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Abstract

Motivation: Linkage mapping provides a practical way to anchor de novo genome assemblies into
chromosomes and to detect chimeric or otherwise erroneous contigs. Such anchoring improves with
higher numbers of markers and individuals, as long as the mapping software can handle all the information.
Recent software Lep-MAP3 can robustly construct linkage maps for millions of genotyped markers and
on thousands of individuals, providing optimal maps for genome anchoring. For such large data sets,
automated and robust genome anchoring tool is especially valuable and can significantly reduce intensive
computational and manual work involved.
Results: Here we present software Lep-Anchor to anchor genome assemblies automatically using dense
linkage maps. As the main novelty, it takes into account the uncertainty of the linkage map positions
caused by low recombination regions, cross type or poor mapping data quality. Furthermore, it can
automatically detect and cut chimeric contigs, and use contig-contig, single read or alternative genome
assembly alignments as additional information on contig order and orientations and to collapse haplotype
contigs.
We demonstrate the performance of Lep-Anchor using real data and show that it outperforms ALLMAPS
on anchoring completeness and speed. Accuracy-wise Lep-Anchor and ALLMAPS are about equal, but
at the expense of lower completeness of ALLMAPS. The software Chromonomer was faster than the
two other methods but has major limitations and is lower in accuracy. We also show that with additional
information, such as contig-contig and read alignments, the anchoring completeness can be improved by
up to 70% without significant loss in accuracy. Based on simulated data, we conclude that the anchoring
accuracy can be improved by utilising information about map position uncertainty. Accuracy is the rate of
contigs in correct orientation and completeness is the number contigs with inferred orientation.
Availability: Lep-Anchor is available with the source code under GNU general public license from
http://sourceforge.net/projects/lep-anchor. All the scripts and code used to produce the reported results
are included with Lep-Anchor.
Contact: pasi.rastas@helsinki.fi

1 Introduction
Advances in high-throughput sequencing and computational methods have
made assembly of genome sequences de novo practical (Simpson and
Pop, 2015). However, typically (de novo) assemblies contain assembly
errors and are fragmented in many short contigs (or scaffolds) without
information on how the sequences are physically located with respect to
each other (Fierst, 2015; Simpson and Pop, 2015). When suitable mapping
crosses and genetic marker data is available, linkage mapping provides
independent information on locations and orientations of the sequences
(Fierst, 2015).

Typical linkage map has a position in centiMorgans (cM, percentage
of individuals recombining) for each genetic marker used to construct
the map. This information can be used directly to position contigs into
and within chromosome. If these map positions define a unique order
and orientation of two adjacent contigs, these contigs can be scaffolded
into longer sequence directly. If there is uncertainty in the local order
of the contigs (e.g. all markers in both contigs have only one map
position), the map information could be used as external evidence in local
reassembly. The linkage map anchoring is a process where assembled
genome sequences are put together by maximising the correlation of the
physical (base pair) and the linkage map (cM) positions.

The number of individuals (offspring) in a mapping cross defines how
many recombinations can be detected. To orient a contig, there must
be at least two genotyped markers in it and at least one recombination
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between those markers. Moreover, each recombination can orient at most
one contig. Even a mapping cross of less than 20 individuals can detect
many assembly errors where distant parts are erroneously joined together
(Rastas et al., 2013). With more individuals, even more local errors can be
detected and more contigs can be oriented and placed into chromosomes.
As well as the number of individuals, the number of markers affects the
map resolution. With too few markers, shorter contigs remain without
any/proper linkage information, and some recombinations will be missed
which reduces information on the contig orientation.

Low-coverage high-throughput whole genome sequencing has high
potential in linkage mapping. It is a cost-efficient approach to obtain
genotype information for millions of single nucleotide polymorphisms
(SNPs) and thousands of individuals, pinpointing most recombinations
within narrow regions in the genome, even for non-model species.
However, the tools that are currently available for constructing linkage
maps are not well suited for this many markers and even less so for low to
medium coverage sequencing data. Recent linkage mapping software Lep-
MAP3 (Rastas, 2017) can robustly construct linkage maps for millions
of markers and thousands of individuals even from low coverage data.
Moreover, Lep-MAP3 can output uncertainty in the linkage map positions.

The software Lep-Anchor has been developed to efficiently anchor
genomes by using all the information provided by Lep-MAP3 and the
additional information (for local reassembly) provided by read and contig-
contig alignments.

1.1 Previous work

There are many genomes anchored into chromosomes using linkage
maps, like yellow catfish (Tang et al., 2015), red postman butterfly
(Van Belleghem et al., 2017) and the species mentioned in Fierst (2015).

There are also some software for integrating assemblies and linkage
maps, such as ALLMAPS (Tang et al., 2015), ArkMAP (Paterson and Law,
2013) and Chromonomer (http://catchenlab.life.illinois.edu/chromonomer/,
Catchen (2015)). In this work, we compare the performance of Lep-
Anchor, ALLMAPS (downloaded in August, 2019) and Chromonomer
(version 1.08). The ArkMAP was not available for download (August,
2019).

Software ALLMAPS puts the contigs within each chromosome by
maximising the number of supporting linkage map markers (length of the
longest non-decreasing subset of markers). The same concept of marker
support is used in Lep-Anchor by utilising map intervals describing the
map uncertainty of each marker (see Fig. 3). The way Lep-Anchor puts
the contigs into chromosomes is based on a hidden Markov model, similar
to the model used in Lep-MAP (Rastas et al., 2013). We do not know
exactly how Chromonomer is achieving its anchoring. Based on its log files
produced during our experiments, it seems to remove conflicting markers
from the map until the map and genome are consistent.

We show in this article that Lep-Anchor improves upon these existing
software. Based on our experiments, Lep-Anchor is very competitive
on anchoring accuracy and completeness. Lep-Anchor is also fast, this
computational efficiency is due to careful implementation of efficient
algorithms.

As novel features, Lep-Anchor inputs map position intervals for each
marker, taking into account the uncertainty in the map positions. Such
uncertainty can occur due to low recombination regions (Fig. 2), cross
type (e.g. multi-family data) or poor mapping data (genotype) quality.
Moreover, Lep-Anchor also automatically finds and fixes chimeric contigs
(locating in two or more chromosomes) and indicates possible within-
chromosome chimerics for manual inspection and correction. Finally, Lep-
Anchor can take as input contig-contig, related (species) assembly or single
read alignments, and use them as additional evidence for contig order
and orientation as well as to collapse haplotypic contigs. These haplotype
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Fig. 1. The data processing pipeline for Lep-Anchor. The main modules are CleanMap that
assigns contigs into chromosomes and PlaceAndOrientContigs that orders and orients the
contigs within each chromosome.
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Fig. 2. Simulated data on F1 cross (two parents and their 11 offspring) and 200 markers.
The piece-wise constant curves show the actual male (light grey) and female (dark grey)
map positions as a function of the physical position (Marey map). The black vertical
intervals show the marker positions and their uncertainty in the average map position based
on simulated sequencing data with 20x average coverage. Due to markers informative
differently in the parents, the intervals span several map positions. Such uncertainty cannot
be reduced by improving genotype quality, and is more apparent in the regions of low
recombination for one parent only (e.g. contigs c4-c6). The physical position consists of 11
contigs of length 1Mb (c0, . . . , c10) shown under the Marey map.

contigs can be problematic in assemblies of highly heterozygous genomes
(Huang et al., 2017).

2 Methods
The Lep-Anchor (LA) workflow is illustrated in Fig. 1. This workflow
consists of modules CleanMap and PlaceAndOrientContigs. CleanMap
will only use the chromosome information of each marker, putting contigs
into chromosomes, whereas PlaceAndOrientContigs puts the contigs into
order and orientation within each chromosome.
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2.1 CleanMap

CleanMap takes as input the genomic position (contig + position) and
linkage group information of each marker. It uses an EM algorithm to
find maximum likelihood parameters for a hidden Markov model on this
input, in order to find likely (chimeric) contigs that belong to multiple
chromosomes. The model has a state for each chromosome for every
marker, and two parameters ε and τ for modelling errors in the map data
(emission, accounting infrequent erroneous markers) and assembly errors
(transition, change of chromosome), respectively. Thus, the model changes
chromosome within a contig with probability τ and emits a different
chromosome number from its state (label) with probability ε. The emission
probability is scaled to cope with regions with high marker density (e.g.
repeats or indels, on default regions with more than one marker per 100bp).
Transition probability is defined on a fixed base-pair distance (default
1000bp), simply by adding states between adjacent markers with longer
distance. The idea of CleanMap is similar to the ScaffoldHMM module
in Lep-MAP (Rastas et al., 2013), used to combine linkage groups of two
linkage maps.

2.2 PlaceAndOrientContigs

The main part of LA is PlaceAndOrientContigs module. Its input consists
of one or more linkage maps and the chromosomal assignment of contigs
from CleanMap. Linkage maps can be given by listing the genomic position
and the linkage position or position interval(s) (e.g. position ∈ [20, 23]
cM). The position intervals can be obtained from Lep-MAP3 (Rastas,
2017) and allow Lep-Anchor to utilise information on marker position
uncertainty. PlaceAndOrientContigs tries to find an order and orientations
of contigs (anchoring) that is supported by the most markers. The concept
of marker support is illustrated in Fig. 3.

Given a fixed anchoring, the number of markers supporting it can be
calculated by dynamic programming in O(mn) time, where m is the
number of markers and n is the number of unique map positions.

Let M1, . . . ,Mm be the markers in the anchored physical order and
S(i, p) be the number of supporting markers among M1, . . . ,Mi with
marker Mi set to position p. Dynamic programming for this measure can
be formulated as

S(0, p) =0

S(i+ 1, p) =maxq≤pS(i, q) + score(Mi+1, p)
(1)

, where score(M,p) is the score of markerM put to position p. Any score
function could be used here, but we only consider the aforementioned
position intervals, i.e. score is 1 if the position p is within the marker
interval(s) and 0 otherwise. Finally, S = maxpS(m, p) is the number
of markers supporting this marker order and defines the score we want to
optimise. By backtracking the path obtaining this score, one would obtain
the non-decreasing piece-wise constant function fitting to the intervals.
This function could be used, e.g. to estimate recombination rate.

The algorithm for finding the orientation starts from some order and
orientation of contigs (defines the marker order). Then each contig is tested
(in random order) whether the score improves if the contig is reversed
and/or moved within the current anchoring. Each such improvement
is accepted and, when all contigs are tried without improvement, the
algorithm terminates. All possible positions and orientations for k contigs
can be tested in O(kmn) time with a typical forward-backward type
algorithm.

2.2.1 Handling multiple maps
In order to use multiple maps in LA, their relative orientation is required (so
that linkage and physical positions are positively correlated). LA finds such
orientation as follows. First the anchoring is done for the first map only in
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Fig. 3. The number of markers that are consistent with the physical and linkage positions
defines the supporting score to optimise in anchoring. The largest non-decreasing subset of
markers can be used when the map is given as plain cM positions (left, used in ALLMAPS).
With position intervals (right, Lep-Anchor), a non-decreasing piece-wise constant function
is fitted to the intervals. In this hypothetical case, the support score is 7 for positions but 8 for
intervals. The longest non-decreasing subset of markers can be computed asymptotically in
O(m log(m)) time for m markers (Fredman, 1974). The algorithm that Lep-Anchor uses
for intervals is typically somewhat slower, taking O(mn) time where n is the number of
unique map positions, see Section 2.2 for more details.

forward orientation starting from a random order of contigs (or from sorted
order based on most abundant marker position of each contig). Then maps
are added one by one in the input order by evaluating the current anchoring
for the new map in both orientations and taking the orientation with higher
score. Before adding the next map, the anchoring is improved by using the
newly added map in the chosen orientation.

2.2.2 Using additional data to link contigs
PlaceAndOrientContigs can use contig-contig and read alignment data in
addition to linkage maps to decide the orientation and placement of contigs.
This is accomplished by defining the anchoring score as the supporting
markers S plus the alignment score between each adjacent contigs in the
anchoring.

The input for contig-contig alignments is taken in as UCSC
liftover chain file (Kent et al., 2003). This chain can be generated
by the first two step of HaploMerger2 (Huang et al., 2017) pipeline
(hm.batchA1.initiation_and_all_lastz + hm.batchA2.chainNet_and_netToMaf)
on a repeat masked reference genome. The chain is used to lift the markers
of a collapsed region to the remaining region. The additional score is
defined by calculating the number of supporting markers after the liftover
and adding one (+1) for each 1kb of aligning DNA and subtracting one (-1)
for each kb in alignment gaps. If the score is positive between adjacent
contigs, the partial haplotype region is automatically collapsed. At the
end, PlaceAndOrientContigs also calculates and reports the score of full
haplotypes and these contigs can be manually removed after the first run.

Raw sequencing reads (or contigs from a related species or individuals)
can also be used to link contigs. Each read linking two adjacent contigs
adds one to the anchoring score. Reads are only used if the contig-contig
alignment score is not positive for the corresponding adjacent contigs. The
input for read mappings is a minimap2 (Li, 2018) paf file.

The changes in the anchoring search algorithm are minimal when
taking into account these additional scores; the linkage map and the
alignment scores are added up and, instead of moving and orienting only
individual contigs, the update step tries to move and orient chains of
adjacent contigs with positive adjacent scores.

3 Results
We tested the performance of LA, ALLMAPS and Chromonomer
using yellow catfish (Tachysurus fulvidraco) and red postman butterfly
(Heliconius erato) data. The former consist of four linkage maps and
a scaffold level assembly coming with ALLMAPS (Tang et al., 2015).
Recently, a more complete genome was published for this species (Gong
et al., 2018) and was considered here as the ground truth (GT). For the red
postman, we used the original assembly (Van Belleghem et al., 2017) as the
GT and the corresponding map data from Rastas (2017). All experiments
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were run using a single core of a normal desktop computer with i7-7700
CPU @ 3.60GHz and 32Gb of memory.

We discuss in more detail the results of the yellow catfish analyses.
However, Chromonomer can only utilise one of the four input maps and
performed poorly. As its inferior results are mostly due to having too few
markers, we do not discuss more on its performance on the yellow catfish
data.

First, we notice that LA reports five chimeric scaffolds for the yellow
catfish data (scaffolds 44, 75, 123, 165 and 230), whereas ALLMAPS on
default puts all contigs into at most one chromosome. The mapping of the
two genomes against each other with minimap2 (Li, 2018) supports all
the chimerics found by LA. The start of scaffold 230 maps to unanchored
part of GT (suggesting that GT could be improved with this linkage map)
and the end to chromosome 23. The other four chimerics map to different
chromosomes consistent with the marker positions in the LAs result. We
tried the option split in ALLMAPS, meant to cut chimeric scaffolds:
It reported 47 breakpoints within scaffolds. One of the ALLMAPS
breakpoint-scaffolds, scaffold 44, was also reported by LA but the reported
breakpoint was not the same. Thus, all the five verified chimerics were
missed by ALLMAPS.

Second, we compared the score (number of supporting markers) of
the two programs. LA reports the final result with the total of 6061
supporting markers summing up all 26 chromosomes, whereas ALLMAPS
reports 5979 supporting markers. We verified the support by evaluating
ALLMAPS results with LA. According to LA, ALLMAPS result had 6019
supporting markers counted by LA: in 10 chromosomes, the scores were
equal and in the remaining 16 chromosomes, the score calculated by LA
was greater. The difference is most likely due to ALLMAPS removing 225
markers (2.3%) as outliers.

Third, the number of scaffolds with known orientation were 520 and
493, with LA and ALLMAPS, respectively, whereas the total number
of scaffolds were 940 and 929, respectively. We mapped the scaffolds
to the GT and calculated orientation for 1724 scaffolds that had at least
two mappings to a chromosome and at least 80% of mappings showed
consistent orientation. In LA results, 69.4% of the comparable scaffolds
(279 out of 402) had a consistent orientation, whereas in ALLMAPS results
68.3% (259 out of 379) were consistent. The scaffolds with consistent
orientation accounted 82.8% (of 440 Mb) and 82.0% (of 426 Mb) of the
total length of the scaffolds, respectively for LA and ALLMAPS (LA had
15Mb more in correct orientation). The higher correctness in the total
length indicates that the shortest scaffolds were more likely to be in wrong
orientation or that the mapping of short scaffolds is not reliable.

Lastly, we used contig-contig alignments as input for the LA. We
constructed the alignment chain file with the Haplomerger2 pipeline
(Huang et al., 2017) using the scaffold level assembly as input. With
the chain we could find partial haplotypes and utilise unused scaffolds
in the anchoring. Including this extra information, 563 scaffolds had an
orientation (and 34 additional scaffolds had an orientation relative to some
unoriented scaffold). From these, we could verify 431 scaffolds and 301
(69.8%) were in correct orientation, covering 83.5% (of 445Mb) of the
total length.

The somewhat poor performance of both LA and ALLMAPS on the
yellow catfish data might be due to the linkage map, especially due to
the low marker density. Unfortunately, the raw linkage map data are not
available so we cannot verify this. Instead, we did similar comparisons
on the red postman maps generated with Lep-MAP3. We took all male-
informative markers (3.2M) as input for LA and only markers without
uncertainty in the position (position interval contains only one position)
and consistent with the chromosomal assignment from CleanMap (3.0M
markers, 4.3% discarded) for ALLMAPS and Chromonomer. We run
LA with the map data only and then by including alternative genome

catfish LA with chain LA ALLMAPS Chromonomer
runtime (min) 2 1 24 <1 *
scaffolds 940 940 929 679*
in orientation 563 520 493 NA

consistent
69.8% 69.4% 68.3% 68.6%**

301 of 431 279 of 402 259 of 379 236 of 344

consistent (Mb)
83.5% 82.9% 82.0% 75.3%**

372 of 445 364 of 440 350 of 426 317 of 421
butterfly
runtime (hours) 4 4 195 0.04
contigs 1235 1235 1216 1233
in orientation 811 474 116 NA

consistent
98.5% 98.9% 100% 97.8%**

764 of 776 460 of 465 111 of 111 437 of 447

consistent (Mb)
99.5% 99.6% 100% 98.1%**

379 of 382 297 of 298 109 of 109 270 of 276

Table 1. Comparison of Lep-Anchor, ALLMAPS and Chromonomer on
yellow catfish and red postman butterfly data. The best result is in bold. *
= Chromonomer only accepts one input map so it was run only on the first
map of the yellow catfish data. ** = Chromonomer outputs orientation for
all contigs even without any data to infer this, so we evaluated correctness
only for the contigs oriented by LA. Note that only LA has split contigs into
multiple chromosomes, other software have put each contig into at most one
chromosome

assemblies (minimap2), contig-contig alignments (Haplomerger2) and
raw PacBio reads (minimap2).

We immediately notice that all the results contain about the same
number of contigs, but ALLMAPS provides orientation information for
far fewer contigs (about 25% of LA). Investigating this further, it seems
that ALLMAPS rarely outputs an orientation for contigs with only one
recombination (two map positions). However, there are contigs with one
recombination that are orientated with ALLMAPS.

Chromonomer was much faster on this data (< 3 min) than LA or
ALLMAPS. However, it gives an orientation for all contigs, not just ones
for which there is map information. The orientation for the contigs without
map information seemed random (about same number of contigs in + and
- orientation). This makes it difficult to compare its results to the ones
with ALLMAPS and LA as by random assignment 50% contigs will be in
correct orientation. To obtain comparable results, we only took the contigs
for which LA gave an orientation.

Finally, using additional alignments with LA, the number of oriented
contigs almost doubles and about 180 contigs contain orientation
information relative to some other unoriented contig. All the results are
summarised in Table 1.

We also tested the software using simulated data. We simulated
small linkage map data according to F1 cross with 11 offspring over
11Mb chromosome consisting of 11 contigs of length 1Mb in forward
(+) orientation. There was exactly one male and female recombination
within each contig except for contigs c4, c5 and c6. Contig c5 had no
recombinations and contig c4 and c6 had no female recombinations. We
simulated 50, 100 and 200 genetic markers from these contigs with varying
average sequencing depth of 5, 10 or 20 per individual and each marker
being informative in male, female or both with equal likely. Simulated
reads were converted to genotype likelihoods by assuming a fixed read-
error rate of 1%. The Marey map, contigs and 200 markers with position
intervals from this simulation are shown in Fig. 2. Note that this simulation
does not contain any information about the orientation of c5, other contigs
can be orientated if there are enough markers (informative markers at
informative positions).
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markers LAi LA+ LAs AM AM+ Chromonomer
(coverage) +/-/? +/-/? +/-/? +/-/? +/-/? +/-/?

50 (5x) 3/0/8 4/1/6 4.2/1.9/4.9 2.2/1.6/7.2 3/2/6 4.3/1.8/4.9**
100 (5x) 8/0/3 7/0/4 5.4/1.1/4.5 5.1/1.0/4.9 9/2/0 4.9/1.6/4.5**
200 (5x) 9/0/2 10/0/1 8.7/0.6/1.7 5.0/0.6/5.4 8/0/3 9.0/0.3/1.7**
50 (10x) 3/0/8 4/0/7 4.4/0.7/5.9 3.9/0.2/6.9 7/0/4 4.5/0.6/5.9**
100 (10x) 6/0/5 8/0/3 7.2/0.8/3.0 3.1/0.6/7.3 8/0/3 7.1/0.9/3.0**
200 (10x) 10/0/1 9/0/2 8.4/0.2/2.4 3.6/0.0/7.4 7/0/4 8.5/0.1/2.4**
50 (20x) 4/0/7 5/0/6 4.8/1.3/4.9 4.2/1.0/5.8 7/1/3 4.7/1.4/4.9**
100 (20x) 6/0/5 9/0/2 6.8/0.6/3.6 3.9/0.4/6.7 8/0/3 7.1/0.3/3.6**
200 (20x) 10/0/1 10/0/1 8.7/0.4/1.9 4.3/0.1/6.6 7/0/4 8.9/0.2/1.9**

Table 2. Comparison of Lep-Anchor, ALLMAPS (AM) and Chromonomer on
simulated data. Results for LAs, AM and Chromonomer are averages over 10
independent samplings (explained in the text). Lep-Anchor was run on linkage
position intervals (LAi), with sampled map positions (LAs) and with all 10
sampled datasets together (LA+). ALLMAPS was run on sampled positions
and with all 10 samples together (AM+). Chromonomer was run on the 10
samples only (due to lack of multi-map support). The numbers are contigs in
forward (+), backward (-) and unknown (?) orientation. All contigs should be
in forward orientation, but the data is not sufficient to orient contig c5, thus the
best result is 10/0/1. We rank the solutions by the highest number of "correct -
incorrect", e.g. 10/0/1 yields 10-0=10 and 8/2/1 8-2=6. For LA+ we required
a support of 5 markers as each marker is multiple times in the dataset, for
ALLMAPS we could not control its sensitivity in this way. The best result is in
bold. ** = Chromonomer outputs orientation for all contigs even without any
data to infer this, so we evaluated correctness only for the contigs oriented by
LAs (supported by one or more markers).

The results on simulated data are shown in Table 2. To obtain the
map, we run Lep-MAP3 on the data in the correct marker order and took
out the linkage position intervals for each marker. We run LA directly
with these intervals (LAi in Table 2), and in order to test other software
and the effect of using intervals, we sampled one map position from each
interval randomly 10 times. We also tried to use only markers without
any uncertainty in the map position, but then many contigs would be left
without any markers (over 50% of markers were discarded). Each of the
sampled dataset was run with LA (LAs in Table 2), ALLMAPS (AM) and
Chromonomer. With LA and ALLMAPS we could also run all 10 sampled
datasets together as 10 families (LA+ and ALLMAPS+).

From these results we conclude that using marker intervals reduces
errors in the anchoring. Sometimes the sampled map positions yield better
result but this could be due to stochasticity of the sampling. On the sampled
datasets, the results of Chromonomer and LAs are about equal in accuracy,
whereas ALLMAPS performs somewhat worse. By combining all 10
samples, the performance of ALLMAPS gets better and the error rate
is reduced for LA. However, the conclusions is that that the use of marker
intervals in LA is a reasonable approach, and only small improvements
could be achieved by studying the optimal combination of sampling and
the marker interval approach in more detail. Note that the map uncertainty
is higher in these simulations compared to the real maps used in this article,
the latter containing only male or female informative markers.

4 Discussion and Conclusion
By using two real data sets, we have demonstrated that Lep-
Anchor outperforms ALLMAPS and Chromonomer in genome assembly

anchoring. Lep-Anchor produces greater numbers of contigs/scaffolds
with accurate orientation information than the other available software.
Moreover, Lep-Anchor is able to incorporate additional alignment data
with the linkage map and thus obtain even more complete anchoring.

Lep-Achor is almost 50 times faster than ALLMAPS, making it more
practical for larger datasets. Chromonomer is even faster but is more
limited in its input and output.
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