is experienced during 

which part of the stored energy is released as seismic waves. The rupture happens often along pre-

existing areas of structural weakness such as faults, but sometimes the rupture can happen along 

newly formed fault. It could be said that the material on the opposite sides of the rupture ”snaps” 

into the new position. The size of the rupture tends to scale upwards with increasing earthquake size.  

The rock breaking strength is affected by the confining pressure, rock mechanical parameters 

(affected by composition and fabric such as grain size and anisotropy and such), porosity and 

temperature. Rock strength tends to be higher under compressive stress than under tensional stress. 

If the rock is pre-fractured the breaking strength is lowered even further. In the case of a pre-

fractured rock the strength is mostly controlled by the frictional resistance of the opposite sides of 

the fault. This depends on the orientation and the stress field alongside few other conditions. 

The required stress for the tectonic earthquakes is generated mostly by the motions of the 

lithospheric plates relative to each other. Depending on the area and situation there can also be 
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some other contributing factors to the seismicity such as isostatic uplift caused by glacier melting and 

pumping or removal of fluids into the rock as result of human action. 

Most of the earthquakes occur near the boundaries of the lithospheric plates. However in the case of 

this study the earthquakes in the area are intraplate and induced by human action.  

As such they are located far from the boundaries between lithospheric plates. The intraplate 

seismicity is mostly located in the upper crust. In Fennoscandia great majority (80%) of the natural 

seismic activity is located in the uppermost 17 km of the crust. Only 19 % of the naturally occurring 

seismic events take place in the middle crust (17-31 km deep) and only 1 % deeper than that in the 

lower crust (Korja & Kosonen 2015). According to Bormann (2012) intraplate natural earthquakes 

contribute less than 5% of the annual seismic moment release of the whole Earth. 

Tectonic earthquakes are often associated with several different types of faulting mechanisms: 

strike-slip, thrust and normal faulting. The faulting mechanism can also be combination of the 

mentioned types. The relative movement of the sides of the fault causes the seismic waves to radiate 

differently into different directions. In some directions the P-wave is at maximum amplitude and in 

some directions it theoretically is not radiated at all. The same applies for the S-wave, but in 45 

degree angle compared to the P-wave. The polarity of the first arrival also changes per 90 degree 

shift in direction. Figure 2.8 illustrates the seismic wave formation in the case of a strike-slip 

earthquake. 

 

Figure 2.8 Idealized strike-slip earthquake along a vertically dipping fault. Positive polarities are marked with red color and 
negative polarities are marked with green. The patterns show the dependence of the amplitude relative to the azimuth. This 
figure is adapted from Bormann (2012). 

When considering the energy released by an earthquake it should be noted that from the total 

available elastically stored energy most of it is required in the growth of the fracture. Energy is also 
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lost into frictional heat, sound and to other phenomena. A reasonably small fraction of the total 

energy is used to produce the seismic waves. The efficiency of the wave creation depends on many 

factors such as stress drop, total stress of the region and the medium properties. 

2.9 MAN-MADE SEISMIC EVENTS 

Alongside the tectonic earthquakes some seismic events can be classified as man-made. Events such 

as explosion and induced earthquakes can be caused by human actions. There are also few other 

man-made event types, but they are of no interest to this study.  

The induced seismicity can be divided into several classes, but mostly the unifying factor between 

them is that the human action somehow changes the stress state of the rock medium. The changes in 

ambient stress or pore pressure in the medium exceeding its breaking strength and therefore causing 

an earthquake.  

2.9.1 Induced seismic events 

Considering the subject of this study, the most essential type of the induced events are the 

earthquakes induced by injecting fluid into the rock and therefore increasing pore pressure and 

possibly affecting stress state enough to trigger earthquakes.  

Typically the magnitudes of the induced events tend to be smaller than the largest events occurring 

naturally in the area. When considering the earthquake as physical process the induced earthquakes 

are not distinguishable from the natural ones. However since human action is often restricted to 

somewhat shallow depths the induced events often take place at shallower depths when compared 

to natural events.  

There are several mechanisms which can lead into an induced earthquake. These include changes in 

pore pressure, earthquake-earthquake interactions, deformation related changes, temperature 

changes and chemical alterations. 

In pore pressure change the pore pressure of a pre-stressed fault is increased by fluid injection and it 

can cause the fault to rupture therefore releasing stored tectonic stress. Other way to change the 

pore pressure is to pump fluid out of the reservoir but according to Hirschberg et. al. (2015) the 

reduction of pore pressure often results in stabilization instead of induced seismicity. 

In earthquake-earthquake interaction the static and dynamic stress changes caused by the induced 

earthquakes themselves trigger additional earthquakes.  
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Deformation related changes are related to injected or extracted fluid or in some cases material 

extraction by mining which affects the local stress field and might therefore trigger ruptures on 

nearby faults. When the local loading exceeds the elastic strength an earthquake will be induced.  

Temperature changes such as cooling or heating of rock material caused by injected fluids results in 

local thermal contraction or expansion. This affects the mechanical properties of the local area by 

opening fracture apertures. Thermo-elastic deformation also causes local perturbations in the stress-

state. 

In some cases chemical alteration is caused by injected fluid. In chemical alteration clay formation 

and mineral deposition might happen and the material at the pre-existing fault can be altered 

therefore affecting the fault strength. 

Since the Earth’s crust is often critically stressed and involves pre-stressed faults of different sizes in 

many areas, it is challenging to foresee precisely the amount of seismicity that will be triggered. The 

exact locations of the faults and the precise current stress level of the area are difficult to determine 

and are often unknown. Figure 2.9 shows different physical mechanisms possibly causing induced 

seismicity. 

 

Figure 2.9 Different physical mechanisms for induced seismicity. Adapted from Hirschberg et. al. (2015). 

2.9.2 Estimating maximum induced event size 

There have been attempts to predict the magnitude of the induced events based on factors which 

can be reasonably well measured and controlled during the fluid injection.  

One way to try to estimate magnitudes and probabilities of large events is a statistical method. 

Considering the Gutenberg-Richter distribution for natural earthquakes and using it with the induced 

events of the study area. One could try to estimate the possible magnitudes of the upcoming events 

based on magnitude-frequency trends of the observed seismicity and by calculating seismogenic 

index for the area as proposed in Van der Elst et al. (2016). 

Other way of estimating the maximum expected magnitudes could be real-time monitoring of the 

seismic cloud caused by the induced seismic events and assuming that the maximum size of an event 
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is geometrically controlled by the size of the area disturbed by the fluid injection. This kind of 

approach was suggested in Shapiro (2011).  

There also has been suggestion in McGarr (2014) that the maximum possible seismic moment for an 

induced seismic event would be related to the product of shear modulus of the medium and the 

injected fluid volume. In some cases the maximum magnitudes of the events were estimated 

somewhat correctly based on this quite simple principle. However there were also cases that did not 

follow the formula. For them the formula mostly overestimated the maximum magnitudes.  

Different ways to predict the maximum magnitudes of the upcoming induced events can help to plan 

projects associated with induced seismicity safely both before and during the fluid injection. 

2.10 PARAMETERS AFFECTING SEISMIC ENERGY RADIATION 

2.10.1 Corner frequency 

The seismic energy of an earthquake is not evenly radiated over the whole spectrum of its 

frequencies. It appears to be that there is a range of frequencies for which the ground displacement 

amplitudes are almost equal however, when the frequencies increase the equality in ground 

displacement amplitude ends at point called the corner frequency fc after which, the displacement 

amplitudes will begin to decay drastically. Generally greater earthquakes have lower corner 

frequencies than smaller ones and so the spectral plateau gets smaller for them in comparison with 

the smaller ones. When considering the ground velocity amplitudes the greatest amplitude will be 

near the corner frequency where both the ground displacement amplitude and the frequency of the 

wavemotion are high. When considering unilateral faults with constant stress drops the fc scales with 

the fault size. However in cases of bilateral faults there can be several corner frequencies. Figure 2.10 

shows the behaviour of the source spectra considering measurable seismic moment and frequency. 
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Figure 2.10 The corner frequency compared to the calculated seismic moment. On the left side is the source spectra of 
ground displacement amplitudes as function of frequency. The stress drop is constant for all cases. On the right side is the 
same data as in the left but for ground motion velocity amplitudes scaled to seismic moment rate. The maximum of the 
seismic energy is radiated around the corner frequency. Adapted from Bormann (2012). 

Considering the things mentioned about corner frequency a seismometer used in recording nearby 

seismic event still having high frequency content should have high enough measurement interval in 

order to record the maximum amplitudes correctly at high frequencies. For more teleseismic cases 

lower measurement intervals can be enough. As a notice the peak ground velocity is good estimation 

for the damage potential of the earthquake since a higher ground velocity tied with high amplitudes 

seems to be more damaging than slower ground velocity with the same amplitude according to 

Bormann (2012). 

2.10.2 Influence of rupture parameters 

Rupture velocity and duration also play a role when considering how the seismic energy radiates 

from the source. The rupture formation affects how the energy radiates from the source during the 

rupture process and so it affects the length of the body wave trains on the seismogram. The rupture 

duration tends to increase with the magnitude, generally speaking. The rupture velocity is expected 

to be lower than the shear-wave velocity at the site, ranging usually between 0.2 and 0.9 times the 

velocity of the S-wave. Taking rupture parameters into account becomes more important for higher 

magnitude events when determining event magnitudes. 

2.10.3 Factors affecting the seismic efficiency 

The ratio between the radiated seismic energy as seismic waves and the seismic moment of the 

event appears to be related to the rupture model (how the rupture mechanically evolves), rupture 
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velocity and stress drop. Stress drop means the difference between the stress before and after the 

seismic event acting in the source region. The stress drop can be quite hard to estimate with great 

accuracy in the real world. According to Bormann (2012) higher stress drops are expected to lead to 

higher seismic efficiency (seismic efficiency expresses how much of the total energy released is 

released as seismic waves, with high seismic efficiency larger amount of the total energy is released 

as seismic waves compared to a case with lower seismic efficiency). The seismic efficiency appears 

not to stay constant between different event sizes and is affected by several factors as stated earlier. 

The stress drops are expected to be reasonably close to each other for the induced seismic events in 

this study since they originate from the same area and are relatively close to each other in terms of 

magnitude. 

2.11 MAGNITUDE SCALES 

It is desirable to have a way of expressing the size of an earthquake in a quantitative way. This is 

often done by using earthquake magnitudes. The first magnitude scale was introduced by Richter in 

1935 to measure the size of an earthquake based on instrumental response. Nowadays there are 

many different magnitude scales used in seismology. In this section their theoretical basics will be 

discussed further with focus on the local magnitude scale, ML. This focus is chosen since the 

magnitude scale used in this study is the Finnish local magnitude scale which is based on the Richter 

scale. Commonly the magnitude scale tries to correct the results for the epicentral distance and 

source depth of the event, whereas the intensity scale tends to quantify the local effects caused by 

the earthquake on the surface. The correction is needed because of the effect called geometrical 

spreading introduced in the section 2.3. Epicentral distance and the source depth together can be 

used to determine how far from the origin point the wave has travelled and therefore how much the 

amplitude has decreased because of the energy being divided into a spreading area. Magnitudes are 

often marked with letter M following a letter specifying the magnitude further. It is important to 

know which magnitude scale is used since they are defined differently even if they in many cases 

would give somewhat similar results. Different magnitude scales use different seismic wave types 

and different periods for amplitude measurement. Some scales also tend to saturate faster than 

others in case of large event sizes.  

Generally there are few assumptions that the magnitude scales typically follow: larger seismic events 

produce higher amplitudes for a given source-receiver geometry. The logarithm of the amplitude is 

used since the relative variation can be very high between different events. The magnitudes also are 

proportionate to the seismic energy that is radiated from the source and thus are proportionate to 

the velocity of the ground motion. A magnitude scale typically takes into account the decay of the 
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ground motion with the epicentral distance and the source depth. The maximum ground motion 

value measured often offers the best and most stable estimate for the magnitude of the event and 

thus the size and energy released. A magnitude scale typically also involves a way to take regional 

effects into account. The effects might depend on regional crustal structure or the soil cover at the 

site and there can also be individual station corrections.   

Generally the formula for magnitude scales that are based on ground displacement amplitude is: 

 

 
M = log (

𝐴

𝑇
)

𝑚𝑎𝑥
+ σ(Δ, h) +  Cr + Cs 

  

 

(9) 

 

where M is the magnitude, A is measured amplitude, T is period of the measured amplitude, σ(Δ, h) 

takes geometrical spreading into account, Cr is correction for regional effects and Cs is correction for 

station error.  

There are also methods to determine earthquake magnitudes without the usage of direct amplitude 

records. A quantity called seismic moment can be calculated from the amplitude spectra produced 

by a seismic event. The theoretical basis of the method is that the seismic moment is directly related 

to the amount of “work” done by a seismic shear source, therefore being determined by the shear 

modulus of the material, average displacement after the rupture and the rupture area. The 

magnitude calculated using the seismic moment is called as the moment magnitude, often marked 

with MW. Determining the magnitude using this method is more complicated but is less prone to 

error sources associated with traditional amplitude measurement. For the magnitude determination 

of this study the moment magnitudes will not be used but can be expressed for earthquakes 

mentioned in text.   

2.11.1 The Richter magnitude scale 

As said earlier in section 2.11 the first scale for magnitudes of seismic events was developed by 

Richter in the 1930s. This scale was specifically crafted for earthquakes in California in the United 

States. The scale was based on the observation that the logarithms of maximum ground motions 

decayed along parallel curves for many seismic events. The observations were made using Wood-

Anderson torsion seismometers and the scale is originally meant to be used just with these particular 

instruments. The idea of the scale is that the scale expresses relative size of an events compared to a 

reference event.  
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This can be expressed as: 

 ML = log(A) − log (A0) 

  

 

(10) 

 

where A and A0 are the displacement amplitudes of the event and the reference event at a 

prescribed distance. In the Richter scale the reference event was chosen to be event with                  

A0 = 1 × 10-3 m at an epicentral distance of 100km.  

The reference event corresponds to ML 0. With the usage of this event the equation (9) was written 

as: 

 ML = log(A) − 2.48 + 2.76log (Δ) 

  

 

(11) 

 

The application of the original Richter scale is restricted by several factors: it only works with certain 

instrument which has natural period of 0.8 s and static magnification of 2800 and it is based on 

shallow, mostly less than 15km deep seismicity of the area of southern California. The simple facts 

that nowadays the standard Wood-Anderson-instruments are not used anymore and that most 

earthquakes do not happen in southern California somewhat reduce the application of the scale 

globally. The scale however has worked as a basis for many other local magnitude scales specific for 

certain regions. If considering engineering applications, it can be mentioned that many structures 

have their natural period reasonably close to 0.8 s so the extent of earthquake damage can be 

related to ML surprisingly well. 

2.11.2 Finnish local magnitude scale 

The Finnish local magnitude scale was introduced in Uski (1996), where the magnitude formulas 

considering the area of Finland in the Fennoscandian shield are derived based on the principles of 

the Richter scale and synthesized Wood-Anderson recordings from local and regional earthquakes. In 

total 1259 recordings from 216 earthquakes were used in establishing the magnitude scale. 

Hypocentral distance range was from 25 km to 1940 km and reported magnitudes varied from ML 1 

to ML 4. The earthquake data used was from February 1979 to June 1994. The main method for 

determining constants for the terms involved in the magnitude scale was the application of 

regression analysis. The procedure will be explained further later in this section. 
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In most basic form a local magnitude scale formula can be written as: 

 ML = log(A) − log(A0) + S 

  

 

(12) 

 

where A is measured amplitude, A0 is the reference amplitude and S is station correction. The 

definition is quite simple and arbitrary but it is still used as basis for many local and regional 

magnitude scales. Often the local and regional magnitude scales are calibrated to be in agreement 

with the Richter scale. The reason behind why local magnitude scales are used instead of seismic 

moment even if they only approximately estimate the total energy released by an earthquake is that 

they are fairly simple to calculate and use in daily seismic analysis.  

Before the Finnish local magnitude scale the local and regional earthquakes in Finland and Sweden 

were calculated mostly by using ML(UPP) provided in Wahlström (1979) and Wahlström and Ahjos 

(1982). ML(UPP) is a local magnitude scale established for Fennoscandian area, the abbreviation 

“UPP” origins from the Uppsala University. 

The scale however was instrument dependent and designed for certain short-period seismograph 

stations.  

When establishing the Finnish local magnitude scale the amplitudes and periods which would have 

been read by the WA-instruments were synthesized by converting the short-period vertical records 

into synthetic WA-seismograms. The reference value (-log A0) was derived from maximum 

amplitudes and periods of these synthetic signals.  

The synthetization of the Wood-Anderson records was done by deconvolving the network 

seismograms with the station system response and after that the ground displacement was 

convolved with the response of the standard Wood-Anderson-instrument. Actions were made to 

minimize the amplification of noise in the process. In the synthesis Wood-Anderson-instrument 

damping ratio 0.8 and gain 2800 were used as theoretical values. The maximum peak-to-peak 

amplitudes used were measured from Sg and Lg phases. Generally in Fennoscandia the largest arrival 

belongs to these phases. In 1956 Richter stated that the amplitude should be measured from the 

largest peak of the S-wave train when determining the magnitude.  

The majority of the events used to establish the Finnish local magnitude scale was located in the 

coast of western Norway or along the coast of Bothnian bay. Most of the data was associated with 

relatively large distances (90% between 400 km and 1200 km). It should be mentioned that since 

southeastern part of Finland is naturally practically aseismic quite few observations with distances 
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less than 100km were available. Also the azimuthal coverage could have been better since more than 

90% of the events had all used stations located in just one azimuth quadrant. 

Originally Richter instructed to measure amplitudes as mean of two horizontal component peak 

values, but in the establishing of the Finnish ML scale the amplitudes were measured from the 

vertical component. In order to correct this the formula was determined so that the difference 

between vertical and horizontal Sg/Lg phase amplitudes is compensated. The ratio between the 

horizontal and vertical shear-wave amplitudes was determined and it appeared be dependent on the 

hypocentral distance according to log(H/Z) = 0.00009R, where H is the amplitude of horizontal 

component, Z is the amplitude of vertical component and R is the hypocentral distance. This term is 

integrated into the final magnitude formula. 

When calculating the -log A0 for Fennoscandia this correction function was separated into two parts: 

one to consider the geometrical spreading and one to consider the anelastic attenuation. This can be 

expressed as: 

 

 − log(𝐴0) = 𝛼 log(𝑅) + log(𝑒) 𝛾𝑅 

  

 

(13) 

 

where α is the geometrical spreading coefficient, γ is frequency independent anelastic attenuation 

factor, e is the Euler’s number and R is the hypocentral distance. When assuming the anelastic 

attenuation as frequency dependent the gamma becomes γ0fn, where f is the frequency associated 

with the amplitude and n is a constant. 

The regression described next was conducted by using linear least squares method, attempting to 

minimize the sum of the squared residuals of the calculated magnitudes for the function by adjusting 

the used parameters for the correction terms.  

 

For the regression to bilinear form the linear regression equations used were: 

log(𝐴𝑖𝑗) + 𝐶 = 𝛼1 log(𝑅𝑖𝑗) − Γ𝑓𝑖𝑗
𝑛𝑅𝑖𝑗 + 𝑀𝑖 − 𝑆𝑗 + 𝑒𝑖𝑗                                  for R ≤ R1 

 

(14) 

 

and  

log(𝐴𝑖𝑗) + 𝐶 = 𝛼1 log(𝑅1) − 𝛼2log (𝑅𝑖𝑗/𝑅1) − Γ𝑓𝑖𝑗
𝑛𝑅𝑖𝑗 + 𝑀𝑖 − 𝑆𝑗 + 𝑒𝑖𝑗  for R > R1 (15) 
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where C is constant that anchors the function to -logA0(HB), Mi is the regressed magnitude for the 

earthquake i (i = 1, …, 216), 𝛤 is the anelastic attenuation coefficient (log(e)γ0) and eij is error 

following normal distribution with zero mean. Sj is stations correction for station j. R1 is the transition 

distance from Sg type to Lg type geometrical decay. 

Later it was tested if the -log(A0) function could be modelled using only function (14) for the whole 

distance range. The regression to linear form was performed succesfully and following values for the 

parameters were received: 

For α values of 1.27±0.06, 0.83 (fixed value) and 1.42±0.07 were received, depending on distance. 

For γ 0.41±0.04 and 0.08±0.08, depending on distance, for n 0.36 (fixed value).  

Since the region of Fennoscandia differs from the California geologically, the attenuation properties 

are also clearly different. In Richter’s formula -log(A0) has value of 3.0 at distance of 100 km.  

For the reasons of requirement of near-source calibration and sufficient amplitude control a distance 

of 60 km was chosen as the reference distance in Uski (1996). The -log(A0) was adjusted to be 2.678 

at 60 km according to -log(A0)(HB).  The -log(A0)(HB) is a revised -log(A0) for southern California based 

on more modern regression methods and a larger database than the original -log(A0) determined by 

Richter. The abbreviation “HB” origins from the names of the authors in Hutton and Boore (1987) 

where the term was determined. The predominant Sg-wave frequency considering displacement at 

the calibration distance of 60 km was 10Hz in the database used in Uski (1996).  

 

 

 

The results for various distances were: 

 𝑀𝐿(𝑓) = log(𝐴) + 1.27 log(𝑅) + (0.00009 + 0.00041𝑓0.36)𝑅 + 0.363 + 𝑆 

  

 

(16) 

 

for distances R ≤ 350 km. A is the measured zero-to-peak WA-amplitude in mm, R is the hypocentral 

distance, f is the frequency and S is the station correction. 

 𝑀𝐿(𝑓) = log(𝐴) + 0.83 log(𝑅) + (0.00009 + 0.00041𝑓0.36)𝑅 + 1.482 + 𝑆 

  

 

(17) 
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for distances 350 km ≤ R ≤ 1900 km 

 𝑀𝐿 = log(𝐴) + 1.42 log(𝑅) + 0.00017𝑅 + 0.148 + 𝑆 

  

 

(18) 

 

  

for distances R ≤ 1900 km. 

The correction between using vertical (Z) component shear wave amplitude instead of horizontal (H) 

component was found to be dependent on distance according to log(H/Z) = 0.00009 R. The 

correction is involved in formulas (16-18).  

2.11.3 Currently in use magnitude formula 

Currently in the Institute of Seismology of the University of Helsinki (later in this text ISUH) following 

formula is used in daily analysis (Finnish local magnitude scale is often written as ML(HEL) in records, 

the abbreviation “HEL” origins from University of Helsinki): 

 𝑀𝐿(𝐻𝐸𝐿) = log(𝐴) + 1.42 log(𝑅) + 0.00017𝑅 + 0.148 + 𝑆 

  

 

(19) 

 

where R is the hypocentral distance (km), S is station correction (but in practice it’s quite small), A = 

synthesized Wood-Anderson trace amplitude (half the peak-to-peak in mm) measured from the 

vertical component seismogram. 

Since the data processed in analysis is provided in nanometers and considers ground motion instead 

of WA-instrument response a modification is used with the formula in order to approximate the 

would be response from the WA-instrument.  

The modification can be written as follows:  

 log(𝐴) = 0.86 log(𝑎) − 2.34 (20) 

 

 

where a is the ground motion amplitude (half the peak-to-peak amplitude in nm measured from 

Sg/Lg wave maximum on original “unfiltered” seismograms) 

This kind of approximation removes the need for “synthesizing” WA-instrument responses and the 

observed ground motion data can be used directly.  A similar approximation for WA-response is 

shown in Alsaker (1991), since the computation of synthesized WA-amplitudes is quite time 

consuming in routine seismological analysis.  
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In the paper Alsaker arrived at formula  

 log(𝐴)𝑊𝐴 = 0.925(±0.014 ) ∙ log(𝐴𝑜𝑏𝑠) − 2.32(±0.03) 

 

 (21) 

 

   

where Aobs corresponds to the log(a) in formula (20). This was calculated using maximum likelihood 

regression analysis between synthesized WA-amplitudes and amplitudes measured from raw 

(observed) seismograms corrected for system response.  

The frequency independent formula for the ML (HEL) scale now becomes: 

 𝑀𝐿(𝐻𝐸𝐿) = 0.86 log(𝑎) + 1.42 log(𝑅) + 0.00017𝑅 − 2.19 + 𝑆 

  

 

 (22) 

 

During the Fennovoima project in 2010-2013 ISUH noticed that the magnitude scale does not apply 

well for near-source data, i.e. those recordings within 100-150 km from the source. Additional 

distance correction was derived for distances less than 150 km and it has been in test use since then. 

If R < 150km ML(HEL) = ML(HEL) + 0.53 − 0.003R (23) 

 

 

For the cases where R is less than 150 km (almost all of them) formula (22) with addition of (23) will 

be used in magnitude calculation of this study considering the induced seismic events. 

 

 

 

With addition of this modification attempting to correct the underestimation of the magnitude 

values for near-source amplitude records, the complete magnitude formula for ML(HEL) becomes: 

 𝑀𝐿(𝐻𝐸𝐿) = 0.86 log(𝑎) + 1.42 log(𝑅) + 0.00283𝑅 − 1.66 + 𝑆 

  

 

(24) 

 

The formula’s suitableness will be assessed in this study. The currently used formula for Finnish local 

magnitude scale in daily analysis does not involve frequency component.  
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2.11.4 Possible problems arising from the ML(HEL) scale with near-source events 

It is noted in Uski (1996) that during the determination of the ML(HEL) scale there was no usable 

earthquake data from less than 25 km distances and data even from less than 100 km distances was 

quite scarce as noted before in this chapter. It is also noted that the results of Grad and Luosto 

(1994) indicate that the amplitude decay in the study area may be much higher at distances of 

roughly 20 km compared to distance range from 20 km to 120 km. This assumption most likely 

origins from the local variations in the layers of the uppermost parts of the crust and how the higher 

velocity layers in the Fennoscandian crust are located according to Grad and Luosto (1994).  The 

attenuation function of the ML(HEL) scale might therefore be less trustworthy at near-source 

distances.  

2.12 EARTHQUAKE LOCATION DETERMINATION 

When dealing with earthquake data it is generally useful to know when and where the event has 

taken place. The knowledge is also required for the magnitude calculations, since as mentioned 

earlier in this chapter the epicentral distance and the source depth must be known in order to take 

the geometrical spreading into account. The time of the event is called as origin time and the 

location as the hypocenter. The hypocenter determines the event’s location in x, y and z whereas the 

epicenter is point on Earth’s surface above the hypocenter. When locating earthquakes, its often 

easiest to treat them as point sources. In reality the approximation is more valid for smaller events 

than large events with possibly tens or hundreds of kilometers of rupture. The hypocenter though 

can still be resolved even in cases of large ruptures since the rupture velocity is less than the velocity 

of the emitted P-wave regardless of the rupture size or the event duration.  

The theoretical basis of one often used method for earthquake location is provided in Shearer 

(1999). In the method the origin time alongside the hypocenter can be described with four 

parameters: T, x, y and z.   

We refer to the mentioned parameters as model and define a model vector: 

 𝑚 = (𝑚1, 𝑚2, 𝑚3, 𝑚4) = (𝑇, 𝑥, 𝑦, 𝑧) 

  

 

(25) 

 

Next let’s suppose that n observations considering the travel times (ti) are known at individual 

seismic stations. These observations can be used to invert the m parameters.  
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For this a reference Earth model is required. Now for values of m expected travel times can be 

calculated. 

 𝑡𝑖
𝑝

= 𝐹𝑖(𝑚)  (26) 

   

where F is operator which gives the estimated travel time for each station and tp stands for predicted 

travel time.  

The difference between observed and estimated times can be written as: 

 𝑟𝑖 = 𝑡𝑖 − 𝑡𝑖
𝑝

= 𝑡𝑖 − 𝐹𝑖(𝑚) (27) 

 

where r gives the residuals for each station. The objective is now to find the m which gives overall 

the smallest possible residuals between estimated travel times and the observed ones. In the 

simplest 1-D Earth model the calculations are fairly simple but when considering models with more 

dimensions and more complicated velocity models the computation becomes much more 

demanding.  

The different velocities of seismic phases are often used when determining the event location. For 

example, P- and S-wave arrivals can be used to directly estimate the source-receiver range at the 

station. For this purpose, both P and S arrivals were picked for the datasets used in this study.  

Generally it can be said that the location is much more reliable when the event takes place inside the 

seismic station network when comparing to case where it takes place outside it. For determining the 

depth of the event, it is useful to have station near the event hypocenter. Luckily in the case of the 

events of this study the events happen inside the network and many near stations are usable. 

However unknown faults and errors in velocity model may affect the end results.  

Often the situation is that the error in the location is dominated by the effects of the unknown 3-D 

(therefore unmodelled) velocity structure. This affects mostly the absolute locations estimates 

though relative locations between events are much easier to achieve. This is because the local lateral 

variations in the velocity structure have nearly the same effect on the recording from more distant 

stations for all the events.  

According to Shearer (1999) instead of directly searching for minimum origin parameters all over the 

possible solutions it is often computationally more feasible to use a less direct approach.  
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A standard technique used is to linearize the problem by using: 

 𝑚 = 𝑚0 + Δm  (28) 

where m0 is the currently guessed location as the best candidate and m is the new guess within a 

small distance from the initial guess. Then the predicted times can be approximated using a Taylor 

series.  

This way Δm can be found for which the residuals are minimized. The best fit can be obtained using 

the standard least squares method. The process is repeated iteration by iteration after the location 

converges. The method works reasonably fast when the initial m0 is not very distant from the true 

location. 

According to Lay (1999) as initial guess for a local seismic event the difference between the P- and S-

wave velocities can be used alongside the Wadati diagram method to determine the origin time of 

the event. The diagram consists of S-P-wave time difference as the y-axis and P-arrival time as the x-

axis. Station records are plotted and form a line which’s intercept point with the x-axis gives the 

origin time. The slope of this line is related to Poisson’s ratio. For the next step when the P-wave 

velocity is known (average vP is estimated as well as possible) the rough event location can be 

obtained by triangulation. The Epicenter should be where the travel distance circles intercept. For 

this at least 3 stations are needed, one station for each unknown parameter. The focal depth can also 

be determined from this by taking square root of the differences between the squares of the 

calculated propagation distances and the distances along the surface to the epicenter. The whole 

method is called the method of circles.  

2.13 PAIKKA-PROGRAM METHODS FOR EARTHQUAKE LOCATION DETERMINATION 

The Paikka-program calculates the earthquake hypocenters based on the picked P- and S-

wave arrivals by using a standard linear least-squares algorithm. The crustal velocity model 

used by the program is one-dimensional and consists of layers with constant seismic wave 

velocity. For the uppermost 15 km thick layer inside which the expected first arrivals travel 

through the velocities for P- and S-waves are 6200 m/s and 3620 m/s. The same velocity 

model is used in the daily analysis in ISUH.  
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3 FENNOSCANDIAN SHIELD AND ITS MAIN GEOLOGICAL FEATURES 

The Fennoscandian shield is a shield area situated in the north-western part of the East European 

Craton. As a total the shield is most sizable area considering exposed Precambrian rock in Europe 

(Lahtinen 2012). Large parts of Finland’s area constitute to the Fennoscandian shield, but as total it 

includes large parts of Sweden, Norway and North-western Russia. The oldest rocks contributing to 

the shield are from the Archean period (>2500 Ma) and in some locations of the north-western part 

of the shield the ages of the rocks may reach 3000 Ma. When moving into south-western direction 

from the north-eastern corner of the shield the rocks generally get younger, but the ages are still 

considerably old. Much of the rock mass is from the Paleoproterozoic (1600-2500 Ma) or 

Mesoproterozoic eras (1000-1600 Ma). Phanerozoic or younger rock is more uncommon as can be 

observed from the Figure 3.1. 

  

Figure 3.1 Main geological features of Fennoscandian shield. Colours corresponding to rock types of different geological 
periods are listed in the legend. As a general notice the oldest rock are found in the north-eastern parts whereas youngest 
rocks tend to be found in the south-western parts of the shield. Adapted from Lahtinen (2012). 
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3.1 SOUTHERN FINLAND AREA 

When considering tectonic provinces of Finland, the southern part can be named as Southern Finland 

Subprovince, which is a part of the Svecofennian tectonic province. Finland’s division to different 

geological provinces is shown in the Figure 3.2. The geological era to which the rocks in the Southern 

Finland Subprovince generally belong to is the Paleoproterozoic era. As with most of the 

Fennoscandia the area has enjoyed reasonably rich geologic history. According to Nironen (2017) 

diverse geological suites and lithodemes have been found when studying the area. There exists many 

different structures that have been formed in volcanic, plutonic, intrusic and at some point 

metamorphic processes. The formations and structures however are not going to be discussed 

individually in more precise manner since they provide almost no further useful information at this 

point considering the aim of the study.  

 

Figure 3.2 Geological provinces of Finland. Southern Finland Sub province where the study area is located can be seen 
marked in the map. Adapted from Nironen (2017). 

3.2 GEOLOGY AROUND THE ST1 DRILL SITE 

Considering the geological history of the study area the basement rock is from Precambrian period. 

According to Kwiatek (2019) the Svecofennian basement rock is covered in 20 m or less thick layer of 

quaternary glacial deposits and clay-rich soils. The basement rock has experienced folding, foliation, 

jointing and faulting during late Mesozoic plate motions and glacial rebound during the Holocene 
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period. The rock types encountered in the basement rock are deformed metamorphic and intrusive 

granites, pegmatites, quartzo-feldsparic gneisses and amphibolites. Figures 3.3 and 3.4 illustrate the 

thickness of the soil layer and rock types of the study area. 

 

Figure 3.3 Soil layer thickness in the Espoo/Helsinki area. The drill site is marked with the red star on the map and the 
stations of the seismic network are illustrated on the map. Different subtypes of seismic station are marked with their own 
symbols. The data illustrated in this map was provided by The Geological Survey of Finland (GTK) Hakku service. 

 

Figure 3.4 Rock types in the Espoo/Helsinki area. The drill site is marked with the red star on the map and the stations of the 
seismic network are illustrated on the map. Different subtypes of seismic station are marked with their own symbols. The 
data illustrated in this map was provided by The Geological Survey of Finland (GTK) Hakku service. 
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It can be concluded that most of the rock is igneous or metavolcanic based on figure 3.4. A rather 

high amount of the igneous rock is granitic in composition. 

There are a few faults located in proximity to the drill site. According to Elminen (2008) a fault zone 

called Porkkala-Mäntsälä fault zone is located roughly less than 10 kilometers to the northwest from 

the drill site. It is assumed to be roughly 50km in length and is oriented in NE-SW direction. In 

addition to that there exists another reasonably long N-S oriented fault called Vuosaari-Korso fault 

going through the Helsinki area, but it is much further from the drill site. In Elminen (2008) both of 

these faults are classified as ductile reverse faults. These two are the only major faults located 

somewhat near the drill site. Also roughly 1.5 kilometers to south-east from the drill site lies a 

supposedly inactive SE dipping thrust fault but it is much smaller than the earlier mentioned major 

faults. In addition to this there exists several smaller faults and shear zones in the Espoo/Helsinki 

area. The faults and shear zones are illustrated in Figure 3.5. 

 

Figure 3.5 Faults and shear zones located in the Espoo/Helsinki area. markings for weakness zone types are marked in the 
legend. The drill site is marked with the red star on the map. PM corresponds to Pirkkala-Mäntsälä fault and VK corresponds 
to Vuosaari-Korso fault. The data illustrated in this map was provided by The Geological Survey of Finland (GTK) Hakku 
service. 



 
  

37 
 

According to Kwiatek (2019) the drill bit seismic data would suggest the existence of an additional 

south-east to south-west 70 to 80 degrees dipping structure. The structure is supposedly located just 

1-2 kilometers north-west from the drill site and could possibly intersect the well at depths of 5.4 km 

to 6.2 km.  

Considering the seismicity there has been in total three natural seismic events near the drill site 

according to data from ISUH. The one with the highest magnitude (Mw 2.6) took place on 2011 in the 

Mäntsälä fault. Though the hypocenter of the event was quite far from the part of the fault which is 

nearest to the drill site. In addition to that 2 events of magnitudes Mw 1.7 and Mw 1.4 took place in 

Laajalahti area in Espoo in 2013. These three events are the only instrumentally registered natural 

earthquakes in the Helsinki area in recent history so it could be said that the area has very low 

background seismicity. 

According to Kwiatek (2019) the stress magnitudes at 6.1 km depth are estimated to be SH
max = 240 

MPa, SH
min = 110 MPa and SV = 180 MPa. Maximum horizontal stress direction in the drill site area is 

N110°E. The pore pressures at the 6.1 km depth are assumed to be hydrostatic and roughly 60 MPa. 

If a friction coefficient of 0.6 is assumed it is mentioned to make it in theory possible for an optimally 

oriented fault or fracture to be reactivated by moderate fluid pressure increase. 

3.3 NATURAL SEISMICITY 

Finland’s area in the Fennoscandian shield is situated in a stable continental region and 

experiences relatively low amount of natural seismicity. Generally the earthquakes occurring 

in the Fennoscandian area are located in the uppermost part of the crust, at less than 15 km 

depths. Clear minority of the events happen in the middle or lower crust at 16 km to 45 km 

depth range (Kortström et. al. 2018). Most common focal mechanisms are combinations of 

strike-slip and reverse faulting. The natural seismicity of the area in commonly related to 

intraplate and plate margin processes (there are no plate margins in direct vicinity of 

Fennoscandia, but the opening of the North Atlantic Ocean affects the stress state of the 

area). Causes for the seismicity are postglacial rebound, stress caused by opening of the 

North Atlantic Ocean and local stress originating from gravitational or compositional 

variations in the crust. There are some areas which are seismically more active in the 

Fennoscandian shield often associated with postglacial fault zones or zones otherwise 

affected by crustal weakness caused by shear zones and faults. There has also been shallow 

earthquake swarms associated with the Rapakivi granite batholith in the Wiborg area. The 
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Helsinki and Espoo area is however not associated by any of these features causing higher 

intraplate seismicity. (Korja et. al. 2015) 

4 GEOTHERMAL ENERGY SYSTEMS 

Characterization and planning of different types of geothermal energy systems is discussed in 

reasonable extent in the “Good Practice” Guide for Managing Induced Seismicity in Deep Geothermal 

Energy Projects in Switzerland published by Swiss Seismological Service in 2017 and in Hirsch (2015). 

Based on the characterization the geothermal projects can be divided into two different classes: 

”near-surface”- and ”deep geothermal projects”. The near-surface projects involve for example 

groundwater heat pumps and ground-coupled heat exchangers. They often involve closed systems 

where no fluid is exchanged with the surrounding material. These types of systems have not been 

observed to cause induced seismic activity. As a rule of a thumb it can be said that projects expanding 

to depths of roughly over 400-500m can be considered as deep geothermal projects. Considering the 

depth (6.1 km) of the ST1 drillhole it clearly belongs to the latter category. 

When considering the deep geothermal projects they can be subdivided further based on the 

temperatures involved and the exploitation type. High-enthalpy reservoirs are often used worldwide 

for electricity production. The high temperature requirement however puts constraints for the 

location of these type of projects and they are often used in vicinity of volcanic areas. For this type of 

projects the temperatures in the underground can be even few hundred degrees Celsius. The low-

enthalpy reservoir involving projects can be subdivided into three more subtypes: deep borehole 

heat exchangers (the ST1 project considered in this study corresponds to this category), 

hydrothermal- and petrothermal heat exchangers. In the low temperature systems the temperatures 

can be as low as just above 100 degrees, which can’t be used for electricity production efficiently, but 

instead for district heating. This however allows them to be placed less strictly and they do not 

require so special geological conditions. 

In petrothermal and deep borehole heat exchangers the target reservoir involves rock formations 

with low permeability which require some enhancement to be done before the desired flow rates can 

be achieved. Because of this these types of projects are called as EGS, Enhanced Geothermal system. 

The hydrothermal projects are not considered as EGS since they often target already permeable, 

often sedimentary rock formations where the required fluid flow is possible in their natural state. 

Figure 4.1 shows different types of systems exploiting the temperature conditions of the subsurface. 
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Figure 4.1 Different types of geothermal energy systems. The division between the low-temperature and high-temperature 
systems is clearly illustrated in the figure. the approximate required depths for each system are marked in the figure 
alongside the target temperatures. Adapted from Hirschberg (2015). 

There are several reasons why the deep geothermal energy systems are quite challenging projects. 

They also are a reasonably new technology so the experience with them at this point is quite limited 

when comparing it to more established types of technologies involving drilling such as oil and gas 

production.  Since the reasonably limited experience and amount of earlier projects there is not too 

much of scientific data available considering them. Because they are known to be related with 

induced seismic activity they can easily receive negative public attention. 

When considering the deep geothermal energy projects the fact that they can be placed in many 

kinds of different geological areas gives them the change to be placed near residential zones when 

they are used for district heating purposes. And even if they were used for electricity production the 

local heat use would increase the profitability of the project. However their location near urban areas 

also increases the dangers of the induced seismic activity they might cause because of the building 

and population density compared to a EGS that would be located in a more rural area. 

When creating the enhanced reservoir, the induced earthquakes are a direct consequence of creating 

the system. In order to achieve the desired heat output and therefore for the project to be 

economically viable the induced events will and must be caused. Balancing the economic aspects and 

the dangers is very much needed, but there is still reasonably low amount of experience related to 

enhancing of the system and the induced seismicity. 
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If the deep geothermal project would be hydrothermal the location could be near a fault zone 

because of the increased permeability. Though in Wiemer (2017) is mentioned that these types of 

projects can prove to be more seismogenic than expected. However this risk is not related to ST1 

project since the project is not hydrothermal and therefore requires not to be located near a fault 

zone.  

4.1 SEISMIC RISK GOVERNANCE AND THE TRAFFIC LIGHT SYSTEM 

Wiemer (2017) offers many suggestions for risk management considering EGS projects. It is desirable 

to reduce the risks caused by such projects in order to make them economically viable. Different 

types of risk assessment are required in different project phases. Since this study is focusing on the 

induced seismic activity caused by ongoing project for the time when the fluid pumping is being 

done, the chapter will be more focused on the measures that need to be taken in this phase of the 

project although risk assessment procedures for other phases will be also mentioned shortly. 

According to the Wiemer (2017) the geothermal projects can be divided into 4 different categories 

based on the expected risks involved with the project:  category 0-, 1-, 2- and 3 projects. The risk 

management required increases with the rank meaning that the category 3 projects require the most 

risk analysis and management. The ST1 project considered in this study corresponds to the category 3 

therefore requiring the most severe measures in order to be considered well planned, economical 

and safe. The requirements and required risk management for the categories 0, 1 and 2 will not be 

discussed further. 

4.2 CATEGORY 3 PROJECTS 

Projects belonging into the category 3 are typically petrothermal projects meaning that the 

permeability of the system has been increased. Typically they are located in basement rocks and have 

depths of over several kilometers. Projects of this category can also be located near fault systems or 

great amount of reservoir enhancing and stimulation is planned to be done. In this type of systems 

induced seismicity will certainly be experienced and it is also likely to result in felt events in 

residential areas near the system. As said in Wiemer (2017) category 3 events require “substantial 

risk assessment, monitoring, mitigation and public engagement”.  

Since the study considers events occurring during the stimulation phase of the ST1 project we will 

next focus on the hazard and risk assessment that should be made during the stimulation phase for 

category 3 projects. Hazard and risk assessment during the planning phase of such a project will not 

be discussed in more detail. 
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4.3 HAZARD AND RISK ASSESSMENT RECOMMENDATIONS FOR STIMULATION PHASE OF CATEGORY 

3 PROJECT 

During the stimulation phase the forecasting models and assumptions considering the induced 

seismicity that have been made during the planning of the project should be validated and for 

example injectivity tests could be made for calibrating the assumptions made earlier about the 

induced seismic activity and ground motion. This can provide additional constraint to the forecasting 

models considering the seismic activity and its spatial distribution. Predictions and assumptions 

about the induced activity should be compared to the new observations and it should be tried to 

ensure that the operation happens within acceptable limits. There should be a clear mechanism how 

the hazard assessment considers the new data received during the drilling and stimulation of the 

reservoir. It is mentioned in Wiemer (2017) that a good way for doing this would be to take a phase-

wise approach which is based on small steps of progress each followed by fast re-assessment of the 

seismic hazard and risks. It is important that the seismic monitoring is active and fully operational 

during the stimulation. The monitoring should happen in real time and there should be a so called 

”traffic light system” (TLS) active during that time. The TLS system will be discussed further in the 

next section. Also it would be beneficial to offer predictions and information of the induced seismic 

activity in a transparent way to the general public in the affected area. 

4.4 TRAFFIC LIGHT SYSTEM FOR EGS PROJECT 

Suggestions about a traffic light system have been gathered in Wiemer (2017).  The TLS is a risk 

reduction strategy that can be used during an EGS project to reduce the risks caused by the induced 

seismic activity. The TLS is designed to intervene when the induced seismicity and its risks are rising 

to unacceptable levels. In this case the operation must be either modified or stopped.  

For creating a traffic light system for monitoring induced seismicity the very basis is to determine 

certain thresholds above which the operation is no longer acceptable. For an example a certain 

magnitude threshold can be placed which triggers certain colour of the traffic lights. If simply 

following the Gutenberg-Richter law there is roughly 10 times more events of magnitude M-1 than 

events of magnitude M. If this kind of relation is assumed it can be considered for example is a 1% 

chance for event of magnitude of M+2 acceptable if a event of magnitude M has been observed.  

Since the economic success of the project involving permeability enhancing of a reservoir depends on 

the traffic light system it must be balanced between the economic factors and the public safety. 

A traffic light system basically involves three colours: red/orange (meaning that the operation must 

be stopped or a “bleed-off” must be initiated meaning that fluids will be actively released from the 

borehole), yellow (operation can be continued but it can no longer be increased) and green 
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(operation can be carried on as planned). After an alert there is planned procedures and rules made 

for the resuming or restarting of the operation. Modification of the injection rate for example by 

using the traffic light system can be an effective way of risk reduction and a tool to control the 

amount of induced seismic activity. Though the reduction of the seismicity might not happen 

instantly when stopping or reducing the actions made for enhancing the reservoir. 

The traffic light system can also involve other components than just the observed local magnitudes 

and the number of events of certain magnitude. Peak ground velocities or public response can also 

be considered when creating the system. 

4.5 EGS PROJECTS WORLDWIDE IN SIMILAR GEOLOGICAL SETTINGS    

Since the ST1 project takes place in crystalline bedrock and at roughly 6 km depths in an intraplate 

tectonic setting a few projects sharing roughly the same features will be summarized briefly. 

4.5.1 Basel EGS project, Switzerland 

The project is described in Häring (2008). In north-western Switzerland at the south-eastern margin 

of the Upper Rhine Graben a deep heat mining project was conducted in order to create an enhanced 

geothermal reservoir to be used in heat and electricity production during the year 2006. The 

geothermal plant was located near the city of Basel and the well utilized was supposed to be 5 km 

deep. The drill hole Basel 1 consisted of penetrating 2.4km of sedimentary rocks and 2.6km of 

granitic basement. The project involved extensive testing and planning alongside microseismic 

monitoring array and a traffic light system. The stimulation period was supposed to last 21 days in 

total during which the granite at the bottom of the hole would be hydraulically stimulated in order to 

achieve higher permeability.  

The project resulted in extensive microseismic activity and the injection was decided to be stopped 

after just 6 days of stimulation after experiencing event magnitudes up to ML 2.6. The planned 

procedures for this type of induced seismic behaviour were followed by stopping the stimulation and 

preparing to ”bleed off” the well to hydrostatic conditions.  However in just 5 hours after the 

stopping of operation an event of ML 3.4 took place. After the event during following 56 days three 

more events higher than ML 3.0 were observed. Following these observations the project was 

suspended. 

When comparing the Basel project to the ST1 project the most notable difference in the seismicity of 

the areas is that the Upper Rhine Graben at the Basel region has more features such as faults and rifts 

that indicate crustal weakness. Also the Upper Rhine Graben is seismically somewhat active 

experiencing minor seismic events frequently and occasional destructive events. Also the largest 

known historical earthquake took place in Basel in 1356 according to Giardini et. al. (2004) with 
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magnitude of ML6.5-6.9. Another difference is that the temperature at 5km in Basel well was 

estimated to be as high as 190 degrees Celsius. Similarities between the two projects involve the 

depth range of the wells and the enhancement of the reservoir permeability in the crystalline rock 

basement. 

4.5.2 Soultz-sous-Forets EGS project, France 

The Soultz-sous-Forets project is described in Hooijkaas et al. (2006) and Gaucher et. al. (2015). The 

planning of the Soultz project started as early as 1984 in cooperation with the French BGRM (Bureau 

de Recherches Géologiques et Minières, the French Geological Survey) and German Geological 

Survey of Baden-Wurttemberg by mapping geothermal resources within the Upper Rhine Graben. 

The drilling and scientific activities associated with the project started in 1987 in Alsace, France. 

During next 10 years two boreholes GPK1 and GPK2 were drilled to approximately 3-3.5 km depth 

and a series of different hydraulic, geophysical and geological investigations. In the area the rock 

becomes granitic after penetrating sedimentary layer with a thickness of 1.5 km. In the end of 1997 

experimental work was started in order to develop an EGS for the purposes of electricity production. 

The borehole GPK2 was deepened up to 5 km depth and later a new borehole GPK3 was drilled in its 

vicinity to roughly the same depths. At the start of the 21st century a fourth borehole GPK4 was 

drilled also extending to approximately 5 km depth. The wells have been hydraulically stimulated for 

enhanced fluid permeability during the project. The 5 km depth mentioned corresponds to 

temperatures of ~200 degrees Celsius. 

The highest magnitude event observed during the stimulations is ML2.9 (Gaucher et. al. 2015). In 

total the stimulations for the boreholes were conducted in eight different stimulation periods during 

which thousands of microseismic events were observed each time.  

Considering the achieved fluid flow the Soultz area basement rock involves interconnected fractures 

and large faults naturally and their presence affects the fluid flow together with the increased 

permeability achieved with fluid injection.  

When comparing the Soultz project with the ST1 project both have boreholes extending to high 

depths into crystalline basement. The temperature gradient however is much higher at location of 

the Soultz EGS project and the temperatures differ greatly.  

Unlikely the Basel project the Soultz project’s seismic responses were within acceptable limits and 

according to Gaucher et. al. (2015) the Soultz EGS system was able to produce 2.5 MW of power. 
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5 ST1 PROJECT 

The ST1 Deep Heat company has been developing an enhanced geothermal system for district 

heating in Espoo, Southern Finland. It is located in close proximity to the Finland’s capital city, 

Helsinki. The goal of the project is to provide deep geothermal heat to local district heating. Because 

of the location the stimulation has been conducted below quite densely populated area with delicate 

infrastructure. As a complete geothermal doublet the system will consist of two wells from which the 

first one (OTN-3) was stimulated for a 7 week period in June and July of 2018. Stimulation was 

conducted in order to increase the fluid permeability of the crystalline rock at the base of the well. 

The depth of OTN-3 is 6.1 km and the second well will extend to similar depth and will be stimulated 

during year 2020. A schematic view of the project can be seen in figure 5.1. 

 

Figure 5.1 Schematic view of the ST1 EGS project. Basic stimulation parameters, depth, temperature and rock types are 
marked on the figure. Adapted from Kwiatek (2019). 

5.1 INDUCED EVENTS DURING THE YEAR 2018 STIMULATION 

The first stimulation started on 4th June 2018 and ended on 22nd July 2018 resulting in stimulation 

length of 49 days. The stimulation was conducted in 5 stages. During the period total of 18.160m3 of 

drinking quality water was injected into the well. In total 1357 greater or equal than ML 0 events 

were recorded. According to Ader (2019) the overall number of all detected seismic events which 

were counted as induced events due to the stimulation activity was 8412 and from these events total 

6150 were deemed proper for determining locations and magnitudes considering the SNR-ratio. The 

largest event magnitude determined during the operation was MW 1.9 according to Kwiatek (2019).  

Majority of the largest events and many arbitrarily chosen events taken place during year 2018 

stimulation were associated with reverse-faulting mechanism according to Hillers et. al (2018) based 

on fault plane solutions. This suggests that the reverse-faulting mechanism has an important role in 
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the seismic response of the stimulated area. Hillers et. al (2018) suggests that in the case of the 

largest observed events the stimulation reactivated a set of pre-existing faults or shear fractures 

favouring reverse motion in the local stress field. 

The injection rate of the fluid down the hole was usually between 400 l/min to 600 l/min but was 

high as 800 l/min for few hours during stage 2 and this led to increased seismic activity. According to 

Kwiatek (2019) the mean well-head pressured ranged from 60MPa to 90MPa during the stimulation. 

The magnitudes used here are local Finnish magnitudes introduced in Uski & Tuppurainen (1996). 

Figure 5.2 shows the induced seismicity hypocenters caused by the stimulation. The locations shown 

have been revised and are not the automatic locations. Figure 5.3 shows the b-value and magnitude-

frequency distribution of the induced events that took place during the stimulation period. Table 1. 

lists the amount of induced seismic events per fluid injection stage together with the injected fluid 

volumes and maximum injection pressures. 

Table 1, adapted from Ader (2019): 

 

 

Figure 5.2 Induced seismicity hypocenters during the stimulation. On the left side is a map view of the stimulation area.  On 
the right is a cross-section of the area. Events taken place during different phases of the stimulation period are illustrated in 
different colours. The well is also divided into sections based different stimulation phases. The sizes of the markers 
correspond to determined event moment magnitudes. Adapted from Kwiatek (2019). 
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Figure 5.3 Gutenberg-Richter fit and magnitude-frequency distribution of the induced seismic events.  G-R fit was applied 
only to events with ML≥ 0. For the b-value a result 1.32 was estimated. In addition the magnitude thresholds for the alerts 
are marked with their respective colours. None of the events triggered the red alert. Adapted from supplementary material 
of Ader (2019). 

5.2 TLS FOR THE ST1 PROJECT 

 The traffic light system used during the first stimulation period of the ST1 project is described in 

Ader et al. (2019). The data underlying the TLS was collected by 12 3-component seismometers 

located in shallow boreholes ranging from 300 m to 1150 m depth. Alongside these instruments a 

vertical array of 12 3-component sensors was installed in a borehole located 10 m away from the 

OTN-3 well at depths ranging from 2200 m to 2630 m. In addition to these networks 14 

accelerometers were located in chosen sites such as places near critical infrastructure. The network 

of borehole instruments was called satellite network and was used for determining locations and 

magnitudes for the induced events. The surface accelerometers were called surface network and was 

used for measuring the amplitudes of ground motions. The TLS system was designed so that it 

involved usage of both magnitude and ground motion data. 

The network was used for baseline monitoring for a period of one month before the stimulation 

period. The satellite network was used for post-stimulation monitoring for 6 months after the end of 

the first stimulation period and the surface network was used for 2 months after the stimulation 

(Ader et al. 2019). 

As mentioned earlier in the chapter considering traffic light systems the TLS designed for the ST1 

project involved the three commonly used alert levels: green, amber and red alert. The meanings and 

operations associated with each colour together with the thresholds were following: 

Green: In green condition the stimulation process is carried on normally as planned. This involves 

confirming that the network stations are active and transferring data as expected. This condition is 

active when the surface stations experience low level of peak ground velocity. Depending on the 

instrument location this corresponds to values of less than 0.3 mm/s or 0.13mm/s. 
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Amber: In amber condition the TLS has reacted to an exceedance and a notification, documentation 

and evaluation of possible actions have been triggered. Amber alert can be triggered by surface 

vibrations which could be felt in some places in the vicinity of the event, but no structural damage 

would be expected. This condition is activated when the peak ground acceleration (later PGA) 

meaning the maximum ground acceleration measured at the location during the event reaches 

1mm/s in the surface network alongside an automatically located seismic event near the well of 

automatically determined magnitude of ML≥1.0. An observed event of ML≥1.2 triggers the amber 

condition with or without the PGV observation exceedance. 

Red: in red condition exceedance has occurred according to the TLS and the immediate stop of the 

stimulation process and the well bleed-off option is triggered. Also a notification of the observed 

event and confirmation considering the stop of operation are triggered. The measures taken would 

also be documented. After the red alert the stimulation would continue only after approval from the 

local authorities. The threshold for red condition however is determined to be still so low that no 

structural damage would be expected at the threshold limit. The red condition would activate if the 

PGV exceed 7.5 mm/s value in the surface network. Considering magnitude a seismic event near the 

well of automatically determined magnitude of ML≥2.1 would trigger the red alert with or without 

exceedance of PGV values. 

In addition, the timetables for informing different parties involved in the project were determined in 

the TLS after triggering amber or red condition. The system involving both magnitude and PGV data 

was used in order to reduce false positive and false negative triggering of the TLS. It is mentioned 

that empirical ground motion prediction equation from Douglas et al. (2013) and from the Institute 

of Seismology of the University of Helsinki were used in determining the used PGV threshold values. 

 

 

 

 

  



 
  

48 
 

6 DATA ACQUISITION 

6.1 SEISMIC EVENTS USED IN THE STUDY 

In total 21 induced seismic events that occurred during June and July of 2018 near Otaniemi ST1 

Deep Heat well were chosen for this study. The events were chosen based on estimated size received 

in daily ISUH analysis and estimated magnitudes received from the ST1DH. The event origin times, 

hypocentre locations and magnitudes are listed in Appendix B.  

6.2 SEISMIC STATIONS 

During the hydraulic stimulation in June and July 2018 a wide range of seismic instruments were 

active around the Otaniemi drill site in the Espoo and Helsinki area. The data gathered for this study 

involves data from seismic stations installed by the Institute of Seismology from University of Helsinki 

(ISUH) and from the ST1 Deep Heat Oy (ST1DH). The seismic monitoring network installed for the 

purpose of monitoring the stimulation phase consisted from in total about 100 geophones deployed 

by the ISUH. Most of the geophones were deployed as arrays but the geophone network also 

involved single stations.  ST1DH gave access to data from the 12 semi-permanent borehole 

seismometers in the Espoo and Helsinki area. The instruments for monitoring the ST1DH project are 

located within 10 km of the EGS well. 

In addition to the stations deployed for the monitoring of the EGS project data from 5 ISUH 

broadband HEL seismic stations in the Helsinki area was used. Also data from the nearest stations of 

the permanent Finnish seismological network was utilized when possible.  

Full list of station used in the study alongside their coordinates and elevations can be found in the 

Appendix A. 

Since the stations consist of a wide range of instruments each “type” of stations will be described 

more precisely. Figure 6.1 shows the locations of the stations in the Espoo/Helsinki area. 
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Figure 6.1 Seismic station locations. Red markers correspond to the ST1 borehole stations, green markers are the ISUH HEL-
stations and dark blue triangles and squares are arrays consisting of geophones. Blue circles are single geophone stations. 
WT-array marked with grey was not operational during the stimulation period. The black circles correspond to distances of 5 
km, 10 km and 30 km from the ST1 Deep heat well. 

6.2.1 Geophone stations and arrays 

As total the array network consists of roughly 100 geophones. The geophones are organized mainly 

in three large arrays which consist of nominally 25 individual geophones. There are also three smaller 

arrays consisting of four individual geophones and eight single geophones without being involved in 

an array. 

The areas where the three 25 geophone arrays were installed were suburban, undeveloped and for 

most part tree-covered. Generally the sensors were placed in the thin layer of soil covering 

ubiquitous bedrock. The locations of the geophones were estimated by using a handheld GPS device. 

The instruments are 4.5 Hz PE-6/B-geophones connected to DATA-CUBE3 digitizers with a recording 

frequency of 400Hz.  The cubes were powered with batteries, which were changed in sufficient 

intervals during the operation.  The stations recorded their data continuously on Secure Digital High 

Capacity cards. 

6.2.2 ST1 borehole stations 

The ST1DH installed a satellite network consisting of 12 3-component borehole seismometers having 

500 Hz sampling rate and installation depths varying from 240 m to 1150 m. The distances from the 

EGS site vary from 0.6 km to 8.2 km. There was also vertical borehole array consisting of 12 

seismometers in the OTN-2 well, but the data of the array is not used in this study. 
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6.2.3 HEL stations 

ISUH HEL stations consist of Nanometrics Compact 3-component broadband seismometers with a 

sampling rate of 250Hz. In total there are five HEL stations and they are located within 10 km radius 

of the EGS site.  

6.2.4 Permanent station of the Finnish seismological network   

In many cases considering the size of the chosen induced events they could be seen in data of the 

stations belonging to the permanent Finnish National Seismic Network (some events could also be 

observed and picked in the data of nearest stations of the Estonian seismic network).  

The permanent stations having “picks” for P- and S-wave arrivals and in some cases amplitude 

records are: MEF, NUR, PVF, ARBE, FIA1, VJF, EE08, EE01, RAD, KEF, KAF, KPF, RUF from which the 

nearest MEF, NUR and PVF are used for almost all events. The stations work at 100-250Hz sampling 

frequency. 

 

Figure 6.2, map of seismic stations of the FNSM. Nearest seismic stations of the neighbouring countries are also illustrated 
on the map. Figure adapted from Kortström et al. (2018). 
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7 DATA PROCESSING 

The data processing of the events in this study consisted of two steps. The first step was the 

determination of the locations of the hypocenters and magnitudes for each event. This was done by 

picking the arrival times of P- and S-waves and associated amplitude for each of the station records. 

This step was completed with use of the Geotool software. The second step was data processing with 

GNU Octave for the calculations using the values obtained from the event locating and amplitude 

determination. The data recorded by the instruments were corrected for instrument response before 

usage in Geotool software. 

7.1 GEOTOOL 

The Geotool software is used in the daily seismic analysis at the ISUH. Geotool is a software system 

which allows displaying, manual interaction with and processing of seismic data. Originally Geotool 

was developed by Alexandria Laboratories and the Center of Seismic studies in the 1990s for easy 

and convenient display and analysis of data from seismic stations. In 2006 and 2007 the software was 

rewritten for most parts with C++ programming language (Geotool Software User Guide, 2016). The 

software allows processing of waveform data recorded by for example with seismic stations. The 

waveform data can be picked for different seismic phase arrivals and amplitudes can be determined 

from the waveforms. The software package includes tools for waveform processing such as filtering. 

The waveforms can be used in magnitude determinations and event location determination when 

Geotool is connected to databases enabling such actions. In ISUH paikka-ohjelma (mentioned in 

chapter 2., section 13.) is used with Geotool for the magnitude and location estimations of the 

seismic events. 

7.2 GNU OCTAVE 

GNU Octave is a software which features a high-level programming language. The software is mostly 

used for numerical computation. The Octave language can be considered as “open version” of the 

widely used MATLAB package. GNU Octave is free software under the terms of the GNU General 

Public License.  

Octave was mostly used for the data processing after receiving the event related information from 

the Geotool and Paikka-program as Nordic-files which consist of event origin time, hypocenter, 

azimuth gap and magnitude, P- and S-wave arrivals with residuals from theoretical travel times and 

with determined amplitudes and the amplitude associated frequencies. The arrivals and amplitudes 

are listed for each station having a record of the seismic event.  



 
  

52 
 

For easy computations the needed data was extracted from the Nordic-files into a form where they 

could be more easily used with the Octave code. The extraction was conducted by a program written 

with Octave. The numerical data gathered was used for the results of this study. 

Figure 7.1 shows the workflow from the recording of the data to the form used in the calculations. 

 

Figure 7.1 workflow from the raw data to the data form used in the calculations.  
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8 RESULTS  

8.1 INFO 

Data from 21 induced seismic events that took place near the ST1DH well In Espoo, Finland during 

the summer 2018 stimulation of the well are used in this section. The seismograms of the events 

were picked for P- and S-wave arrivals and for amplitude (from S-wave) records with the Geotool 

software. 

For the 21 events the filter mainly used during the Geotool usage was 1-50Hz Bandpass filter chosen 

to remove noise from the data, but still keep the amplitude information of the near-source events 

reasonably undiminished. In addition 10 of the 21 events were also picked for the amplitude values 

with 1-15Hz Bandpass filter which is most commonly used in the daily seismic analysis in the ISUH.  

The events are named based on their origin time, day of year, and year and each event has a unique 

prefix based on those parameters. The prefixes of the events are listed below:  

2018162052548, 2018171001230, 2018171232614, 2018172175518, 2018174085934, 

2018180040100, 2018180094138, 2018181065239, 2018186070100, 2018187084836, 

2018188173124, 2018189173537, 2018193142500, 2018194133411, 2018197172535, 

2018199104200, 2018199224500, 2018200105407, 2018200105452, 2018204220258, 

2018220155710 

Full list of chosen events alongside their magnitudes, origin times and hypocenter locations can be 

found in the Appendix B. 

8.2 MAGNITUDES 

For most part the event and station magnitudes are calculated based on the received amplitude 

values based on formula from Uski (1996): 

 𝑀𝐿(𝐻𝐸𝐿) = log(𝐴) + 1.42 ∙ log(𝑅) + 0.00017 ∙ 𝑅 + 0.148 + 𝑆 

 

(29) 

where R is the hypocentral distance (km), S is station correction (in practice it is relatively small 

compared to other factors) and A is the synthesized Wood-Anderson trace amplitude (half of the 

peak-to-peak amplitude in mm) measured from the vertical component of the S-wave on the 

seismogram.  
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For making the amplitude records determined with Geotool software usable with the formula 

without the conversion into synthesized WA-data the log(A) component can be expressed as: 

 log(𝐴) = 0.86 ∙ log(𝑎) − 2.34 (30) 

 

where a is the ground motion amplitude (half the peak-to-peak amplitude in nm measured from 

Sg/Lg wave maximum on original seismograms). A quite similar approximation for synthesized WA 

amplitudes is used by Alsaker (1991). 

The approximation’s purpose is to reduce the amount of work and computation needed in analysis 

the events which have been measured with modern seismograms.  

With the addition of formula (30) the magnitude scale becomes: 

 𝑀𝐿(𝐻𝐸𝐿) = 0.86 ∙ log(𝑎) + 1.42 ∙ log(𝑅) + 0.00017 ∙ 𝑅 − 2.19 + 𝑆 (31) 

 

where the notation stays same as in formulas (29) and (30). As a notice, the individual station 

corrections have not been included in calculations made with Octave but could be easily 

implemented later if seen as necessary. However there are no specific station corrections available 

for the non-permanent stations at this time. In any case the corrections are reasonably small when 

compared to the calculated magnitude values and their differences. 

During Fennovoima project in 2010-2013  it was noticed in the ISUH that the relation of the formula 

(31) does not apply well for near-source data. For recordings that locate below roughly 100-150km 

from the seismic source additional distance correction was added in order to correct this error. The 

correction has been in use in ISUH daily seismic analysis since then. The correction is as follows: 

If R < 150km then: 

 𝑀𝐿(𝐻𝐸𝐿) = 𝑀𝐿(𝐻𝐸𝐿) + 0.53 − 0.003 ∙ 𝑅 (32) 

 

For the records where R is less than 150km (almost all of the seismic records used for this study) 

formula (31) with addition of (32) was used. 
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8.3 CALCULATIONS WITH OCTAVE 

The ”.nordic”-files commonly used in ISUH for event based information are created with the Geotool 

software based on the picked P- and S-wave arrivals, determined amplitudes, event hypocenter 

location and origin time. The files can be read into Octave for the calculations with reasonably simple 

code and the needed information can be extracted into a format much more convenient to work 

with considering numeric calculations. The calculations considering magnitudes were conducted 

using this kind of method since the files produced by Geotool or Paikka-ohjelma are not very 

conveniently used directly using Octave.  

The usage of Octave allows creation of different plots for illustration purposes and mathematical 

analysis of results together with testing of effects of different magnitude formulas. Octave is also 

used for determining individual station azimuths to be used in calculations when needed. 

The Octave code reads the Nordic-file and extracts the needed information such as station IDs and 

corresponding amplitudes and periods and the information considering the hypocenter location 

alongside azimuth gap. 

List of stations and their locations is used to calculate the hypocenter distances from the event 

location. The distances are approximated to be sufficiently small for using a formula where the path 

of the seismic wave does not curve because of the seismic wave velocity gradient. Most hypocenter 

distances end up being less than 10 km. For the further away stations, the magnitude determinations 

made with the Octave code reasonably well agree with the determinations that have been made 

with the Geotool and the Paikka-ohjelma even when using the mentioned approximation. This 

seemed to apply even to the records of the permanent station of the Finnish seismic network which 

are located much further away than the mentioned 10 km from the event source. 

The formula (31) with addition of formula (32) is used for most of the magnitude calculations. If 

different magnitude formula is used it is clearly stated in the text. 

The total magnitude of an event is calculated as the mean of all station magnitudes and uncertainty 

is estimated with standard deviation of the magnitude values. With the involvement of the arrays 

consisting of maximum 25 stations in practically same place the way how they are included in the 

calculation is generally done by taking the median value of the magnitude records for the array. If the 

effect of using mean or other methods of involving arrays in the magnitude calculation is used it will 

be stated clearly in the text. 
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Figure 8.1 shows the different kinds of procedures done with the data. 

 

Figure 8.1 Usage of the processed data and the procedures done for the results. 

8.4 MEAN OF STATION MAGNITUDES PER EVENT 

 

Figure 8.2 Event magnitudes and means of each station type magnitudes illustrated for each event. The events are sorted in 
ascending order based on the calculated event magnitude. No chronological order can be seen in the figure. The trends in 
estimated magnitudes between different kinds of seismic stations used can be seen clearly. Individual event numbers can be 
seen on the x-axis and local magnitude (ML ) is seen on the y-axis. The stations are divided in 4 subgroups and the 
corresponding colours can be seen on the legend on the right side. Red line corresponds to the total event magnitude, violet 
line to the ST1 borehole station magnitude, blue line to the Cube array and station magnitude, green line to the permanent 
seismic network station magnitude and cyan line to the HEL-station magnitude. 

Based on the results it seems that there is clear difference between the magnitudes calculated based 

on different station type records. On average it appears that the surface-located stations such as the 
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cube stations and arrays and HEL stations deployed by ISUH seem give higher magnitude values. The 

ST1 stations located in boreholes seem to give lower magnitude values alongside the permanent 

stations of the Finnish seismological network. It should be noted that the permanent station records 

were filtered with 1-15Hz filter compared to the rest of the records filtered with the 1-50Hz filter in 

order to minimize the amount of amplitude cut happening if close distance data is filtered by 

removing high frequencies. The cube stations contribute to the total magnitude as one station per 

array which is chosen to have the median value of the particular array in order to avoid the cube 

station controlling the total magnitude just because of their great number. 

For most of the cases the magnitudes from all station types seem to agree with the relative size 

between the events which is desirable when considering the reliability of the magnitude 

determination. The disagreements between the relative sizes between the events appear to be 

between borehole stations + permanent stations of the Finnish seismic network and the cube 

stations + HEL stations. 

 

 

Figure 8.3 Standard deviations of the magnitude records for each station subtype. Individual event numbers can be seen on 
the x-axis and the standard deviation of the local magnitude (ML) values is seen on the y-axis. The stations are divided in 4 
subgroups and the corresponding colours can be seen on the legend on the right side. It can be seen that the different 
station subgroups experience different amounts of uncertainty considering the magnitude values. There appears not to be 
clear trend on the STD based on the event size. Red line corresponds to the total event magnitude STD, violet line to the ST1 
borehole station magnitude STD, blue line to the Cube array and station magnitude STD, green line to the permanent 
seismic network station magnitude STD and cyan line to the HEL-station magnitude STD. 
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The HEL stations seem to have the highest STD values across all events. Cube arrays and stations tend 

to have second highest STD values of the station types. Therefore the station types with highest 

magnitude estimations seem to have higher STD values as well. The permanent station results with 

1-15Hz BP filtered records give lowest STD values. The STD values seem to vary significantly from 

event to event and seem not to be related to the calculated magnitude of the event in question. The 

STD variation between each event seems to be lower with the cube stations, which is most likely 

caused by their great number in comparison with the other station subgroups. The locations of the 

individual stations of the low quantity subgroups could easily also affect the average STD values 

when considering the focal mechanisms and radiation patterns of the events. 

In figure 8.4 the station subtype average magnitudes are plotted against the calculated event 

magnitude. 

 

Figure 8.4 Event magnitude compared to the mean magnitudes of different station subgroups for each event. Red dots on 
the graphs correspond to the magnitude estimates. Mean total magnitude is shown on the x-axis and the corresponding 
station subgroup magnitude is shown on the y-axis. The blue line is fitted to the data based on least-squares method. The 
station type subgroup for each graph are a) Cube-stations, b) ST1 borehole stations, c) HEL-stations and d) permanent 
stations of the Finnish Seismological Network. 
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The different stations type subgroups appear to estimate the relative size of the events well for 

majority of the events. The permanent stations seem to perform worst, but in defence their involved 

number per each event is very small compared to other stations types.  

8.5 AUTOMATIC INITIAL MAGNITUDE VALUES COMPARED TO THE MAGNITUDE VALUES 

CALCULATED IN THE STUDY 

Table 2. Comparison of the magnitudes received based on the data used in this study versus the automatically picked 
magnitudes received during the stimulation. 

Event PREFIX Event ML 
(median value 
taken for each 
array) 

Event ML 
(mean across 
all station 
records) 

automatic 
ST1 
station 
ML 

event ML  
vs. 
automatic 
ST1 ML 

2018162052548 1,45 1,65 1,32 0,13 

2018171001230 1,34 1,49 1,47 -0,13 

2018171232614 1,66 1,81 1,83 -0,17 

2018172175518 1,34 1,50 1,54 -0,20 

2018174085934 1,25 1,46  -  - 

2018180040100 1,70 1,87 1,72 -0,02 

2018180094138 1,46 1,67 1,59 -0,13 

2018181065239 1,47 1,70 1,68 -0,21 

2018186070100 1,48 1,71  1.57* -0.08* 

2018187084836 1,43 1,66 1,54 -0,11 

2018188173124 1,49 1,72 1,55 -0,06 

2018189173537 1,84 1,97  1.9* -0.06* 

2018193142500 1,37 1,51 1,57 -0,20 

2018194133411 1,44 1,59 1,41 0,03 

2018197172535 1,79 1,94 1,87 -0,08 

2018199104200 1,39 1,60 1,50 -0,11 

2018199224500 1,34 1,55 1,63 -0,29 

2018200105407 1,29 1,44 1,57 -0,28 

2018200105452 1,53 1,67 1,71 -0,18 

2018204220258 1,35 1,56 1,63 -0,28 

2018220155710 1,22 1,34  -  - 

 

Automatic ST1 station ML is magnitude value taken from excel involving the first magnitudes received 

from ST1. The mean difference between the magnitudes calculated using all station (considering 

arrays as one station) and between the initial magnitudes received from automatic initial ST1 event 

magnitude excel was -0.13 ML when subtracting the automatic magnitudes from the manual 

magnitude estimates. For few of the events used in this study there was no corresponding event 

found in the excel sheet of the initial automatic magnitudes. 

 



 
  

60 
 

8.6 EFFECT OF FILTERING (1-15HZ VS. 1-50HZ) 

The effect of the used filter on the calculated magnitude values will be considered next. The 

comparison is between 1-50Hz BP filter and 1-15Hz BP filter. 

The events picked for amplitude values with both mentioned filters considered in this comparison 

are:  

2018162052548 (M = 1.45), 2018171001230 (M = 1.45), 2018171232614 (M = 1.66), 2018180040100 

(M = 1.70), 2018180094138 (M = 1.46), 2018181065239 (M = 1.47), 2018187084836 (M = 1.43), 

2018193142500 (M = 1.34), 2018197172535 (M = 1.79), 2018200105407 (M = 1.29) 

 

Figure 8.5 The comparison between magnitude values received using 1-50Hz and 1-15Hz filters during amplitude 
determination. The difference between the received magnitude values is shown on the left side in the y-axis. Positive values 
indicate that the 1-50Hz filter magnitude is higher than the 1-15Hz filter magnitude. On the right side of the y-axis is the 
event magnitude. The event magnitude (thick orange plot) is also illustrated on the figure for making the relative size of the 
events visible (here the event magnitude is calculated simply by taking mean of all station magnitudes for the 1-50Hz filter). 
The event numbers are sorted in ascending order based on event magnitude. There appears not to be clear relationship 
between event magnitude and the difference between the magnitudes received using different filters. Red line corresponds 
to the total event magnitude difference, violet line to the ST1 borehole station magnitude difference, blue line to the mean 
Cube array and station magnitude difference, black line to the Cube array and station magnitude difference (median value 
used for arrays) and cyan line to the HEL-station magnitude difference. Since the permanent stations were picked with the 1-
15Hz filter in both cases they are excluded. 

The size of the magnitude difference caused by the filter seems not to correlate the with the 

calculated magnitude of the event. The event with the highest difference has only average 

magnitude compared to others and some of the largest events in the comparison have average or 

even less than average calculated magnitude difference. 
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Figure 8.6 The comparison between STDs of the  magnitude values received using 1-50Hz and 1-15Hz filters during 
amplitude determination. The difference in the STD between the received magnitude values is shown on the left side in the 
y-axis. Positive values indicate that the 1-50Hz filter STD is higher than the 1-15Hz filter STD. Since the permanent stations 
were picked with the 1-15Hz filter in both cases they are excluded. On the right side of the y-axis is the event magnitude. The 
event magnitude (thick orange plot) is also illustrated on the figure for making the relative size of the events visible. The 
event number are sorted in ascending order based on event magnitude. There appears not to be clear relationship between 
event magnitude and the difference between the STDs of the magnitudes received using different filters. Generally the 1-
15Hz filter lowers the STDs which can be caused by both the lower noise values and lower picked amplitudes. Red line 
corresponds to the total event magnitude STD difference, violet line to the ST1 borehole station magnitude, blue line to the 
mean Cube array and station magnitude STD difference, black line to the Cube array and station magnitude STD difference 
(median value used as station magnitude for arrays) and cyan line to the HEL-station magnitude STD difference. 

Differences in standard deviations in calculated magnitudes between events picked with filters 1-

50Hz BP and 1-15Hz BP. Positive values indicate that the 1-15Hz filter records have higher standard 

deviation. 

The standard deviations seem to be somewhat higher on average in the case of the 1-50Hz filter 

usage. Especially when considering the HEL stations and arrays. The STD differences do not really 

show a consistent pattern in the sample of the 10 events. 
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8.7 MAPS OF INDIVIDUAL ARRAYS 

 

Figure 8.7 Differences in average station magnitudes inside each array between different cubes. The individual cube 
magnitude estimates are compared to the event magnitude calculated using all stations of the network. Cubes generally 
overestimating magnitude values are marked with warm colours. Cubes underestimating magnitude values have cool 
colours. The values shown are based on difference from the event magnitude. There seems to be clear variation between the 
average values provided by each cube inside each array. The arrays consisting of namely 25 instruments are a) EV-, b) SS- 
and c) TL- arrays. Smaller 4-istrument arrays are d) RS-, e) PK- and f) PM-arrays. The names of the arrays are abbreviations 
of the locations where they are deployed. 
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An individual array seems to either overestimate or underestimate the event magnitude on average 

as can be seen from figure 8.7. There are clear differences between different cubes of each array. 

Some of the cubes experience clearly higher or lower amplitudes compared to others despite 

belonging to the same array nearly at the same place in the site and being same kind of instruments. 

It seems that overestimation of the magnitude values is much more common overall than 

underestimation. The differences between different cubes may be caused by the direct subsurface 

material properties or perhaps by slight differences in installation of the geophones. 

On average the overestimations are of far greater magnitude than the average underestimations. 

The most sensitive cube overestimates the magnitudes on average with a value of roughly 1 whereas 

the least sensitive cube underestimated them with less than quarter of that value.  

 

8.8 COMPARISON OF ARRAY MAPS WITH RESULTS OF “THE 2018 GEOTHERMAL RESERVOIR 

STIMULATION IN ESPOO/HELSINKI, SOUTHERN FINLAND: SEISMIC NETWORK ANATOMY AND 

DATA FEATURES” 

 

 

Figure 8.8 Signal-to-noise ratios of the individual stations of the EV-array. Red values indicate bad SNR ratios and green 
values indicate on average good SNR values. c) shows the statistics from the largest 134 events. d) shows the statistics from 
the single largest event of ML 1.8. Figure adapted from Hillers et al. (2020). 

The stations having on average largest negative differences from calculated event magnitude seem 

to be for the most part same as the ones providing worst SNR-ratios on average in Hillers et al. 

(2020). Same also seems to work another way around. Stations with higher magnitude estimates 

tend to have better SNR-ratios. This could be related to the direct subsurface under the station and 

the instruments contact to the medium. The stations deployed in the northern parts of the EV-array 
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tend to sit on thicker soil layer than their southern counterparts sitting on hard rock directly. The 

variations in data quality could be due to coupling issues with the subsurface 

8.9 AZIMUTHAL DIFFERENCES IN CALCULATED STATION MAGNITUDES COMPARED TO THE EVENT 

MAGNITUDE 

 

Azimuthal effects of the magnitude differences are shown in figure 8.9. The effects were studied by 

slicing azimuth range into slices where stations were grouped. Each station type used (here ST1, HEL, 

CUBE) were compared to their own subtypes mean magnitude for each event. Shown results are 

mean across all events used in the study. The calculation was tested with different azimuth slice sizes 

and the 30 degree slices seemed most stable considering results. Tighter azimuth slicing resulted in 

too low amount of stations per azimuth slice whereas too large slices resulted in dampening much of 

the azimuthal effects. 

 

 

 

Figure 8.9 Azimuthal average magnitude differences between stations based on the azimuth from the event hypocenters. 
The circle was divided into 30° slices for the analysis and each station was located into a corresponding slice based on its 
azimuth. The mean is across all events in the study. The station subtypes involved are ST1-, HEL- and cube stations. The 
calculation was conducted by comparing each station to their subtype’s mean magnitude for each event and the mean of 
the mean values of all used station subtype magnitude differences per azimuth slice are shown. On the left side is a bar 
graph of the received azimuthal effects. Map of the same values is illustrated on the right side. Locations of different station 
subtypes and EGS site are also marked on the map. There seems to be clear average differences between the calculated 
magnitudes between different azimuths.   

There seems to be clear average magnitude differences between different azimuth slices, but the 

results are mostly vulnerable to be distortion caused by the fact that the stations and station types 

are not distributed evenly across all azimuth slices. Also the choice for how many slices are made 

seems to affect the end result. The way of calculation expects the focal mechanisms of the used 

events to be reasonably similar. The similarity is noted for the largest events in Hillers et al. (2020). 
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Figure 8.10 SH-wave radiation pattern of the largest induced event during the summer 2018 stimulation. Adapted from 
Hillers et al.  (2020). The filled and open circles correspond to areas where disturbances were reported by the general public 
during the stimulation. The white eclipse corresponds to the neighbourhood where most of the reports originated from.  

In comparison with the figure 5. of Hillers (2018) (Figure 8.10) the average azimuthal station 

magnitude distribution seems to for some parts follow the SH-wave radiation pattern caused by the 

largest event. The magnitude is determined from the S-wave so this is expectable. However the 

uneven distribution of the stations around the Otaniemi EGS well makes accurate interpretation 

difficult. The area with largest magnitudes appears to be pointed near Munkkiniemi area for both of 

the maps, even though the direction differs slightly. 

8.10 DISTRIBUTION OF ERRORS FROM CALCULATED MAGNITUDE ALONG THE CUBES OF EACH 

ARRAY 

 

Figure 8.11 Histogram graphs of the sum of the errors from the event magnitude for the cubes of each array based on 
classification considering the error size. The arrays are marked in the headline of each graph. Each histogram was done by 
dividing the error into classes based on difference on 0.1 magnitude error and counting the sum of the errors of each class 
across all events used in the study. The average error distributions between different arrays seems to vary.  
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Sum of errors from the event magnitudes across all events. Number of cubes is marked on the y-axis. 

The x-axis shows the error from the calculated magnitude. The histogram was created by grouping 

values within 0.1 magnitude with each other. 

EV- and SS-arrays seem to be the most consistent arrays considering normal deviation to be desirable 

or expectable if everything is going well considering the measurement. EV-array does follow the 

shape of normal deviation quite well as can be observed from figure 8.11 while SS-array performs a 

bit worse. TL-array is clearly tilted to mostly overestimating magnitude values. PM-, PK- and RS are 

much smaller considering the number of instruments involved, but they seem to also show clear 

distributions when calculated across all events. PM- and PK-arrays seem to agree with normal 

deviation, but RS-array has a quite clear M-shape with great quantity of both small and large 

overestimations.  

8.11 EXPERIMENTING WITH DIFFERENT MAGNITUDE FORMULA 

Uski (1996) proposes a formula which involves frequency of the amplitude record suggested to be 

used for events with less than 350km hypocentral distance. However the formula is currently not 

used in ISUH analysis and the author suggested that it most likely gives less reliable results than the 

formula commonly used in this study. The formula given in Uski (1996) is written as: 

 𝑀𝐿(𝐻𝐸𝐿) = log(𝐴) + 1.27 ∙ log(𝑅) + (0.00009 + 0.00041 ∙ 𝑓0.36) ∙ 𝑅 + 0.36

+ 𝑆 

(33) 

 

where R = hypocentral distance (km), S is station correction (in practice it is relatively small 

compared to other participating factors), A = synthesized Wood-Anderson trace amplitude (half of 

the peak-to-peak amplitude in mm) measured from the vertical component seismogram and f is the 

frequency of the wave the amplitude was measured from. Using the same approximation for the 

WA-seismometer response shown in formula (29). the formula now becomes: 

 𝑀𝐿(𝐻𝐸𝐿) = 0.86 ∙ log(𝑎) − 2.34 + 1.27 ∙ log(𝑅) + (0.00009 + 0.00041 ∙ 𝑓0.36)

∙ 𝑅 + 0.36 + 𝑆 

(34) 
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Including the correction for events with <150km hypocentral (formula 31) distance and combining 

some of the terms the used formula becomes:  

 𝑀𝐿(𝐻𝐸𝐿) = 0.86 ∙ log(𝑎) + 1.27 ∙ log(𝑅) + (0.00009 + 0.00041 ∙ 𝑓0.36) ∙ 𝑅

− 0.003 ∙ 𝑅 + 1.45 + 𝑆 

(35) 

 

The formula was tested with all of the amplitude records determined for the 21 events involved in 

this study using the 1-50Hz BP filter. The formula was not tested with the 10 events picked with the 

lower frequency (1-15Hz) filter.  

In the first figure the calculated event magnitudes received are compared to the ones received with 

the current ML(HEL) formula. Both formulas included the correction term for <150km hypocentral 

distance events. The magnitudes were calculated using the earlier mentioned method, where event 

magnitude is the mean of all station magnitudes but arrays are considered as one station with station 

magnitude as the median magnitude value of the cubes of that array.  

 

Figure 8.12 Event magnitude versus the magnitude received using the formula (34). On the left side (a) is the event 
magnitude is on the x-axis and the new calculated magnitude is on the y-axis. The red line is fit based on least-squares 
method. The formulas seem to agree well on the relative size of the events. On the right side (b) is the absolute values of the 
magnitude formulas are compared with each other. The event magnitude is plotted with the red and the new calculated 
magnitude is plotted with the blue line. It appears that the new formula involving the waveforms period overestimated the 
magnitudes compared to the formula (4). 

Based on the results of figure 8.12 it appears that the frequency involving formula estimated the 

event magnitudes to be slightly higher than the commonly used formula. The amount of 

overestimation depends on individual event, but it tends to be less than or roughly equal to 0.1 

magnitude units. Considering that in Uski (1996) no events with short hypocentral distances where 

used the results are surprisingly consistent even when considering that the frequencies for the waves 
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from which the amplitudes have been picked have most likely been much higher than for the cases 

used in the derivation of the magnitude formulas in Uski (1996). As a notice the low distance 

correction shown in formula (4) is applied for both of the used formulas. 

The effect of the formula (34) on individual station subgroup magnitudes was not tested further 

since the periods given in the “.nordic”-files based on the waveform where the amplitude records 

was taken are reasonably close to each other between the different station subtypes. 

8.12 TLS SYSTEM 

In this section the magnitudes calculated with different methods and the mean station type 

magnitudes will be compared to the red (M = 2.1) and amber (M = 1.2) traffic light system alert 

magnitude thresholds. It was done in order to determine would magnitude determination based on 

certain magnitude types induce more alerts than others. First figure shows the TLS thresholds vs. 

station magnitudes and event magnitude calculated by using the median magnitude value for each 

array and otherwise taking mean of all station magnitudes.  

 

Figure 8.13 Event magnitude and average station type subgroup magnitudes compared to the red and amber warning 
thresholds of the TLS system. The events are sorted in ascending order based on the calculated event magnitude.  Individual 
event numbers can be seen on the x-axis and local magnitude (ML) is seen on the y-axis. The stations are divided in 4 
subgroups and the corresponding colours can be seen on the legend on the right side alongside the information from the TLS 
warning thresholds. The red warning thresholds corresponds to ML 2.1 and the amber warning to ML 1.2. It appears that 
even by using only the stations of the most sensitive subgroup the red warning threshold would not have been breached. 
There appears to be few cases in which by using only selected station type subgroup the amber alert could theoretically have 
been avoided. 
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Though already noted in the section 4 of this chapter that certain station types tend to overestimate 

the event magnitudes it still appears that none of them would suggest that even a single event would 

be large enough to trigger the red TLS alert. However when considering the threshold for the yellow 

alert it seems that the average magnitude calculated using ST1 borehole stations undercuts the 

threshold for some events for which most of the stations and total event magnitude consider it to be 

triggered.  

The permanent station magnitude appears consider roughly half of the events to undercut the amber 

alert threshold. It appears that cube arrays, single cube stations and HEL-stations would trigger the 

amber alert for every event in this study as does the event magnitude based on all station records. 

For the figure 8.14 the event magnitude is calculated taking mean of all station magnitudes, including 

array stations as single stations. All other parameters not considering the cube arrays remain the 

same as in the figure 8.13. 

 

Figure 8.14 Event magnitude and average station type subgroup magnitudes (by taking mean of all individual station 
magnitudes) compared to the red and amber warning thresholds of the TLS system. The events are sorted in ascending order 
based on the calculated event magnitude.  Individual event numbers can be seen on the x-axis and local magnitude (ML) is 
seen on the y-axis. The stations are divided in 4 subgroups and the corresponding colours can be seen on the legend on the 
right side alongside the information from the TLS warning thresholds. The red warning thresholds corresponds to ML 2.1 and 
the amber warning to ML 1.2. It appears that even by using only the station of the most sensitive subgroup the red warning 
threshold would not have been breached. There appears to be few cases in which by using only selected station type 
subgroup the amber alert could theoretically been avoided. 

The same observations hold than with the first figure 8.13 of this section. The magnitude 

overestimation caused by the inclusion of the arrays as ordinary stations is not great enough to 
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increase the total magnitude to break any thresholds it did not break in the first figure. In addition 

the mean magnitude of array magnitudes instead of the median value is not alone high enough to 

break the red alert threshold for any event. 

From these observations it can be said that in theory the usage of particular types of stations could 

indeed in some cases cause or prevent TLS alert thresholds to trigger/from triggering. However it 

appears that in this case the alert thresholds are chosen so that many of the highest magnitude 

events induced by the stimulation tend to stand somewhat in the middle between the two 

thresholds, a case in which relatively small changes in magnitude calculation do not very easily tip 

the magnitude estimation over or under either of the chosen thresholds. 

From the data provided in figure 8.13 and 8.14 it appears that the stations located in the surface or 

near it on average come much closer to the upper warning threshold than the stations installed in 

boreholes. The instrumental differences and the amplification caused by the uppermost soil layer the 

surface stations are planted in could play a role even after possible instrument response corrections.   
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9 CONCLUSIONS 

In total 21 sufficiently large induced seismic events taken place during the stimulation period in 

summer 2018 of the Otaniemi EGS well were analysed manually by picking P- and S-wave arrivals and 

amplitudes in order to locate and determine event magnitudes for the purposes of studying the 

effects associated with the different types of seismic stations and arrays and the behaviour of the 

currently in use Finnish local magnitude formula. The results with the magnitude calculations were 

also compared to the TLS thresholds for the amber and red alerts. 

There appears to be clear differences in the average station magnitudes between the different 

station types. The different types of station involved were borehole stations installed by the ST1DH 

and HEL-, and cube-stations/arrays installed by the ISUH alongside stations from the National Finnish 

Seismic Network. The near surface installed stations (cube-stations/arrays and HEL-stations) seemed 

to estimate the event magnitudes to be higher than the borehole installed ST1-stations. For most of 

the events studied the stations types agreed on the relative sizes of the events. 

Alongside the estimated magnitudes the standard deviations of the station magnitudes also varied 

between station types with the near surface stations experiencing higher values. However also the 

sample sizes between different station types must be taken into consideration because there were 

only 5 HEL-stations compared to for example 12 ST1-stations and cubes totalling more than 100 

instruments. 

Typically the automated event size estimations made during the stimulation for the TLS system 

seemed to mostly agree with the manually done event magnitudes for this study. Generally the 

automatic magnitudes estimated the magnitude values to be a bit higher, but within quite 

acceptable range, leading to the fact that no alert was avoided due to underestimations for the 

events involved in this study. 

The behaviour and trustfulness of the largest arrays was considered more precisely and there 

appears to be quite high differences between the cubes of a single array. Across all events it seems 

that part of the cubes is on average overestimating or underestimating event sizes (mostly 

overestimating). For some arrays the errors seem normally distributed but also other kinds of 

distributions were encountered. The site effects and small deployment differences between 

individual instruments may play a role in this. The cubes with most negative difference seemed to 

experience worst SNR-ratios in Hillers et al. (2020), however this comparison was made just for one 

array.  
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It was also noted that the chosen filter when picking the amplitude values seems to greatly affect the 

results for this kind of near-source events. One could rather easily lower the estimated magnitudes 

of the events by filtering out some of the higher frequency content. Filtering however seemed to 

somewhat lower the STD values of the station magnitudes. 

There seemed to be clear azimuthal effects in the average magnitudes experienced by the stations 

around the EGS well site. However the station of the seismic network are not distributed evenly 

between the chosen azimuth slices and this might affects the reliability of the result alongside with 

differences in focal mechanisms of the events. The largest magnitudes appear to point roughly at the 

direction of the highest concentration of seismic observations by the public. 

The currently in use Finnish local magnitude formula appeared to give pretty much similar results 

with a little bit lower magnitude estimations than the another local magnitude formula with the 

difference of involving wave periods in the calculations. The formulas were introduced in Uski (1996) 

and are not created with enough near-source data. However currently there is no local magnitude 

formula for Finnish area made using suitable amount of near-source data. Both formulas needed the 

currently used correction for near-source events. 

Considering the amber and red alert thresholds used by the TLS system in the ST1DH project the 

threshold values seemed to be chosen so that the differences between the estimated event 

magnitudes between different station types or calculation choices would not cause them to be 

breached and not breached between different choices. The amber alert could have been avoided for 

very few cases and red alert would not have been breached for any calculation choice or choice of 

station types involved. 

In the future the local magnitude formula could be developed further to perhaps be more suitable 

for near-source data (particularly the near-source correction could be revised) and the behaviour of 

different types of seismic stations and effect of station geometries could be studied further for 

example during the next stimulation period of the ST1DH project. The effect of filtering when picking 

near-source event magnitudes could be also tested further. In addition the effects of the 

heterogeneities of the subsurface could be considered more since for the purposes of this study their 

effects were pretty much neglected in the absence seismic model involving such.   
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12 APPENDIX 

12.1 APPENDIX A 

Appendix A, Full list of the seismic stations used, involving the stations of the monitoring network 

and used permanent seismic network stations. The non-operational WT array is also involved in the 

list. 

Station name Longitude (°N) Latitude (°E) Elevation (km) 

UNIV 60.2040 24.9626 -0.307 

MALM 60.1863 24.6806 -0.329 

MUNK 60.1557 24.9310 -0.290 

LASS 60.2334 24.8896 -0.343 

LEPP 60.2177 24.8286 -0.337 

TVJP 60.1535 24.8080 -0.333 

RUSK 60.2024 24.9166 -0.309 

ELFV 60.2019 24.8186 -0.260 

TAPI 60.1700 24.7917 -0.238 

OTRA 60.1863 24.8373 -0.666 

TAGC 60.1963 24.7880 -1.148 

MURA 60.2005 24.8588 -1.198 

HEL1 60.1771 24.8825 0.005 

HEL2 60.1880 24.8314 0.005 

HEL3 60.1732 24.8244 0.005 

HEL4 60.2454 24.8061 0.005 

HEL5 60.1173 24.7388 0.005 

ZAK 60.205930 24.838090 0.010 

DID 60.185330 24.855640 0.010 

DT00 60.224860 25.048590 0.010 

DT01 60.249190 25.102680 0.010 

EV00 60.204610 24.819440 0.010 

EV01 60.204660 24.819790 0.010 

EV02 60.204790 24.820060 0.010 

EV03 60.204720 24.820590 0.010 

EV04 60.204740 24.820930 0.010 

EV05 60.204350 24.819560 0.010 

EV06 60.204460 24.819970 0.010 

EV07 60.204560 24.820470 0.010 

EV08 60.204560 24.820740 0.010 

EV09 60.204520 24.821190 0.010 

EV10 60.204230 24.819540 0.010 

EV11 60.204300 24.819960 0.010 

EV12 60.204330 24.820590 0.010 

EV13 60.204360 24.820940 0.010 

EV14 60.204320 24.821330 0.010 

EV15 60.203870 24.819870 0.010 
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EV16 60.204130 24.820080 0.010 

EV17 60.204070 24.820700 0.010 

EV18 60.204130 24.821050 0.010 

EV19 60.204120 24.821540 0.010 

EV20 60.203770 24.820470 0.010 

EV21 60.203860 24.820810 0.010 

EV22 60.203920 24.821300 0.010 

EV23 60.203960 24.821530 0.010 

KUN 60.223810 24.767110 0.010 

LTS 60.169580 24.856120 0.010 

MKK 60.194180 24.772070 0.010 

PK00 60.153390 24.858770 0.010 

PK01 60.153100 24.858130 0.010 

PK02 60.152820 24.858110 0.010 

PK03 60.153210 24.857520 0.010 

PM00 60.221040 24.856420 0.010 

PM01 60.221260 24.856180 0.010 

PM02 60.220720 24.855980 0.010 

PM03 60.221030 24.857010 0.010 

HAN 60.163620 24.834700 0.010 

RAD 60.184350 24.837380 0.010 

RS00 60.179890 24.734020 0.010 

RS01 60.179570 24.733770 0.010 

RS02 60.179860 24.733230 0.010 

RS03 60.179900 24.732640 0.010 

SS00A 60.183550 24.883130 0.010 

SS00B 60.183980 24.882070 0.010 

SS01 60.184060 24.882410 0.010 

SS02 60.183980 24.882900 0.010 

SS03 60.184030 24.883250 0.010 

SS04 60.184030 24.883550 0.010 

SS05 60.183820 24.881750 0.010 

SS06 60.183880 24.882250 0.010 

SS07 60.183840 24.882550 0.010 

SS08 60.183830 24.882940 0.010 

SS09A 60.183850 24.883490 0.010 

SS09B 60.183820 24.883590 0.010 

SS10 60.183570 24.881810 0.010 

SS11 60.183640 24.882100 0.010 

SS12 60.183650 24.882620 0.010 

SS13 60.183630 24.882920 0.010 

SS14 60.183650 24.883410 0.010 

SS15 60.183400 24.881580 0.010 

SS16 60.183420 24.882190 0.010 

SS17 60.183380 24.882510 0.010 

SS18 60.183440 24.883030 0.010 
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SS19 60.183510 24.883460 0.010 

SS20 60.183210 24.881530 0.010 

SS21 60.183180 24.882130 0.010 

SS22 60.183150 24.882570 0.010 

SS23A 60.183200 24.883010 0.010 

SS23B 60.183180 24.883170 0.010 

SS24 60.183330 24.883370 0.010 

TL00 60.159080 24.787780 0.010 

TL01 60.159130 24.788150 0.010 

TL02 60.159180 24.788580 0.010 

TL03 60.159180 24.788920 0.010 

TL04 60.159150 24.789300 0.010 

TL05 60.158850 24.788240 0.010 

TL06 60.158810 24.788590 0.010 

TL07 60.159030 24.788600 0.010 

TL08 60.159020 24.789010 0.010 

TL09 60.158940 24.789360 0.010 

TL10 60.158660 24.788130 0.010 

TL11 60.158640 24.788510 0.010 

TL12 60.158590 24.788890 0.010 

TL13 60.158790 24.789080 0.010 

TL14 60.158800 24.789330 0.010 

TL15 60.158460 24.788160 0.010 

TL16 60.158310 24.788290 0.010 

TL17 60.158530 24.788570 0.010 

TL18 60.158710 24.789330 0.010 

TL19 60.158520 24.789530 0.010 

TL20 60.158240 24.788580 0.010 

TL21 60.158330 24.789020 0.010 

TL22 60.158360 24.789530 0.010 

WEG 60.179540 24.794440 0.010 

WT00 60.160760 24.767270 0.010 

WT01 60.160570 24.767400 0.010 

WT02 60.161020 24.766870 0.010 

WT03 60.160910 24.767270 0.010 

WT04 60.161000 24.765750 0.010 

WT05 60.160660 24.766080 0.010 

WT06 60.160720 24.766790 0.010 

WT07 60.160640 24.765670 0.010 

WT08 60.160310 24.766300 0.010 

WT09 60.160840 24.765490 0.010 

WT10 60.161160 24.766910 0.010 

WT11 60.160860 24.766280 0.010 

WT12 60.160500 24.766930 0.010 

WT13 60.161160 24.766350 0.010 

WT14 60.160980 24.766120 0.010 
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WT15 60.160360 24.767370 0.010 

WT16 60.160510 24.765750 0.010 

WT17 60.160980 24.766640 0.010 

WT18 60.160830 24.765910 0.010 

WT19 60.160530 24.766350 0.010 

WT20 60.161090 24.767300 0.010 

KPF 61.8337 22.0704 0.082 

RUF 61.4247 28.9497 0.125 

MEF 60.2172 24.3958 0.0550 

NUR 60.5090 24.6514 0.1020 

PVF 60.5451 25.8616 0.0100 

FIA1 61.4445 26.0793 0.1380 

ARBE 59.4365 25.9841 0.071 

KAF 62.1112 26.3095 0.1950 

KEF 62.1664 24.8706 0.2150 

RAF 61.0227 21.7679 0.000 

VJF 60.5388 27.5550 0.034 

EE08 58.65724 25.24031 0.037 

EE01 59.20648 23.62229 0.008 
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12.2 APPENDIX B 

Appendix B, Full list of earthquakes used in the study involving their magnitudes, origin times and 

hypocenter locations.  

Event PREFIX 

Manual 
event 
magnitude 
(ML) 

Date 
(mm:dd) Time (hh:tt) Time (s) Longitude (°N) Latitude (°E) 

Depth 
(km) 

2018162052548 1,45 0611 0526 48.7 60.191 24.834 5.6 

2018171001230 1,34 0620 0013 04.0 60.194 24.840 6.1 

2018171232614 1,66 0620 2327 15.1 60.193 24.841 6.1 

2018172175518 1,34 0621 1756 18.6 60.195 24.839 6.0 

2018174085934 1,25 0623 0900 01.9 60.193 24.842 6.1 

2018180040100 1,70 0629 0402 45.1 60.194 24.843 6.3 

2018180094138 1,46 0629 0942 38.8 60.194 24.843 6.2 

2018181065239 1,47 0630 0653 07.8 60.194 24.839 6.1 

2018186070100 1,48 0705 0701 55.6 60.193 24.842 6.0 

2018187084836 1,43 0706 0849 36.3 60.194 24.843 6.2 

2018188173124 1,49 0707 1732 24.9 60.191 24.832 5.6 

2018189173537 1,84 0708 1736 37.0 60.192 24.842 6.1 

2018193142500 1,37 0712 1425 19.4 60.193 24.840 6.1 

2018194133411 1,44 0713 1335 11.6 60.193 24.842 6.1 

2018197172535 1,79 0716 1726 02.9 60.196 24.837 6.1 

2018199104200 1,39 0718 1043 18.0 60.194 24.844 6.2 

2018199224500 1,34 0718 2245 37.8 60.193 24.842 6.1 

2018200105407 1,29 0719 1055 07.4 60.192 24.840 6.0 

2018200105452 1,53 0719 1055 53.0 60.193 24.842 6.1 

2018204220258 1,35 0723 2203 58.4 60.196 24.838 6.2 

2018220155710 1,22 0808 1558 14.9 60.192 24.841 6.0 

 


